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Personalized Estimation of Intended Gait Speed for
Lower-Limb Exoskeleton Users via Data
Augmentation using Mutual Information

Roopak M. Karulkar1, Patrick M. Wensing1

Abstract—This letter presents a method for data-driven user-
specific gait speed estimation for people with Spinal Cord
Injuries (SCIs) walking in lower-limb exoskeletons. The scarcity
of training data for this population is addressed by leveraging
common patterns across users that relate gait changes to speed
changes. To bootstrap the process, widely available walking data
from uninjured individuals was used as a base dataset. The
distribution of this data was first transformed to match smaller
user-specific training sets from walking trials of subjects with
SCIs. User-specific trials were then selected based on the mutual
information between gait speed and features for the combined
dataset. The resulting selected data was finally used to build
a model for estimating the user’s intended gait speed. The
performance of this approach was evaluated using data from
two users with SCIs walking in an EksoGT exoskeleton with a
walker or crutches. Estimation trials were compared when using
the base data alone versus when providing personalization via
the addition of novel data. The average successful estimation of
speed-up and slow-down changes increased from 52% to 67%
with personalization using only 8 to 12 steps’ worth of user-
specific data, with a best-case improvement of 32%, from 48% to
80%. Overall, the proposed method uses the mutual information
between gait features and speed to provide a reliable alternative
to manual data selection while pooling data from healthy and
injured individuals.

Index Terms—Prosthetics and Exoskeletons, Intention Recog-
nition, Rehabilitation Robotics

I. INTRODUCTION

A. Motivation & Previous Work

THE US has over a quarter-million existing cases of SCIs
[1] with the cost of care per patient exceeding half a

million dollars [2]. One of the main mechanisms of recovery
from SCIs is accomplished through the reorganization of a
person’s intact neuronal pathways [3]. In order to take advan-
tage of neural plasticity and support this reorganization, gait
rehabilitation strategies often involve repeatedly moving the
patient’s legs through prescribed walking trajectories. In recent
years, robotic exoskeletons have been cleared by the FDA for
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use in gait rehabilitation due to their ability to consistently
track the necessary joint trajectories, which may result in
accelerated rehabilitation [4]. There are multiple commercial
exoskeletons currently available, including the Ekso GT [5],
Indego [6], and ReWalk Personal System [7].

As these devices increase the patient’s level of autonomy,
fluent Human-Robot Interaction (HRI) is desired to maintain
the safety and efficacy of the treatment. HRI fluency is an
abstract notion but can be defined roughly as the reliability
with which a human and robot can predict each other’s
future actions [8]. It may be quantified by the inverse of
the time it takes to complete desired tasks [9]. This time
may be minimized if the robot can anticipate changes to the
user’s intent and assist as necessary. The overall goal of this
work is to increase the fluency in HRI for lower-extremity
exoskeletons by estimating user intent. Intent itself is difficult
to quantify, so an exoskeleton user’s desired forward speed is
considered as representing their intent in this study.

Some available exoskeletons use rudimentary methods to
infer user intent. The HAL exoskeleton uses force sensors
under the feet to detect weight transfer to initiate a step
[10] and the ReWalk system uses a combination of ground
reaction force sensors and torso tilt [11]. Using additional gait
features, such as step length, frequency, and joint angles in
intent estimation may provide further insight into the user’s
desired motion through their gait patterns.

An exoskeleton user’s intended gait speed may be inferred
using gait feature information, and this inference is often
pursued through data-driven strategies. Gait features of steady-
state walking can be qualitatively modeled using physics-based
models of locomotion such as the Bipedal Spring-Loaded
Inverted Pendulum (B-SLIP) [12], [13]. However, aspects of
human decision-making and intent realization are not well
modeled using first principles, so it is challenging to use them
to anticipate gait changes. As a result, data-driven strategies
such as Convolutional Neural Networks (CNNs) [14], Gaus-
sian Processes (GPs) [15], gradient boosted decision trees [16],
and Gaussian methods [17] have been more commonly used
to infer user intent. These methods require a large amount
of training data, and this requirement may further increase
when attempting to train user-independent models due to
the inter-subject gait variability seen in human walking. The
work presented herein (Fig. 1) describes a method to estimate
intended gait speed while addressing data requirements and
gait variability.

Gait patterns of people with iSCI may exhibit higher inter-
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Fig. 1. Estimator personalization by using base and user-specific novel data
from walking trials in the EksoGT exoskeleton.

subject variability than uninjured people [18], which creates
the need for personalized exoskeleton assistance to better suit
each user. Additionally, personalization may better capture the
increased intra-subject variability because of spastic distur-
bances resulting from iSCIs [19]. Tucker et al. [20] further
highlight the benefits of personalizing exoskeleton assistance
by giving the user pairwise options to modify exoskeleton
control parameters and increase comfort. While controller
personalization is important for comfort, the personalization
of intent estimation represents a complementary area of need
for HRI fluency.

One of the challenges of effective personalization is the
prohibitive amount of training data required. As there is a
limited amount of data for exoskeleton-assisted walking, the
work presented in this letter aims to address that scarcity by
fusing trial data from uninjured users with data from novel
users (Fig. 1). The main idea of the approach is that gait feature
trends exhibit similarities across subjects, e.g., step length and
frequency increase with speed. The estimator personalization
developed in this work seeks to exploit these similarities and
create a base dataset from uninjured subjects. As people with
iSCIs are expected to show similar gait feature trends, this
dataset may then be transformed to provide additional training
data for them. Similar ideas of exploiting gait feature common-
alities have previously been used to develop user-independent
gait mode estimation approaches for healthy individuals [21],
[22].

