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Abstract— Robotic exoskeletons are a promising technology
for rehabilitation and locomotion following musculoskeletal
injury, but their adoption outside the physical therapy clinic
has been limited by relatively primitive methods for iden-
tifying and incorporating the user’s gait intentions. Various
intent detection approaches have been demonstrated using
electromyography and electroencephalography signals. These
technologies sense the human directly but introduce compli-
cations for donning/doffing the device and in measurement
consistency. By contrast, sensors onboard the exoskeleton avoid
these complications but sense the human indirectly via the
human-robot interface. This pilot study examines if onboard
sensors alone may enable identification of user intent. Joint
positions and commanded motor currents are compared prior
to and after changes in the user’s intended gait speed. Pre-
liminary experimental results confirm that these measures are
significantly different following intent changes for both able-
bodied and non-able-bodied users. The findings suggest that
intent detection is possible with onboard sensors alone, but
the intent signals depend on exoskeleton control settings, user
ability, and temporal considerations.

I. INTRODUCTION

Robotic exoskeletons, such as the EksoGT in Fig. 1 (Ekso
Bionics), have the potential to restore mobility and indepen-
dence following musculoskeletal injury. As an alternative to
body-weight supported treadmill training, the exoskeleton’s
trajectory-tracking control system relieves the burden on
therapists to manipulate the user’s limbs and allows the user
to practice repeatable overground locomotion patterns. As an
alternative to the wheelchair, the rigid exoskeleton structure
also provides the support necessary for the user to interact
with the community from a standing position and to exercise
core strength and stability. For effective shared control with
the user, though, the exoskeleton must recognize, interpret,
and match the user’s intended movements.

Soft exoskeletons, or exosuits, have successfully utilized
kinematic and gait event-related cues to coordinate the ex-
oskeleton with human motion, achieving reductions in the
metabolic cost of walking [1], [2]. Soft exoskeletons, how-
ever, act in a transparent manner for most of the gait cycle,
allowing the user to freely control gait events by deflecting
the device’s elements. This flexibility allows the user to
automatically achieve changes in intent-related parameters
like gait speed and step length, but it does not provide enough
support for early-stage gait rehabilitation. Rigid exoskeletons
provide the appropriate support, but are more restrictive,
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Fig. 1. EksoGT operator using Lofstrand crutches

requiring the human and exoskeleton to work together to
achieve the same changes in gait characteristics. Some work
has leveraged models of the dynamic interaction between
the human and exoskeleton to lower the resistance of a
joint to motion [3], [4]. Other work provided actuation at
each exoskeleton joint in proportion to the electromyographic
(EMG) activity of muscles associated with the joint [5].
While implemented on rigid exoskeletons, these methods
automatically react to the user’s intent instead of identifying
and mediating it. As a result, these methods are inappropriate
for gait rehabilitation where the exoskeleton must aid the user
in following a healthy gait trajectory.

Other exoskeleton control strategies involve explicit iden-
tification of the user’s intent by directly sensing the human.
These methods provide varying levels of user-intent matching
and comfort, from manual button-push input from the user
to finite state machines that identify discrete gait modes [6]–
[9]. Finite state machines have notably proven effective with
populations that have abnormal or minimal motor control [6],
[10]. The most popular method of finite-state intent detection
has been through machine learning strategies for automatic
pattern recognition. With these approaches, a machine learn-
ing model is trained on labeled data collected about the hu-
man and/or the exoskeleton (e.g., EMG, electroencephalog-
raphy (EEG), motor position or current trajectories) [11]–
[15]. Automatic pattern recognition based on EMG or EEG
relies heavily on the consistency of the input sensors [14],
[16]. The required consistency is difficult to achieve with
donning/doffing the device between gait-training sessions
and even across the time spent in a single session as the user
moves and perspires. One approach to achieve the requisite
consistency is to rely on sensors already integrated with the



exoskeleton instead of taking measurements directly from the
human. Commercial exoskeletons such as the EksoGT collect
commanded motor currents and positions from the motor
controllers and encoders. Since humans normally adjust joint
kinematics and kinetics to realize changes in gait speed [17],
[18], these existing sources of data are likely to be indicative
of changes in the user’s gait-speed intent.

