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Abstract
Mathematical programs with equilibrium constraints (MPECs) represent a class of
hierarchical programs that allow for modeling problems in engineering, economics,
finance, and statistics.While stochastic generalizations have been assuming increasing
relevance, there is a pronounced absence of efficient first/zeroth-order schemes with
non-asymptotic rate guarantees for resolving even deterministic variants of such prob-
lems.We consider a subclass of stochastic MPECs (SMPECs) where the parametrized
lower-level equilibrium problem is given by a deterministic/stochastic variational
inequality problem whose mapping is strongly monotone, uniformly in upper-level
decisions. Under suitable assumptions, this paves the way for resolving the implicit
problemwith a Lipschitz continuous objective via a gradient-free zeroth-order method
by leveraging a locally randomized spherical smoothing framework. Efficient algo-
rithms for resolving the implicit problem allow for leveraging any convexity property
possessed by the implicit problem, which in turn facilitates the computation of approx-
imate global minimizers. In this setting, we present schemes for single-stage and
two-stage stochastic MPECs when the upper-level problem is either convex or non-
convex in an implicit sense. (I). Single-stage SMPECs. In single-stage SMPECs, in
convex regimes, our proposed inexact schemes are characterized by a complexity in

U. V. Shanbhag: Shanbhag gratefully acknowledges the support from NSF CMMI-1538605, DOE
ARPA-E award DE-AR0001076, and ONR grant N00014-22-1-2589.
F. Yousefian: Yousefian gratefully acknowledges the support from NSF CAREER grant ECCS-1944500
and ONR grant N00014-22-1-2757.

B Farzad Yousefian
farzad.yousefian@rutgers.edu

Shisheng Cui
suc256@psu.edu

Uday V. Shanbhag
udaybag@psu.edu

1 Industrial and Manufacturing Engineering, Pennsylvania State University, University Park, State
College, PA 16802, USA

2 Department of Industrial and Systems Engineering, Rutgers University, Piscataway, NJ 08854, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-022-01893-6&domain=pdf
http://orcid.org/0000-0003-2628-741X


S. Cui et al.

upper-level projections, upper-level samples, and lower-level projections of O( 1
ε2

),

O( 1
ε2

), and O( 1
ε2

ln( 1
ε
)), respectively. Analogous bounds for the nonconvex regime

are O( 1
ε
), O( 1

ε2
), and O( 1

ε3
), respectively. (II). Two-stage SMPECs. In two-stage

SMPECs, in convex regimes, our proposed inexact schemes have a complexity in
upper-level projections, upper-level samples, and lower-level projections of O( 1

ε2
),

O( 1
ε2

), and O( 1
ε2

ln( 1
ε
)) while the corresponding bounds in the nonconvex regime

areO( 1
ε
),O( 1

ε2
), andO( 1

ε2
ln( 1

ε
)), respectively. In addition, we derive statements for

accelerated schemes in settings where the exact solution of the lower-level problem
is available. Preliminary numerics suggest that the schemes scale with problem size,
are relatively robust to modification of algorithm parameters, show distinct benefits
in obtaining near-global minimizers for convex implicit problems in contrast with
competing solvers, and provide solutions of similar accuracy in a fraction of the time
taken by sample-average approximation (SAA).

Mathematics Subject Classification 65K15 · 90C15 · 90C30 · 90C33

1 Introduction

In this paper, we consider the resolution of variants and stochastic generalizations of
the mathematical program with equilibrium constraints (MPEC), given by

min
x,y

f (x, y)

subject to y ∈ SOL(Y, F(x, •)),

x ∈ X ,

(MPEC)

where f : Rn × R
m → R is a real-valued function, F : X × Y → R

m represents
a real-valued mapping, X ⊆ R

n and Y ⊆ R
m denote closed and convex sets, and

SOL(Y, F(x, •)) denotes the solution set of the parametrized variational inequality
problem VI(Y, F(x, •)), given an upper-level decision x. Recall that the variational
inequality problem VI(Y, F(x, •)) requires a vector y in the set Y such that

(ỹ − y)T F(x, y) ≥ 0, ∀ ỹ ∈ Y . (VI(Y, F(x, •)))

MPECs have a broad range of applications arising in hierarchical optimization, fric-
tional contact problems, power systems [31], traffic equilibrium problems [45], and
Stackelberg equilibrium problems [74]. A comprehensive survey of models, analysis,
and algorithms can be found in [50] while a subsequent monograph emphasized the
implicit framework [60].

TheMPEC is an ill-posed generalization of a nonconvex and nonlinear program, an
observation that follows from considering the setting where Y is given byRm+. In such
an instance, (MPEC) reduces to a mathematical program with complementarity con-
straints (MPCC) since y solves VI(Y, F(x, •)) if and only if y solves CP(Y, F(x, •)),
defined as the problem of finding a vector y such that
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Y � y ⊥ F(x, y) ∈ Y∗, (CP(Y, F(x, •)))

whereY∗ � {u | yT u ≥ 0, y ∈ Y}. WhenY is the nonnegative orthant, then (MPEC)
reduces to the following MPCC, which can be cast as an ill-posed nonlinear program.

min
x,y

f (x, y)

subject to 0 ≤ y ⊥ F(x, y) ≥ 0,

x ∈ X .

(MPCC)

Ill-posedness of (MPCC) arises from noting that standard constraint qualifications
(such as the Mangasarian–Fromovitz constraint qualification) fail to hold at any feasi-
ble point. This has led to a concerted effort in developingweaker stationarity conditions
for MPECs [70] as well as a host of regularization [2, 25, 36, 46, 66] and penalization
[32] schemes.

Yet an enduring gap persists in the development of algorithms for such problems.
Despite a wealth of developments in the field of zeroth and first-order algorithms for
deterministic and stochastic convex and nonconvex optimization, there are no available
non-asymptotic rate guarantees for either zeroth or first-order schemes for MPECs or
their stochastic variants. In particular, our interest lies in the study of two distinct
stochastic variants presented as follows.

1.1 Problems of interest

We focus on the problem (MPEC) where the lower-level map F(x, •) is strongly
monotone over Y uniformly in x. This ensures that the solution of VI(Y, F(x, •)) is
a singleton for every x ∈ X . We consider two settings.

(i) Single-stage SMPECs.1 Single-stageMPECs capture a class of stochasticMPECs
with constraints given by parametrized variational inequality problems with
expectation-valued maps. Such problems assume relevance in modeling a range
of stochastic equilibrium problems; more specifically, such problems represent
the necessary and sufficient equilibrium conditions of smooth stochastic convex
optimization problems and smooth stochastic convex Nash equilibrium problems
[37, 38]. They can also be employed for modeling settings in power systems [4,
22], structural optimization [19], and transportation science [52, 63]. More for-
mally, suppose the variational inequality problemVI(Y, F(x, •)) is characterized
by a map F whose components are expectation-valued, i.e.,

F(x, y) �

⎛
⎜⎝
E[G1(x, y, ξ(ω))]

...

E[Gm(x, y, ξ(ω))]

⎞
⎟⎠ , (1)

1 In some of the literature on stochastic programming, this class of problems is also known as one-stage
SMPEC. However, inspired by this paper [68] and for expository reasons, we have adopted the term single-
stage SMPEC.
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whereGi : Rn×R
m×R

d → R and ξ : � → R
d denotes a randomvariable asso-

ciated with the probability space (�,F ,P). Note that the expectations in (1) are
taken with respect to the probability distribution P. For the ease of presentation,
throughout the paper, we refer to the integrand Gi (x, y, ξ(ω)) by Gi (x, y, ω). In
effect, the lower-level problem is a stochastic variational inequality problem [37,
82]. In addition, the objective may also be expectation-valued and the pessimistic
version of the resulting problem is defined as follows.

min
x,y

f (x, y) � E[ f̃ (x, y, ω)]
subject to y ∈ SOL(Y,E[G(x, •, ω)]),

x ∈ X .

(SMPEC1s)

An instance where (SMPEC1s) emerges arises when the lower-level equilibrium
problem captures the equilibrium conditions of a convex stochastic optimization
problem, given by

min
y∈Y

E[h(x, y, ω)], (2)

where F(x, y) � E[∇yh(x, y, ω)].Amore general instance is when a solution to
the lower-level equilibrium problem is a Nash equilibrium of a noncooperative
game with expectation-valued objectives, as given by

min
yi∈Yi

E[hi (x, yi , y−i , ω)], (3)

where i ∈ {1, . . . , N }, N denotes the number of players, yi ∈ Yi and
hi (x, yi , y−i , ω) denote the strategy set and the cost function of player i ∈
{1, . . . , N }, respectively, and y−i= (y j ) j �=i . Under some mild conditions, it
is known that the equilibrium conditions corresponding to a Nash equilibrium
can be characterized as VI(Y, F(x, •)) where Y �

∏N
i=1 Yi and F(x, y) �(

E[∇yi hi (x, yi , y−i , ω)])Ni=1 (cf. Chap. 1 in [21]). An alternate approach formod-
eling uncertainty in MPECs is provided in the next model, where the lower-level
problem constraints are imposed in an almost sure (a.s.) sense [16].

(ii) Two-stage SMPECs. Two-stage stochastic MPECs are characterized by equi-
librium constraints VI(Y, F(x, •, ω)) for almost every ω ∈ �. We provide
motivation by considering the following two-stage leader-follower game inwhich
the followermakes a second-stage decision y contingent on the leader’s decision x
and the realization of uncertainty is denoted byω. Consequently, the leader’s first-
stage problem requires minimizing her expected cost E[ f̃ (x, y(ω), ω)] where
y(ω) represents follower’s second-stage (i.e., recourse) decision, given x andω. A
pessimistic version of this problem can be compactly represented as (SMPEC2s),
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defined next where “a.e.” means “almost every”.

min
x,y(ω)

E[ f̃ (x, y(ω), ω)]
subject to y(ω) ∈ SOL(Y(x, ω),G(x, •, ω)), for a.e. ω ∈ �

x ∈ X .

(SMPEC2s)

In regimes where VI(Y(x, ω),G(x, •, ω)) has a unique solution for any x ∈ X
and any ω ∈ �, the pessimistic and optimistic versions of the SMPECs coincide
and we may recast (SMPEC2s) as the following implicit stochastic optimization
problem where y : X × � → R

m denotes a single-valued solution map of
VI(Y, F(x, •, ω)).

min
x

f imp(x) � E[ f̃ (x, y(x, ω), ω)]
subject to x ∈ X .

(SMPECimp,2s)

The implicit counterpart of (SMPEC1s), denoted by (SMPECimp,1s), is defined
analogously.

1.2 Gaps and contributions

The lower-level parametrized variational inequality problem can often be recast as a
parametrized complementarity problem (e.g., when the VI admits a suitable regularity
condition [50]). The MPEC then reduces to a mathematical program with comple-
mentarity constraints (MPCC). Nonlinear programming (NLP) approaches aligned
around sequential quadratic programming [25] and interior-point schemes [2, 46, 66]
have been applied for resolving MPCCs (See [50] for a survey). This represents a
dominant algorithmic thread for resolving MPECs while a second lies in implicit pro-
gramming approaches [1, 30, 39, 42, 43, 50, 53]. Yet, there are some key shortcomings
of such avenues in such regimes, motivating the present research.

(a) Limited convergence guarantees for existing NLP/regularization/penalization
schemes.Most interior-point [2, 46, 66], sequential quadratic programming (SQP)
[25], and penalization/regularization schemes [2, 15, 46] for resolvingMPECs are
characterized by convergence to strong-stationary or C-stationary points in the full
space of upper and lower-level decisions with rate guarantees only available in a
local sense. Such schemes do not leverage any convexity properties in obtaining
stronger guarantees. In particular, there appear to be no efficient schemes that
can provide convergence guarantees to global minimizers (in an implicit sense)
in either deterministic or stochastic regimes.

(b) Implementability concerns with existing implicit approaches. Existing implicit
programming approaches (cf. [1, 7, 30, 39, 42, 43, 53]) require exact resolution of
the lower-level problem (precluding the resolution of lower-level stochastic vari-
ational inequality problems), can generally not accommodate uncertainty in their
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lower/upper-level, and are not equipped with non-asymptotic rate and complexity
guarantees, particularly when the implicit problem is nonconvex.

(c) Lack of efficient first/zeroth-order schemes. While there have been tremendous
advances in providing non-asymptotic rate guarantees for efficient first/zeroth-
order algorithms for convex and nonconvex optimization problems [12, 24, 27,
58, 59], the resolution of MPECs via such avenues has been largely ignored. In
fact, we are unaware of any efficient first/zeroth-order scheme for deterministic
MPECs even under strong monotonicity assumptions at the lower-level.

(d) Lack of scalability and convergence of schemes for stochastic MPECs. Sample-
average approximation [10, 49, 72] and smoothing schemes [47] for (SMPEC2s)
have been studied extensively.While SAAschemes provide an avenue for approxi-
mation, the SAAproblems become increasingly difficult to solve since the number
of constraints grows linearly with the sample-size. Absent such sampling, such
avenues can generally contend with finite sample-spaces.

Collectively, these gaps motivate the development of tools and techniques for this
challenging class of stochastic nonconvex problems. To this end, we develop a zeroth-
order algorithmic framework equippedwith convergence rate guarantees that is applied
on the implicit formulation of the problem. In this formulation, the objective function
is viewed as a function in terms of the variable x. While the implicit programming
approach has been utilized before [47, 50, 78], several challenges arise when consid-
ering the development of iterative solution methods: (i) a closed-form characterization
for y(•) (or y(•, ω)) is possibly unavailablewhich in turn, precludes the applicability of
the standard first-order schemes; (ii) the implicit function is possibly nondifferentiable
and nonconvex in xwhich complicates the convergence analysis and, in particular, the
derivation of rate statements. In fact, one cannot compute subgradients or Clarke gen-
eralized gradients easily in such settings; (iii) in inexact regimes where there is a lack
of access to an oracle for computing y(•) (or y(•, ω)), standard zeroth-order methods
may not be directly applied. This is primarily because an inexact value of y(•) may
lead to a biased zeroth-order gradient approximation for the implicit function and the
level of bias may even grow undesirably, as the parameters are updated iteratively; (iv)
finally, in settings where the implicit problem is convex, asymptotically convergent
accelerated schemes with rate statements are unavailable.
Contributions. In this paper, we aim at addressing these challenges through the devel-
opment of a locally randomized zeroth-order schemewhere the gradient of the implicit
function is approximated at perturbed and possibly inexact evaluations of y(•) (single-
stage) and y(•, ω) (two-stage). Tables 1 and 2 provide the new complexity statements
derived in this work for single-stage and two-stage SMPECs, respectively. The con-
tributions in different regimes are as follows.

(1) Single-stage SMPECs. We consider the single-stage problem (SMPEC1s) in
Sect. 3.
(1-i) Inexact convex settings: We develop (ZSOL1scnvx), defined in Algorithm 1
where we employ a zeroth-order method for minimizing the implicit function. In
the inexact variant of this method, to solve the stochastic VI at the lower-level
and approximate y(•), we employ a variance-reduced stochastic approximation
method presented by Algorithm 2. In Theorem 1, we derive non-asymptotic con-
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vergence rates and also obtain an overall iteration complexity of O
(
n4L2

0 L̃
4
0ε

−2
)

andO
(
n4L2

0 L̃
4
0ε

−2 ln
(
n2L0 L̃2

0ε
−1

))
for the number of projections on the setX and

Y , respectively, where L0 and L̃0 are defined by Assumption 1. Importantly, both
the stepsize and smoothing parameters are updated iteratively using prescribed rules
allowing for establishing convergence to an optimal solution of the original single-
stage SMPEC.
(1-ii) Exact convex settings: The convergence statements for the exact variant of
(ZSOL1scnvx) are provided in Corollary 1. In particular, we derive the iteration com-
plexity of O (

n2L2
0ε

−2
)
. This implies that to obtain an ε-solution, the number of

calls to the solution oracle of the lower-level variational inequality problem is at most
O (

n2L2
0ε

−2
)
.

(1-iii) Inexact nonconvex settings: In the casewhere the implicit function is nonconvex,
we develop (ZSOL1sncvx), defined in Algorithm 3. We analyze the convergence proper-
ties of this zeroth-order scheme under a constant stepsize and smoothing parameter. In
Theorem 2, to obtain an ε-solution (characterized by mean norm-squared of a residual
mapping) to the smoothed approximate SMPEC, we derive non-asymptotic conver-
gence rates for solving the smoothed implicit problem and obtain an overall iteration

complexity of O
(
n2L2

0 L̃
2
0ε

−1
)
and O

(
n4L4

0 L̃
4
0ε

−2
)
for the number of projections

on the sets X and Y , respectively.
(1-iv) Exact nonconvex settings: In Corollary 2 we provide the results for the exact
variant of (ZSOL1sncvx). To obtain an ε-solution (characterized by mean norm-squared
of a residual mapping), we derive an iteration complexity ofO (

n2L2
0ε

−1
)
for solving

the smoothed approximate SMPEC. The number of calls to the solution oracle of the
lower-level variational inequality problem is at most O (

n4L4
0ε

−2
)
.

(2) Two-stage SMPECs. We consider the two-stage problem (SMPEC2s) in Sect. 4.
(2-i) Inexact convex settings: We present (ZSOL2scnvx), defined in Algorithm 5,
for addressing two-stage SMPECs with a convex implicit objective function. In
Theorem 3, for the inexact setting, we derive an overall iteration complexity of

O
(
n4L2

0 L̃
4
0ε

−2
)
andO

(
n4L2

0 L̃
4
0ε

−2 ln
(
n2L0 L̃2

0ε
−1

))
for the projections on the set

X andY , respectively. These statements are similar to those obtained in the single-stage
model. However, unlike in the single-stage case, the inexact variant of (ZSOL2scnvx) does
not require any new samples in solving the lower-level problem, i.e., in Algorithm 6,
a parametrized deterministic variational inequality problem is solved.
(2-ii) Exact convex settings: In Corollary 4, we provide the iteration complexity of
O (

n2L2
0ε

−2
)
, similar to that of the single-stage counterpart. This implies that the

number of calls to the solution oracle of the lower-level variational inequality problem
is at most O (

n2L2
0ε

−2
)
.

(2-ii-a) Accelerated exact convex settings: We develop a variance-reduced acceler-
ated zeroth-order scheme called (ZSOL2scnvx,acc), formally specified by Algorithm 7. In
Proposition 5, we improve the complexity toO(1/ε) in terms of upper-level projection
steps while the number of lower-level variational inequality problems is no worse than
O(1/ε2+δ) for δ > 0.
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Table 1 Complexity guarantees for solving single-stage SMPECs

Single-stage
SMPECs

Convex implicit Nonconvex implicit

Inexact Exact Inexact Exact

Upper level

# Projections n4L20 L̃
4
0ε

−2 n2L20ε
−2 n2L20 L̃

2
0ε

−1 n2L20ε
−1

# Samples n4L20 L̃
4
0ε

−2 n2L20ε
−2 n4L40 L̃

4
0ε

−2 n4L40ε
−2

Lower level

# Projections
n4L20 L̃

4
0

ε2
ln

(
n2L0 L̃

2
0

ε

)
– n6L60 L̃

6
0ε

−3 –

# Samples n4τ̄ L2τ̄0 L̃4τ̄0 ε−2τ̄ – n6L60 L̃
6
0ε

−3 –

(2-iii) Inexact nonconvex settings: In addressing two-stage models with a nonconvex
implicit objective function, we develop (ZSOL2sncnvx), a variance-reduced zeroth-order
method. This scheme is presented by Algorithm 8. In Theorem 4 we obtain non-
asymptotic convergence rates for solving the smoothed implicit problem and derive

an overall iteration complexity ofO
(
n2L2

0 L̃
2
0ε

−1
)
andO

(
n4L4

0 L̃
4
0ε

−2
)
for the pro-

jections on the setX andY , respectively. These results are similar to those we obtained
for the single-stage counterpart. However, in computing an approximate y(•, ω) in the
lower-level problem in Algorithm 6, unlike in the single-stage regime, we solve a
deterministic variational inequality problem.
(2-iv) Exact nonconvex settings: Lastly, in Corollary 4, we consider the exact variant
of (ZSOL2sncnvx). Similar to the single-stage case, to obtain an ε-solution (characterized
by mean norm-squared of a residual mapping), we derive an iteration complexity of
O (

n2L2
0ε

−1
)
for solving the smoothed approximate SMPEC. The number of calls

to the solution oracle of the lower-level variational inequality problem is at most
O (

n4L4
0ε

−2
)
.

(3) Comprehensive numerics. In Sect. 5, we provide a comprehensive set of numerics
where we provide empirical support for the scalability and convergence claims for
inexact schemes for single and two-stage SMPECs. Such investigations also suggest
the limited scalability of SAA schemes as well as the ability of the proposed schemes
to compute near-global solutions under convexity of the implicit problems, in contrast
with their SAA counterparts. Finally, the benefits of acceleration in terms of accuracy
is observed as promised by theoretical claims.

To the best of our knowledge, all the above-mentioned rate and complexity results
in addressing both the single-stage and two-stage SMPECs appear to be novel.
Notation. Throughout, we use the following notation and definitions. We let X ∗ and
f ∗ denote the optimal solution set and the optimal objective value of a corresponding
implicit problem, respectively. We define DX � 1

2 supx∈X dist2(x,X ∗). We let B
denote the unit ball defined as B � {u ∈ R

n | ‖u‖ ≤ 1} and S denote the surface
of the ball B, i.e., S � {v ∈ R

n | ‖v‖ = 1}. Given a set X ⊆ R
n and a scalar

η > 0, we let Xη denote the expanded set X + ηB. Given a function f : Rn → R

and a set X ⊆ R
n , we write f ∈ C0,0(X ) if f is Lipschitz continuous on the set
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Table 2 Complexity guarantees for solving two-stage SMPECs

Two-stage
SMPECs

Convex implicit Nonconvex implicit

Inexact Exact Accelerated Inexact Exact

Upper level

# Projections n4L20 L̃
4
0ε

−2 n2L20ε
−2 ε−1 n2L20 L̃

2
0ε

−1 n2L20ε
−1

# Samples n4L20 L̃
4
0ε

−2 n2L20ε
−2 ε−(2+δ) n4L40 L̃

4
0ε

−2 n4L40ε
−2

Lower level

# Projections
n4L20 L̃

4
0

ε2
ln

(
n2L0 L̃

2
0

ε

)
– –

n4L40 L̃
4
0

ε2
ln

(
n2L20 L̃

2
0

ε

)
–

X , i.e., | f (x) − f (x̃)| ≤ L0‖x − x̃‖ for all x, x̃ ∈ X and some L0 > 0. In the case
where f is globally Lipschitz, i.e.,X = R

n , we write f ∈ C0,0. Given a continuously
differentiable function and a set X ⊆ R

n , we write f ∈ C1,1(X ) if ∇ f is Lipschitz
continuous on the set X , i.e., ‖∇ f (x) − ∇ f (x̃)‖ ≤ L1‖x − x̃‖ for all x, x̃ ∈ X
and some L1 > 0. Similarly, we write f ∈ C1,1 to denote that ∇ f is globally
Lipschitz. We denote the Euclidean projection of a vector x on a set X by 	X (x),
i.e., ‖x − 	X (x)‖ = minx̄∈X ‖x − x̄‖. Throughout, unless otherwise specified, for
the ease of presentation, we use E[•] to denote the expectation with respect to all the
random variables under discussion.