User-independent intent detection strategies for powered
prostheses are also relevant to the goals of this study, since
prosthesis control strategies must address similar HRI chal-
lenges. There is very little work regarding user-independent
intent recognition for powered prostheses and even less for
exoskeleton-assisted walking for individuals with iSCIs. User-
independent prediction of gait mode for prosthesis users has
been implemented using Linear Discriminant Analysis (LDA)
[23], Dynamic Bayesian Networks (DBNs) [24], and gradient
boosted decision trees [25] with each method showing im-
provement over the last.

A majority of the state-of-the-art work referenced previously
considers the problem of activity classification, i.e., detecting
walking on flat ground, or ascent/descent on ramps and
stairs. The objective of the work presented in this letter is
to capture intent changes through changes in intended gait
speed. This objective, coupled with the gait variability seen
in exoskeleton walking, means there is difficulty in obtaining
labeled training data about changes in intended speed as

compared to changes in activity. This shortage of training
data increases the difficulty of developing estimators that can
identify changes in the intended gait speed. Further, while
there is some initial previous work regarding continuous speed
estimation for prostheses [26], no such work is available
regarding exoskeleton-assisted walking.

B. Contribution

Despite inter-subject gait variability, common patterns relat-
ing gait changes to speed changes are observed across users.
For example, step length and frequency, pitch and roll motions
of the torso, and joint angle trajectories all show qualitatively
similar trends relating to speed changes across individuals. The
main contribution of this work is a method to personalize the
estimation of the gait speed for subjects with SCIs walking
in a lower-limb exoskeleton. The proposed method addresses
training data scarcity by supplementing novel user data with
transformed gait data collected from trials of uninjured users.

The new method was evaluated on an experimental dataset
containing speed change trials of subjects with and without
iSCIs walking in an Ekso GT lower-limb exoskeleton (Fig. 1)
using an estimation framework based on a Buttressed Kalman
Filter (BKF) [27]. In the original BKF, the models used in
the estimator were trained using data from a single subject.
In contrast, the work presented herein explores how to incor-
porate data from multiple subjects to generate the necessary
models, while retaining personalization for new users.

This study also explores the effect that the user’s choice of
assistive ambulatory device, a walker or crutches, has on the
personalized estimator. On average, estimator personalization
resulted in increased success in estimating the subjects’ desire
to speed-up (SU)/slow-down (SD), with changes detected
before they were physically realized.

C. Overview

The remainder of the paper is organized as follows. Section
II details the training data selection and augmentation, and
the estimator framework. The performance of the method for
crutch and walker-assisted walking was evaluated on experi-
mental data, as discussed in Section III. Concluding remarks
and future work are given in Section IV.

II. METHODS

One of the difficulties in using learning-based strategies
is the shortage of training data. There are multiple datasets
of walking trials of uninjured individuals [28]–[30] however
there is a lack of data from walking trials of exoskeleton
users. This problem is further complicated by the coupling
present in human-robot dynamics, as each user may interact
differently with the robot [31]. This variability increases when
considering different ambulatory devices (e.g., crutches) [32]
or injury severity [33], [34]. Therefore, it is important to
develop a method that may address the data scarcity in
exoskeleton-assisted walking by enabling the re-use of training
data across multiple users.
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A. Exoskeleton Dataset

The reliance of many state-of-the-art intent inference ap-
proaches on external sensors like EMGs may be problematic in
practical applications, as EMGs need consistency in placement
and may slip during usage due to perspiration [35], [36].
Therefore, this work strives to exclusively use measurements
from sensors onboard the exoskeleton as they may offer a more
reliable option [17] in addition to being cost-effective.

The work herein was applied with trial data [17] from
users walking in the EksoGT exoskeleton developed by Ekso
Bionics (Fig. 1). Data were acquired from three uninjured
and two injured subjects. The exoskeleton has two modes of
operation, free and adaptive. Free mode is similar to gravity
compensation, whereas, in adaptive mode, the exoskeleton
follows a predefined trajectory and corrects any deviations
from it. Uninjured users underwent trials in both modes and
injured users only underwent trials in adaptive mode.

Sensors onboard the exoskeleton provide hip pitch, knee
pitch, and torso pitch and roll angles, and are fused to estimate
the height and fore-aft position of the hip in a global frame.
These readings were used to approximate the location of
the subject’s CoM with respect to the stance foot. Since the
position of the CoM is considered relative to the stance foot,
the drift that may be present in the global position estimate
does not affect step-to-step calculations. The subject’s height,
thigh, and shank lengths were recorded and the location of
their CoM was approximated to be at the centroid of the
pelvis. The remaining dimensions, such as ankle height and
hip width, were computed using anthropometry relationships
defined by Winter [37]. The CoM velocities and angular
velocities of the joints and torso were computed with finite-
difference approximations.

The two main gait events to be identified for the estimator
were midstance (MS) and touchdown (TD). A zero-crossing
event between the left and right hip angles was used to detect
MS. TD was detected when force sensor readings from both
feet were above a threshold of 5% of the maximum sensor
value. Eighteen gait features (S = 18) listed in Table I were
considered for use in the estimator.

B. Novel User Data Augmentation

1) Transforming Data from Uninjured Users to Match
Novel Data: Data from healthy users walking in an exoskele-
ton may be easily obtained to satisfy the requirements of data-
driven methods. These data still retain high-level similarities
in gait feature trends (e.g., changes in step length with changes
in gait speed [27]). This commonality between gait patterns
may be exploited to augment the amount of available training
data for injured users.