It is unclear, however, how interaction with an exoskeleton
influences normal human gait dynamics and how this impacts
measurements taken onboard the exoskeleton. The exoskele-
ton’s control law or gait assistance strategy likely influences
the user’s ability to change gait speed. For instance, two
of the EksoGT’s gait modes are Free and Adaptive. The
Free mode provides continuous support similar to gravity
compensation, but does not track a trajectory; therefore, users
should be more capable of achieving gait changes according
to their intentions. Adaptive mode, on the other hand, tracks
a trajectory for the swing leg, which may suppress a user’s
ability to change gait. Kinematic gait changes achieved in
Free mode that are not present for the same intention change
in Adaptive mode represent intended gait changes suppressed
by the trajectory tracking. While rejecting those kinematic
perturbations, though, the commanded motor currents in
Adaptive mode may still indicate the intended change. The
presence of these “intent signals” in measurements already
logged by the exoskeleton could have applicability for an
intent detection strategy that does not involve extra equip-
ment such as that required for EMG and EEG sensing. The
nature of these intent signals likely depends on the control
strategy of the exoskeleton, the type of intent change, and
the strength and ability of the exoskeleton user.

This pilot study characterizes aspects of the hu-
man/exoskeleton interaction in response to user intent
changes. Measurements of exoskeleton motor positions and
commanded motor currents were collected before and after
users made a change in intended gait speed. Responses were
characterized for both an able-bodied and a non-able-bodied
subject using two gait assistance modes of the EksoGT.
Results suggest that subjects were less able to achieve kine-
matic gait changes in Adaptive mode, but the commanded
motor currents still indicated their intent. The gait assistance
mode, the type of intent change, and the user’s capability all
affected the presentation of possible intent signals.

II. METHODS

A. Data Collection

Two human subjects with substantial experience using
the EksoGT exoskeleton gave their informed consent and
participated in the IRB-approved study; one had a chronic,
incomplete spinal cord injury, hereafter referred to as NAB
(non-able-bodied), while the other was able-bodied, AB.
Subjects donned the EksoGT and used Lofstrand crutches
as stability aids.

To begin a trial, subjects walked naturally down a 6m long
walkway in the exoskeleton before being given a pseudo-
randomized command to speed up, slow down, or make no
change in gait. Subjects took approximately 9 strides with

each leg per trial, and the commanded intent change was
given as the subject passed approximately halfway through
the walkway. This ensured that the subject had several steps
to get up to steady-state speed prior to the intent command
and several steps after the intent command before needing
to slow down to stop.

Trials continued until three repetitions of each command
were completed for each of Adaptive and Free modes. Both
gait assistance modes prevent collapse of the joints during
stance to ensure the user stays upright. In Adaptive mode,
the exoskeleton employs predefined gait trajectories for the
swing phase, providing corrective input at the joints when
the user deviates from the trajectories. In the double support
phase, Adaptive mode waits for the user to shift weight to
the leg entering stance and to kinematically prepare the leg
exiting stance before initiating the next swing phase. In Free
mode, the exoskeleton only provides continuous support and
the user may initiate swing at any time. The exoskeleton
recorded the commanded currents and angular positions of
the motors at the hip and knee joints and the readings of force
sensors in the feet. By fusing IMU data from the torso with
joint angle measurements, the exoskeleton also estimated the
absolute position of each hip. While the commanded currents
may not precisely correlate to exoskeleton joint moments,
this paper uses changes in their values from trial to trial as a
proxy to capture changes in the interaction moments between
the operator and the device.