2 Preliminaries

In this section, we begin by outlining the key assumptions imposed on (SMPEC1s)
and (SMPEC2s) in Sect. 2.1. Our treatment and analysis differ based on whether the
implicit function f imp is either convex or nonconvex. In the latter case, the resulting
problem reduces to a nonsmooth nonconvex programwith possibly expectation-valued
objectives. In such settings, we provide a brief discussion of stationarity conditions in
Sect. 2.2 while a discussion of locally randomized spherical smoothing techniques is
presented in Sect. 2.3.

2.1 Problem definition

Throughout this paper,we assume that in the case of (SMPEC1s), the setY is closed and
convex inRm and the parametrized map F(x, •) is strongly monotone onY uniformly
in x. An analogous assumption for (SMPEC2s) requires that G(x, •, ω) is strongly
monotone on Y for every ω ∈ �. Since the lower-level problem is strongly monotone,
the solution map of the lower-level problem is single-valued. Consequently, we may
recast (SMPEC2s) as the following implicit program in x.

min
x∈X

f imp(x) � E[ f̃ (x, y(x, ω), ω)], (SMPECimp,2s)
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where f imp(•) is assumed to be Lipschitz continuous on a closed and convex set X .
Note that such a property on f imp holds if f imp is locally Lipschitz on a compact set.
In the case of (SMPEC1s), the implicit problem reduces to

min
x∈X

f imp(x) � E[ f̃ (x, y(x), ω)], (SMPECimp,1s)

where y(x) represents the solution to a variational inequality problemVI(Y, F(x, •)).
Note that this problem subsumes (SMPEC1s) by suppressing the expectation in the
upper-level. We now formalize the assumptions on the problems of interest.

Assumption 1 (Properties of f , F,X ,Y)
(a) Consider the problem (SMPECimp,1s).
(a.i) For some η0 > 0, f̃ (•, y(•), ω) is L0(ω)-Lipschitz continuous on X + η0B for

every ω ∈ �, where L0 �
√
E[L2

0(ω)] < ∞. f̃ (x, •, ω) is L̃0(ω)-Lipschitz for all

x ∈ X + η0B and for every ω ∈ �, where L̃0 �
√
E[L̃2

0(ω)] < ∞.
(a.ii) X ⊆ R

n and Y ⊆ R
m are nonempty, closed, bounded, and convex sets.

(a.iii) F(x, •) is a μF -strongly monotone and LF -Lipschitz continuous map on Y
uniformly in x ∈ X .
(b) Consider the problem (SMPECimp,2s).
(b.i) For some η0 > 0, f̃ (•, y(•, ω), ω) is L0(ω)-Lipschitz continuous on X + η0B

for every ω ∈ �, where L0 �
√
E[L2

0(ω)] < ∞. f̃ (x, •, ω) is L̃0(ω)-Lipschitz for

all x ∈ X + η0B and for every ω ∈ �, where L̃0 �
√
E[L̃2

0(ω)] < ∞.
(b.ii) X ⊆ R

n and Y ⊆ R
m are nonempty, closed, bounded, and convex sets.

(b.iii)G(x, •, ω) is aμF (ω)-stronglymonotone and LF (ω)-Lipschitz continuousmap
on Y uniformly in x ∈ X for every ω ∈ �, and there exist scalars μF , LF ∈ (0, +∞)

such that infω∈� μF (ω) ≥ μF and supω∈� LF (ω) ≤ LF . ��
Remark 1 As outlined in Assumption 1, throughout we assume that the mapping in
the lower-level parametrized by x is strongly monotone on Y uniformly in x. The
assumption is inherent tomost implicitmethods for resolvingMPECsandour proposed
schemes inherit that characteristic. When considering sample-average approximation
schemes in the context of SMPECs, we observe that similar assumptions have been
adopted in a subset of prior work including [47, 71, 79]. In fact, lower-level uniqueness
is by nomeans a rarely seen phenomenon. It is inherent to a host of problems in practice
[16, 54, 74, 76] and there is a significant body of research on implicit methods for
solving MPECs in a range of settings [1, 7, 30, 39, 42, 43, 53]. In the current work,
we intend to assess the fundamental gaps on the performance under a requirement on
lower-level uniqueness but we allow for far more generality in the lower-level problem
(e.g., in terms of accommodating expectation-valued maps) and either convexity or
nonconvexity in terms of the upper-level problem.

We observe that the requirement that f is Lipschitz continuous on X +η0B (rather
than X ) is a consequence of employing a smoothed approximation of f in our algo-
rithm development. A natural question is whether the Lipschitz continuity of the
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objective f over X in the implicit problem follows under reasonable conditions. The
next result addresses precisely such a concern.

Proposition 1 Consider the problem (SMPEC1s). Let Assumption 1(a.ii, a.iii) hold.
Suppose f̃ (•, •, ω) is continuously differentiable on C × R

m where C is an open set
containing X . Then the function f imp, defined as f imp(x) � E[ f̃ (x, y(x), ω)], is
Lipschitz and directionally differentiable on X .

Proof This result follows from invoking [64, Cor. 4.2] together with the compactness
of X . ��
Proposition 2 Consider the problem (SMPEC2s). Let Assumption 1(b.ii, b.iii) hold.
Suppose f̃ (•, •, ω) is continuously differentiable on C × R

m where C is an open set
containing X . Then the function f imp, defined as f imp(x) � E[ f̃ (x, y(x, ω), ω)], is
Lipschitz and directionally differentiable on X .

Proof This result follows from invoking [64, Cor. 4.3] together with the compactness
of X . ��
In a subset of regimes, f imp is captured by the next assumption.

Assumption 2 (Convexity of f in implicit problem) Consider any of the implicit
problems (SMPECimp,2s) or (SMPECimp,1s). Then the implicit function f imp is convex
on X .

We note that there has been extensive study of conditions under which the implicit
function f imp is indeed convex (for example, see [16, 64, 78]). In fact, the convexity
of the implicit function can be proven inMPECs arising in a host of application-driven
regime [16, 73, 74, 76, 78], there appear to be no explicit conditions to the best of our
knowledge.

2.2 Stationarity conditions

While the implicit function f imp can be shown to be convex in some specific settings,
the function f imp is Lipschitz continuous onX inmore general settings. Consequently,
the problem can be compactly stated as

min
x∈X

h(x) � f imp(x). (4)

We observe that h is a nonsmooth and possibly nonconvex function on X . In the
remainder of this subsection, we recap some of the concepts of Clarke’s nonsmooth
calculus that will facilitate the development of stationarity conditions. We begin by
defining the directional derivative, a key object necessary in addressing nonsmooth
and possibly nonconvex optimization problems (cf. [11]).

Definition 1 The directional derivative of h at x in a direction v is defined as
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h◦(x, v) � lim sup
y→x,t↓0

(
h(y + tv) − h(y)

t

)
. (5)

The Clarke generalized gradient at x can then be defined as

∂h(x) �
{
ζ ∈ R

n | h◦(x, v) ≥ 〈ζ, v〉, ∀v ∈ R
n} . (6)

In other words, h◦(x, v) = supg∈∂h(x)〈g, v〉. ��
If h is continuously differentiable at x, we have that the Clarke generalized gradient

reduces to the standard gradient, i.e., ∂h(x) = ∇xh(x). If x is a minimal point of h,
then we have that 0 ∈ ∂h(x). For purposes of completeness, we recap some properties
of ∂h. Recall that if h is locally Lipschitz on an open set C containing X , then h
is differentiable almost everywhere on C by Rademacher’s theorem [11]. Suppose
Ch denotes the set of points where h is not differentiable. We may then recall some
properties of Clarke generalized gradients.

Proposition 3 (Properties of Clarke generalized gradients [11]) Suppose h is Lipschitz
continuous on R

n. Then the following hold.

(i) ∂h(x) is a nonempty, convex, and compact set and ‖g‖ ≤ L for any g ∈ ∂h(x).
(ii) h is differentiable almost everywhere.
(iii) ∂h(x) is an upper semicontinuous map defined as

∂h(x) = conv

{
g | g = lim

k→∞ ∇xh(xk), Ch �� xk → x
}

.

We may also define the δ-generalized gradient [28] as

∂δh(x) � conv {ζ : ζ ∈ ∂h(y), ‖x − y‖ ≤ δ} . (7)

Under the assumption that h is globally bounded from below and Lipschitz continuous
on X , in nonconvex regimes, our interest lies in developing techniques for computing
an approximate stationary point. For instance, when h is L-smooth, then computing
an approximate stationary point in unconstrained regimes such that ‖∇xh(x)‖ ≤ ε

requires at most O(1/ε2) gradient steps. Much of the prior work in the computation
of stationary points of nonconvex and nonsmooth functions is either asymptotic [8, 9]
or relies on some structure [6, 48, 80] where the nonconvex part is smooth while the
convex part may be closed and proper. However, the question of computing approxi-
mate stationary points for functions that are both nonconvex and nonsmooth has been
less studied.

2.3 Properties of spherical smoothing of f

We consider an iterative smoothing approach in this paper where a smoothed approxi-
mation of h is minimized and the smoothing parameter is progressively reduced. This
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avenue has a long history, beginning with the efforts by Steklov [75] leading to sig-
nificant efforts in both convex [18, 44, 81] and nonconvex [59] regimes. In this paper,
we consider the following smoothing of h, given by hη where

hη(x) � Eu∈B[h(x + ηu)], (8)

where u is a random vector in the unit ball B, defined as B � {u ∈ R
n | ‖u‖ ≤ 1}.

Throughout, we let S denote the surface of the ball B, i.e., S � {v ∈ R
n | ‖v‖ = 1}.

We also let ηB and ηS denote the ball with radius η and its surface, respectively. Recall
that if h is locally Lipschitz over a compact set X , it is globally Lipschitz on X . We
may derive the following properties on hη.

Lemma 1 (Properties of spherical smoothing)2

Suppose h : Rn → R is a continuous function and η > 0 is a given scalar. Let hη

be defined as (8). Then the following hold.

(i) The smoothed function hη is continuously differentiable over X . In particular,
for any x ∈ X , we have that

∇xhη(x) =
(
n
η

)
Ev∈ηS

[
h(x + v) v

‖v‖
]
. (9)

Suppose h ∈ C0,0(Xη) with parameter L0. For any x, y ∈ X , we have that
(ii)–(iv) hold.

(ii) |hη(x) − hη(y)| ≤ L0‖x − y‖.

(iii) |hη(x) − h(x)| ≤ L0η.

(iv) ‖∇xhη(x) − ∇xhη(y)‖ ≤ L0n
η

‖x − y‖.

(v) If h is convex and h ∈ C0,0(Xη)with parameter L0, then hη is convex and satisfies
the following for any x ∈ X .

h(x) ≤ hη(x) ≤ h(x) + ηL0. (10)

(vi) If h is convex and h ∈ C0,0(Xη) with parameter L0, then ∇xhη(x) ∈ ∂δh(x)
where δ � ηL0.

(vii) If h ∈ C1,1(Xη) with constant L1, then ‖∇xhη(x) − ∇xh(x)‖ ≤ ηL1n.

(viii) Suppose h ∈ C0,0(Xη) with parameter L0. Let us define for v ∈ ηS

gη(x, v) �
(
n
η

)
(h(x+v)−h(x))v

‖v‖ .

Then, for any x ∈ X , we have that Ev∈ηS[‖gη(x, v)‖2] ≤ L2
0n

2.

2 We note that while spherical smoothing has apparently been studied in [56], we did not have access to
this text. Part (i) of our lemma is inspired by Flaxman et al. [24] while other parts either follow in a fashion
similar to Gaussian smoothing [59] or are directly proven.
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Proof (i) We elaborate on the proof sketch provided in [24]. By definition, we have
that

hη(x) = Eu∈ηB[h(x + u)] =
∫

ηB

h(x + u)p(u)du.

Let p(u) denote the probability density function of u. Since u is uniformly
distributed in the ball ηB, we have that p(u) = 1

Vol(ηB)
for any u ∈ ηB. Conse-

quently,

hη(x) =
∫

ηB

h(x + u)p(u)du =
∫
ηB

h(x + u)du

Voln(ηB)
.

Wemay then compute the derivative ∇xhη(x) by leveraging Stoke’s theorem and
by defining p̃(v) = 1

Voln−1(ηS)
for all v.

∇xhη(x) = ∇x

[∫
ηB

h(x + u)du

Voln(ηB)

]
Stoke’s theorem=

[∫
ηS

h(x + v) v
‖v‖dv

Voln(ηB)

]

=
[∫

ηS
h(x + v) v

‖v‖dv

Voln(ηB)

]
Voln−1(ηS)

Voln−1(ηS)

=
[∫

ηS
h(x + v) v

‖v‖dv

Voln−1(ηS)

]
Voln−1(ηS)

Voln(ηB)
=

[∫
ηS

h(x + v) v
‖v‖ p̃(v)dv

]
n

η

= n

η
Ev∈ηS

[
h(x + v) v

‖v‖
]
.

(ii) We have

|hη(x) − hη(y)| = |Eu∈B[h(x + ηu)] − Eu∈B[h(y + ηu)]|
Jensen’s ineq.≤ Eu∈B[|h(x + ηu) − h(y + ηu)|]
h∈C0,0(Xη)≤ Eu∈B[L0‖x − y‖] = L0‖x − y‖.

(iii) Next, we show that |hη(x) − h(x)| can be bounded in terms of η and L0.

|hη(x) − h(x)| =
∣∣∣∣
∫

ηB

(h(x + u) − h(x))p(u)du

∣∣∣∣

≤
∫

ηB

|(h(x + u) − h(x))| p(u)du

≤ L0

∫
ηB

‖u‖p(u)du ≤ L0η

∫
ηB

p(u)du = L0η.
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(iv) Note that we have X + ηS ⊆ X + ηB. Thus, from the definition of Xη and
h ∈ C0,0(Xη), we have h ∈ C0,0(X + ηS). As such, we have

∥∥∇xhη(x) − ∇xhη(y)
∥∥ =

∥∥∥ n
η
Ev∈ηS

[
h(x + v) v

‖v‖
]

− n
η
Ev∈S

[
h(y + v) v

‖v‖
]∥∥∥

≤ n
η
Ev∈ηS

[∥∥∥(h(x + v) − h(y + v)) v
‖v‖

∥∥∥
]

≤ L0n
η

‖x − y‖Ev∈ηS

[ ‖v‖
‖v‖

]
= L0n

η
‖x − y‖.

(v) First, note that from h ∈ C0,0(Xη), we have that h ∈ C0,0(int(Xη)). Noting
that int(Xη) is an open set, from part (b) of Theorem 3.61 in [6], we have that
‖g̃‖ ≤ L0 for all x ∈ int(Xη) and g̃ ∈ ∂h(x). The desired statements then follow
from part (a) and part (b) of Lemma 2 [83].

(vi) From part (v), function hη is convex and h(y) + ηL0 ≥ hη(y) for any y ∈ X .
Thus, for all x, y ∈ X , we have

h(y) + ηL0 ≥ hη(y) ≥ hη(x) + ∇hη(x)T (y − x) ≥ h(x) + ∇hη(x)T (y − x).

The result follows by choosing δ = ηL0.

(vii) Note that we can show that
∫
ηS

vvT pv(v)dv = η2

n I.Wemay then express∇xh(x)
as

∇xh(x) = n
η2

(∫
ηS

vvT pv(v)dv

)
∇xh(x) = n

η2

(∫
ηS

vT ∇xh(x)vpv(v)dv

)

= n
η

(∫
ηS

vT ∇xh(x) v
‖v‖ pv(v)dv

)
= n

η
Ev∈ηS

[(
∇xh(x)T v

)
v

‖v‖
]
,

where the third inequality follows from ‖v‖ = η for v ∈ ηS. From this relation,

part (i), and by recalling that n
η
Ev∈ηS

[
h(x) v

‖v‖
]

= 0, we can write

‖∇xhη(x) − ∇xh(x)‖ =
∥∥∥ n

η
Ev∈ηS

[
(h(x + v) − h(x)) v

‖v‖
]

− n
η
Ev∈ηS

[(
∇h(x)T v

)
v

‖v‖
]∥∥∥

≤ n
η
Ev∈ηS

[∣∣∣h(x + v) − h(x) − ∇h(x)T v

∣∣∣ ‖v‖
‖v‖

]

≤ n
η
Ev∈ηS

[
L1‖v‖2

]
= nηL1,

where the two inequalities follow from Jensen’s inequality, the Cauchy-Schwarz
inequality, and L1-smoothness of h.

(viii) We observe that for any x, Ev∈ηS[‖gη(x, v)‖2] may be bounded as follows.
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Ev∈ηS[‖gη(x, v)‖2] = n2

η2

∫
ηS

‖(h(x + v) − h(x))v‖2
‖v‖2 pv(v)dv

≤ n2

η2

∫
ηS

L2
0‖v‖2 pv(v)dv ≤ n2

∫
ηS

pv(v)dv = n2L2
0.

��

Remark 2 (Local vs global smoothing)Gaussian smoothing as employed in [59] allows
for unbounded random variables as part of the smoothing process. However, this pre-
cludes contendingwith compact regimeswhichwemay require to impose Lipschitzian
assumptions. Furthermore, in many settings, the domain of the function is compact
and Gaussian smoothing cannot be adopted. Instead, local smoothing requires that the
smoothing random variable have compact support. In [81, 83], we examine smoothing
schemes based on random variables defined on either a cube or a sphere. However,
most of the results of the previous lemma are novel with respect to [83].

We intend to develop schemes for computing approximate stationary points of (4)
by an iterative smoothing scheme. However, this needs formalizing the relationship
between the original problem and its smoothed counterpart. Before proceeding, we
define the δ-Clarke generalized gradient of h, denoted by ∂δh(x) at x, as follows [28].

∂δh(x) � conv {ζ | ζ ∈ ∂h(y), ‖y − x‖ ≤ δ} . (11)

It was first shown by Goldstein [28] that ∂δh(x) is a nonempty, compact, and convex
set.

Proposition 4 Consider the problem (4) where h is a locally Lipschitz continuous
function and X is a closed, convex, and bounded set in R

n.

(i) For any η > 0 and any x ∈ R
n, ∇hη(x) ∈ ∂2ηh(x). Furthermore, if 0 /∈ ∂h(x),

then there exists an η such that ∇xhη̃(x) �= 0 for η̃ ∈ (0, η].
(ii) For any η > 0 and any x ∈ X ,

[
0 ∈ ∇xhη(x) + NX (x)

] �⇒ [
0 ∈ ∂2ηh(x) + NX (x)

]
. (12)

Proof (i) and (ii) represent a constrained counterparts of [51, Prop. 2.2 and Cor. 2.1].
��

Lemma 1(v) provides a statement that relates the true objective to its smoothed
counterpart in convex regimes. This provides an avenue for developing finite-time
schemes for computing approximate solutions to the original problem. Proposi-
tion 4(ii) provides a relationship in settings where h is locally Lipschitz; in particular,
it is shown that if x satisfies stationarity of the η-smoothed problem, it satisfies a
suitable 2η−stationarity property for the original problem.
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3 Zeroth-order methods for single-stage SMPECs

In this section, we present a zeroth-order framework for contending with
(SMPECimp,1s). The remainder of this section is organized as follows. In Sect. 3.1, we
introduce an implicit zeroth-order scheme that can allow for constructing a smoothed
zeroth-order gradient through leveraging inexact solutions of the lower-level problem.
To address settings where the implicit problem is convex, we derive rate and com-
plexity guarantees for an iteratively smoothed gradient framework in Sect. 3.2 when
the lower-level problem is either inexactly or exactly resolved. In these settings, the
smoothing parameter is progressively reduced at each iteration. Lastly in Sect. 3.3,
we derive the iteration complexity in addressing the nonconvex case under a constant
smoothing parameter.

3.1 An implicit zeroth-order scheme

Since the implicit function is merely Lipschitz continuous, we employ a zeroth-order
framework that relies on computing a zeroth-order approximation of the gradient.
Consider the implicit problem (SMPECimp,1s). Given the function f imp and a scalar
η, we consider a spherical smoothing denoted by f imp

η based on (8), defined as

f imp
η (x) � Eu∈B[ f imp(x + ηu)] = Eu∈B[E[ f̃ (x + ηu, y(x + ηu), ω)]],

(G-Smooth1s)

where u is uniformly distributed in the unit ball B. Let gη(x) denote a zeroth-order
approximation of the gradient of f imp

η (x). Invoking Lemma 1, one choice for gη is
given as follows for any x.

gη(x) =
(
n

η

)
Ev∈ηS

[(
f imp(x + v) − f imp(x)

)
v

‖v‖

]
. (13)

In general, given the presence of the expectation, gη(x) is challenging to evaluate and
a common approach has been in utilizing an unbiased estimate given by gη(x, v, ω)

defined as

gη(x, v, ω) �
(
n

η

)⎡
⎣

(
f̃ (x + v, y(x + v), ω) − f̃ (x, y(x), ω)

)
v

‖v‖

⎤
⎦ . (14)

Given a vector x0 ∈ X , we may employ (14) in constructing a sequence {xk} where
xk satisfies the following projected stochastic gradient update.

xk+1 := 	X
[
xk − γkgη(xk, vk, ωk)

]
. (15)

Motivated by the development of the stochastic approximation (SA) scheme [67],
the projected stochastic gradient and gradient-free schemes have been studied exten-
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sively in convex and nonconvex regimes (e.g., see [26, 27, 55, 81] and the references
therein). Recall that in the SA schemes, the standard requirements on the stepsize
sequence include

∑∞
k=0 γk = ∞ and

∑∞
k=0 γ 2

k < ∞. The scheme (15) has been
studied for addressing nonsmooth convex and nonconvex optimization problems [59]
while unconstrained nonconvex regimes were examined in [26]. In particular, in the
work by Nesterov and Spokoiny [59], zeroth-order randomized smoothing gradient
schemes are proposed under a single sample with a fixed smoothing parameter η with
the assumption that the smoothing random variable v has a Gaussian distribution.
Importantly, a direct adoption of such smoothing schemes to address the hierarchical
problems studied in this work is afflicted by several challenges.