Gait feature and gait speed measurements were found to
be well approximated with Gaussian distributions [38], which
motivated transforming the data from healthy user trials to
match the mean and standard deviation of data from an
injured user. A transformation was performed on a vector of
measurements qs ∈ RN of an individual gait feature, where
N is the number of measurements and s ∈ {1 . . . S}. A
vector containing measurements of a single gait feature is also

TABLE I
GAIT FEATURES CONSIDERED FOR DESIRED GAIT SPEED ESTIMATION

Gait Feature Description
Step Length (m) Step length as computed at TD

RMS Swing Current - Hip (A) Swing leg hip motor - MS to TD
RMS Swing Current - Knee (A) Swing leg knee motor - MS to TD

Time-to-TD (s) Time from MS to TD -
proxy for step frequency

Hip Angle - Swing (rad) Hip angle of the swing leg at TD
Knee Angle - Swing (rad) Knee angle of the swing leg at TD

Hip Angular Velocity - Swing (rad/s) Hip joint velocity - swing leg at TD
Knee Angular Velocity - Swing (rad/s) Knee joint velocity - swing leg at TD

Hip Angle - Stance (rad) Hip angle of the stance leg at TD
Knee Angle - Stance (rad) Knee angle of the stance leg at TD

Hip Angular Velocity - Stance (rad/s) Hip joint velocity - stance leg at TD
Knee Angular Velocity - Stance (rad/s) Knee joint velocity - stance leg at TD

Torso Pitch Angle (rad) Angle with the vertical
in the sagittal plane

Torso Pitch Angular Velocity (rad/s) Angular velocity in the sagittal plane
Torso Roll Angle (rad) Angle with the vertical

in the frontal plane
Torso Roll Angular Velocity (rad/s) Angular velocity in the frontal plane

Leg Angle (rad) The angle made with the vertical
by the line connecting the estimated

CoM and leading foot position at TD
Leg Angle (rad) The angle made with the vertical

by the line connecting the estimated
CoM and leading foot position at TD

Current gait speed (m/s) The gait speed measured at MS

denoted by q, with the subscript s omitted for readability.
Its mean and standard deviation are q̄ and σ respectively.
Subscripts b and n denote base and novel data respectively
and n/b represents base data that has been transformed to
match the distribution of novel data from a single user via:

qn/b = (qb − q̄b)σnσ−1b + q̄n (1)

q ← [qT
n/b qT

n ]T (2)

The features are then collected in a matrix Q ∈ RN×S such
that q = [q1 . . .qS ].

It is important to choose appropriate novel data to ensure
that the gait feature data carries a sufficiently high amount of
information about the subject’s desired gait speed.

2) Choosing Appropriate Novel Data: Steady-state walking
in trials of subjects with iSCIs had a standard deviation of
up to 0.18 m/s for their walking speed compared to 0.1 m/s
seen in healthy users walking without robot assistance [39]. In
addition to the severity of the iSCI, variability may be affected
by user fatigue, discomfort, or misfit orthoses. As a result,
some walking trials may better represent the exoskeleton user’s
gait patterns than other trials performed on the same day.
Therefore, choosing the appropriate training datasets from
injured users is important to reduce noise in the data and
accurately capture their gait patterns. As shown in Fig. 2,
the accuracy of the estimator in predicting gait speed changes
differs based on the novel data used for customization, so these
data must be chosen carefully. This choice may be increasingly
difficult to make as the number of trials to consider increases.

One way to make this choice is to consider the Mutual In-
formation (MI) between the measured variables (gait features)
and those to be inferred (desired speed). MI is a measure of the
information obtained about one random variable by observing
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Fig. 2. Estimator performance for a user with SCI for chosen novel data.

Fig. 3. The difference between two distributions may be quantified using the
KL divergence between them.

another variable [40]. The MI between two variables may be
computed using the Kullback-Leibler (KL) divergence, DKL,
between their joint and marginal distributions. For example,
consider two distributions A and B of an arbitrary variable
x, then the KL divergence DKL(A||B) is a measure of how
different the two distributions are, as illustrated in Fig. 3.
The mutual information between the two variables x and y
is I(x; y) = DKL(p(x,y)||p(x)p(y)) where p(x,y) is their joint
probability and p(x) and p(y) are their marginal probabilities.
Roughly, the MI provides a scalar measure of the correlation
between the two variables.

MI was used to measure the utility of the measured gait
features for estimating the desired gait speed. Since the true
desired gait speed is difficult to determine, the speed at the
next step, denoted v′, was assumed as its proxy [27]. The
distributions of gait speed and features were approximated
as Gaussian and the MI I(V ;Q) was computed, where V
is the distribution of the step-to-step changes in desired
speed estimated via ∆v′, and Q is the distribution of the
corresponding changes in gait feature measurements ∆Q. The
intuition behind using distributions of the changes in gait speed
and features is to incorporate the knowledge of their evolution
through intent changes into the selection process.

To avoid training the estimator on all available speed change
data and leave some data for testing, the novel training dataset
was limited to at most three out of all available trials for each
injured user. Combinations of available novel trial data were
generated by choosing two or three out of the available number
of trials and collected in a set W . The MI was computed for
the novel/base data pairing for each combination in the set,
stored in a vector ι ∈ Rlen(W ). The pairing with the highest
MI was chosen. Algorithm 1 details this overall process to
select the appropriate novel trial data for augmenting the base
data.