B. Data Processing

All signals were filtered with a fourth-order low-pass
Butterworth filter (6Hz cut-off frequency). Heel strike events
were defined when the filtered foot force signal exceeded
a threshold. Data were separated into heel-strike-to-same-
leg-heel-strike gait cycles. For each trial, a maximum of
two strides before and two strides after the command were
retained for processing. When the trial’s initial or final cycle
was within two strides of the command, that cycle was
discarded to minimize the effect of the subject beginning
at or returning to rest. Stride time was calculated from the
first to second heel strike of the same leg. Hip progression
was calculated as the difference in the forward position
of the ipsilateral hip from heel-strike to heel-strike. Left
and right strides were combined for each measure assuming
subjects were left-right symmetric, and for plotting, strides
were normalized to the fraction of gait cycle.

Next, each stride was reduced to 100 data points, one for
each hundredth of the gait cycle, by averaging the data points
within each of 100 evenly-spaced bins (Fig. 2 B). Inter-
stride averages and standard deviations were calculated for
every bin. One hundred one-way ANOVAs were performed
to identify statistically significant differences between the
pre- and post-command data for each bin (p<0.01). By per-
forming an ANOVA for each bin individually, the statistical
analysis was independent of time (Fig. 2 C). There were an
average of 11 (min 9, max 12) strides in each of the ANOVA
comparison groups. The number of bins with statistically
significant differences were summed across all trials for
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Fig. 2. Data processing: (A) data from example strides before (blue) &
after (red) the command; (B) data reduction by averaging data points in
every hundredth-of-the-gait-cycle bin; (C) one-way ANOVAs performed on
multi-stride data within each percentage bin. Statistically significant results
(p<0.01) indicated by a black X on the x−axis, as in the first 3 and the
seventh bins for this example.

commanded current and joint measures. A one-way ANOVA
was also used to identify statistically significant differences
in stride time and hip progression post-command. For each
No Change trial, additional angle and moment reference
trajectories were graphed for the knee and hip using data
from individuals walking normally without an exoskeleton
at a higher speed than the subjects in this study walked [19].

III. RESULTS

A. Free Mode

In Free Mode, both subjects achieved the intended gait
changes by altering stride time, hip progression, or both
(Table I). Neither stride time nor hip progression were

TABLE I
AVERAGE STRIDE TIME IN SECONDS (T) AND AVERAGE HIP

PROGRESSION PER STRIDE IN CENTIMETERS (HP) PRE- AND POST-
COMMAND. STATISTICALLY SIGNIFICANT DIFFERENCES

POST-COMMAND ARE INDICATED BY * (P<0.01).

Subject Gait Mode Trial
Pre-Command Post-Command
T [s] HP [cm] T [s] HP [cm]

AB

Free
No Change 1.44 85 1.41 84

Slow Down 1.33 89 2.62* 70*
Speed Up 1.38 88 0.97* 95

Adaptive
No Change 1.23 72 1.23 73

Slow Down 1.20 70 2.08* 62*
Speed Up 1.28 71 1.20 76*

NAB

Free
No Change 1.92 84 1.92 89

Slow Down 1.99 84 3.32* 74*
Speed Up 1.90 85 1.64* 85

Adaptive
No Change 1.49 77 1.43 77

Slow Down 1.47 76 2.23* 78

Speed Up 1.48 76 1.39 81*

TABLE II
NUMBER OF SIGNIFICANTLY DIFFERENT (P<0.01) PERCENTAGE BINS

POST-COMMAND FOR ALL TRIALS

Gait Mode Metric
AB NAB

Slow Down Speed Up Slow Down Speed Up

Free
Currents 66 29 9 0

Angles 92 40 17 6

Adaptive
Currents 116 59 61 24

Angles 42 51 54 14

Free
Knee 94 40 12 0

Hip 64 29 14 6

Adaptive
Knee 67 36 73 13

Hip 91 74 42 25

significantly different following the No Change command.
Stride time was significantly longer and hip progression was
significantly shorter following the Slow Down command.
Following the Speed Up command, stride time was sig-
nificantly shorter, but hip progression was not significantly
changed. The Slow Down command caused a significantly
lower flexion angle (8-13°) for both the hip and knee in early
stance of each subject (Figs. 3 and 4 C&D). For AB, the
Speed Up command caused an increase in the maximum knee
flexion angle (11.7°) and a slight phase lead of the hip angle
in early stance (Figs. 3E and 4E). For every intent command,
NAB had fewer significant differences than AB (Table II).
AB had more significant differences at the knee than at the
hip, but NAB had more significant differences at the hip than
at the knee. Both subjects exhibited statistically significant
differences post-command in both the commanded motor
currents and joint kinematics (Figs. 3 and 4), but the number
of significantly different percentage bins was greater for
kinematic measurements (Table II).