(i) Lack of asymptotic guarantees. When η > 0, the scheme generates a sequence
that is convergent to an approximate solution, at best. In addition, the choice of η

is contingent on accurate estimates of other problem parameters (such as L0), in
the absence of which, η may be chosen to be extremely small. This often afflicts
the practical behavior of the scheme. Moreover, employing a fixed η precludes
asymptotic convergence to the true counterpart. Instead, in most of our schemes,
we employ a mini-batch approximation of gη(x), denoted by gη,N (x) and defined
as

gη,N (x) �
∑N

j=1 gη(x, v j , ω j )

N
. (16)

Furthermore, we replace a fixed η by a diminishing sequence {ηk}, the resulting
iterative smoothing scheme being articulated as follows.

xk+1 := 	X
[
xk − γkgηk ,Nk (xk)

]
. (17)

(ii) Unavailability of exact solutions of y(x). Even if y(•) is a single-valued map
requiring the solution of a strongly monotone lower-level problem, computing a
solution to this problem is not necessarily cheap. As a consequence, our scheme
needs to account for random errors in the computation of gηk (xk), denoted by b̃k .
As a consequence, the resulting scheme is defined as follows.

xk+1 := 	X
[
xk − γk(gηk ,Nk (xk) + b̃k)

]
, for all k ≥ 0. (18)

In particular, when considering problems (SMPEC1s), exact solutions of y(xk)
are generally unavailable in finite time. Instead, one can take tk steps of a standard
projection scheme.

yt+1 := 	Y
[
yt − βt F̄(xk, yt )

]
, t = 0, . . . , tk − 1, (19)

where F̄(xk, yt ) �
∑Mt

�=1 G(xk ,yt ,ω�,t )

Mt
. In such a variance-reduced scheme, when

Mt grows at a geometric rate, ln

(
1

εk

)
steps of (19) are required to obtain an

εk-solution of yk [33].
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(iii) Bias in b̃k . A key issue that arises from (ii) emerges in the form of bias. In
particular, gηk ,Nk (xk) + b̃k is not necessarily an unbiased estimator of gηk (xk).
Further, it remains unclear how the bias and variance of gηk ,Nk (xk)+b̃k propagate
through this framework (18)–(19) as γk , ηk , and Nk are updated iteratively in
the outer loop (18). Consequently, in the development of the inexact smoothing
scheme (18)–(19), it remains critical to design prescribed stepsize, smoothing,
and sample-size sequences to control the accuracy of the estimator gηk ,Nk (xk)+b̃k
and consequently, ascertain the convergence of the generated iterate to an optimal
solution of the underlying MPEC. This concern will be examined in detail in the
subsequent sections.

3.2 Convex single-stage regimes

In this subsection, we consider resolving the implicit formulations when the implicit
function is convex. As pointed out earlier, the convexity of the implicit problem often
holds in practice (cf. [16, 64, 78]). We first consider the inexact case where the exact
value of y(•) is not necessarily available. We then specialize our statements to settings
where exact solutions of lower-level problems can be employed.

3.2.1 An inexact zeroth-order scheme

We now delve into developing and analyzing an inexact zeroth-order method for
resolving the implicit variant (SMPECimp,1s). We begin by providing the general
setup and assumptions. Then, we provide some key results and algorithms. Before
proceeding, we consider the following assumption.

Assumption 3 Given a sequence {ηk}, let {vk} ∈ R
n be iid replicates uniformly dis-

tributed on ηkS for all k ≥ 0. Also, let {ωk} be iid replicates.
Remark 3 Throughout the paper, for the ease of presentation, we assume that there
exists an oracle that returns the replicates of ω in the upper-level. The function
f̃ (•, •, ω) can then be evaluated using a second oracle. Note that this assump-
tion is without loss of any generality and an alternative approach is to assume that
there exists an oracle that generates the random realizations of f̃ (x, y(x), ω) and
f̃ (x + v, y(x + v), ω) directly.

Consider the implicit form of (SMPEC1s), i.e., (SMPECimp,1s) where the lower-level
problem is complicated by the presence of expectation-valued maps, i.e., F is defined
as (1) and satisfies Assumption 1 (a.iii). In such an instance, obtaining y(x) is impossi-
ble infinite timeunless the expectation canbe tractably resolved. Instead, by employing
stochastic approximation methods for addressing the lover-level problem, we consider
the case where we have access to an approximate solution yε̃k (xk) such that the fol-
lowing holds a.s.

E[‖yε̃k (xk) − y(xk)‖2 | xk] ≤ ε̃k, where y(xk) ∈ SOL(Y, F(xk, •)). (20)
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As a consequence, we may define an inexact zeroth-order gradient mapping
gη,ε̃(x, v, ω) as follows.

gη,ε̃(x, v, ω) �n( f̃ (x + v, yε̃ (x + v), ω) − f̃ (x, yε̃ (x), ω))v

‖v‖η
, (21)

where v ∈ ηS and yε̃k (xk) is an output of a variance-reduced stochastic approxima-
tion scheme. The outline of the proposed zeroth-order solver (ZSOL1scnvx) is presented
in Algorithm 1 while an inexact solution of y(x) is computed by Algorithm 2. We
impose the following assumptions on the lower-level evaluations G(x̂k, yt , ω�,t ) in
Algorithm 2.

Assumption 4 Consider Algorithm 2. Let the following hold for all k ≥ 0, t ≥ 0,
x̂k ∈ X , yt ∈ Y , and 1 ≤ � ≤ Mt where Mt denotes the batch size at iteration t .

(a) The replicates {G(•, •, ω�,t )}Mt
�=1 are generated randomly and are iid.

(b) E[G(x̂k, yt , ω�,t ) | x̂k, yt ] = F(x̂k, yt ) holds almost surely.
(c) E[‖G(x̂k, yt , ω�,t ) − F(x̂k, yt )‖2 | x̂k, yt ] ≤ ν2y‖yt‖2 + ν2G holds almost surely

for some deterministic scalars νy ≥ 0 and νG > 0.

Algorithm 1 ZSOL1scnvx: Zeroth-order method for convex (SMPEC1s)
1: input: Given x0 ∈ X , x̄0 := x0, stepsize sequence {γk }, smoothing parameter sequence {ηk }, inexact-

ness sequence {ε̃k }, r ∈ [0, 1), and S0 := γ r
0

2: for k = 0, 1, . . . , K − 1 do
3: Generate iid replicates ωk ∈ � and vk ∈ ηkS

4: Do one of the following, depending on the type of the scheme.

• Inexact scheme: Call Algorithm 2 twice to obtain yε̃k
(xk ) and yε̃k

(xk + vk )

• Exact scheme: Evaluate y(xk ) and y(xk + vk )

5: Evaluate the inexact or exact zeroth-order gradient approximation as follows.

gηk ,ε̃k
(xk , vk , ωk ) := n

(
f̃ (xk+vk ,yε̃k

(xk+vk ),ωk )− f̃ (xk ,yε̃k
(xk ),ωk )

)
vk

‖vk‖ηk
(Inexact)

gηk (xk , vk , ωk ) := n
(
f̃ (xk+vk ,y(xk+vk ),ωk )− f̃ (xk ,y(xk ),ωk )

)
vk

‖vk‖ηk
. (Exact)

6: Update xk as follows.

xk+1 :=
{

	X
[
xk − γk gηk ,ε̃k

(xk , vk , ωk )
]

(Inxact)

	X
[
xk − γk gηk (xk , vk , ωk )

]
(Exact)

7: Update the averaged iterate as follows. Sk+1 := Sk + γ r
k+1 and x̄k+1 := Sk x̄k+γ r

k+1xk+1
Sk+1

8: end for
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Algorithm 2 Variance-reduced SA method for lower-level of convex (SMPEC1s)
1: input: An arbitrary y0 ∈ Y , vector x̂k (that is either xk or xk + vk from Alg. 1), scalar ρ ∈ (0, 1),

stepsize α > 0, mini-batch sequence {Mt } with Mt := �M0ρ
−t �, integer k, and scalars M0, τ > 0 (see

Def. (2))
2: Compute tk := �τ ln(k + 1)�
3: for t = 0, 1, . . . , tk − 1 do
4: Generate random realizations of the stochastic mapping G(x̂k , yt , ω�,t ) for � = 1, . . . , Mt

5: Update yt as follows. yt+1 := 	Y

[
yt − α

∑Mt
�=1 G(x̂k ,yt ,ω�,t )

Mt

]

6: end for
7: Return ytk

Before analyzing (ZSOL1scnvx), we review the properties of the exact zeroth-order
stochastic gradient denoted by gη(x, v, ω) and show that it is an unbiased estimator of
the gradient of the smoothed implicit function. We then derive a bound on the second
moment of this stochastic gradient under the assumption that the implicit stochastic
function is Lipschitz.

Remark 4 Throughout, we use the definition gη(x, v) �
(
n
η

) (
f imp(x+v)− f imp(x)

)
v

‖v‖ ,

where f imp(•) is the implicit function defined by (SMPECimp,1s) or (SMPECimp,2s) .

Lemma 2 (Properties of the single-stage exact zeroth-order gradient)SupposeAssump-
tion 1(a) holds. Consider (SMPECimp,1s). Given x ∈ X and η > 0, consider the
stochastic zeroth-order mapping gη(x, v, ω) defined by (14) for v ∈ ηS and k ≥ 0,
where v and ω are independent.

Then, ∇ f imp
η (x) = E[gη(x, v, ω) | x] and E[‖gη(x, v, ω)‖2 | x] ≤ L2

0n
2 almost

surely for all k ≥ 0.

Proof From (14) and that f imp(x) � E[ f̃ (x, y(x), ω)] we can write

E[gη(x, v, ω) | x] = Ev∈ηS

[(
n
η

) (
f imp(x + v) − f imp(x)

)
v

‖v‖ | x
]

=
(
n
η

)
Ev∈ηS

[
f imp(x + v)

v

‖v‖ | x
]

Lemma 1(i)= ∇ f imp
η (x).

We have

E[‖gη(x, v, ω)‖2 | x, ω] =
(
n
η

)2
E

⎡
⎣
∥∥∥∥∥

(
f̃ (x+v,y(x+v),ω)− f̃ (x,y(x),ω)

)
v

‖v‖

∥∥∥∥∥
2

| x, ω
⎤
⎦

=
(
n
η

)2 ∫
ηS

∥∥∥
(
f̃ (x+v,y(x+v),ω)− f̃ (x,y(x),ω)

)
v

∥∥∥2

‖v‖2 pv(v)dv

Assumption 1(a.i)≤ n2

η2

∫
ηS

L2
0(ω)‖v‖2 pv(v)dv
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≤ n2L2
0(ω)

∫
ηS

pv(v)dv = n2L2
0(ω).

Taking expectations with respect to ω on both sides of the preceding inequality and
invoking L2

0 � E[L2
0(ω)] < ∞, we obtain the desired bound. ��

We are now ready to present the properties of the inexact zeroth-order gradient
mapping.

Lemma 3 (Properties of the single-stage inexact zeroth-order gradient) Consider
(SMPECimp,1s). Suppose Assumption 1(a) holds. Let gη,ε̃(x, v, ω) be defined as (21)
for ω ∈ � and v ∈ ηS for η, ε̃ > 0. Suppose E[‖yε̃ (x) − y(x)‖2 | x, ω] ≤ ε̃ almost
surely for all x ∈ X . Then, the following hold for the single-stage model for any
x ∈ X .

(a) E[‖gη,ε̃(x, v, ω)‖2 | x] ≤ 3n2
(

2L̃2
0 ε̃

η2
+ L2

0

)
, almost surely.

(b) E

[∥∥gη,ε̃(x, v, ω) − gη(x, v, ω)
∥∥2 | x

]
≤ 4L̃2

0n
2 ε̃

η2
, almost surely.

Proof (a) Adding and subtracting gη(x, v, ω), we obtain from (21)

‖gη,ε̃(x, v, ω)‖

=
∥∥∥∥∥
n( f̃ (x + v, yε̃ (x + v), ω) − f̃ (x + v, y(x + v), ω))v

‖v‖η

+gη(x, v, ω) + n( f̃ (x, y(x), ω) − f̃ (x, yε̃ (x), ω))v

‖v‖η

∥∥∥∥∥

≤
∥∥∥∥∥
n( f̃ (x + v, yε̃ (x + v), ω) − f̃ (x + v, y(x + v), ω))v

‖v‖η

∥∥∥∥∥ + ∥∥gη(x, v, ω)
∥∥

+
∥∥∥∥∥
n( f̃ (x, y(x), ω) − f̃ (x, yε̃ (x), ω))v

‖v‖η

∥∥∥∥∥

≤ ‖ f̃ (x + v, yε̃ (x + v), ω) − f̃ (x + v, y(x + v), ω)‖n‖v‖
‖v‖η

+ ∥∥gη(x, v, ω)
∥∥

+ ‖ f̃ (x, y(x), ω) − f̃ (x, yε̃ (x), ω)‖n‖v‖
η‖v‖

≤ L̃0(ω)‖yε̃ (x + v) − y(x + v)‖n
η

+ ∥∥gη(x, v, ω)
∥∥ + L̃0(ω)‖yε̃ (x) − y(x)‖n

η
.

Invoking Lemma 2, we may then bound the conditional second moment of
‖gη,ε̃(x, v, ω)‖ as follows.

E[‖gη,ε̃(x, v, ω)‖2| x] ≤ 3E

[(
L̃2
0(ω)n2‖yε̃ (x + v) − y(x + v)‖2

η2

)
| x

]
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+ 3E
[∥∥gη(x, v, ω)

∥∥2 | x
]

+ 3E

[(
L̃2
0(ω)n2‖yε̃ (x) − y(x)‖2

η2

)
| x

]

≤ 6

(
L̃2
0n

2ε̃

η2

)
+ 3L2

0n
2, a.s. (22)

(b)We first derive a bound on
∥∥gη,ε̃(x, v, ω) − gη(x, v, ω)

∥∥.
∥∥gη,ε̃(x, v, ω) − gη(x, v, ω)

∥∥

=
∥∥∥∥∥
n( f̃ (x + v, yε̃ (x + v), ω) − f̃ (x, yε̃ (x), ω))v

‖v‖η

−n( f̃ (x + v, y(x + v), ω) − f̃ (x, y(x), ω))v

‖v‖η

∥∥∥∥∥

≤
∥∥∥∥∥
n( f̃ (x + v, yε̃ (x + v), ω) − f̃ (x + v, y(x + v), ω))v

‖v‖η

∥∥∥∥∥

+
∥∥∥∥∥
n( f̃ (x, yε̃ (x), ω) − f̃ (x, y(x), ω))v

‖v‖η

∥∥∥∥∥

≤ L̃0n‖yε̃ (x + v) − y(x + v)‖
η

+ L̃0n‖yε̃ (x) − y(x)‖
η

,

where in the last inequality we use the definition of L̃0 in Assumption 1 (a.i). It follows

that E
[∥∥gη,ε̃(x, v, ω) − gη(x, v, ω)

∥∥2 | x
]

≤ 4L̃2
0n

2 ε̃

η2
holds almost surely. ��

We make use of the following result in the convergence and rate analysis.

Lemma 4 (Lemma 2.11 in [40]) Let {x̄k} be generated by Algorithm 1. Let αk,N �
γ r
k∑N

j=0 γ r
j
for k ∈ {0, . . . , N } and N ≥ 0. Then, for any N ≥ 0, we have x̄N =

∑N
k=0 αk,Nxk . Furthermore, if X is a convex set, then x̄N ∈ X .

Remark 5 Lemma 4 allows for representing x̄k in Algorithm 1 as a weighted average
of the generated iterates {xk}. The term γ r

k in the last step of (ZSOL1scnvx) is employed to

build the weights
γ r
k∑N

j=0 γ r
j
where 0 ≤ r < 1 is a fixed parameter that can be arbitrarily

chosen. This averaging scheme was studied earlier [40, 82] and allows for achieving
the best convergence rate for SA methods.

We are now in a position to develop rate and complexity statements for Algorithms 1–
2. The parameters for both schemes are defined next and the main result is presented
by Theorem 1.
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Definition 2 (Parameters for Algorithms 1–2) Let the stepsize and smoothing
sequence in Algorithm 1 be given by γk := γ0

(k+1)a and ηk := η0
(k+1)b

, respectively
for all k ≥ 0 where γ0, η0, a, and b are strictly positive. In Algorithm 2, suppose

α ≤ μF

2L2
F
, Mt := �M0ρ

−t� for t ≥ 0 for some 0 < ρ < 1 where M0 ≥ 2ν2y
L2
F
. Let

tk := �τ ln(k + 1)� where τ ≥ −2(a+b)
ln(max{1−μFα,ρ}) . Finally, suppose r ∈ [0, 1) is an

arbitrary scalar.

Theorem 1 (Rate and complexity statements and almost sure convergence for inex-
act ZSOL1scnvx) Consider the sequence {x̄k} generated by applying Algorithm 1 on
(SMPECimp,1s). Suppose Assumptions 1–4 hold and algorithm parameters are defined
by Definition 2.
(a) Suppose x̂k ∈ X + ηkS and let {ytk } be the sequence generated by Algorithm 2.
Then for suitably defined d̃ < 1 and B(x̂k) > 0, the following holds for tk ≥ 1.

E[‖ytk − y(x̂k)‖2] ≤ ε̃k � B(x̂k)d̃ tk .

(b) Let a = 0.5 and b ∈ [0.5, 1) and 0 ≤ r < 2(1 − b). Then, for all K ≥ 2
1

1−r − 1
we have

E

[
f imp(x̄K )

]
− f ∗ ≤ (2 − r)

(
DX
γ0

+ 2θ0(x̂k )γ0
1−r

)
1√
K+1

+ (2 − r)
(

η0L0
1−0.5r−b

)
1

(K+1)b
,

where θ0(x̂k) � DX +
(
2+3γ 2

0

)
n2 L̃2

0B

η20γ
2
0

+ 1.5n2L2
0. In particular, when b := 1 − δ and

r = 0, where δ > 0 is a small scalar, we have for all K ≥ 1

E

[
f imp(x̄K )

]
− f ∗ ≤ 2

(
DX
γ0

+ 2θ0(x̂k)γ0
)

1√
K+1

+
(
2η0L0

δ

)
1

(K+1)1−δ .

(c) Suppose γ0 := O( 1
L0

), a := 0.5, b := 0.5, and r := 0. Let ε > 0 be an arbitrary

scalar and Kε be such that E
[
f imp(x̄Kε )

] − f ∗ ≤ ε. Then,

(c-1) the total number of upper-level projection steps onX is Kε = O
(
n4L2

0 L̃
4
0ε

−2
)
.

(c-2) the sample complexity of upper-level function evaluations is O
(
n4L2

0 L̃
4
0ε

−2
)
.

(c-3) the total number of lower-level projection steps on Y is

O
(
n4L2

0 L̃
4
0ε

−2 ln
(
n2L0 L̃2

0ε
−1

))
.

(c-4) the sample complexity of lower-level evaluations of the mapping is

O
(
n4τ̄ L2τ̄

0 L̃4τ̄
0 ε−2τ̄

)
where τ̄ ≥ 1 − τ ln(ρ).

(d) For any a ∈ (0.5, 1] and b > 1 − a, there exists x∗ ∈ X ∗ such that
limk→∞ ‖x̄k − x∗‖2 = 0 almost surely.

Proof (a) Let the error �t be defined as �t � F̄(x̂k, yt ) − F(x̂k, yt ) for t ≥ 0. Next,
we estimate a bound on the term E[‖�t‖2 | x̂k, yt ]. From Assumption 4, we have that
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the following holds a.s.

E[‖�t‖2 | x̂k, yt ] = E

[∥∥∥∥
∑Mt

�=1(G(x̂k ,yt ,ω�,t )−F(x̂k ,yt ))
Mt

∥∥∥∥
2

| x̂k, yt
]

= 1
M2

t
E

[ Mt∑
�=1

∥∥G(x̂k, yt , ω�,t ) − F(x̂k, yt )
∥∥2 | x̂k, yt

]

≤ ν2y‖yt‖2+ν2G
Mt

. (23)

From y(x̂k) ∈ SOL(Y, F(x̂k, •)), y(x̂k) = 	Y
[
y(x̂k) − αF(x̂k, y(x̂k))

]
for any α >

0. It follows that

‖yt+1 − y(x̂k)‖2 = ‖	Y
[
yt − α F̄(x̂k, yt )

] − 	Y
[
y(x̂k) − αF(x̂k, y(x̂k))

] ‖2
≤ ‖yt − α F̄(x̂k, yt ) − y(x̂k) + αF(x̂k, y(x̂k))‖2
= ‖yt − αF(x̂k, yt ) − α�t − y(x̂k) + αF(x̂k, y(x̂k))‖2
= ‖yt − y(x̂k)‖2 + α2‖F(x̂k, yt ) − F(x̂k, y(x̂k))‖2 + α2‖�t‖2

− 2α(yt − y(x̂k))T (F(x̂k, yt ) − F(x̂k, y(x̂k)))

− 2α(yt − y(x̂k) − αF(x̂k, yt ) + αF(x̂k, y(x̂k)))T�t .

Taking conditional expectations in the preceding relation, using (23), and invoking the
strong monotonicity and Lipschitzian property of the mapping F in Assumption 1, we
obtain

E[‖yt+1 − y(x̂k)‖2 | x̂k , yt ] ≤
(
1 − 2μFα + α2L2F

)
‖yt − y(x̂k)‖2 +

(
ν2y‖yt‖2+ν2G

Mt

)
α2.

Taking expectations on both sides, we obtain

E[‖yt+1 − y(x̂k)‖2] ≤
(
1 − 2μFα + α2L2

F

)
E[‖yt − y(x̂k)‖2]

+
(

ν2yE[‖yt−y(x̂k )+y(x̂k )‖2]+ν2G
Mt

)
α2

≤
(
1 − 2μFα + α2L2

F + 2ν2y
M0

α2
)
E[‖yt − y(x̂k)‖2]

+
(

2ν2y‖y(x̂k)‖2+ν2G
Mt

)
α2.