C. Estimating the Desired Gait Velocity
Gait features and desired speed were assumed to follow

Gaussian distributions during estimation as well. Let the

Algorithm 1 Training set selection

Require: v′n, v′b, Qn, Qb

1: Note: W denotes a set where each element is a combina-
tions of novel trials to be considered

2: for m = 1 to len(W ) do
3: v′n/b = (v′b − v̄′b)σv′

n
σ−1v′

b
+ v̄′n

4: v′ ← [v
′T
n/b v

′T
n ]T

5: for s = 1 to S do
6: qn/b = (qb − q̄b)σnσ−1b + q̄n
7: q← [qT

n/b qT
n ]T

8: end for
9: Q = [q1 q2 . . .qS ]

10: v′ ← ∆v′

11: Q← ∆Q

12:

[
Q
V

]
∼ N

([
q̄
v̄′

]
,

[
Σqq Σqv′

Σv′q Σv′v′

])
13: ιm = I(V ;Q)
14: end for
15: return m such that ιm = max(ι)

desired gait speed vd be rewritten as z to simplify notation:[
q
z

]
∼ N

([
q̄
z̄

]
,

[
Σqq Σqz

Σzq Σzz

])
(3)

where the means and covariances were computed using the
training data that includes both base and novel data. Given
measurements q̃ of the gait features, the estimated mean and
variance of the desired gait speed were determined using
standard conditional probability equations

ẑ = z̄ + ΣzqΣ−1qq (q̃− q̄) (4)

Σ̂zz = Σzz −ΣzqΣ−1qqΣqz (5)

The estimate ẑ is driven by the error between the training
mean q̄ and gait feature measurements q̃. Along with ẑ, the
resulting estimator outputs an SU/SD signal at TD as the
difference between ẑ at the current and previous TD. A speed
change threshold for a SU/SD was determined by recording the
standard deviation in step-to-step speed changes observed from
three steady-state walking steps from each trial in the training
data. This threshold is important due to the minimal detectable
change (MDC) or the minimal change in the measured gait
speed required to distinguish between a true change and noise.
The MDC for people with iSCIs was shown to be around
0.17 m/s [41].

III. RESULTS & DISCUSSION

A. Collected Walking Trial Data

Trial data from three uninjured and two injured users was
collected as part of a study approved by the IRB of the
University of Notre Dame (Protocol 18-04-4650) [33]. One of
the injured users, IU-1, had a complete SCI at the middle of the
spine (T5) and the second user, IU-2, had an incomplete SCI
from the middle to the lower spine (T8 to L2). All users were
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Fig. 4. Output of a single estimator trial for IU-2 using crutches.

highly experienced in the use of the EksoGT. The subjects used
the exoskeleton at a self-selected speed with the assistance of
a walker and were at a steady-state gait before being issued
a verbal command to either speed up or slow down. The
trial sequence was pseudo-random and each subject underwent
three SU and SD trials for a total of six trials.

One step before and three steps after the speed change
command, for a total of four steps, were chosen as training
data from all base and novel trials. For each ambulatory device,
i.e., crutches or walker, the base data consisted of 6 trials from
each uninjured user in each mode, adaptive and free, for a total
of 72 trials. While similar user responses to desired speed
change exist for free and adaptive mode, they are evident in
different sensor measurements [27]. Despite these differences,
more base data was found to result in improved accuracy, even
when that data resulted in a mode mismatch between base and
novel data. For example, for IU-1, excluding base data from
trials in free mode resulted in an estimator accuracy of 69%
compared to 80% when both free and adaptive mode data were
included in the base set. Up to three trials (i.e., 12 steps’ worth
of data) were selected as novel data for each injured user using
Algo. 1 and used to transform the base data. The estimator
was then run on all available trial data for each subject (38-85
steps) out of which at most 12 steps were seen in training.
The estimated change in desired speed was compared to the
measured change, and if the speed change sign was correctly
anticipated, it was considered a successful estimate.

Figure 4 visualizes the output of the estimator for an SD
trial with IU-1. The stem plot represents the SU/SD intent
signal; a positive value indicates SU and a negative value
indicates SD anticipated for the subsequent MS. A significant
speed change is expected after the vertical line as it represents
the MS closest to when the speed-change command was
issued. For an accurate estimate, the value of the signal in
the stem plot should be positive for SU and negative for SD
after the command is issued. Another metric considered while
evaluating estimator performance was the root mean square
(RMS) error between the predicted gait speed change at TD
and the value measured at the subsequent MS.

The estimator was run in three configurations for both
subjects to highlight the benefits of using both novel and base
data, as illustrated in Fig. 5. The base data was from walker
trials and the novel data was from walker and crutch trials
for IU-1 and IU-2, respectively. The first configuration used
untransformed base data (Baseb), the second used only the
transformed base data (Basen/b), and the third used both novel
and transformed base data (Novel+Basen/b). Minor increases

Fig. 5. Percentage of success with and without novel data for both subjects,
labeled with RMS error between predicted and measured gait speed changes.

in SU/SD identification accuracy were observed when using
only the transformed base data, as the accuracy depends on
identifying only the speed changes, and not their magnitude.
Despite increases in accuracy, the RMS errors deteriorated and
were unacceptable at 12.8 m/s and 3.6 m/s for IU-1 and IU-2
respectively. Adding novel data to the transformed base data
increased the speed change estimation accuracy and decreased
the RMS errors.

The trials of IU-1 using only base data had an overall
success rate of 68%. Upon using novel data, the success rate
increased to 80% with a p-value p = 0.049 where the null
hypothesis was that the success rate would stay the same.
Similarly, the success rate for IU-2 increased from 48% to
80% with a p-value p = 7 × 10−5. Therefore, using novel
data resulted in statistically significant increases in accuracy.