              

                      

   

   

 

  

  

  

  

 
  
  
 
 
  
  
 
 
 
 

         

                    

 
              

                      

   

   

 

  

  

  

  

 
  
  
 
 
  
  
 
 
 
 

         

                    

 

              

                      

   

   

 

  

  

  

  

 
  
  
 
 
  
  
 
 
 
 

         

 
              

                      

   

   

 

  

  

  

  

 
  
  
 
 
  
  
 
 
 
 

         

 

              

                      

   

   

 

  

  

  

  

 
  
  
 
 
  
  
 
 
 
 

        

 
              

                      

   

   

 

  

  

  

  

 
  
  
 
 
  
  
 
 
 
 

        

 

                                             

Free Mode Hip Angles

Able-bodied Non-able-bodied

Fig. 3. Hip angle trajectories for Free mode trials. Pre- (blue) & post-
(red) command data shown with solid lines indicating inter-stride averages
& shadowed regions indicating inter-stride standard deviations. Dotted lines
on No Change trials are normal joint kinematics [19].

B. Adaptive Mode

In Adaptive Mode, both subjects also achieved the in-
tended gait changes by altering stride time or hip progression,
but only AB altered both (Table I). Neither the stride time
nor the hip progression were significantly different following
the No Change intent command. The stride time was sig-
nificantly longer following the Slow Down command, and
the hip progression was significantly longer following the
Speed Up command. The hip progression was significantly
shorter following the Slow Down command only for AB.
The Slow Down command caused increased commanded
hip extension/flexion current in the first/second half of the
gait cycle (Fig. 5 C&D). Despite the lack of reduction in
gait cycle duration, the Speed Up command still caused
increased commanded hip flexion/extension current in the
first/second half of the gait cycle (Fig. 5 E&F). AB had
more significant differences at the hip than at the knee,
but NAB had more significant differences at the knee than
at the hip. Both subjects exhibited statistically significant
differences post-command in both the commanded currents
(Figs. 5 and 6) and joint kinematics, but the number
of significantly different percentage bins was greatest for
commanded currents (Table II).

              

                      

 

  

  

  

  

 
 
 
 
  
 
 
  
  
 
 
 
 

         

                     

              

                      

 

  

  

  

  

 
 
 
 
  
 
 
  
  
 
 
 
 

         

                     

              

                      

 

  

  

  

  

 
 
 
 
  
 
 
  
  
 
 
 
 

         

 

              

                      

 

  

  

  

  

 
 
 
 
  
 
 
  
  
 
 
 
 

         

 

              

                      

 

  

  

  

  

 
 
 
 
  
 
 
  
  
 
 
 
 

        

 

              

                      

 

  

  

  

  

 
 
 
 
  
 
 
  
  
 
 
 
 

        

 

                                             

Free Mode Knee Angles

Able-bodied Non-able-bodied

Fig. 4. Knee angle trajectories for Free mode trials. Pre- (blue) & post-
(red) command data shown with solid lines indicating inter-stride averages
& shadowed regions indicating inter-stride standard deviations. Dotted lines
on No Change trials are normal joint kinematics [19].

IV. DISCUSSION

A. Effects of Exoskeleton Control Mode

For both Free and Adaptive modes, the small number of
significant differences following the No Change command
confirms that the gait changes following the Speed Up
and Slow Down commands were not simply reactions to
the experimenter’s voice. The greater number of significant
differences for the Slow Down trials indicates that this
intention was more distinguishable than Speed Up using the
commanded current and joint angle metrics. Across all gait
modes and joints, the Slow Down command generally de-
creased joint range of motion, while the Speed Up command
generally increased joint range of motion. These similar, but
opposite changes for Speed Up and Slow Down are expected
for walking without an exoskeleton [18]. Changes to the
shapes of the kinematic trajectories were not as dramatic
as the changes in stride time.