Let λ � 1 − 2μFα + α2L2
F + 2ν2y

M0
α2 and �t (x̂k) � 2ν2y‖y(x̂k)‖2+ν2G

Mt
α2 for t ≥ 0. Note

that since M0 ≥ 2ν2y
L2
F
and that α ≤ μF

2L2
F
, we have λ ≤ 1 − μFα < 1. We obtain for
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any t ≥ 0

E[‖yt+1 − y(x̂k)‖2] ≤ λt+1‖y0 − y(x̂k)‖2 +
t∑

j=0

λt− j� j (x̂k)

≤ λt+1‖y0 − y(x̂k)‖2 + �0(x̂k)(max{λ, ρ})t
t∑

j=0

(
min{λ,ρ}
max{λ,ρ}

)t− j

≤ λt+1‖y0 − y(x̂k)‖2 + �0(x̂k)(max{λ,ρ})t
1−(min{λ,ρ}/max{λ,ρ}) ≤ B(x̂k)d̃ t+1,

where d̃ � max{λ, ρ} and B(x̂k) � supy∈Y ‖y − y0‖2 + �0(x̂k )
max{λ,ρ}−min{λ,ρ} . Note that

in view of compactness ofY , B(x̂k) < ∞. Also, without loss of generality, we assume
that ρ �= λ.

(b) Let us define F̄(x̂k, yt ) �
∑Mt

�=1 G(x̂k ,yt ,ω�,t )

Mt
for t ≥ 0 and k ≥ 0. Note that from

the compactness of the set X and the continuity of the implicit function, the set X ∗ is
nonempty. Let x∗ ∈ X be an arbitrary optimal solution. We have that

‖xk+1 − x∗‖2 = ∥∥	X
[
xk − γkgηk ,ε̃k (xk, vk, ωk)

] − 	X
[
x∗]∥∥2

≤ ∥∥xk − γkgηk ,ε̃k (xk, vk, ωk) − x∗∥∥2
= ‖xk − x∗‖2 − 2γk(xk − x∗)T gηk ,ε̃k (xk, vk, ωk)

+ γ 2
k ‖gηk ,ε̃k (xk, vk, ωk)‖2

= ‖xk − x∗‖2 − 2γk(xk − x∗)T (gηk (xk, vk, ωk) + wk)

+ γ 2
k ‖gηk ,ε̃k (xk, vk, ωk)‖2,

where we definewk � gηk ,ε̃k (xk, vk, ωk)−gηk (xk, vk, ωk). Taking conditional expec-
tations on the both sides, and invoking Lemma 2 and Lemma 3 (a), we obtain

E

[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − 2γk(xk − x∗)T ∇ f imp

ηk
(xk)

− 2γkE
[
(xk − x∗)Twk | xk

]
+ 3n2γ 2

k

(
2L̃2

0 ε̃k

η2k
+ L2

0

)
.

Invoking the convexity of f imp
ηk , bounding −2γk(xk − x∗)Twk , and rearranging the

terms, we obtain

2γk
(
f imp
ηk

(xk) − f imp
ηk

(x∗)
)

≤ ‖xk − x∗‖2 − E

[
‖xk+1 − x∗‖2 | xk

]

+ γ 2
k ‖xk − x∗‖2 + E

[
‖wk‖2 | xk

]

+ 3n2γ 2
k

(
2L̃2

0 ε̃k

η2k
+ L2

0

)
.
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From Lemma 3 (b) we obtain

2γk
(
f imp
ηk

(xk) − f imp
ηk

(x∗)
)

≤ ‖xk − x∗‖2 − E

[
‖xk+1 − x∗‖2 | xk

]

+ γ 2
k ‖xk − x∗‖2 + 4L̃2

0n
2 ε̃k

η2k
+ 3n2γ 2

k

(
2L̃2

0 ε̃k

η2k
+ L2

0

)
.

From Lemma 1 (v) we have that f imp(xk) ≤ f imp
ηk (xk) and f imp

ηk (x∗) ≤ f ∗ + ηk L0.
From the preceding inequalities we obtain

2γk
(
f imp(xk) − f ∗) ≤ ‖xk − x∗‖2 − E

[
‖xk+1 − x∗‖2 | xk

]
+ γ 2

k ‖xk − x∗‖2

+ (4 + 6γ 2
0 )

L̃2
0n

2 ε̃k

η2k
+ 2γkηk L0 + 3n2L2

0γ
2
k .

Next, we derive a bound on ε̃k
η2k
. From part (a) and the update rule of ηk we have

ε̃k
η2k

=
(

ε̃k
η2kγ

2
k

)
γ 2
k =

(
(max{λ,ρ})tk B(x̂k)(k+1)2(a+b)

η20γ
2
0

)
γ 2
k . (24)

Note that from α ≤ μF

2L2
F
and M0 ≥ 2ν2y

L2
F
, we have λ ≤ 1 − μFα. Thus, we have

τ ≥ −2(a+b)
ln(max{1−μFα,ρ}) ≥ −2(a+b)

ln(max{λ,ρ}) . From tk := �τ ln(k + 1)� ≥ τ ln(k + 1) and

τ ≥ −2(a+b)
ln(max{λ,ρ}) we have that

(max{λ, ρ})tk (k + 1)2(a+b) ≤
(
(max{λ, ρ})τ e2(a+b)

)ln(k+1)

≤ (max{λ, ρ})τ e2(a+b) ≤ 1.

This relation and (24) imply that ε̃k
η2k

≤
(

B(x̂k)
η20γ

2
0

)
γ 2
k . Also, note that sinceX is bounded,

there exists a scalar DX � 1
2 supx∈X ‖x − x∗‖2 such that DX < ∞. Therefore, we

obtain

2γk
(
f imp(xk) − f ∗) ≤ ‖xk − x∗‖2 − E

[
‖xk+1 − x∗‖2 | xk

]

+ 2γ 2
k θ0(x̂k) + 2γkηk L0, (25)

where θ0(x̂k) � DX +
(
2+3γ 2

0

)
n2 L̃2

0B(x̂k )
η20γ

2
0

+ 1.5n2L2
0 < ∞. Taking expectations on the

both sides and multiplying both sides by
γ r−1
k
2 , we have that

γ r
k

(
E

[
f imp(xk)

]
− f ∗) ≤ γ r−1

k

2

(
E

[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

])
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+ γ 1+r
k θ0(x̂k) + γ r

k ηk L0. (26)

Adding and subtracting the term
γ r−1
k−1
2 E

[‖xk − x∗‖2], we obtain

γ r
k

(
E

[
f imp(xk)

]
− f ∗)

≤ γ r−1
k−1

2
E

[
‖xk − x∗‖2

]
− γ r−1

k

2
E

[
‖xk+1 − x∗‖2

]

+
(
γ r−1
k − γ r−1

k−1

)
DX + θ0(x̂k)γ

1+r
k + γ r

k ηk L0.

Summing the inequality from k = 1, . . . , K we obtain

K∑
k=1

γ r
k

(
E

[
f imp(xk)

]
− f ∗) ≤ γ r−1

0

2
E

[
‖x1 − x∗‖2

]
+

(
γ r−1
K − γ r−1

0

)
DX

+ θ0(x̂k)
K∑

k=1

γ 1+r
k + L0

K∑
k=1

γ r
k ηk .

Rewriting (26) when k := 0, we obtain

γ r
0

(
E

[
f imp(x0)

]
− f ∗) ≤ γ r−1

0

2

(
E

[
‖x0 − x∗‖2

]
− E

[
‖x1 − x∗‖2

])

+ θ0(x̂k)γ
1+r
0 + γ r

0 η0L0.

Adding the preceding two relations together and using the definition of DX , we obtain

K∑
k=0

γ r
k

(
E

[
f imp(xk)

]
− f ∗) ≤ DX γ r−1

K + θ0(x̂k)
K∑

k=0

γ 1+r
k + L0

K∑
k=0

γ r
k ηk .

From the definition of x̄K �
∑K

k=0 αk,K xk (see Lemma 4) and by applying the con-

vexity of the implicit function, we have for all K ≥ 2
1

1−r − 1

E

[
f imp(x̄K )

]
− f ∗ ≤ DX γ r−1

K + θ0(x̂k)
∑K

k=0 γ 1+r
k + L0

∑K
k=0 γ r

k ηk∑K
k=0 γ r

k

.

Substituting γk := γ0√
k+1

and ηk := η0
(k+1)b

, we obtain the following by invoking
Lemma 13

E

[
f imp(x̄K )

]
− f ∗

≤ DX γ r−1
0 (K + 1)0.5(1−r) + θ0(x̂k)γ

1+r
0

(K+1)1−0.5(1+r)

1−0.5(1+r) + γ r
0 η0L0

(K+1)1−0.5r−b

1−0.5r−b

γ r
0

(K+1)1−0.5r

2−r
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≤ (2 − r)
(
DX
γ0

+ 2θ0(x̂k)γ0
1−r

)
1√
K+1

+ (2 − r)
(

η0L0
1−0.5r−b

)
1

(K+1)b
.

(c) The results in (c-1) and (c-2) follow directly from part (b) by substituting γ0 and
r . To show part (c-3), note that in Algorithm 1, we have tk := �τ ln(k + 1)�. From
part (b), we require that the total number of iterations of the SA scheme is bounded
as follows.

2
Kε∑
k=0

tk = 2
Kε∑
k=0

�τ ln(k + 1)�≤ 2
Kε∑
k=0

(1 + τ ln(k + 1))

≤ 2 (Kε + 1) +2τ ln(1) + 2τ
Kε∑
k=1

ln(k + 1)

≤ 2 (Kε + 1) + 2τ
∫ Kε+1

2
ln(u)du ≤ 2 (Kε + 1) + 2τ (Kε + 2) ln (Kε + 2)

≤ 4max{τ, 1} (Kε+2) ln (Kε + 2) .

The bound in (c-3) follows from the preceding inequality and the bound on Kε in
(c-1). To show (c-4), note that the total samples used in the lower-level is as follows.

2
Kε∑
k=0

tk∑
t=0

Mt = 2
Kε∑
k=0

tk∑
t=0

�M0ρ
−t� ≤ 4M0

Kε∑
k=0

tk∑
t=0

ρ−t

= O
( Kε∑
k=0

ρ−tk

ln( 1
ρ
)

)
= O

( Kε∑
k=0

ρ−τ ln(k+1)

ln( 1
ρ
)

)

≤ O
( Kε∑
k=0

e(τ̄−1) ln(k+1)

ln( 1
ρ
)

)
= O

( Kε∑
k=0

(k + 1)τ̄−1

ln( 1
ρ
)

)
≤O

(
K τ̄

ε

ln( 1
ρ
)

)
,

where τ̄ ≥ 1+ τ ln( 1
ρ
). The bound in (c-4) follows from the preceding inequality and

the bound on Kε in (c-1).
(d) Consider relation (25). Rearranging the terms, for all k ≥ 0 we have

E

[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − 2γk

(
f imp(xk) − f ∗) + 2γ 2

k θ0(x̂k) + 2γkηk L0.

Note that
∑∞

k=0 γ 2
k < ∞ and

∑∞
k=0 γkηk < ∞ since b > 0.5. Thus, in view of

Lemma 15, we have that {‖xk − x∗‖2} is a convergent sequence in an almost sure
sense and

∑∞
k=0 γk( f imp(xk)− f ∗) < ∞ almost surely. The former statement implies

that {xk} is a bounded sequence in an a.s. sense. Further, the latter statement and∑∞
k=0 γk = ∞ imply that lim infk→∞ f imp(xk) = f ∗ in an a.s. sense. Thus, from

the continuity of the implicit function, there is a subsequence of {xk}k∈K with a limit
point denoted by x̂ such that x̂ ∈ X ∗. Since {‖xk − x∗‖2} is a convergent sequence for
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all x∗ ∈ X ∗, we have {‖xk − x̂‖2} is a convergent sequence. But we have shown that
limk→∞, k∈K ‖xk − x̂‖2 = 0 almost surely. Hence limk→∞ ‖xk − x̂‖2 = 0 almost
surelywhere x̂ ∈ X ∗. Next, we show that limk→∞ ‖x̄k−x̂‖2 = 0. In viewof Lemmas 4
and 14, it suffices to have

∑∞
k=0 γ r

k = ∞ or equivalently, we must have ar ≤ 1. This
is already satisfied as a consequence of a ∈ (0.5, 1] and r ∈ [0, 1). ��
Remark 6 (Variance-reduction schemes)

(i) In Algorithm 2 we employ a variance-reduced (VR) scheme in computing an ε-
solution of the parametrized VI at the lower-level. This is crucial since it allows
for computing an ε-solution in ln(1/ε) steps while in a non-VR regime, it would
have takenO(1/ε) steps. Variance-reduction on strongly monotone VIs has been
studied in [13, 33, 34], amongst others.

(ii) In addressing single-stage SMPECs, while employing a VR scheme in either
lower-level or upper-level is possible, but sometimes this approach may not
be advisable to be adopted at the both levels simultaneously. For instance, in
(ZSOL1scnvx), employing a VR scheme in the upper-level would lead to requiring
an increasing number of inexact solutions of a lower-level stochastic VI at each
iteration,where each of these solutionswould require aVRscheme to be employed
in the lower-level. Consequently, this may render the scheme impractical.

Remark 7 (Definition of history) We conclude this subsection with a brief remark
regarding the formal definition of the σ−algebra for Algorithms 1–2. First, F0,0 �
{x0}. In addition, Fk,0 is defined as

F1,0 = F0,0 ∪ {ω0, v0} ∪ F1
0,t0 ∪ F2

0,t0 , where

F1
0,t �

{{
G(x0, y0, ω�,0)

}M0
�=1 , . . . ,

{
G(x0, yt−1, ω�,t−1)

}M0
�=1

}
and

F2
0,t �

{{
G(x0 + v0, y0, ω�,0)

}M0
�=1 , . . . ,

{
G(x0 + v0, yt−1, ω�,t−1)

}M0
�=1

}

for t = 0, . . . , t0 − 1.

At the kth iteration with k > 0, we have that

Fk,0 = Fk−1,0 ∪ {ωk, vk} ∪ F1
k,tk ∪ F2

k,tk , where

F1
k,t �

{{
G(xk, y0, ω�,0)

}Mt

�=1 , . . . ,
{
G(xk, yt−1, ω�,t−1)

}Mt

�=1

}
and

F2
k,t �

{{
G(xk + vk, y0, ω�,t )

}Mt

�=1 , . . . ,
{
G(xk + vk, yt−1, ω�,t−1)

}Mt

�=1

}

for t = 0, . . . , tk − 1.

In particular, at the t th iteration of the SA scheme at the kth upper-level step, we may
define Fk,t as

Fk,t � Fk,0 ∪
{{

G(x̂k, y0, ω�,0)
}M0
�=1 , . . . ,

{
G(x̂k, yt−1, ω�,t−1)

}Mt−1
�=1

}
,

for t = 0, . . . , tk − 1.
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Furthermore, at the t th step of the lower-level SA scheme associated with the kth
iteration, the history is denoted by F1

k−1,t and F2
k−1,t , defined as

F1
k−1,t � Fk−1,0 ∪ {vk, ωk} ∪ F1

k,t−1 and F2
k−1,t � Fk−1,0 ∪ {vk, ωk} ∪ F2

k,t−1.

Naturally, one can employ these histories in constructing the conditional expectations;
specifically, at the kth iteration, we may use Fk−1,0 while at the t th step of the lower-
level SA scheme at the kth iteration, we may use Fk−1,t−1. For expository ease, we
use the iterate as a proxy in constructing the conditional expectation, as the reader will
observe. Note that for expository ease, we employ yt at iteration k as a proxy for the
history (rather than yk,t ).

3.2.2 An exact zeroth-order scheme

In this subsection, we consider the case where an exact solution of the lower-level
problem is available. This case is particularly relevant when the lower-level problem
is a deterministic variational inequality problem and highly accurate solutions are
available. We develop a zeroth-order method where the gradient mapping is approxi-
mated using two evaluations of the implicit function. Similar to the inexact setting, we
allow for iterative smoothing and provide the convergence analysis in addressing the
original implicit problem. In the following, we derive non-asymptotic convergence
rate statements and also, show an almost sure convergence result for the proposed
zeroth-order method in the exact regimes.

Corollary 1 (Rate and complexity statements and a.s. convergence for exact (ZSOL1scnvx))
Consider the problem (SMPECimp,1s). Suppose Assumptions 1–3 hold. Let {x̄k} denote
the sequence generated by Algorithm 1 (exact variant) in which the stepsize and
smoothing sequences are defined as γk := γ0

(k+1)a and ηk := η0
(k+1)b

, respectively, for
all k ≥ 0 where γ0 and η0 are strictly positive. Then, the following statements hold.

(a) Let a = 0.5 and b ∈ [0.5, 1) and 0 ≤ r < 2(1 − b). Then, for all K ≥ 2
1

1−r − 1
we have

E

[
f imp(x̄K )

]
− f ∗ ≤ (2 − r)

(
DX
γ0

+ L2
0n

2γ0
1−r

)
1√
K+1

+ (2 − r)
(

η0L0
1−0.5r−b

)
1

(K+1)b
.

In particular, when b := 1− δ and r = 0, where δ > 0 is a small scalar, we have
for all K ≥ 1

E

[
f imp(x̄K )

]
− f ∗ ≤ 2

(
DX
γ0

+ L2
0n

2γ0

)
1√
K+1

+
(
2η0L0

δ

)
1

(K+1)1−δ .

(b) Let a := 0.5, b = 0.5, r = 0, γ0 :=
√
DX

nL0
, and η0 ≤ √

DX n. Then, the iteration
complexity in projection steps on X as well as the total sample complexity of
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upper-level evaluations, for achieving E
[
f imp(x̄Kε )

] − f ∗ ≤ ε for some ε > 0
is given by Kε where Kε is bounded as follows.

Kε ≥ 64n2L2
0DX

ε2
.

(c) For any a ∈ (0.5, 1] and b > 1 − a, there exists x∗ ∈ X ∗ such that
limk→∞ ‖x̄k − x∗‖2 = 0 almost surely.

Proof (a) Let x∗ ∈ X ∗ be an arbitrary optimal solution.Wemay expand ‖xk+1−x∗‖2
as

‖xk+1 − x∗‖2 = ∥∥	X
[
xk − γkgηk (xk, vk, ωk)

] − 	X
[
x∗]∥∥2

≤ ∥∥xk − γkgηk (xk, vk, ωk) − x∗∥∥2
= ‖xk − x∗‖2 − 2γk(xk − x∗)T gηk (xk, vk, ωk)

+ γ 2
k ‖gηk (xk, vk, ωk)‖2.

Taking conditional expectations on the both sides and invoking Lemma 2, we
obtain

E

[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − 2γk(xk − x∗)T ∇ f imp

ηk
(xk) + γ 2

k L
2
0n

2.

Invoking the convexity of fηk , we obtain

E

[
‖xk+1 − x∗‖2 | xk

]
≤ ‖xk − x∗‖2 − 2γk

(
f imp
ηk

(xk) − f imp
ηk

(x∗)
)

+ γ 2
k L

2
0n

2.

(27)

Taking expectations from both sides of the preceding relation and rearranging the
terms, we obtain

2γk
(
E

[
f imp
ηk

(xk)
]

− f imp
ηk

(x∗)
)

≤ E

[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

]

+ γ 2
k L

2
0n

2.

From the Lipschitzian property of the implicit function and Lemma 1 (v), we have
that

f imp
ηk

(x∗) ≤ f ∗ + ηk L0. (28)

From the preceding two inequalities and that f imp(xk) ≤ f imp
ηk (xk), we obtain

2γk
(
E

[
f imp(xk)

]
− f ∗) ≤ E

[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

]
+ γ 2

k L
2
0n

2

+ 2γkηk L0.
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The rest of the proof follows in a similar fashion to that of Theorem 1 (b).
(b) Under the specified setting, from part (a) we have

E

[
f imp(x̄K )

]
− f ∗ ≤ 2

(
DX
γ0

+ L2
0n

2γ0

)
1√
K+1

+
(
2η0L0
0.5

)
1√
K+1

= 2(nL0
√
DX + nL0

√
DX ) 1√

K+1
+

(
4nL0

√
DX

)
1√
K+1

= 8nL0
√
DX√

K+1
≤ ε.

This implies the desired bound.
(c) The proof follows in a similar vein to that of Theorem 1 (d).

��

3.3 Nonconvex single-stage SMPEC

In this subsection, in addressing (SMPECimp,1s) in the nonconvex case, we consider
a smoothed implicit problem given by the following.

min f imp
η (x)

subject to x ∈ X ,
(29)

where f imp
η is defined by (G-Smooth1s) for a given η > 0.

3.3.1 An inexact zeroth-order scheme

In this subsection, we consider the case where an exact solution of the lower-level
problem is unavailable. The outline of the proposed zeroth-order scheme is given by
Algorithms 3–4. We make the following assumptions in these algorithms.

Assumption 5 Consider Algorithm 3. Given a mini-batch size of Nk and a smoothing
parameter η > 0, let {v j,k}Nk

j=1 ∈ R
n be Nk iid replicates generated at epoch k from the

uniform distribution on ηS for all k ≥ 0. Also, let the random realizations {ω j,k}Nk
j=1

be iid replicates.

Assumption 6 Consider Algorithm 4. Let the following hold and for all k ≥ 0, t ≥ 0,
x̂k ∈ X + ηkS, and yt ∈ Y .

(a) The replicates {G(•, •, ωt )}∞
t=0 are generated randomly and are iid.

(b) E[G(x̂k, yt , ωt ) | x̂k, yt ] = F(x̂k, yt ) holds almost surely.
(c) E[‖G(x̂k, yt , ωt ) − F(x̂k, yt )‖2 | x̂k, yt ] ≤ ν2G holds almost surely for some

νG > 0.

Assumption 6 provides standard conditions on the first and second moment of the
stochastic oracle. Such conditions have been assumed in the literature of the SA
schemes extensively (e.g., see [55, 81]). We utilize the following definition and lemma
in the analysis in this subsection.
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Definition 3 (The residual mappings) Suppose Assumption 1 holds. Given a scalar
β > 0 and a smoothing parameter η > 0, for any x ∈ R

n , let the residual mapping
Gη,β and its error-afflicted counterpart G̃η,β be defined as

Gη,β(x) � β
(
x − 	X

[
x − 1

β
∇x f

imp
η (x)

])
, (30)

G̃η,β(x) � β
(
x − 	X

[
x − 1

β
(∇x f

imp
η (x) + ẽ)

])
, (31)

where ẽ ∈ R
n is an arbitrary given vector.

It may be observed that Gη,β is a residual for stationarity for the minimization of
smooth nonconvex objectives over convex sets (cf. [6]). In fact, the first part of (32)
is a consequence of the well known result relating the residual function Gη,β(x) to
the standard stationarity condition (cf. [5, Thm. 9.10]) while the second implication
in (32) is Prop. 4.

Lemma 5 Consider the problem (29). Then the following holds for any η, β > 0.