B. Efficacy of the Novel Data Selection Algorithm
The number of possible combinations of novel data in Algo.

1 for training was 35 for walker trials and 12 for trials with
crutches for IU-1. There were fewer trials with walking using
crutches, as there was data loss from sensors that hindered
the identification of gait events. All combinations of these
trials were used as novel data with base data from uninjured
subjects using a walker to train conditional models that were
used in the estimator. The percentages of success of those
estimator trials are shown in Fig. 6. The whiskers denote the
most extreme points, and the central line denotes the median.
The green markers illustrate the success rates observed when
the novel data chosen using Algo. 1 was used. If novel data is
chosen at random, accuracy may be as low as 59%, however,
using the novel data selection algorithm outlined previously
ensures a high likelihood of increased success despite not
guaranteeing it. Physically, the difference between the results
shown in green and the maximum success rate shown by the
top whisker would be of at most four misclassified steps. The
increase in accuracy seen in Figure 5 after pooling novel and
base data further highlights the importance of including user-
specific data.

Overall, our analysis showed different outcomes based on
the assistive device used in the novel data. This observation
motivates the remainder of the analysis herein, which consid-
ers the effects of the assistive device on the efficacy of our
methods.

C. Trials Using a Walker
Estimation for both IU-1 and IU-2 was first performed using

base data exclusively from walking trials of uninjured users
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Fig. 6. Percentage of success for IU-1 with the base data from walker trials
and the novel dataset chosen randomly vs. using Algo. 1.

TABLE II
CONFUSION MATRIX FOR

NOVEL DATA - WALKER/BASE DATA - WALKER
Predicted SD Predicted SU
IU-1 IU-2 IU-1 IU-2

Actual SD 80% 58% 19% 78%
Actual SU 20% 42% 81% 22%

using walkers. The performance for these users is summarized
by the confusion matrix in Table II. The color of each
cell ranges from green to red as the accuracy ranges from
100% to 0% therefore, the higher the accuracy, the greener
the cell. The estimator for IU-1 was personalized using one
SD and two SU trials. The speed change threshold for this
estimator configuration was 0.072 m/s, i.e., if the change in
predicted speed at TD compared to the measured speed at the
previous MS was smaller than this threshold, the prediction
was rejected. Walking trials for IU-1 had 90 steps, 46 having
significant speed changes. 80% of SU and 81% of SD changes
were accurately detected at TD, for an overall accuracy of 80%
with an RMS speed error of 0.14 m/s.

Similarly for IU-2, the change threshold was 0.13 m/s. Out
of the 73 total steps, 21 had significant speed changes, and
58% SD and 22% SU changes were accurately detected at
TD for an overall accuracy of 43%. The confusion matrix is
given in Table II. These trials had higher gait variability as seen
from the standard deviation of the steady-state velocity of 0.13
m/s compared to 0.072 m/s for IU-1, which may explain the
difficulty in estimation and drop in success rate. Preliminary
work suggests other methods to address this low success rate,
which are discussed at the end of this section.

D. Trials Using Crutches

The choice of the assistive device affects gait patterns, so
estimation was performed for both injured users for walking
trials using crutches with the performance summarized in
Table III. The base data contained walking trials of uninjured
users exclusively using crutches. The speed change threshold
was 0.11 m/s. There were 4 significant speed changes in the
trials for IU-1 out of which 3 were detected successfully for
an overall success rate of 75% with an RMS error of 1.52 m/s.
The success rates of SU and SD are shown in Table III.

TABLE III
CONFUSION MATRIX FOR

NOVEL DATA - CRUTCHES/BASE DATA - CRUTCHES

Predicted SD Predicted SU
IU-1 IU-2 IU-1 IU-2

Actual SD 100% 85% 33% 22%
Actual SU 0% 15% 67% 78%

TABLE IV
CONFUSION MATRIX FOR

NOVEL DATA - CRUTCHES/BASE DATA - WALKER

Predicted SD Predicted SU
IU-1 IU-2 IU-1 IU-2

Actual SD 78% 78% 25% 17%
Actual SU 22% 22% 75% 83%

The trials for IU-2 had 75 steps, out of which 36 had
significant speed changes with a threshold speed of 0.1 m/s.
The percentage of success was 81% with 29 speed changes
correctly identified and the rates for SU and SD changes are
shown in Table III. The RMS error of the speed estimates
was 0.2 m/s. A possible explanation for the lower estimator
performance for IU-1 is that there may not be enough infor-
mation about the desired gait speed in the user’s gait patterns
as evidenced by the amount of MI in the data. The values of
MI for the selected novel data for IU-1 and IU-2 were 0.3 and
0.39 respectively. The difference in the ι of the two pairings
indicates that the gait feature measurements for IU-2 carried
roughly 30% more information about the intended speed than
those for IU-1 in this case.

E. Exploring the Interchangeability of Base Data

Interchangeability of base data was studied to explore the
effect of ambulatory devices on estimator accuracy by using
different devices for the novel and base data. The first pairing
was for IU-1 where the novel data was from trials using
crutches and base data was from trials using a walker. The
overall success rate for this trial, with 17 significant speed
changes, was 76% and the RMS error was 0.09 m/s. The
confusion matrix for this trial is listed in Table IV. Estimation
performed on trial data of IU-2 walking using crutches with
base data from trials using a walker yielded a percentage
of success of 80% and an RMS error of 0.17 m/s with the
confusion matrix also given in Table IV.