Since the control strategy in Adaptive mode attempted to
correct deviations away from the prescribed trajectory during
swing, the intent command caused more differences in the
commanded currents and fewer differences to joint kinemat-
ics than it did in Free mode. Contrary to the hypothesis that
the Adaptive mode’s trajectory-based control might mask



              

                      

   

  

 

 

  

 
 
 
 
 
 
  
  
  
 
  
 
 
  
  
 
 
 

   

   

   

 

  

  

 
 
  
  
 
 
 
  
  
  

 
 
 
 
  
  
 
          

                   
              

                      

   

   

   

  

 

 

  

 
 
 
 
 
 
  
  
  
 
  
 
 
  
  
 
 
 

   

   

   

 

  

  

 
 
  
  
 
 
 
  
  
  

 
 
 
 
  
  
 
          

                   

              

                      

   

  

 

 

  

 
 
 
 
 
 
  
  
  
 
  
 
 
  
  
 
 
 

         

 
              

                      

   

   

   

  

 

 

  

 
 
 
 
 
 
  
  
  
 
  
 
 
  
  
 
 
 

         

 

              

                      

   

  

 

 

  

 
 
 
 
 
 
  
  
  
 
  
 
 
  
  
 
 
 

        

 
              

                      

   

   

   

  

 

 

  

 
 
 
 
 
 
  
  
  
 
  
 
 
  
  
 
 
 

        

 

                                             

Adaptive Mode Hip Currents

Able-bodied Non-able-bodied

Fig. 5. Commanded hip current trajectories for Adaptive mode trials.
Pre- (blue) & post- (red) command data shown with solid lines indicating
inter-stride averages & shadowed regions indicating inter-stride standard
deviations. Dotted lines on No Change trials are normal joint moments
[19].

the user-intent signal, slightly more statistically significant
differences were found post-command for Adaptive mode
trials than for Free mode trials. The intent signal, therefore,
is not only available through these measurements, but may
actually be stronger for trajectory-based gait assistance.

Subjects were able to increase stride time for all Slow
Down trials, but were unable to decrease stride time for
Speed Up trials in Adaptive mode. Compared to Free Mode,
in Adaptive mode subjects walked with shorter stride times
and shorter hip progressions before any commands were
given. To speed up, one must decrease stride time, increase
stride length, or do both. Since subjects were already walk-
ing with shorter than normal stride times, they sped up
through increased hip progression (presumably increasing
stride length) instead. A parallel argument applies to the
Slow Down trials for NAB. To slow down one must increase
stride time, decrease stride length, or both. Since NAB was
already walking with shorter than normal hip progression,
NAB decreased speed by increasing stride time instead.
These trade-offs suggest that when subjects change speed
while walking in the trajectory-based assistance mode, they
tend to do so in a way that approaches their more natural
gait characteristics as exhibited in Free Mode.

              

                      

   

  

 

 

  

 
 
 
 
 
 
  
 
 
 
  
 
  
 
 
  
  
 
 
 

   

   

 

  

  

 
 
  
  
 
 
 
  
 
 
 
  

 
 
 
 
  
  
 
          

                   

              

                      

   

   

  

 

 

  

  

  

 
 
 
 
 
 
  
 
 
 
  
 
  
 
 
  
  
 
 
 

   

   

 

  

  

 
 
  
  
 
 
 
  
 
 
 
  

 
 
 
 
  
  
 
          

                   

              

                      

   

  

 

 

  

 
 
 
 
 
 
  
 
 
 
  
 
  
 
 
  
  
 
 
          

 

              

                      

   

   

  

 

 

  

  

  

 
 
 
 
 
 
  
 
 
 
  
 
  
 
 
  
  
 