[
Gη,β(x) = 0

] ⇐⇒
[
0 ∈ ∇x f

imp
η (x) + NX (x)

]

�⇒
[
0 ∈ ∂2η f

imp(x) + NX (x)
]
. (32)

Consequently, a zero of the residual of the η-smoothed problem satisfies an η-
approximate stationarity property for the original problem. The residual G̃η,β

represents the counterpart of Gη,β when employing an error-afflicted estimate of the
gradient. In fact, since our framework relies on sampling, leading to error, we obtain
bounds on G̃η,β . But it is still necessary to derive bounds on the original residual Gη,β

but this can be provided in terms of G̃η,β and ẽ, the error in the gradient.

Lemma 6 Let Assumption 1 hold. Then the following holds for any β, η > 0, and
x ∈ R

n.

‖Gη,β(x)‖2 ≤ 2‖G̃η,β(x)‖2 + 2‖ẽ‖2.

Proof From Definition 3, we may bound Gη,β(x) as follows.

‖Gη,β(x)‖2 =
∥∥∥β

(
x − 	X

[
x − 1

β
∇x f

imp
η (x)

])∥∥∥2

=
∥∥∥β

(
x − 	X

[
x − 1

β
(∇x f

imp
η (x) + ẽ)

])

+ β	X
[
x − 1

β
(∇x f

imp
η (x) + ẽ)

]
− β	X

[
x − 1

β
∇x f

imp
η (x)

]∥∥∥2

≤ 2
∥∥∥β

(
x − 	X

[
x − 1

β
(∇x f

imp
η (x) + ẽ)

])∥∥∥2

+ 2
∥∥∥β	X

[
x − 1

β
(∇x f

imp
η (x) + ẽ)

]
− β	X

[
x − 1

β
∇x f

imp
η (x)

]∥∥∥2

≤ 2‖G̃η,β(x)‖2 + 2‖ẽ‖2,
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where the last inequality is a consequence of the non-expansivity of the Euclidean
projector. ��

The proposed scheme can be compactly represented as

xk+1 := 	X
[
xk − γ

(
∇x f

imp
η (xk) + ek

)]
, (33)

where k ≥ 0 and we define the stochastic errors ek � gη,Nk ,ε̃k (xk) − ∇x f
imp
η (xk) for

k ≥ 0. We make use of the following result in the convergence analysis.

Algorithm 3 ZSOL1sncvx: Variance-reduced zeroth-order method for nonconvex
(SMPEC1s)
1: input: Given x0 ∈ X , x̄0 := x0, stepsize γ > 0, smoothing parameter η > 0, mini-batch sequence

{Nk } such that Nk := k + 1, an integer K , a scalar λ ∈ (0, 1), and an integer R randomly selected from
{�λK �, . . . , K } using a uniform distribution

2: for k = 0, 1, . . . , K − 1 do
3: Do one of the following, depending on the type of the scheme.

• Inexact scheme: Call Algorithm 4 to obtain yε̃k
(xk )

• Exact scheme: Evaluate y(xk )

4: for j = 1, . . . , Nk do
5: Generate v j,k ∈ ηS

6: Do one of the following.

• Inexact scheme: Call Algorithm 4 to obtain yε̃k
(xk + v j,k )

• Exact scheme: Evaluate y(xk + v j ,k )

7: Evaluate the inexact or exact zeroth-order gradient approximation as follows.

gη,ε̃k
(xk , v j,k , ω j ,k ) := n

(
f̃ (xk+v j,k ,yε̃k

(xk+v j,k ),ω j,k )− f̃ (xk ,yε̃k
(xk ),ω j,k )

)
v j,k

‖v j,k‖η
(Inexact)

gη(xk , v j,k , ω j ,k ) := n
(
f̃ (xk+v j,k ,y(xk+v j,k ),ω j,k )− f̃ (xk ,y(xk ),ω j,k )

)
v j,k

‖v j,k‖η
(Exact)

8: end for
9: Evaluate the mini-batch zeroth-order gradient.

gη,Nk ,ε̃k
(xk ) :=

∑Nk
j=1 gη,ε̃k

(xk ,v j,k ,ω j,k )

Nk
(Inexact)

gη,Nk (xk ) :=
∑Nk

j=1 gη(xk ,v j,k ,ω j,k )

Nk
(Exact)

10: Update xk as follows.

xk+1 :=
{

	X
[
xk − γ gη,Nk ,ε̃k

(xk )
]

(Inexact)

	X
[
xk − γ gη,Nk (xk )

]
(Exact)

11: end for
12: Return xR
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Algorithm 4 SA method for lower-level of nonconvex (SMPEC1s)

1: input: An arbitrary y0 ∈ Y , vector x̂k , and initial stepsize α0 > 1
2μF

2: Set tk := k + 1
3: for t = 0, 1, . . . , tk − 1 do
4: Generate a random realization of the stochastic mapping G(x̂k , yt , ωt )

5: Update yt as follows. yt+1 := 	Y
[
yt − αt G(x̂k , yt , ωt )

]
6: Update the stepsize using αt+1 := α

t+�
7: end for
8: Return ytk

Lemma 7 Let Assumption 1 hold. Suppose xk is generated by Algorithm 3 in which
γ ∈ (0, η

nL0
) for a given η > 0. Then, we have for any k,

f imp
η (xk+1) ≤ f imp

η (xk) +
(

−1 + nL0γ
η

)
γ
4 ‖Gη,1/γ (xk)‖2 +

(
1 − nL0γ

2η

)
γ ‖ek‖2.

Proof Note that by Lemma 1 (iv), ∇ f imp
η (•) is Lipschitz with parameter L � nL0

η
.

By the descent lemma, we have that

f imp
η (xk+1) ≤ f imp

η (xk) + ∇x f
imp
η (xk)

T
(xk+1 − xk) + L

2 ‖xk+1 − xk‖2

= f imp
η (xk) +

(
∇x f

imp
η (xk) + ek

)T
(xk+1 − xk)

− eTk (xk+1 − xk) + L
2 ‖xk+1 − xk‖2.

From the properties of the Euclidean projection, we have that

(xk − γ (∇x f
imp
η (xk) + ek)) − xk+1)

T (xk − xk+1) ≤ 0

�⇒ (∇x f
imp
η (xk) + ek))

T (xk+1 − xk) ≤ − 1
γ

‖xk+1 − xk‖2.

In addition, for any u, v ∈ R
n we can write uT v ≤ 1

2

(
γ ‖u‖2 + ‖v‖2

γ

)
. Thus, we have

that

−eTk (xk+1 − xk) ≤ γ
2 ‖ek‖2 + 1

2γ ‖xk+1 − xk‖2.

Consequently, from the preceding three inequalities we have that

f imp
η (xk+1) ≤ f imp

η (xk) − 1
γ

‖xk+1 − xk‖2 + γ
2 ‖ek‖2 + 1

2γ ‖xk+1 − xk‖2
+ L

2 ‖xk+1 − xk‖2

= f imp
η (xk) +

(
− 1

2γ + L
2

)
‖xk+1 − xk‖2 + γ

2 ‖ek‖2.

From γ < 1
L , we have

f imp
η (xk+1) ≤ f imp

η (xk) +
(

− 1
2γ + L

2

)
‖xk+1 − x‖2 + γ

2 ‖ek‖2

123



Complexity guarantees for an implicit smoothing-enabled…

= f imp
η (xk) +

(
− 1

2γ + L
2

)
γ 2‖G̃η,1/γ (xk)‖2 + γ

2 ‖ek‖2

= f imp
η (xk) + (−1 + Lγ )

γ
2 ‖G̃η,1/γ (xk)‖2 + γ

2 ‖ek‖2
Lemma 6≤ f imp

η (xk) + (−1 + Lγ )
γ
4 ‖Gη,1/γ (xk)‖2

+ (1 − Lγ )
γ
2 ‖ek‖2 + γ

2 ‖ek‖2

= f imp
η (xk) + (−1 + Lγ )

γ
4 ‖Gη,1/γ (xk)‖2 +

(
1 − Lγ

2

)
γ ‖ek‖2.

Substituting L := nL0
η

we obtain the desired inequality. ��
We make use of the following result in the convergence analysis.

Lemma 8 Let {ek} be a non-negative sequence such that for an arbitrary non-negative
sequence {γk}, the following relation is satisfied.

ek+1 ≤ (1 − αγk)ek + βγ 2
k , for all k ≥ 0. (34)

where α and β are positive scalars. Suppose γk = γ
k+�

for any k ≥ 0, where γ > 1
α

and � > 0. Then, we have

ek ≤
max

{
βγ 2

αγ −1 ,�e0

}

k+�
, for all k ≥ 0. (35)

Next, we present the rate and complexity result for the proposed inexact method
for addressing the nonconvex case.

Theorem 2 (Rate and complexity statements for inexact (ZSOL1sncvx)) Consider Algo-
rithms 3–4 for solving (SMPECimp,1s) and suppose Assumptions 1, 5 and 6 hold.
(a) Given x̂k ∈ X , let y(x̂k) denote the unique solution of VI(Y, F(x̂k, •)). Let
ytk be generated by Algorithm 4 where tk := k + 1. Let us define CF �
maxx∈X , y∈Y ‖F(x, y)‖. Then for all tk ≥ 0, we have

E[‖ytk − y(x̂k)‖2] ≤ ε̃k �
max

{
(C2

F+ν2G )α2

2αμF−1 ,� supy∈Y ‖y−y0‖2
}

tk+�
.

(b) The following holds for any γ <
η

nL0
, � � �λK �, and all K > 2

1−λ
.

E

[
‖Gη,1/γ (xR)‖2

]

≤
n2γ (1 − 2 ln(λ))

(
1 − nL0γ

2η

)(
8L̃2

0(C
2
F+ν2G )

η2μ2
F

+ L20

)
+ E

[
f imp(x�)

]
− f ∗ + 2L0η

(
1 − nL0γ

η

)
γ
4 (1 − λ)K

.

(c) Suppose γ = η
2nL0

and η = 1
L0
. Let ε > 0 be an arbitrary scalar and Kε be such

that E
[‖Gη,1/γ (xR)‖2] ≤ ε. Then,
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(c-1) the total number of upper-level projection steps onX is Kε = O
(
n2L2

0 L̃
2
0ε

−1
)
.

(c-2) the sample complexity of upper-level function evaluations is O
(
n4L4

0 L̃
4
0ε

−2
)
.

(c-3) the total number of lower-level projection steps on Y is O
(
n6L6

0 L̃
6
0ε

−3
)
.

(c-4) the sample complexity of lower-level evaluations of the mapping is

O
(
n6L6

0 L̃
6
0ε

−3
)
.

Proof (a) Let the error �t be defined as �t � G(x̂k, yt , ωt ) − F(x̂k, yt ) for t ≥ 0.
We have

‖yt+1 − y(x̂k)‖2 = ‖	Y
[
yt − αtG(x̂k, yt , ωt )

] − 	Y
[
y(x̂k)

] ‖2
≤ ‖yt − αtG(x̂k, yt , ωt ) − y(x̂k)‖2
= ‖yt − αt F(x̂k, yt ) − αt�t − y(x̂k)‖2
= ‖yt − y(x̂k)‖2 + α2

t ‖F(x̂k, yt )‖2 + α2
t ‖�t‖2

− 2αt (yt − y(x̂k))T F(x̂k, yt )

− 2αt (yt − y(x̂k) − αt F(x̂k, yt ))T�t .

Taking conditional expectations from the preceding relation and invoking Assump-
tion 6, we obtain

E[‖yt+1 − y(x̂k)‖2 | x̂k, yt ] ≤ ‖yt − y(x̂k)‖2 + α2
t (C

2
F + ν2G)

− 2αt (yt − y(x̂k))T F(x̂k, yt ).

From strong monotonicity of mapping F(x̂k, •) uniformly in x̂k and the definition of
y(x̂k), we have

(yt − y(x̂k))T F(x̂k, yt ) ≥ (yt − y(x̂k))T F(y(x̂k), x̂k) + μF‖yt − y(x̂k)‖2
≥ μF‖yt − y(x̂k)‖2.

From the preceding relations, we obtain

E[‖yt+1 − y(x̂k)‖2 | x̂k, yt ] ≤ (1 − 2μFαt )‖yt − y(x̂k)‖2 + α2
t (C

2
F + ν2G).

Taking expectations from both sides, we have

E[‖yt+1 − y(x̂k)‖2] ≤ (1 − 2μFαt )E[‖yt − y(x̂k)‖2] + α2
t (C

2
F + ν2G).

Noting that in Algorithm 4 we have α0 > 1
2μF

, using Lemma 8, we obtain that

E[‖yt − y(x̂k)‖2] ≤
max

{
(C2

F+ν2G )α2

2αμF−1 ,� supy∈Y ‖y−y0‖2
}

t+�
, for all t ≥ 0.
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(b)We can write

E

[
‖ek‖2 | xk

]
= E

[∥∥∥gη,Nk ,ε̃k (xk) − ∇x f
imp
η (xk)

∥∥∥2 | xk
]

= E

[∥∥∥∥
∑Nk

j=1 gη,ε̃k
(xk ,v j,k ,ω j,k )

Nk
− ∇x f

imp
η (xk)

∥∥∥∥
2

| xk
]

≤ 2E

[∥∥∥∥
∑Nk

j=1 gη,ε̃k
(xk ,v j,k ,ω j,k )

Nk
−

∑Nk
j=1 gη(xk ,v j,k ,ω j,k )

Nk

∥∥∥∥
2

| xk
]

+ 2E

[∥∥∥∥
∑Nk

j=1 gη(xk ,v j,k ,ω j,k )

Nk
− ∇x f

imp
η (xk)

∥∥∥∥
2

| xk
]

≤
2
∑Nk

j=1 E

[∥∥∥gη,ε̃k
(xk ,v j,k ,ω j,k )−gη(xk ,v j,k ,ω j,k )

∥∥∥2|xk
]

Nk

+
2
∑Nk

j=1 E

[∥∥∥gη(xk ,v j,k ,ω j,k )−∇x f
imp
η (xk)

∥∥∥2|xk
]

N2
k

≤ 8L̃2
0n

2 ε̃k

η2
+

2
∑Nk

j=1

(
E

[‖gη(xk ,v j,k ,ω j,k )‖2|xk
]
−
∥∥∥∇x f

imp
η (xk)

∥∥∥2
)

N2
k

≤ 8L̃2
0n

2 ε̃k

η2
+ 2n2L2

0
Nk

, (36)

where in the second inequality, the first term is implied by the relation
∥∥∑m

i=1 ui
∥∥2 ≤

m
∑m

i=1 ‖ui‖2 for any ui ∈ R
n for all i = 1, . . . ,m. The second term in the second

inequality is implied by noting that from Lemma 2, gη(xk, v) is an unbiased estimator

of ∇x f
imp
η (xk). The third inequality is obtained using Lemma 3. From Lemma 7 we

have
(
1 − nL0γ

η

)
γ
4 ‖Gη,1/γ (xk)‖2 ≤ f imp

η (xk) − f imp
η (xk+1) +

(
1 − nL0γ

2η

)
γ ‖ek‖2.

Let f imp,∗
η � inf x∈X f imp

η (x). Summing the preceding relation from k = �, . . . , K−1
where � � �λK �, we have that

(
1 − nL0γ

η

)
γ
4

K−1∑
k=�

‖Gη,1/γ (xk)‖2 ≤ f imp
η (x�) − f imp

η (xK ) +
(
1 − nL0γ

2η

)
γ

K−1∑
k=�

‖ek‖2.

Taking expectations on both sides, it follows that

(
1 − nL0γ

η

)
γ
4 (K − �)E

[
‖Gη,1/γ (xR)‖2

]

≤
(
1 − nL0γ

2η

)
γ

K−1∑
k=�

E

[
‖ek‖2

]
+ E

[
f imp
η (x�)

]
− f imp,∗

η
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=
(
1 − nL0γ

2η

)
γ

K−1∑
k=�

E

[
‖ek‖2

]
+ E

[
f imp(x�) + f imp

η (x�) − f imp(x�)
]

− f imp,∗
η + f ∗ − f ∗

≤
(
1 − nL0γ

2η

)
γ

K−1∑
k=�

E

[
‖ek‖2

]

+ E

[
f imp(x�)

]
− f ∗ + E

[∣∣∣ f imp
η (x�) − f imp(x�)

∣∣∣
]

+
∣∣∣ f ∗ − f imp,∗

η

∣∣∣

≤
(
1 − nL0γ

2η

)
γ

K−1∑
k=�

(
8L̃2

0n
2 ε̃k

η2
+ 2n2L2

0
Nk

)
+ E

[
f imp(x�)

]
− f ∗ + 2L0η,

where the preceding relation is implied by invoking the bound on E
[‖ek‖2] and

Lemma 1 (iii). Note that from part (a), we have ε̃k = 2(C2
F+ν2G )

μ2
F tk

where tk := k + 1.

Also, Nk := k + 1. Note that K > 2
1−λ

implies � ≤ K − 1. From Lemma 13, using

� ≥ 1 we have
∑K−1

k=�
1

k+1 ≤ 1
�+1 + ln

(
K

�+1

)
≤ 0.5 + ln

(
N

λN+1

)
≤ 0.5 − ln(λ).

Also, K − � ≥ K − λK = (1 − λ)K . Thus, we obtain

E

[
‖Gη,1/γ (xR)‖2

]

≤

(
1 − nL0γ

2η

)
2n2γ

(
8L̃2

0(C
2
F+ν2G )

η2μ2
F

+ L20

)
(0.5 − ln(λ)) + E

[
f imp(x�)

]
− f ∗ + 2L0η

(
1 − nL0γ

η

)
γ
4 (1 − λ)K

.

(c) To show (c-1), using the relation in part (b) and substituting γ = η
2nL0

we obtain

E

[
‖Gη,1/γ (xR)‖2

]

≤
6n2(1 − 2 ln(λ))

(
8L̃2

0(C
2
F+ν2G )

η2μ2
F

+ L20

)
+ 16nL0

η (supx∈X f imp(x) − f ∗) + 32nL20

(1 − λ)K
.

Further, from η = 1
L0

we obtain

E

[
‖Gη,1/γ (xR)‖2

]

≤
6n2L20(1 − 2 ln(λ))

(
8L̃2

0(C
2
F+ν2G )

μ2
F

+ 1

)
+ 16nL20(supx∈X f imp(x) − f ∗) + 32nL20

(1 − λ)K
.
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This implies that E
[‖Gη,1/γ (xR)‖2] ≤ O

(
n2L2

0 L̃
2
0

)

K and thus, we obtain Kε =
O

(
n2L2

0 L̃
2
0ε

−1
)
. Next, we show (c-2). The overall sample complexity of upper-level

evaluations is as follows.

Kε∑
k=0

Nk =
Kε∑
k=0

(k + 1) = O(K 2
ε ) = O

(
n4L4

0ε
−2

)
.

To show (c-3), note that the total number of lower-level projection steps is given by

Kε∑
k=0

(1 + Nk)tk =
Kε∑
k=0

(k + 1)(k + 2) = O(K 3
ε ) = O

(
n6L6

0ε
−3

)
.

Noting that at each iteration in Algorithm 4 a single sample is taken, we obtain the
bound in (c-4). ��
Remark 8 (Variance-reduction and smoothing schemes in the nonconvex case)

(i) Unlike in (ZSOL1scvx), in (ZSOL1sncvx) we employ a variance-reduction scheme in
the upper-level. This is mainly because, in contrast with the convex case, the use of
the Euclidean projection in (ZSOL1sncvx) leads to the presence of the persistent error

term
(
1 − nL0γ

2η

)
γ ‖ek‖2 (see Lemma 7). The use of variance-reduction helpswith

contending with this error in establishing the convergence and rate results.
(ii) Unlike in (ZSOL1scvx), in (ZSOL

1s
ncvx) we employ a constant smoothing parameter.

This is because assuming an iteratively updating smoothing parameter ηk in the
nonconvex case does not appear to allow for constructing a recursive error bound.
For this reason, in the nonconvex case we limit our study to the case when the
smoothing parameter is constant.

3.3.2 An exact zeroth-order scheme

In this subsection, we present the rate and complexity results for the exact variant of
Algorithm 3.

Corollary 2 (Rate and complexity statements for exact (ZSOL1sncvx)) Consider Algo-
rithms 3 (exact variant) for solving (SMPECimp,1s) and suppose Assumptions 1 and 5
hold.
(a) The following holds for any γ <

η
nL0

, � � �λK �, and all K > 2
1−λ

.

E

[
‖Gη,1/γ (xR)‖2

]
≤

n2L20γ (0.5 − ln(λ))
(
1 − nL0γ

2η

)
+ E

[
f imp(x�)

]
− f ∗ + 2L0η(

1 − nL0γ
η

)
γ
4 (1 − λ)K

.

(b) Suppose γ = η
2nL0

and η = 1
L0
. Let ε > 0 be an arbitrary scalar and Kε be such

that E
[‖Gη,1/γ (xR)‖2] ≤ ε. Then the following hold.

123



S. Cui et al.

(b-1) The total number of upper-level projection steps on X is Kε = O (
n2L2

0ε
−1

)
.

(b-2) The total sample complexity of upper-level is O (
n4L4

0ε
−2

)
.

Proof The proof can be carried out in a similar vein to that of Theorem 2 by noting
that ε̃k := 0 in the exact variant. The main difference lies in establishing the upper
bound on E

[‖ek‖2 | xk
]
in (36). To be precise, we derive this bound as follows.

E

[
‖ek‖2 | xk

]
= E

[∥∥∥gη,Nk (xk) − ∇x f
imp
η (xk)

∥∥∥2 | xk
]

= E

⎡
⎣
∥∥∥∥∥

∑Nk
j=1 gη(xk ,v j,k ,ω j,k )

Nk
− ∇x f

imp
η (xk)

∥∥∥∥∥
2

| xk
⎤
⎦

≤
∑Nk

j=1 E

[∥∥∥gη(xk ,v j,k ,ω j,k )−∇x f
imp
η (xk )

∥∥∥2|xk
]

N2
k

≤
∑Nk

j=1

(
E

[∥∥gη(xk ,v j,k ,ω j,k )
∥∥2|xk

]
−
∥∥∥∇x f

imp
η (xk )

∥∥∥2
)

N2
k

≤ n2L2
0

Nk
, almost surely.

��

4 Zeroth-order methods for two-stage SMPECs

In this section, we extend the zeroth-order schemes from the previous section to allow
for accommodating two-stage model (SMPECimp,2s). In Sect. 4.1, we discuss an
implicit framework for two-stage SMPECs and present inexact and exact schemes
and an accelerated counterpart in Sects. 4.2 and 4.3. We conclude with a discussion
of addressing nonconvexity in the implicit problem in Sect. 4.4.