These results were compared to estimator trials with IU-
1 in which the base data and novel data were both from
walking trials with crutches. In this case, the success rate and
RMS error were 75% and 1.52 m/s respectively. Surprisingly,
this overall success rate was similar and the RMS error was
higher than when the base data was from trials with a walker
as in the previous paragraph. Further analysis revealed that
the task of gait speed estimation was particularly difficult for
IU-1 with crutches since 32 of the 38 steps were below the
MDC threshold of 0.17 m/s found in literature. In both of the
previous cases, the novel data was the same, only the base data
was changed. However, pairing the novel data with walker and
crutch base data results in MI values of 0.4048 and 0.3007,
respectively, so gait features are more informative of gait speed
when uninjured users use a walker. As a result, the model
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TABLE V
CONFUSION MATRIX FOR

NOVEL DATA - WALKER/BASE DATA - CRUTCHES
Predicted SD Predicted SU
IU-1 IU-2 IU-1 IU-2

Actual SD 67% 50% 45% 75%
Actual SU 33% 50% 55% 25%

generated using base data from walker trials was able to handle
the increased estimation difficulty and increase the estimator
accuracy and lower RMS error. This result highlights the
flexibility of the estimator to incorporate the most informative
base data, even under potentially mismatched conditions.

However, this interchangeability did not hold for every
pairing. Estimation was performed for IU-1 with novel data
from walking trials with a walker and base data from trials
with crutches. Compared to estimation using base data from
trials with a walker, the percentage of success dropped to 63%
with an RMS error of 0.12 m/s, and the confusion matrix
for this trial is given in Table V. There was a less severe
deterioration in performance for IU-2. The success rate and
RMS error were 38% and 0.26 m/s, respectively; a difference
of 5% and 0.046 m/s when compared to the performance of
the same novel data paired with data of trials with a walker
(see Section III-C).

In general, estimators had higher percentages of success
across all tests when using base data of walker trials. This
may be as the crutches offer more freedom to move during
use than a walker, resulting in more individualized effects
on gait patterns across trials. Again, the lower correlation
between gait speed and features is evidenced by the MI in
the untransformed walker base data (0.3675) being higher
than the crutch base data (0.2813), so gait features are more
informative of gait speed when uninjured users use a walker.
These inconsistencies could possibly be overcome by adding
instrumentation such as IMUs [42] to crutches to capture their
role in gait dynamics. Additionally, upon expanding the base
dataset to include both crutch and walker trials, estimator
performance either stayed the same or deteriorated. These
results suggest that choosing subsets of the base data along
with novel data (e.g., using extensions of Algo. 1) may allow
further improvement in estimator performance.

Overall, pooling base and novel data improved estimator
accuracy in every case except for trials of IU-2 using a walker.
This loss of accuracy was due to noisy measurements during
those particular trials. The traces of the model covariance
matrices when using novel walker and crutch data were 3.425
and 2.015 respectively (for the same base data). Preliminary
work shows that this noise in the IU-2 walker data can be
attributed to certain noisy features for this user. Multiple gait
features often provide the same information about gait speed
while introducing unique noise. In such cases, using a reduced,
minimally-redundant set of gait features offers the potential
to further improve accuracy. Preliminary results addressing
this aspect show increases of over 20% in overall estimation
accuracy of the IU-2 trials shown in Tables II and V.

F. Limitations

The training process assumed that the velocity at the next

step was a reliable proxy for the user’s desired speed at the
current step. This approach is likely a worse approximation in
adaptive mode than in free mode due to the effects of human-
robot coupling. However, it may still accurately capture the
direction (SU/SD) of the desired speed change, which is the
goal of this work.

The number of possible novel/base data pairings makes
it difficult to manually choose a pairing to customize the
estimator. The presented method automates that choice but
it does not provide any guarantee that the selected pairing is
the best possible option. This observation is further supported
by the study by Moolchandani et al., [16] where estimation
performed with an unoptimized feature set had marginally
lower error than when an optimized set was used.

Data from walking trials of only two subjects with iSCIs
were used to evaluate this data selection method. These were
experienced users and that affects the pHRI during exoskeleton
use, as their familiarity with the device may allow them to
better predict device behavior and convey their intent more
reliably than a novice user. Therefore, it would be beneficial in
the future to acquire data from additional trials of both injured
and uninjured users with varying degrees of usage proficiency
to expand both the novel and base datasets.

Finally, it is noted that the presented results were all ob-
tained in offline evaluation. Assessing methods for integrating
the estimated intent into control is an interesting next step,
the details of which will have coupling with the intent signals
present for real-time estimation.

IV. CONCLUSION & FUTURE WORK

This letter presented a method for personalized estimation
of the intended gait speed of a novel exoskeleton user. Data
scarcity is addressed by using a small amount of user-specific
data to transform an easily accessible base dataset with data
from walking trials of uninjured users. This method relies
on commonalities in gait patterns observed across subjects
and considers 18 gait features to estimate the user’s desire to
change speeds. Conditional Gaussians were used to construct
an estimate of the desired speed, which was then used to infer
SU/SD changes. In the future, this method may be extended
to use the estimated magnitude of the speed change, though
additional work may be required to improve the metric quality
of the speed estimates. Human limitations on speed change
perceptions would set a lower bound of roughly 0.2 m/s for
the accuracy that would be practically noticeable [43].