 
          

 

              

                      

   

  

 

 

  

 
 
 
 
 
 
  
 
 
 
  
 
  
 
 
  
  
 
 
         

 

              

                      

   

   

  

 

 

  

  

  

 
 
 
 
 
 
  
 
 
 
  
 
  
 
 
  
  
 
 
         

 

                                             

Adaptive Mode Knee Currents

Able-bodied Non-able-bodied

Fig. 6. Commanded knee current trajectories for Adaptive mode trials.
Pre- (blue) & post- (red) command data shown with solid lines indicating
inter-stride averages & shadowed regions indicating inter-stride standard
deviations. Dotted lines on No Change trials are normal joint moments
[19].

B. Effects of User Ability Level

The commanded hip current trajectory for AB in the No
Change trials shares many of the same peak locations with
the hip moment trajectory for an individual walking without
an exoskeleton [19] (Fig. 5). The same measure for NAB did
not line up with normal walking hip moments. In particular,
NAB had large commanded extension currents at roughly
0.25 and 0.50 of the gait cycle. These commanded extension
currents may be an attempt to keep the subject upright at
midstance and propelled forward at toe-off given the user’s
reduced strength. NAB had generally higher commanded
currents than AB at both joints. Both subjects had joint
trajectories in Free mode that were similar to the reference
trajectory [19]. The peak hip angles, however, were more
extreme than the reference. For all metrics and all gait modes,
AB generally had more statistically significant percentage
bins post-command and less step-to-step variance. The in-
crease in variance for NAB could possibly be due to spastic
disturbances to the gait, as are common for individuals
with SCI. NAB was less able, but not unable, to express
changes in intended gait. An onboard sensor-based intent-
detection algorithm is, therefore, potentially viable for those



              

                      

 

 

 

 

 

 

 

 
 
 
 
 
 
  
 
  
 
  
 
  
  
 
 
  
 
   
 
  
 
 
 
 

                                         

                

              

Fig. 7. Number of statistically significant differences in each percentage bin
of the gait cycle, summed across trials & reported by metric (current/angle).

with limited mobility.

C. Temporal Considerations for Detecting Intent

For both subjects, all trials, and all metrics, the gait cycle
phases most sensitive to changes in intent were transitions to
and from stance (0-0.1, 0.3-0.5, and 0.9-1 of the gait cycle).
Again, gait speed changes involve changes in stride length,
stride time, or both. To modulate stride time, humans tend to
modulate the duration of stance more than that of swing [17].
Step length is set at late swing/early stance by placing the
swing foot on the ground, and the duration of stance is set
at late stance/early swing by the timing of swing initiation.
For changes in gait speed, it is logical that these portions of
the gait cycle would be most affected.

While the significant differences in both the commanded
currents and joint angles lagged behind the user’s intent
change, the currents became significantly different earlier
in the gait cycle than the joint angles (Fig. 7). Since the
commanded currents indicate an intent change closer to
the true intention change, faster intent detection might be
achieved by monitoring current measures than by monitoring
kinematic values. Fast intent detection is desirable since an
exoskeleton response that lags the intended motion by as
little as 300ms can be perceived by the user [20].

V. CONCLUSION

Both the able-bodied and non-able-bodied subjects were
able to express their intentions to increase/decrease walking
speed in the exoskeleton through changes in joint kinemat-
ics and/or commanded joint motor currents in both gait
assistance modes. While the subjects’ baseline trajectories
were different, they responded in similar ways to each intent
change. A future user intent identification algorithm for a
trajectory-tracking gait assistance controller should empha-
size joint currents since they are more sensitive to intent
changes overall and respond to intent changes earlier than do
joint angles. Specifically for gait speed changes, an algorithm
should monitor transitions between stance and swing. The

interplay between hip progression and stride time appears
to be especially indicative of the user’s preferred gait style.
Overall, the findings suggest that onboard sensors may be
used for intent detection, but that the strongest intent change
signals may appear on different sensors and at different times
based on exoskeleton settings and the user’s ability.
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