4.1 An implicit framework

Consider the implicit problem (SMPECimp,2s). Given the defined function f imp and
a scalar η, we consider a spherical smoothing f imp

η as follows:

f imp
η (x) � Eu∈B[ f imp(x + ηu)] = Eu∈B[E[ f̃ (x + ηu, y(x + ηu, ω), ω)]].

(G-Smooth2s)

Similar to the single-stage case discussed in Sect. 3.1, the zeroth-order approximation
of the gradient is given by (13). An unbiased estimate of gη(x) is defined as

gη(x, v, ω) �
(
n

η

)⎡
⎣

(
f̃ (x + v, y(x + v, ω), ω) − f̃ (x, y(x, ω), ω)

)
v

‖v‖

⎤
⎦ . (37)
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Given a vector x0 ∈ X , we may employ (37) in constructing a sequence {xk} where
xk satisfies the following projected stochastic gradient update.

xk+1 := 	X
[
xk − γkgη(xk, vk, ωk)

]
. (38)

Lemma 9 (Properties of the two-stage exact zeroth-order gradient) Suppose Assump-
tion 1(b) holds. Consider (SMPECimp,2s). Given x ∈ X and η > 0, consider
the stochastic zeroth-order mapping gη(x, v, ω) defined by (37) for v ∈ ηS and

k ≥ 0, where v and ω are independent. Then, ∇ f imp
η (x) = E[gη(x, v, ω) | x] and

E[‖gη(x, v, ω)‖2 | x] ≤ L2
0n

2 almost surely for all k ≥ 0.

Proof The proof is similar to the proof of Lemma 2.We provide the details for the sake
of completeness. From (37) and that f imp(x) � E[ f̃ (x, y(x, ω), ω)] we can write

E[gη(x, v, ω) | x] = Ev∈ηS

[(
n
η

) (
f imp(x + v) − f imp(x)

)
v

‖v‖ | x
]

=
(
n
η

)
Ev∈ηS

[
f imp(x + v)

v

‖v‖ | x
]

Lemma 1(i)= ∇ f imp
η (x).

We have

E[‖gη(x, v, ω)‖2 | x, ω] =
(
n
η

)2
E

⎡
⎣
∥∥∥∥∥

(
f̃ (x+v,y(x+v,ω),ω)− f̃ (x,y(x,ω),ω)

)
v

‖v‖

∥∥∥∥∥
2

| x, ω
⎤
⎦

=
(
n
η

)2 ∫
ηS

∥∥∥
(
f̃ (x+v,y(x+v,ω),ω)− f̃ (x,y(x,ω),ω)

)
v

∥∥∥2

‖v‖2 pv(v)dv

Assumption 1(b.i)≤ n2

η2

∫
ηS

L2
0(ω)‖v‖2 pv(v)dv

≤ n2L2
0(ω)

∫
ηS

pv(v)dv = n2L2
0(ω).

Taking the expectationwith respect toω from the both sides of the preceding inequality
and invoking L2

0 � E[L2
0(ω)] < ∞, we obtain the desired bound. ��

4.2 Inexact and exact schemes for convex regime

Consider the implicit form of (SMPECimp,2s) where y(x, ω) solves VI(Y,G(x, •, ω)).
Computing such a y(x, ω) is often challenging, in particular, when Y is high-
dimensional. To contend with this challenge, we employ gradient-like methods for
computing inexact solutions to the lower-level ω-specific VI parametrized by x,
denoted by VI(Y,G(x, •, •)). We consider the case where we have access to an
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approximate solution yε̃k (xk, ω) such that

‖yε̃k (xk, ω) − y(xk, ω)‖2 ≤ ε̃k, where y(xk, ω) ∈ SOL(Y,G(xk, •, ω)). (39)

Similar to the single-stage case, we may define an inexact zeroth-order gradient map-
ping gη,ε̃(x, v, ω) as follows.

gη,ε̃(x, v, ω) �n( f̃ (x + v, yε̃ (x + v, ω), ω) − f̃ (x, yε̃ (x, ω), ω))v

‖v‖η
, (40)

where v ∈ ηS and yε̃k (xk, ω) is an output of a gradient-like scheme. The outline
of the proposed zeroth-order solver is presented in Algorithm 5 while an inexact
approximation of y(x, ω) is computed by Algorithm 6. In the following, we extend
Lemma 2 to the two-stage regime.

Remark 9 Throughout the algorithms in this section, in evaluation of the exact and
inexact solution to the lower level problem, denoted by y(•, ω) and yε̃ (•, ω), respec-
tively, we assume that we have access to an oracle that returns random replicates of
ω.

Lemma 10 (Properties of the two-stage inexact zeroth-order gradient) Suppose
Assumption 1(b) holds. Consider (SMPECimp,2s). Let gη,ε̃(x, v, ω) be defined as (40)
for ω ∈ � and v ∈ ηS for η, ε̃ > 0. Suppose ‖yε̃ (x, ω) − y(x, ω)‖2 ≤ ε̃ almost surely
for any ω ∈ � and all x ∈ X . Then, the following hold for any x ∈ X .

(a) E[‖gη,ε̃(x, v, ω)‖2 | x] ≤ 3n2
(

2L̃2
0 ε̃

η2
+ L2

0

)
, almost surely.

(b) E

[∥∥gη,ε̃(x, v, ω) − gη(x, v, ω)
∥∥2 | x

]
≤ 4L̃2

0n
2 ε̃

η2
, almost surely.

Proof (a) In a similar fashion to the proof of Lemma 3 (a), we can show that

‖gη,ε̃(x, v, ω)‖ ≤ L̃0(ω)‖yε̃ (x + v, ω) − y(x + v, ω)‖n
η

+ ∥∥gη(x, v, ω)
∥∥

+ L̃0(ω)‖yε̃ (x, ω) − y(x, ω)‖n
η

.

Invoking Lemma 2, we may then bound the second moment of ‖gη,ε̃(x, v, ω)‖ in
an almost sure sense as follows.
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E[‖gη,ε̃(x, v, ω)‖2| x] ≤ 3E

[(
L̃2
0(ω)n2‖yε̃ (x + v, ω) − y(x + v, ω)‖2

η2

)
| x

]

+ 3E
[∥∥gη(x, v, ω)

∥∥2 | x
]

+ 3E

[(
L̃2
0(ω)n2‖yε̃ (x + v, ω) − y(x + v, ω)‖2

η2

)
| x

]

≤ 3E

[(
L̃2
0(ω)n2ε̃2

η2

)
| x

]
+ 3L2

0n
2

+ 3E

[(
L̃2
0(ω)n2ε̃2

η2

)
| x

]

≤ 3n2
(

2L̃2
0 ε̃

η2
+ L2

0

)
.

(b) In a similar fashion to the proof of Lemma 3 (b), we can show that

∥∥gη,ε̃(x, v, ω) − gη(x, v, ω)
∥∥ ≤ L̃0(ω)n‖yε̃ (x + v, ω) − y(x + v, ω)‖

η

+ L̃0(ω)n‖yε̃ (x, ω) − y(x, ω)‖
η

.

Consequently, the following holds almost surely,

E

[∥∥gη,ε̃(x, v, ω) − gη(x, v, ω)
∥∥2 | x

]

≤ 2E[L̃2
0(ω)n2‖yε̃ (x + v, ω) − y(x + v, ω)‖2 | x]

η2

+ 2E[L̃2
0(ω)n2‖yε̃ (x, ω) − y(x, ω)‖2 | x]

η2

≤ 2E[L̃2
0(ω)n2ε̃2 | x]

η2
+ 2E[L̃2

0(ω)n2ε̃2 | x]
η2

≤ 4L̃2
0n

2ε̃

η2
.

��
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Algorithm 5 ZSOL2scnvx: Zeroth-order method for convex (SMPEC2s)
1: input: Given x0 ∈ X , x̄0 := x0, stepsize sequence {γk }, smoothing parameter sequence {ηk }, inexact-

ness sequence {ε̃k }, r ∈ [0, 1), and S0 := γ r
0

2: for k = 0, 1, . . . , K − 1 do
3: Generate vk ∈ ηkS

4: Do one of the following, depending on the type of the scheme.

• Inexact scheme: Call Alg. 6 twice to obtain yε̃k
(xk , ωk ) and yε̃k

(xk + vk , ωk )

• Exact scheme: Evaluate y(xk , ωk ) and y(xk + vk , ωk )

5: Evaluate the inexact or exact zeroth-order gradient approximation as follows.

gηk ,ε̃k
(xk , vk , ωk ) := n

(
f̃ (xk+vk ,yε̃k

(xk+vk ,ωk ),ωk )− f̃ (xk ,yε̃k
(xk ,ωk ),ωk )

)
vk

‖vk‖ηk
(Inexact)

gηk (xk , vk , ωk ) := n
(
f̃ (xk+vk ,y(xk+vk ,ωk ),ωk )− f̃ (xk ,y(xk ,ωk ),ωk )

)
vk

‖vk‖ηk
(exact)

6: Update xk as follows.

xk+1 :=
{

	X
[
xk − γk gηk ,ε̃k

(xk , vk , ωk )
]

(Inxact)

	X
[
xk − γk gηk (xk , vk , ωk )

]
(Exact)

7: Update the averaged iterate as follows. Sk+1 := Sk + γ r
k+1 and x̄k+1 := Sk x̄k+γ r

k+1xk+1
Sk+1

8: end for

Algorithm 6 Projection method for the VI in the lower-level of (SMPEC2s)
1: input: An arbitrary y0 ∈ Y , vectors x̂k and ω, scalar ρ ∈ (0, 1), stepsize α > 0, integer k, and scalar

τ > 0
2: Compute tk := �τ ln(k + 1)�
3: for t = 0, 1, . . . , tk − 1 do
4: Evaluate the mapping G(x̂k , yt , ω)

5: Update yt as follows. yt+1 := 	Y
[
yt − αG(x̂k , yt , ω)

]
6: end for
7: Return ytk

Next we develop rate and complexity statements for Algorithm 5. The algorithm
parameters for both inexact and exact schemes are defined next.

Definition 4 (Parameters for Algorithms 5–6) Let the stepsize and smoothing
sequences in Algorithm 5 be given by γk := γ0

(k+1)a and ηk := η0
(k+1)b

, respectively
for all k ≥ 0 where γ0, η0, a, and b are strictly positive. In Algorithm 6, suppose
α ≤ μF

L2
F
. Let tk := �τ ln(k + 1)� where τ ≥ −2(a+b)

ln(1−μFα)
. Finally, suppose r ∈ [0, 1) is

an arbitrary scalar.

Theorem 3 (Rate and complexity statements and a.s. convergence for inexact
(ZSOL2scnvx)) Consider the sequence {x̄k} generated by applying Algorithm 5 on
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(SMPECimp,2s). Suppose Assumptions 1–3 hold and algorithm parameters are defined
by Definition 4.
(a) Suppose x̂k ∈ X + ηkS and let {ytk } be the sequence generated by Algorithm 6.
Then for suitably defined scalars d̃ < 1 and B > 0, the following holds for tk ≥ 1.

‖ytk − y(x̂k, ωk)‖2 ≤ ε̃k � Bd̃tk .

(b) Let a = 0.5 and b ∈ [0.5, 1) and 0 ≤ r < 2(1 − b). Then, for all K ≥ 2
1

1−r − 1
we have

E

[
f imp(x̄K )

]
− f ∗ ≤ (2 − r)

(
DX
γ0

+ 2θ0γ0
1−r

)
1√
K+1

+ (2 − r)
(

η0L0
1−0.5r−b

)
1

(K+1)b
,

where θ0 � DX +
(
2+3γ 2

0

)
n2 L̃2

0B

η20γ
2
0

+1.5n2L2
0. In particular, when b := 1−δ and r = 0,

where δ > 0 is a small scalar, we have for all K ≥ 1

E

[
f imp(x̄K )

]
− f ∗ ≤ 2

(
DX
γ0

+ 2θ0γ0
)

1√
K+1

+
(
2η0L0

δ

)
1

(K+1)1−δ .

(c) Suppose γ0:= O( 1
L0

), a := 0.5, b := 0.5, and r := 0. Let ε > 0 be an arbitrary

scalar and Kε be such that E
[
f imp(x̄Kε )

] − f ∗ ≤ ε. Then,

(c-1) the total number of upper-level projection steps onX is Kε = O
(
n4L2

0 L̃
4
0ε

−2
)
.

(c-2) the overall sample complexity of upper-level evaluations is O
(
n4L2

0 L̃
4
0ε

−2
)
.

(c-3) the total number of lower-level projection steps on Y is

O
(
n4L2

0 L̃
4
0ε

−2 ln
(
n2L0 L̃2

0ε
−1

))
.

(d) For any a ∈ (0.5, 1] and b > 1−a, there exists x∗ ∈ X ∗ such that limk→∞ ‖x̄k −
x∗‖2 = 0 almost surely.

Proof (a) From y(x̂k, ωk) ∈ SOL(Y,G(x̂k, •, ωk)), we have that the following fixed-
point relationship holds.

y(x̂k, ωk) = 	Y
[
y(x̂k, ωk) − αG(x̂k, y(x̂k, ωk), ωk)

]
,

for any α > 0. Thus, we can write

‖yt+1 − y(x̂k, ωk)‖2 = ‖	Y
[
yt − αG(x̂k, yt , ωk)

]

− 	Y
[
y(x̂k, ωk) − αG(x̂k, y(x̂k, ωk), ωk)

] ‖2
≤ ‖yt − αG(x̂k, yt , ωk) − y(x̂k, ωk) + αG(x̂k, y(x̂k, ωk), ωk)‖2
= ‖yt − y(x̂k, ωk)‖2 + ‖αG(x̂k, yt , ωk) − αG(x̂k, y(x̂k, ωk), ωk)‖2

− 2α(yt − y(x̂k, ωk))
T (G(x̂k, yt , ωk) − G(x̂k, y(x̂k, ωk), ωk)).

Invoking Assumption 1 (b) we obtain

‖yt+1 − y(x̂k, ωk)‖2 ≤ ‖yt − y(x̂k, ωk)‖2 + αLF (ω)‖yt − y(x̂k, ωk)‖2
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− 2αμF (ω)‖yt − y(x̂k, ωk)‖2
≤ (1 + α2L2

F − 2αμF )‖yt − y(x̂k, ωk)‖2.

This implies that ‖ytk − y(x̂k, ωk)‖2 ≤ (1 + α2L2
F − 2αμF )tk (supy∈Y ‖y − y0‖2).

Note that α ≤ μF

L2
F
implies that 1+α2L2

F −2αμF ≤ 1−αμF . Defining d̃ � 1−αμF

and B � supy∈Y ‖y − y0‖2, we obtain the bound.
(b, d) Recall the properties of the exact and inexact zeroth-order gradient mappings
in the two-stage model provided in Lemmas 9 and 10, respectively. Note that these
results are identical to those of the single-stage model provided in Lemmas 2 and 3,
respectively. For this reason, the proof of the remaining parts can be carried out in
a similar fashion to the proofs in Theorem 1. As such, the proofs for (b) and (d) are
omitted.
(c) Note that (c-1) and (c-2) follow directly from part (b) by substituting γ0 and r . To
show (c-3), note that the total projection steps in the lower-level is as follows.

2
Kε∑
k=0

tk∑
t=0

1 = 2(Kε + 1)(tKε + 1) = 2(Kε + 1)(�τ ln(Kε + 1)� + 1)

= O
(
n4L2

0 L̃
4
0ε

−2 ln
(
n2L0 L̃

2
0ε

−1
))

.

��
Remark 10 The convergence rate in expectation in Theorem 1 (b) and Theorem 3 (b)
can be extended to the case that a ∈ [0.5, 1). However, the rate of convergence would
be worse when a ∈ (0.5, 1) compared to when a = 0.5. This is because employing

Lemma 13, the rate of convergence is characterized as O
(

1
k1−a + 1

ka + 1
kb

)
. For this

reason, we only present the rate analysis in those theorems for a = 0.5.

An exact zeroth-order scheme. Next, we address the two-stage model (SMPECimp,2s)
where we consider the case where an exact solution of the lower-level problem is
available. In the following, we extend the convergence properties of the ZSOL scheme
to the exact case.

Corollary 3 (Rate and complexity statements and almost sure convergence for exact
(ZSOL2scnvx)) Consider the problem (SMPECimp,1s). Suppose Assumptions 1–3 hold.
Suppose {x̄k} denotes the sequence generated by Algorithm 5 (exact variant) in which
the stepsize and smoothing sequences are defined as γk := γ0

(k+1)a and ηk := η0
(k+1)b

,
respectively, for all k ≥ 0 where γ0 and η0 are strictly positive. Then, the following
statements hold.

(a) Let a = 0.5 and b ∈ [0.5, 1) and 0 ≤ r < 2(1 − b). Then, for all K ≥ 2
1

1−r − 1
we have

E

[
f imp(x̄K )

]
− f ∗ ≤ (2 − r)

(
DX
γ0

+ L2
0n

2γ0
1−r

)
1√
K+1

+ (2 − r)
(

η0L0
1−0.5r−b

)
1

(K+1)b
.
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In particular, when b := 1− δ and r = 0, where δ > 0 is a small scalar, we have
for all K ≥ 1

E

[
f imp(x̄K )

]
− f ∗ ≤ 2

(
DX
γ0

+ L2
0n

2γ0

)
1√
K+1

+
(
2η0L0

δ

)
1

(K+1)1−δ .

(b) Let a := 0.5, b = 0.5, r = 0, γ0 :=
√
DX

nL0
, and η0 ≤ √

DX n. Then, the iteration

complexity in projection steps on X for achieving E
[
f imp(x̄Kε )

] − f ∗ ≤ ε for
some ε > 0 is bounded as follows.

Kε ≥ 64n2L2
0DX

ε2
.

(c) For any a ∈ (0.5, 1] and b > 1 − a, there exists x∗ ∈ X ∗ such that
limk→∞ ‖x̄k − x∗‖2 = 0 almost surely.

Proof In view of the similarity between the results of Lemmas 9 and 10 with those of
Lemmas 2 and 3, the proof can be done in a similar fashion to that of Corollary 1. ��

4.3 Exact accelerated schemes for convex regime

In this subsection, we consider an accelerated scheme for resolving the problem
(SMPEC2s), whose implicit form is defined as (SMPECimp,2s) where y(x, ω) is the
unique solution of an ω-specific strongly monotone variational inequality problem
parametrized by x. The deterministic counterpart of this problem is the standard
MPEC in which the lower-level problem is a parametrized strongly monotone vari-
ational inequality problem. While the previous subsection has considered a standard
gradient-based framework, we consider an accelerated counterpart motivated by Nes-
terov’s celebrated accelerated gradient method [57] that produces a non-asymptotic
rate of O(1/k2) in terms of suboptimality for smooth convex optimization problems.
In [59], Nesterov and Spokoiny develop an accelerated zeroth-order scheme for the
unconstrained minimization of a smooth function. Instead, we present an accelerated
gradient-free scheme for a nonsmooth function by leveraging the smoothing architec-
ture. Notably, this scheme can contend with MPECs with convex implicit functions.
In this subsection, we assume that y(x, ω) can be generated by invoking a suitable
variational inequality problem solver.

We provide convergence theory for Algorithm 7 by appealing to related work on
smoothed accelerated schemes for nonsmooth stochastic convex optimization [35].
There are two key differences between the framework presented here and that of our
prior work.

(a) Smoothing. In [35], we employ a deterministic smoothing technique [6] while in
this paper, we consider a locally randomized smoothing technique in a zeroth-
order regime. Notably, the latter leads to similar (but not identical) smoothness
properties with related relationships (but not identical) between the smoothed
function and its original counterpart.
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Algorithm 7 ZSOL2scnvx,acc: Variance-reduced accelerated exact zeroth-order method
for convex (SMPEC2s)
1: input:Given x0 ∈ X , λ0 = 1, stepsize sequence {γk }, smoothing parameter sequence {ηk }, sample-size

{Nk }
2: for k = 0, 1, . . . , K − 1 do
3: for j = 1, . . . , Nk do
4: Generate v j,k ∈ ηkS

5: Evaluate y(xk + v j ,k , ω j ,k )

6: Evaluate the exact zeroth-order gradient approximation as follows.

gηk (xk , v j ,k , ω j ,k ) := n
(
f̃ (xk+v j,k ,y(xk+v j,k ,ω j,k ),ω j,k )− f̃ (xk ,y(xk ,ω j,k ),ω j,k )

)
v j,k

‖v j,k‖ηk

7: end for

8: Evaluate the mini-batch exact zeroth-order gradient as gηk ,Nk (xk ) =
∑Nk

j=1 gηk (xk ,v j,k ,ω j,k )

Nk
.

9: Update xk as follows.

zk+1 := 	X
[
xk − γk gηk ,Nk (xk , vk )

]

λk+1 := 1+
√
1+4λ2k
2

xk+1 = zk+1 + (λk−1)
λk+1

(
zk+1 − zk

)
.

(41)

10: end for

(b) Zeroth-order gradient approximation. In [35], a sampled gradient of the smoothed
function is available. However, faced by the need to resolve hierarchical problems,
we do not have such access in this paper. Instead, we utilize an increasingly
accurate zeroth-order approximation of the gradient by raising the sample-size
Nk in constructing this approximation. We make the following assumption on the
generated random samples in the proposed accelerated scheme in the upper-level.

Assumption 7 Given a mini-batch sequence {Nk} and a smoothing sequence {ηk}, let
v j,k ∈ R

n , for j = 1, . . . , Nk and k ≥ 0 be generated randomly and independently,
from ηkS for all k ≥ 0. Also, let the random realizations {ω j,k} be iid replicates.

We may define w̄k,Nk as w̄k,Nk � gηk ,Nk (xk) − ∇x f
imp
ηk (xk). The following claims

can be made.

Lemma 11 Consider w̄k,Nk obtained by generating NK independent realizations given

by {v j,k}Nk
j=1 and {ω j,k}Nk

j=1. Let Assumption 7 hold. Then the following hold almost
surely for any xk ∈ X .

(a) E[w̄k,Nk | xk] = 0.

(b) E[‖w̄k,Nk‖2 | xk] ≤ n2L2
0

Nk
.
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Proof Note that (a) holds in view of Lemma 9. Invoking Lemma 9, we may provide
the following bound in an almost sure sense.

E

[
‖w̄k,Nk‖2 | xk

]
= E

[∥∥∥gηk ,Nk (xk) − ∇x f
imp
ηk

(xk)
∥∥∥2 | xk

]

= E

[∥∥∥∥
∑Nk

j=1 gηk (xk ,v j,k ,ω j,k )

Nk
− ∇x f

imp
ηk

(xk)

∥∥∥∥
2

| xk
]

≤
∑Nk

j=1 E

[∥∥∥gηk (xk ,v j,k ,ω j,k )−∇x f
imp
ηk (xk)

∥∥∥2|xk
]

N2
k

≤
∑Nk

j=1

(
E

[∥∥gηk (xk ,v j,k ,ω j,k )
∥∥2|xk

]
−
∥∥∥∇x f

imp
ηk (xk)

∥∥∥2
)

N2
k

≤ n2L2
0

Nk
.