It was observed that appropriate novel data must be used
in training the conditional models for the estimator due to
gait variability present across trials. This selection served
to capture gait patterns accurately while avoiding forming
misleading relationships resulting from noisy trials. However,
it is difficult to guarantee that the chosen novel data will
result in the best possible estimator performance. It was also
found that walker base data led to uniformly better estimator
performance over the use of crutch base data, even when
the novel data was for user trials with crutches. This result
shows that the selection of appropriate base data needs to be
considered to ensure optimal estimator performance.
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The new data selection algorithm suggests future work to
address other configuration options of the data pooling and
training process. However, leaving the choice of both base
and novel datasets free for selection results in a combinatorial
challenge. New methods to address this scaling challenge
would be needed. Selecting subsets of the gait features could
also be assessed to further improve estimator performance.

REFERENCES

[1] “Spinal cord injury facts and figures at a glance.” [Online]. Available:
https://www.nscisc.uab.edu/PublicDocuments/fact figures docs/Facts%
202012%20Feb%20Final.pdf

[2] M. DeVivo, Y. Chen, S. Mennemeyer, and A. Deutsch, “Costs of care
following spinal cord injury,” Topics in spinal cord injury rehabilitation,
vol. 16, no. 4, pp. 1–9, 2011.

[3] A. Curt, H. J. Van Hedel, D. Klaus, V. Dietz, and E.-S. study group,
“Recovery from a spinal cord injury: significance of compensation,
neural plasticity, and repair,” Journal of neurotrauma, vol. 25, no. 6,
pp. 677–685, 2008.

[4] J. Hidler and R. Sainburg, “Role of robotics in neurorehabilitation,”
Topics in Spinal Cord Injury Rehab., vol. 17, no. 1, pp. 42–49, 2011.

[5] L. Brenner, “Exploring the psychosocial impact of ekso bionics technol-
ogy,” Arch. of Phys. Med. and Rehab., vol. 97, no. 10, p. e113, 2016.

[6] F. Sup, A. Bohara, and M. Goldfarb, “Design and control of a pow-
ered transfemoral prosthesis,” The International Journal of Robotics
Research, vol. 27, no. 2, pp. 263–273, 2008.

[7] “Rewalk personal exoskeleton system cleared by FDA for home
use,” https://ir.rewalk.com/news-releases/news-release-details/rewalktm-
personal-exoskeleton-system-cleared-fda-home-use.

[8] G. Hoffman and C. Breazeal, “Cost-based anticipatory action selection
for human–robot fluency,” IEEE Transactions on Robotics, vol. 23, no. 5,
pp. 952–961, 2007.

[9] G. Hoffman, “Evaluating fluency in human–robot collaboration,” IEEE
Trans. on Human-Machine Systems, vol. 49, no. 3, pp. 209–218, 2019.

[10] K. Suzuki, G. Mito, H. Kawamoto, Y. Hasegawa, and Y. Sankai,
“Intention-based walking support for paraplegia patients with robot suit
HAL,” Advanced Robotics, vol. 21, no. 12, pp. 1441–1469, 2007.

[11] A. Goffer and C. Zilberstein, “Locomotion assisting device and method,”
Jan. 17 2012, uS Patent 8,096,965.

[12] H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leg behaviour
explains basic dynamics of walking and running,” Proc. Royal Society
B: Biological Sciences, vol. 273, no. 1603, pp. 2861–2867, 2006.

[13] Y. Liu, P. M. Wensing, D. E. Orin, and Y. F. Zheng, “Dynamic walking
in a humanoid robot based on a 3D actuated Dual-SLIP model,” in IEEE
International Conference on Robotics and Automation, 2015.

[14] U. H. Lee, J. Bi, R. Patel, D. Fouhey, and E. Rouse, “Image transfor-
mation and cnns: A strategy for encoding human locomotor intent for
autonomous wearable robots,” IEEE Robotics and Automation Letters,
vol. 5, no. 4, pp. 5440–5447, 2020.

[15] N. Thatte, T. Shah, and H. Geyer, “Robust and adaptive lower limb
prosthesis stance control via extended kalman filter-based gait phase
estimation,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.
3129–3136, 2019.

[16] P. R. Moolchandani, A. Mazumdar, and A. J. Young, “Design of an
intent recognition system for dynamic, rapid motions in unstructured
environments,” ASME Letters in Dynamic Systems and Control, vol. 2,
no. 1, p. 011004, 2021.

[17] T. Gambon, J. P. Schmiedeler, and P. M. Wensing, “User intent identifi-
cation in a lower-extremity exoskeleton via the mahalanobis distance,”
in IEEE RAS/EMBS International Conference on Biomedical Robotics
and Biomechatronics, 2020, pp. 1115–1121.

[18] W. J. Sohn, A. Q. Tan, H. B. Hayes, S. Pochiraju, J. Deffeyes, and
R. D. Trumbower, “Variability of leg kinematics during overground
walking in persons with chronic incomplete spinal cord injury,” Journal
of neurotrauma, vol. 35, no. 21, pp. 2519–2529, 2018.

[19] P. Krawetz and P. Nance, “Gait analysis of spinal cord injured subjects:
effects of injury level and spasticity,” Archives of Physical Medicine and
Rehabilitation, vol. 77, no. 7, pp. 635–638, 1996.

[20] M. Tucker, E. Novoseller, C. Kann, Y. Sui, Y. Yue, J. W. Burdick,
and A. D. Ames, “Preference-based learning for exoskeleton gait op-
timization,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 2351–2357.

[21] L. Kilmartin, R. K. Ibrahim, E. Ambikairajah, and B. Celler, “Optimising
recognition rates for subject independent gait pattern classification,” in
ISSC. IET, 2009.

[22] R. K. Ibrahim, E. Ambikairajah, B. Celler, N. H. Lovell, and L. Kil-
martin, “Gait patterns classification using spectral features,” in IET Irish
Signals and Systems Conference, 2008, pp. 98–102.

[23] A. J. Young, A. M. Simon, N. P. Fey, and L. J. Hargrove, “Classifying
the intent of novel users during human locomotion using powered lower
limb prostheses,” in International IEEE/EMBS Conference on Neural
Engineering, 2013, pp. 311–314.

[24] A. J. Young and L. J. Hargrove, “A classification method for user-
independent intent recognition for transfemoral amputees using powered
lower limb prostheses,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 24, no. 2, pp. 217–225, 2015.

[25] K. Bhakta, J. Camargo, L. Donovan, K. Herrin, and A. Young, “Ma-
chine learning model comparisons of user independent & dependent
intent recognition systems for powered prostheses,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 5393–5400, 2020.

[26] T. K. Best, K. Embry, E. J. Rouse, and R. D. Gregg, “Phase-variable
control of a powered knee-ankle prosthesis over continuously varying
speeds and inclines,” in IEEE/RSJ Int. Conf. Intell. Robots Syst, 2021.

[27] R. M. Karulkar and P. M. Wensing, “Using footsteps to estimate changes
in the desired gait speed of an exoskeleton user,” IEEE Robotics and
Automation Letters, vol. 6, no. 4, pp. 6781–6788, 2021.

[28] B. Hu, E. Rouse, and L. Hargrove, “Benchmark datasets for bilateral
lower-limb neuromechanical signals from wearable sensors during unas-
sisted locomotion in able-bodied individuals,” Frontiers in Robotics and
AI, vol. 5, p. 14, 2018.

[29] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.” in
Esann, vol. 3, 2013, p. 3.

[30] C. A. Fukuchi, R. K. Fukuchi, and M. Duarte, “A public dataset of
overground and treadmill walking kinematics and kinetics in healthy
individuals,” PeerJ, vol. 6, p. e4640, 2018.

[31] N. Sylla, V. Bonnet, G. Venture, N. Armande, and P. Fraisse, “Assessing
neuromuscular mechanisms in human-exoskeleton interaction,” in 2014
36th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE, 2014, pp. 1210–1213.

[32] T. M. Gambon, J. P. Schmiedeler, and P. M. Wensing, “Characterizing in-
tent changes in exoskeleton-assisted walking through onboard sensors,”
in ICORR, 2019, pp. 471–476.

[33] ——, “Effects of user intent changes on onboard sensor measurements
during exoskeleton-assisted walking,” IEEE Access, 2020.

[34] V. Rota, L. Perucca, A. Simone, and L. Tesio, “Walk ratio (step
length/cadence) as a summary index of neuromotor control of gait:
application to multiple sclerosis,” International journal of rehabilitation
research, vol. 34, no. 3, pp. 265–269, 2011.

[35] D. Tkach, H. Huang, and T. A. Kuiken, “Study of stability of time-
domain features for electromyographic pattern recognition,” Journal of
neuroengineering and rehabilitation, vol. 7, no. 1, pp. 1–13, 2010.

[36] M. Ison and P. Artemiadis, “The role of muscle synergies in myoelectric
control: trends and challenges for simultaneous multifunction control,”
Journal of Neural Eng., vol. 11, no. 5, p. 051001, 2014.

[37] D. A. Winter, Biomechanics and motor control of human movement.
John Wiley & Sons, 2009.

[38] D. Austin, T. L. Hayes, J. Kaye, N. Mattek, and M. Pavela, “On
the disambiguation of passively measured in-home gait velocities from
multi-person smart homes,” Journal of ambient intelligence and smart
environments, vol. 3, no. 2, pp. 165–174, 2011.

[39] M. J. Socie, R. W. Motl, J. H. Pula, B. M. Sandroff, and J. J. Sosnoff,
“Gait variability and disability in multiple sclerosis,” Gait & posture,
vol. 38, no. 1, pp. 51–55, 2013.

[40] T. M. Cover, Elements of information theory. John Wiley & Sons,
1999.

[41] P. Mohandas Nair, T. George Hornby, and A. Louis Behrman, “Minimal
detectable change for spatial and temporal measurements of gait after in-
complete spinal cord injury,” Topics in spinal cord injury rehabilitation,
vol. 18, no. 3, pp. 273–281, 2012.

[42] D. Brescianini, J.-Y. Jung, I.-H. Jang, H. S. Park, and R. Riener,
“INS/EKF-based stride length, height and direction intent detection
for walking assistance robots,” in IEEE International Conference on
Rehabilitation Robotics, 2011, pp. 1–5.

[43] F. Zhang, M. Liu, and H. Huang, “Investigation of timing to switch
control mode in powered knee prostheses during task transitions,” PLOS
one, vol. 10, no. 7, p. e0133965, 2015.

https://www.nscisc.uab.edu/PublicDocuments/fact_figures_docs/Facts%202012%20Feb%20Final.pdf
https://www.nscisc.uab.edu/PublicDocuments/fact_figures_docs/Facts%202012%20Feb%20Final.pdf

	Introduction
	Motivation & Previous Work
	Contribution
	Overview

	Methods
	Exoskeleton Dataset
	Novel User Data Augmentation
	Transforming Data from Uninjured Users to Match Novel Data
	Choosing Appropriate Novel Data

	Estimating the Desired Gait Velocity

	Results & Discussion
	Collected Walking Trial Data
	Efficacy of the Novel Data Selection Algorithm
	Trials Using a Walker
	Trials Using Crutches
	Exploring the Interchangeability of Base Data
	Limitations

	Conclusion & Future Work
	References