��
Lemma 12 [35, Lemma 4] Consider the problem (SMPECimp,2s). Suppose Assump-
tions 1–3, 7 hold. Suppose {xk, zk} denote the sequence generated by Algorithm 7 in
which the stepsize and smoothing sequences are defined as ηk = 1

k+1 and γk = 1
2(k+1) ,

and Nk = �(k + 1)a� for k ≥ 0. Suppose ‖x0 − x∗‖ ≤ C for some C > 0. Then the
following holds.

E

[
f imp
ηK

(zK ) − f imp
ηK

(x∗)
]

≤ 2

γK−1(K − 1)2

K−1∑
k=1

γ 2
k k

2n2L2
0

Nk−1
+ 2C2

γK−1(K − 1)2
.

(42)

We may now provide the main rate statement for the smoothed accelerated scheme
by adapting [35, Thm. 5].

Proposition 5 (Rate statement forAlgorithm7)Consider the problem (SMPECimp,2s).
Suppose Assumptions 1–3, 7 hold. Suppose {xk, zk} denote the sequence generated by
Algorithm 7 in which the stepsize and smoothing sequences are defined as ηk = 1

k+1

and γk = 1
2(k+1) , and Nk = �(k + 1)a� for k ≥ 0. Suppose ‖x0 − x∗‖ ≤ C for some

C > 0. Then the following hold for a = 1 + δ where δ > 0. Suppose Kε is such that
E[ f imp(zKε )] − f ∗ ≤ ε. Then the following holds.

(a) The iteration complexity in terms of zeroth-order gradient steps is O(1/ε).
(b) We have

∑Kε

k=1 Nk ≤ O(1/ε2+δ) implying that the sample complexity as well as
the iteration complexity in terms of lower-level calls to the VI solver are both
O(1/ε2+δ).

Proof (a) From Lemma 12, we have that

E

[
f imp
ηK

(zK ) − f imp
ηK

(x∗)
]

≤ 2

γK−1(K − 1)2

K−1∑
k=1

γ 2
k k

2n2L2
0

Nk−1
+ 2C2

γk−1(K − 1)2
.

(43)
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From Lemma 1 (v), we have that f imp(x) ≤ f imp
ηK (x) ≤ f imp(x) + ηK L0.

Consequently, we have

E

[
f imp(zK ) − f ∗] ≤ E

[
f imp
ηK

(zK ) − f imp
ηK

(x∗)
]

+ ηK L0

≤ 2

γK−1(K − 1)2

K−1∑
k=1

γ 2
k k

2n2L2
0

Nk−1
+ 2C2

γK−1(K − 1)2

+ ηK L0 ≤ O
(
1

K

)
,

where we used ηk = 1
k+1 and γk = 1

2(k+1) , and Nk = �(k+1)a�where a = 1+δ.
(b) The proof can be done in a similar vein to that of [35, Thm. 5] and thus, it is

omitted.
��

Remark 11 Several points deserve emphasis. (i) The proposed scheme employs dimin-
ishing smoothing sequences rather than fixed, leading to asymptotic convergence
guarantees, a key distinction from the scheme proposed in [59]. (ii) By adapting the
framework employed for the inexact oracles, one may consider similar extensions to
the accelerated framework. However, this would lead to bias in the gradient approxi-
mation and one would expect this to adversely affect the rate. This remains a goal of
future study.

4.4 Nonconvex two-stage SMPEC

In this subsection, we address the two-stage model (SMPECimp,2s) when the implicit
function is nonconvex. The outline of the proposed zeroth-order scheme is given by
Algorithm 8 in both inexact and exact variants. In the following we present the results
for each of the two variants.

4.4.1 An inexact zeroth-order scheme

In the following, we present the rate and complexity result for the proposed inexact
method for addressing the two-stage model in the nonconvex case.
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Algorithm 8 ZSOL2sncnvx: Variance-reduced zeroth-order method for nonconvex
(SMPEC2s)
1: input: Given x0 ∈ X , x̄0 := x0, stepsize γ > 0, smoothing parameter η > 0, mini-batch sequence

{Nk } such that Nk := k + 1, an integer K , a scalar λ ∈ (0, 1), and an integer R randomly selected from
{�λK �, . . . , K } using a uniform distribution

2: for k = 0, 1, . . . , K − 1 do
3: for j = 1, . . . , Nk do
4: Generate v j,k ∈ ηS

5: Do one of the following.

• Inexact scheme: Call Alg. 6 twice to obtain yε̃k
(xk , ω j,k ) and yε̃k

(xk + v j,k , ω j,k )

• Exact scheme: Evaluate y(xk , ω j ,k ) and y(xk + v j,k , ω j,k )

6: Evaluate the inexact or exact zeroth-order gradient approximation as follows.

gη,ε̃k
(xk , v j,k , ω j ,k ) := n

(
f̃ (xk+v j,k ,yε̃k

(xk+v j,k ,ω j,k ),ω j,k )− f̃ (xk ,yε̃k
(xk ,ω j,k ),ω j,k )

)
v j,k

‖v j,k‖η

(Inexact)

gη(xk , v j,k , ω j ,k ) := n
(
f̃ (xk+v j,k ,y(xk+v j,k ,ω j,k ),ω j,k )− f̃ (xk ,y(xk ,ω j,k ),ω j,k )

)
v j,k

‖v j,k‖η
(Exact)

7: end for
8: Evaluate the mini-batch zeroth-order gradient.

gη,Nk ,ε̃k
(xk ) :=

∑Nk
j=1 gη,ε̃k

(xk ,v j,k ,ω j,k )

Nk
(Inexact)

gη,Nk (xk ) :=
∑Nk

j=1 gη(xk ,v j,k ,ω j,k )

Nk
(exact)

9: Update xk as follows.

xk+1 :=
{

	X
[
xk − γ gη,Nk ,ε̃k

(xk )
]

(Inexact)

	X
[
xk − γ gη,Nk (xk )

]
(Exact)

10: end for
11: Return xR

Theorem 4 (Rate and complexity statements for inexact (ZSOL2sncnvx))Consider Algo-
rithms 8 and 6 for solving (SMPECimp,2s) and suppose Assumptions 1 and 5 hold.
(a)Given x̂k ∈ X , let y(x̂k, ω j,k) denote the unique solution of VI(Y,G(x̂k, •, ω j,k)).
Let ytk be generated by Algorithm 6. Then for suitably defined d̃ < 1 and B > 0, the
following holds for tk ≥ 1.

‖ytk − y(x̂k, ω j,k)‖2 ≤ ε̃k � Bd̃tk .
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(b) The following holds for any γ <
η

nL0
, � � �λK �, and all K > 2

1−λ
.

E

[
‖Gη,1/γ (xR)‖2

]

≤
n2γ (1 − 2 ln(λ))

(
1 − nL0γ

2η

)(
4L̃2

0B
η2

+ L2
0

)
+ E

[
f imp(x�)

]− f ∗ + 2L0η

(
1 − nL0γ

η

)
γ
4 (1 − λ)K

.

(c) Suppose γ = η
2nL0

and η = 1
L0
. Let ε > 0 be an arbitrary scalar and Kε be such

that E
[‖Gη,1/γ (xR)‖2] ≤ ε. Then,

(c-1) the total number of upper-level projection steps onX is Kε = O
(
n2L2

0 L̃
2
0ε

−1
)
.

(c-2) the overall sample complexity of upper-level evaluations is O
(
n4L4

0 L̃
4
0ε

−2
)
.

(c-3) the total number of lower-level projection steps on Y is

O
(
τn4L4

0 L̃
4
0ε

−2 ln(n2L2
0 L̃

2
0ε

−1)
)
.

Proof (a) The proof of (a) is analogous to that of Theorem 3(a) and it is omitted.
(b) In view of the similarity between the results of Lemmas 9 and 10 with those of

Lemmas 2 and 3, respectively, in a similar fashion to the proof of Theorem 3(b),
we can obtain

(
1 − nL0γ

η

)
γ
4 (K − �)E

[
‖Gη,1/γ (xR)‖2

]

≤
(
1 − nL0γ

2η

)
γ

K−1∑
k=�

(
8L̃2

0n
2 ε̃k

η2
+ 2n2L2

0
Nk

)
+ E

[
f imp(x�)

]
− f ∗ + 2L0η.

Next, we derive a bound on ε̃k . Note that from part (a), we have ε̃k = Bd̃tk where
tk := �τ ln(k + 1)� ≥ τ ln(k + 1). We have

(k + 1)ε̃k ≤ Bd̃τ ln(k+1)(k + 1) = B
(
d̃τ e

)ln(k+1) ≤ B,

where the last inequality is implied from τ ≥ −1
ln(d̃)

and d̃ < 1. Thus, we have that

ε̃k ≤ B
k+1 . Note that K > 2

1−λ
implies � ≤ K − 1. From Lemma 13, using � ≥ 1

we have
∑K−1

k=�
1

k+1 ≤ 1
�+1 + ln

(
K

�+1

)
≤ 0.5+ ln

(
N

λN+1

)
≤ 0.5− ln(λ). Also,

K − � ≥ K − λK = (1 − λ)K . Thus, we obtain

E

[
‖Gη,1/γ (xR)‖2

]

≤

(
1 − nL0γ

2η

)
2n2γ

(
4L̃2

0B
η2

+ L2
0

)
(0.5 − ln(λ)) + E

[
f imp(x�)

]− f ∗ + 2L0η

(
1 − nL0γ

η

)
γ
4 (1 − λ)K

.
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(c) The proofs of (c-1) and (c-2) are analogous to those of Theorem 2 (c-1) and (c-2),
respectively. To show (c-3), note that the total number of lower-level projection
steps is given by

Kε∑
k=0

2Nktk = 2
Kε∑
k=0

(k + 1)�τ ln(k + 1)� ≤ 2τ
∫ Kε

1
(x + 1)(ln(x + 1) + 1)dx

= O
(
τK 2

ε ln(Kε)
)

= O
(
τn4L4

0 L̃
4
0ε

−2 ln(n2L2
0 L̃

2
0ε

−1)
)

.

��

4.4.2 An exact zeroth-order scheme

Here we present the rate and complexity results for the exact variant of Algorithm 8.

Corollary 4 (Rate and complexity statements for exact (ZSOL2sncnvx)) Consider Algo-
rithms 8 (exact variant) for solving (SMPECimp,2s) and suppose Assumptions 1 and 5
hold.
(a) The following holds for any γ <

η
nL0

, � � �λK �, and all K > 2
1−λ

.

E

[
‖Gη,1/γ (xR)‖2

]
≤

n2L2
0γ (0.5 − ln(λ))

(
1 − nL0γ

2η

)
+ E

[
f imp(x�)

]− f ∗ + 2L0η(
1 − nL0γ

η

)
γ
4 (1 − λ)K

.

(b) Suppose γ = η
2nL0

and η = 1
L0
. Let ε > 0 be an arbitrary scalar and Kε be such

that E
[‖Gη,1/γ (xR)‖2] ≤ ε. Then,

(b-1) The total number of upper-level projection steps on X is Kε = O (
n2L2

0ε
−1

)
.

(b-2) The total sample complexity of upper-level is O (
n4L4

0ε
−2

)
.

Proof The proof can be done in a similar vein to that of Theorem 4 by noting that
ε̃k := 0 in the exact variant. ��

5 Numerical results

In this section, we demonstrate the proposed methodology by comparing the perfor-
mance of the proposed scheme with sample-average approximation (SAA) schemes
on a breadth of two-stage and single-stage SMPECs of varying structure and scale
in Sects. 5.1 and 5.2, respectively. In Sect. 5.2, we also provide comparisons with
the solvers NLPEC and BARON. We then provide confidence intervals in large-scale
settings in Sect. 5.3 and conclude with a study of how the schemes perform on a set
of test problems from the literature (Sect. 5.4). Implementations were developed in
MATLAB on a PC with 16GB RAM and 6-Core Intel Core i7 processor (2.6 GHz).
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5.1 Two-stage SMPECs

In this section, we apply the schemes on a stochastic Stackelberg–Nash–Cournot
equilibrium problem which leads to a two-stage SMPEC. The deterministic setting
of the problem is derived from [74]. Consider a market with N profit-maximizing
firms by competing in Cournot (quantities) under the (Cournot) assumption that the
remaining firms will hold their outputs at existing levels. In addition, there exists a
leader, supplying the sameproduct, that sets production levels by explicitly considering
the reaction of the other N firms to its output variations. We assume that the i th
Cournot firm (follower) supplies qi units of the product while fi (qi ) denotes the
cost of producing qi units. In a similar fashion, suppose x denotes the output of the
leader and let f (x) denote the total cost. Next, let p(·, ω) represent the random inverse
demand curve. The N Cournot firms have sufficient capacity installed and can therefore
wait to observe the quantities supplied by the leader as well as the realized demand
function before making a decision on their supply quantities. For a given x ≥ 0, let
{q1(x, ω), . . . , qN (x, ω)} be the set of quantities for every ω ∈ �where each qi (x, ω)

solve the following profit maximization problem assuming that q j (x, ω), j �= i are
fixed:

max
qi ≥ 0

qi p

⎛
⎝qi + x +

N∑
j=1, j �=i

q j (x, ω), ω

⎞
⎠ − fi (qi ). (44)

Accordingly, let Q(x, ω) �
∑N

i=1 qi (x, ω). In addition, we assume there exists a
capacity limit xu for x . Then x∗ is said to be a Stackelberg–Nash–Cournot equilibrium
solution if x∗ solves

max
0≤ x ≤ xu

E[xp(x + Q(x, ω), ω)] − f (x). (45)

We consider the case of a linear demand curve with convex quadratic cost functions.
Specifically, let p(u, ω) = a(ω) − bu and let fi (q) = 1

2cq
2 for i = 1, . . . , N ,

and f (x) = 1
2dx

2. Under this condition, the follower’s objective can be shown to
be strictly concave in qi [78]. Consequently, the concatenated necessary and suffi-
cient equilibrium conditions of the follower-level game are given by the following
conditions.

0 ≤ q ⊥ F(q) − p(x + Q(x, ω), ω)1 − p′(x + Q(x, ω), ω)q ≥ 0, (46)

where F(q) = (
f ′
1(q1); . . . ; f ′

N (qN )
)
. We observe that (46) is a strongly monotone

linear complementarity problem for x ≥ 0 and for every ω ∈ �. Consequently,
q : R+ ×� → R

N+ is a single-valued map and is convex in its first argument for every
ω if c j is quadratic and convex [16, Prop. 4.2]. In fact, it can be claimed that q(·, ω)

is a piecewise C2 and non-increasing function with ∂xq(x, ω) ⊂ (−1, 0] for X ≥ 0.
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Table 3 Errors and time comparison of the three schemes with different parameters

(ZSOL2scnvx) (ZSOL2sacc,cnvx) SAA

f ∗ − f (x̄K ) Time f ∗ − f (xK ) Time f ∗ − f (x̂) Time

N = 10 b = 1 c = 0.05 1.2e−3 0.1 6.6e−5 1.4 5.4e−4 130.2

c = 0.1 8.2e−4 0.1 4.8e−5 1.4 4.2e−4 109.2

b = 0.5 c = 0.05 1.7e−3 0.1 7.0e−5 1.3 3.8e−4 122.5

c = 0.1 1.2e−3 0.1 6.3e−5 1.4 2.2e−4 116.8

N = 20 b = 1 c = 0.05 4.5e−4 0.1 2.6e−5 1.5 2.6e−4 426.7

c = 0.1 4.0e−4 0.1 1.3e−5 1.4 5.7e−4 443.1

b = 0.5 c = 0.05 6.3e−4 0.1 2.3e−5 1.4 4.8e−4 419.1

c = 0.1 4.2e−4 0.1 2.9e−5 1.5 3.1e−4 450.0

N = 100 b = 1 c = 0.05 9.9e−5 0.2 3.2e−6 4.3 – –

c = 0.1 2.3e−5 0.2 1.3e−6 4.4 – –

b = 0.5 c = 0.05 2.6e−4 0.2 4.7e−6 4.2 – –

c = 0.1 2.5e−5 0.2 1.4e−6 4.5 – –

N = 1000 b = 1 c = 0.05 2.2e−5 0.6 3.6e−7 27.9 – –

c = 0.1 1.7e−6 0.6 8.3e−8 28.8 – –

b = 0.5 c = 0.05 2.5e−5 0.6 3.1e−7 29.1 – –

c = 0.1 1.4e−6 0.6 8.9e−8 28.4 – –

N = 10000 b = 1 c = 0.05 1.0e−5 4.6 5.2e−7 403.5 – –

c = 0.1 6.0e−6 4.5 3.8e−8 392.4 – –

b = 0.5 c = 0.05 1.1e−5 4.7 5.6e−8 334.2 – –

c = 0.1 7.1e−6 4.6 2.7e−8 399.7 – –

The errors and time in the table are based on averaging over 20 runs (‘–’ implies runtime > 3600 s)

Consider the leader’s problem (45). Consequently, we have that

R+ � x ⊥ E [−p(x + Q(x, ω), ω) + (1 + ∂x Q(x, ω))bx − a(ω)] + ∇x f (x) ∈ R+.

This may be viewed as the following inclusion which has been shown to be monotone
[16, Thm. 4.4].

0 ∈ E[T (x, ω)] + NR+ ,

where T (x, ω) � [−p(x + Q(x, ω), ω)1 − a(ω)1] + ∇x f (x)

+ {[(1 + ∂x Q(x, ω))bx]}.

Problem and algorithm parameters. Suppose there are N = 10 Cournot firms and
c = d = 0.1. Furthermore, b = 1 and a(ω) ∼ U(7.5, 12.5) where U(l, u) denotes
the uniform distribution on [l, u]. We choose γk = 1√

k+1
and ηk = 1√

k+1
, ∀k ≥ 1 in

(ZSOL2scnvx) and γk = 1
2(k+1) and ηk = 1

k+1 , ∀k ≥ 1 in (ZSOL2sacc,cnvx). In addition, we

choose sample size Nk = �k1.01�.
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Description of testing.We compare the performance of (ZSOL) and (acc-ZSOL) with
Nesterov’s fixed smoothing scheme under the same number of iterations in Fig. 1.
Next we change the size and parameters of the original game to ascertain parametric
sensitivity. InTable 3,we consider a set of 12problemswhere the settings, the empirical
errors, and elapsed time are shown in Table 3. Note that we have access to the true
solution from [74] and this is employed for computing the sub-optimality metrics. In
addition, to show the performance of our proposed schemes, we consider the (SAA)
scheme (utilizing the average of 1000 samples) used in [16]. Let (ωk)

K
k=1 denote

independent identically distributed (i.i.d.) samples. Then, with (SAA) we solve the
following formulation of problem:

max
0≤x≤xu

1
K

K∑
k=1

[
x · (a(ωk) − b · (x + Q(x, ωk)))

] − 1
2dx

2

subject to 0 ≤ qi,k ⊥ (c + 2b)qi,k − a(wk) + b ·
(
x + ∑N

j=1, j �=i q j,k(x, ωk)
)

≥ 0, ∀i, k.

This problem allows for utilizing NLPEC [23] in GAMS to compute a solution. For
comparison, we employ an alternative method to solve (SAA). (SAA) can be equiva-
lently formulated as

max
0≤x≤xu

1
K

K∑
k=1

[x · (a(ωk) − b · (x + Q(x, ωk)))] − 1
2dx

2,

where Q(x, ωk) �
∑N

i=1 qi (x, ωk) and qi (x, ωk) is the solution to the following
optimization problem:

max
qi ≥ 0

qi p

⎛
⎝qi + x +

N∑
j=1, j �=i

q j (x, ωk), ωk

⎞
⎠ − fi (qi ).

This problem allows for utilizing gradient based methods to compute a solution. The
results are shown in 4. Next, we provide some key insights from our testing.
Insights.
(i) Scalability.Both (ZSOL2scnvx) and (ZSOL

2s
acc,cnvx) show far better scalability in terms

of N with modest impact on accuracy and run-time. (SAA) schemes on the other hand
grow by a factor of 10 when number of firms double. In fact, for N = 20, the (SAA)
framework requires CPU time which is between 50 and 100 times greater than that
required by the zeroth-order schemes. (SAA) schemes could not produce solutions for
N ≥ 100 in our tests while our proposed schemes can contend with problems with
N = 10, 000 within 5s in the unaccelerated regime. The lack of scalability tends to
be less surprising since the sample-average subproblems require solving MPECs with
O(N ) constraints and as N becomes large, direct solutions become challenging, as
reflected by the computational times. We observe that the gradient based approach
that uses sample-averages appears to scale better than NLPEC. However, we still see
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Table 4 Errors and time comparison of (SAA) with different solution methods

SAA(NLPEC) SAA(Gradient)

f ∗ − f (x̂) Time f ∗ − f (x̂) Time

N = 10 b = 1 c = 0.05 5.4e−4 130.2 4.6e−4 1.0

c = 0.1 4.2e−4 109.2 4.5e−4 1.0

b = 0.5 c = 0.05 3.8e−4 122.5 3.3e−4 1.0

c = 0.1 2.2e−4 116.8 2.4e−4 1.0

N = 20 b = 1 c = 0.05 2.6e−4 426.7 3.1e−4 1.1

c = 0.1 5.7e−4 443.1 4.2e−4 1.1

b = 0.5 c = 0.05 4.8e−4 419.1 5.6e−4 1.1

c = 0.1 3.1e−4 450.0 3.8e−4 1.1

N = 100 b = 1 c = 0.05 – – 1.1e−4 5.5

c = 0.1 – – 2.8e−5 5.5

b = 0.5 c = 0.05 – – 3.0e−4 5.5

c = 0.1 – – 3.2e−5 5.6

N = 1000 b = 1 c = 0.05 – – 2.3e−5 324.7

c = 0.1 – – 1.9e−6 312.8

b = 0.5 c = 0.05 – – 2.6e−5 306.2

c = 0.1 – – 2.1e−6 316.5

Fig. 1 Comparision of (ZSOL2scnvx) and (ZSOL
2s
acc,cnvx) with acceleration with fixed smoothing (Nesterov)

on convex (SMPEC2s)
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Table 5 Errors of (ZSOL2scnvx) with various γk and ηk

(a, b) (0.5, 0.5) (0.5, 0.7) (0.5, 0.9) (0.7, 0.4) (0.9, 0.2)

f ∗ − f (x̄K ) N = 10 1.2e−3 1.7e−3 1.5e−3 1.9e−3 7.7e−2

N = 100 2.5e−5 3.0e−5 2.6e−5 1.1e−3 1.6e−2

N = 1000 1.4e−6 4.8e−7 4.4e−7 2.9e−4 7.1e−4

a difference in performance and quality between the gradient-enabled SAA scheme
and the proposed implicit SA framework.
(ii) Accuracy. The accelerated scheme provides nearly 10 times more accurate solu-
tions than the unaccelerated scheme at a modest computational cost. This is aligned
with the superior error bounds of such schemes compared to their unaccelerated coun-
terparts.
(iii)Comparison of accelerated schemes. Figure 1 demonstrates the benefits of dimin-
ishing smoothing sequences as the scheme suggested in [59] degenerates for different
values of the fixed smoothing parameter. Notably, (ZSOL2sacc,cnvx) shows no such
degeneration and progressively improves in function value. We notice in Table 3,
(ZSOL2sacc,cnvx) takes longer than (ZSOL

2s
cnvx) with the same number iterations, arising

from the fact that (ZSOL2sacc,cnvx) utilizes an increasing sample size and solves more
lower-level problems than (ZSOL2scnvx).
(iv) Performance of (ZSOL2scnvx) with various γk and ηk . As shown in Table 5, we
compare the results generated by (ZSOL2scnvx) with various values of (a, b) used in
γk := γ0

(k+1)a and ηk := η0
(k+1)b

. As shown in the table, for this particular problem, we

find that smaller a (a = 0.5) generates better results in (ZSOL2scnvx). When the size
of problem is large (N = 1000), fixing a = 0.5, larger values of b lead to smaller
residuals.

5.2 Single-stage SMPECs

We consider both the convex and the nonconvex regimes next.

5.2.1 A convex implicit function

First, we consider a single-stage SMPEC where the the lower level is a parametrized
stochastic variational inequality, i.e., given x , the lower-level problem is a noncoop-
erative game in which the i th player solves the following problem.

max
qi≥0

E

[
qi (a(ω) − b(qi + x + ∑

j �=i q j (x))
]

− 1
2cq

2
i ,

Accordingly, the upper-level problem in x is defined as follows

max
0≤x≤xu

E

[
x(a(ξ) − b(x + ∑N

i=1 qi (x)))
]

− 1
2dx

2.
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Table 6 Comparison of (ZSOL1scnvx) and (SAA) (Convex implicit function)

(ZSOL1scnvx) SAA

f ∗ − f (x̄K ) Time f ∗ − f (x̂) Time

N = 102 b = 0.01 c = 3 6.9e−4 0.1 2.2e−4 0.05

c = 5 3.7e−4 0.1 2.4e−4 0.05

b = 0.02 c = 3 8.1e−4 0.1 7.3e−4 0.05

c = 5 3.5e−4 0.1 4.0e−4 0.05

N = 103 b = 0.01 c = 3 7.0e−4 0.4 7.0e−4 1.2

c = 5 4.3e−4 0.4 5.0e−4 1.1

b = 0.02 c = 3 8.0e−4 0.4 6.8e−4 1.2

c = 5 4.7e−4 0.4 4.2e−4 1.2

N = 104 b = 0.01 c = 3 5.1e−4 5.8 7.3e−4 88.6

c = 5 2.5e−4 5.2 5.4e−4 85.7

b = 0.02 c = 3 6.4e−4 5.6 4.3e−4 93.5

c = 5 3.1e−4 5.3 4.7e−4 87.3

N = 105 b = 0.01 c = 3 8.7e−4 45.6 – –

c = 5 6.5e−4 47.1 – –

b = 0.02 c = 3 9.7e−4 46.3 – –

c = 5 7.5e−4 46.7 – –

The errors and time in the table are based on averaging over 20 runs (‘–’ implies runtime > 3600 s)

Since the lower-level equilibrium problem has a unique solution (since it is char-
acterized by a strongly monotone map), the resulting implicit function can be shown
to be convex.
Algorithm and Problem parameters. We assume b = 0.01 and c = 3 here, other
parameters are the same as in the previous section. It can be shown that μF = 3.01
and LF = 3.11. We assume that γk = 1√

k+1
and ηk = 1√

k+1
for (ZSOL1scnvx). In

(ZSOL1scnvx), we run 103 iterations. In the lower-level’s variance-reduced stochastic
approximation scheme, we choose steplength α = 0.15, sampling rate ρ = 1

1.5 and
the sample size Mt = �10−4 · 1.5t�. Thus we may calculate that τ ≥ 4.9 and then we
choose tk = �5 ln(k + 1)�. In Fig. 2, we show the trajectories for (ZSOL1scnvx) under
various algorithm parameters.

Again, we compare the errors and time between (ZSOL1scnvx) and (SAA) in Table 6.
Here, with (SAA) we solve the following optimization problem

maximize
0≤x≤xu

1
K

K∑
k=1

[
x(a(ωk) − b(x + Q(x)))

]
− 1

2dx
2

subject to 0≤qi ⊥ 1
L

L∑
�=1

⎡
⎣(c+2b)qi − a(w�) + b

⎛
⎝x +

N∑
j=1, j �=i

q j (x)

⎞
⎠

⎤
⎦ ≥ 0, ∀i .
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Fig. 2 Trajectories for (ZSOL1scnvx) on the convex SMPEC1s

In (SAA), we use 103 samples in both the upper and lower-level problems. We also
employ a gradient based method (Fig. 7) to solve the following equivalent (SAA)
model:

max
0≤x≤xu

1
K

K∑
k=1

[
x(a(ωk) − b(x + Q(x)))

]
− 1

2dx
2,

where Q(x) �
∑N

i=1 qi (x) and qi (x) is the solution to the following optimization
problem:

max
qi≥0

E

[
qi (a(ω)) − b

(
qi + x +

∑
j �=i

q j (x)

)]
− 1

2cq
2
i .

Insights.
(i) Scalability. We observe that the CPU times for (ZSOL1scnvx) grow by a factor of
approximately 450 when N grows by a factor of 1000 (from 102 to 105); however
(SAA) schemes show a growth in CPU time of 1770 when N grows by a factor of 100
(from 102 to 104). In fact, (SAA) schemes cannot process problems for N = 105 in
the prescribed time.
(ii) Accuracy. Both approaches provide similar accuracy but zeroth-order schemes
require less than 6s in CPU time when N = 104 while the (SAA) framework
requires approximately 85s. The accuracy of (ZSOL1scnvx) is relatively robust to chang-
ing steplength and sampling rates at the lower-level but does tend to be sensitive to
changing the initial steplength at the upper-level; however, as the scheme progresses,
the impact of initial steplengths tends to be muted.

5.2.2 A nonconvex implicit function

The second example, inspired from [3], is a bilevel problem with a strongly monotone
mapping in the lower-level. We add a stochastic component in the lower-level to make
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Table 7 Comparison of (SAA) with different solution methods

SAA(NLPEC) SAA(Gradient)

f ∗ − f (x̂) Time f ∗ − f (x̂) Time

N = 102 b = 0.01 c = 3 2.2e−4 0.05 3.9e−4 0.4

c = 5 2.4e−4 0.05 2.6e−4 0.4

b = 0.02 c = 3 7.3e−4 0.05 5.9e−4 0.4

c = 5 4.0e−4 0.05 3.7e−4 0.4

N = 103 b = 0.01 c = 3 7.0e−4 1.2 6.0e−4 2.5

c = 5 5.0e−4 1.1 4.4e−4 2.5

b = 0.02 c = 3 6.8e−4 1.2 5.9e−4 2.6

c = 5 4.2e−4 1.2 3.8e−4 2.6

N = 104 b = 0.01 c = 3 7.3e−4 88.6 5.9e−4 25.3

c = 5 5.4e−4 85.7 4.5e−4 25.3

b = 0.02 c = 3 4.3e−4 93.5 5.2e−4 25.2

c = 5 4.7e−4 87.3 4.2e−4 25.9

N = 105 b = 0.01 c = 3 – – 6.7e−4 94.7

c = 5 – – 5.4e−4 95.0

b = 0.02 c = 3 – – 8.1e−4 96.3

c = 5 – – 6.0e−4 95.2

The errors and time in the table are based on averaging over 20 runs (‘–’ implies runtime > 3600 s)

Table 8 Errors comparison of the three schemes with different parameters

ZSOL1sncvx NLPEC BARON

f (xK ) Stationary point Global optimum

(a, b) = (1, 0) (c, d) = (1, 1) − 7.50 − 7.20 − 7.50

(c, d) = (2, 2) − 9.23 − 9.04 − 9.23

(c, d) = (3, 3) − 9.25 − 9.10 − 9.25

(a, b) = (5, 0) (c, d) = (1, 1) − 11.50 − 7.20 − 11.50

(c, d) = (2, 2) − 13.23 − 9.04 − 13.23

(c, d) = (3, 3) − 13.25 − 9.10 − 13.25

(a, b) = (10, 0) (c, d) = (1, 1) − 16.48 − 7.20 − 16.50

(c, d) = (2, 2) − 18.20 − 9.04 − 18.23

(c, d) = (3, 3) − 18.23 − 9.10 − 18.25

The errors of (ZSOL1sncvx) are based on averaging over 20 runs

the mapping expectation-valued. Formally, this problem is defined as follows.

minimize
x

−x21 − 3x2 − 4y1(x) + (y2(x))
2

subject to x21 + 2x2 ≤ 4, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2,
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Fig. 3 Trajectories for (ZSOL1sncvx) on the nonconvex (SMPEC1s)

where y(x) is a solution to the following parametrized optimization problem.

minimize
y

E

[
2x21 + y21 + y22 − ξ(ω)y2

]

subject to x21 − 2x1 + x22 − 2y1 + y2 ≥ −3, x2 + 3y1 − y2 ≥ 4, y1 ≥ 0, y2 ≥ 0.

Problem and algorithm parameters. We assume ξ(ω) ∼ U(4, 6) and run (ZSOL1sncvx)
for 104 iterations, choosing η = 10−2 and γ = 10−3 in (ZSOL1sncvx). In addition, we
chooseα0 = 1 andαt = α0

t+0.01 for t = 0, 1, . . . , tk−1 in the stochastic approximation
method applied to the lower-level. We compare the performance of (ZSOL1sncvx) on
this problem in Fig. 3 for varying algorithm parameters, all of which suggest that the
resulting sequences steadily converge to the global minimizer. To test the power of
(ZSOL1sncvx) on different problems, we change the objective function of upper-level
and lower-level to −ax21 − bx22 − 3x2 − 4y1 + y22 and E[2x21 + cy21 + dy22 − ξ(ω)y2],
respectively. Then we vary the values of a, b, c and d. For comparison, we also run
each problem using solvers NLPEC and BARON [69, 77] on the NEOS Server [14, 17,
29]. We record the empirical errors of each scheme for 9 different settings, as shown
in Table 8. In (ZSOL1s

ncvx), we use 10
4 samples in each test problem.

Insights.
Global minimizers. From Fig. 3, we observe that while all of the implementations
perform well, large initial steplengths at the lower-level tend to lead to a relatively
worse behavior compared to more modest steplengths. Table 8 is instructive in that it
shows that (ZSOL1sncvx) produces values close to the global minimum as obtained by
BARON for all nine problem instances. Notably, solvers such as NLPEC are equipped
with convergence guarantees to stationary points and provide somewhat poorer values
upon termination.

5.3 Confidence intervals for high-dimensional problems

To validate the effectiveness of solutions generated by (ZSOL1scnvx) and (ZSOL2scnvx),
we construct 95% confidence intervals for large-scale test problems from Tables 3
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Table 9 Errors and confidence intervals for high dimensional problems from Tables 3 and 6

(ZSOL2scnvx) [Table 3], (ZSOL
1s
cnvx) [Table 6] (ZSOL2sacc,cnvx)

f ∗ − f (x̄K ) CI f ∗ − f (xK ) CI

Table 3 b = 1 c = 0.05 1.0e−5 [0.9e−5, 1.1e−5] 5.2e−7 [5.0e−7, 5.4e−7]

c = 0.1 6.0e−6 [5.9e−6, 6.1e−6] 3.8e−8 [3.4e−8, 4.2e−8]

N = 104 b = 0.5 c = 0.05 1.1e−5 [1.0e−5, 1.2e−5] 5.6e−8 [5.2e−8, 6.0e−8]

c = 0.1 7.1e−6 [7.0e−6,7.2e−6] 2.7e−8 [2.4e−8, 3.0e−8]

Table 6 b = 0.01 c = 3 8.7e−4 [7.5e−4, 9.9e−4] n/a n/a

c = 5 6.5e−4 [5.9e−4, 7.1e−4] n/a n/a

N = 105 b = 0.02 c = 3 9.7e−4 [8.0e−4, 1.1e−3] n/a n/a

c = 5 7.5e−4 [6.4e−4, 8.6e−4] n/a n/a

Table 10 Results comparison with solutions from the literature

Problem (ZSOL2sncvx) Literature

f ∗ x∗ f ∗ x∗

Problem 1 L = 150, γ = 1.0 − 343.35 55.57 − 343.35 55.55

L = 150, γ = 1.1 − 203.15 42.57 − 203.15 42.54

L = 150, γ = 1.3 − 68.14 24.19 − 68.14 24.14

Problem 2 − 1.00 (0.50,0.50) − 1.00 (0.50,0.50)

Problem 3 0.01 (0.00,0.00) 0.01 (0.00,0.00)

Problem 4 0.00 (5.00,8.99) 0.00 (5.00,9.00)

Problem 5 0.5((y1 − 3)2 + (y2 − 4)2) 3.20 4.06 3.20 4.06

0.5((y1 − 3)2 + (y2 − 4)2 + (y3 − 1)2) 3.45 5.13 3.45 5.15

0.5((y1 − 3)2 + (y2 − 4)2 + 10y24 ) 4.60 2.39 4.60 2.39

and 6. The results are shown in Table 9. Note that (ZSOL2sacc,cnvx) can process two-
stage SMPECs. All confidence intervals presented are relatively narrow, validating the
quality of corresponding solutions.

5.4 Additional tests on deterministic and two-stage stochastic MPECs

We test our schemes on test problems from the literature. In all of the test problems,
the lower-level parametrized VI is strongly monotone, implying that the lower-level
decision is uniquely determined by a x ∈ X .
Problem and algorithm parameters. The problems and their parameters are described
in Appendix. We use the same algorithm parameters as those in 5.2.2(II). In Table 10,
we compare the results generated by (ZSOL2sncvx) and those from the literature, while
in Table 11, we extend some of the existing problems to their stochastic counterparts
with larger dimensions.
Insights.
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(i)Scalability.Again, (ZSOL2sncvx) shows far better scalability in termsof N withmodest
impact on accuracy and run-time. For both problems in Table 11, (SAA) schemes take
around 5–20 times more time on small scale problems while when N ≥ 100 on the
other hand, no solutions are produced within the imposed time limit.
(ii) Accuracy. For deterministic MPECs, (ZSOL2sncvx) provides almost the same solu-
tions as the globally optimal solutions in all problems from the literature, which shows
both efficacy and wide applicability of (ZSOL2sncvx). In high-dimensional SMPECs,
(ZSOL2sncvx) provides similar accuracy as (SAA) but takes far less computational time.

6 Concluding remarks

Motivated by the apparent lacuna in non-asymptotic rate guarantees and efficient
first/zeroth-order schemes for MPECs, we consider a subclass of stochastic MPECs
where the parametrized lower-level equilibrium problem is given by a determinis-
tic/stochastic variational inequality (VI) problem whose mapping is strongly mono-
tone, uniformly in upper-level decisions. Under suitable assumptions, the implicit
objective is Lipschitz continuous over a compact and convex feasibility set, paving the
way for developing a gradient-free locally randomized smoothing framework applied
to the implicit form the SMPEC. This avenue allows for developing complexity guar-
antees in settings where the implicit objective is either convex or nonconvex, the
lower-level oracle is exact (allowing for accelerated schemes in convex regimes) or
inexact (requiring the use of stochastic approximation to compute an inexact lower-
level decisions).We believe that this is but the first step in developing a comprehensive
zeroth-order foundation for contending with SMPECs under far weaker assumptions.
Possible extensions include settings where the lower-level map is merely monotone
or possibly non-monotone.

7 Appendix

Lemma 13 (cf. Lemma 10 in [82] and Lemma 2.14 in [40]) Let � and N be arbitrary
integers where 0 ≤ � ≤ N − 1. The following hold.

(a) ln
(
N+1
�+1

)
≤ ∑N−1

k=�
1

k+1 ≤ 1
�+1 + ln

(
N

�+1

)
.

(b) If 0 ≤ α < 1, then for any N ≥ 2
1

1−α − 1, we have (N+1)1−α

2(1−α)
≤ ∑N

k=0
1

(k+1)α ≤
(N+1)1−α

1−α
.

Lemma 14 (Theorem 6, p. 75 in [41]) Let {ut } ⊂ R
n denote a sequence of vectors

where limt→∞ ut = û. Also, let {αk} denote a sequence of strictly positive scalars

such that
∑∞

k=0 αk = ∞. Suppose vk ∈ R
n is defined by vk �

∑k
t=0 αt ut∑k
t=0 αt

for all k ≥ 0.

Then, limk→∞ vk = û.
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Lemma 15 (cf. [65]) Let vk, uk, αk, and βk be nonnegative random variables, and let
the following relations hold almost surely:

E
[
vk+1 | F̃k

]
≤ (1 + αk)vk − uk + βk for allk,

∞∑
k=0

αk < ∞,

∞∑
k=0

βk < ∞,

where F̃k denotes the collection v0, . . . , vk , u0, . . . , uk, α0, . . . , αk , β0, . . . , βk . Then,
we have almost surely limk→∞ vk = v and

∑∞
k=0 uk < ∞, where v ≥ 0 is some

random variable.

Proof of Lemma 8 We use induction on k for k ≥ 0. We have e0 = �e0
0+�

≤
max

{
βγ 2

αγ −1 ,�e0

}

0+�
implying that the hypothesis statement holds for k = 0. Let us assume

that ek ≤ θ0
k+�

for some k ≥ 0 where θ0 � max
{

βγ 2

αγ −1 , �e0
}
. Let the induction

hypothesis hold for k ≥ 0. We show that it holds for k + 1 as well. We have

θ0 ≥ βγ 2

αγ −1 ⇒ θ0 ≤ γ (θ0α − βγ ) ⇒ θ0
k+�

≤ γ (θ0α−βγ )
k+�

⇒ θ0
k+�+1 ≤ γ (θ0α−βγ )

k+�

⇒ θ0
(k+�+1)(k+�)

≤ γ (θ0α−βγ )

(k+�)2
⇒ θ0

(
1

k+�
− 1

k+�+1

)

≤ γ (θ0α−βγ )

(k+�)2
⇒ θ0

k+�
− γ (θ0α−βγ )

(k+�)2
≤ θ0

k+�+1

⇒
(
1 − α

γ
k+�

)
θ0

k+�
+ βγ 2

(k+�)2
≤ θ0

k+�+1 ⇒ (1 − αγk)
θ0

k+�
+ βγ 2

k ≤ θ0
k+�+1

⇒ (1 − αγk) ek + βγ 2
k ≤ θ0

k+�+1 ⇒ ek+1 ≤ θ0
k+�+1 .

��

Academic examples and their stochastic counterparts in Sect. 5.4

Problem 1. This problem is described in [61, Definition 4.1]

f (x, y) = r1(x) − xp(x + y1 + y2 + y3 + y4),

where ri (v) = civ + βi
βi+1K

1/βi
i v(1+βi )/βi , p(Q) = 50001/γ Q−1/γ , ci , βi , Ki ,

i = 1, . . . , 5 are given positive parameters in Table 12, γ is a positive parameter,
Q = x + y1 + y2 + y3 + y4.

X = {0 ≤ x ≤ L}.

F(x, y) =

⎛
⎜⎜⎝

∇r2(y1) − p(Q) − y1∇ p(Q)

...

∇r5(y4) − p(Q) − y4∇ p(Q)

⎞
⎟⎟⎠ .

Y = {0 ≤ y j ≤ L, j = 1, 2, 3, 4}.
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The following three examples were tested in [20, 61].
Problem 2.

f (x, y) = x21 − 2x1 + x22 − 2x2 + y21 + y22 .

X = {0 ≤ xi ≤ 2, i = 1, 2}.

F(x, y) =
(
2y1 − 2x1
2y2 − 2x2

)
.

Y = {(y j − 1)2 ≤ 0.25, j = 1, 2}.

Problem 3.

f (x, y) = 2x1 + 2x2 − 3y1 − 3y2 − 60 + R[max{0, x1 + x2 + y1 − 2y2 − 40}]2.
X = {0 ≤ xi ≤ 50, i = 1, 2}.

F(x, y) =
(
2y1 − 2x1 + 40

2y2 − 2x2 + 40

)
.

Y = {−10 ≤ y j ≤ 20, x j − 2y j − 10 ≥ 0, j = 1, 2}.

Problem 4.

f (x, y) = 1
2 ((x1 − y1)

2 + (x2 − y2)
2).

X = {0 ≤ xi ≤ 10, i = 1, 2}.

F(x, y) =
(

−34 + 2y1 + 8
3 y2

−24.25 + 1.25y1 + 2y2

)
.

Y = {−x3− j − y j + 15 ≥ 0, j = 1, 2}.

The next problem is taken from [20, 62]. In all tests, the only difference lies in the
objective function.
Problem 5.

X = {0 ≤ x ≤ 10}.

F(x, y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 + 0.2x)y1 − (3 + 1.333x) − 0.333y3 + 2y1y4 − y5
(1 + 0.1x)y2 − x + y3 + 2y2y4 − y6

0.333y1 − y2 + 1 − 0.1x

9 + 0.1x − y21 − y22
y1
y2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Y = {y j ≥ 0, j = 3, 4, 5, 6}.

High-dimensional stochastic counterparts.
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Table 12 Parameter
specification for Problem 1

i 1 2 3 4 5

ci 10 8 6 4 2

Ki 5 5 5 5 5

βi 1.2 1.1 1.0 0.9 0.8

Consider the stochastic N -dimensional counterpart of Problem 1, defined as fol-
lows.

f (x, y) = E

[
r1(x) − xp

(
x +

n∑
i=1

yi , ω

)]
,

where ri (v) = civ + βi
βi+1K

1/βi
i v(1+βi )/βi , p(Q, ω) = 50001/γ (ω)Q−1/γ (ω), ci =

6, βi = 1, Ki = 5, i = 1, . . . , 5, γ (ω) ∈ U(0.9, 1.1) is a positive parameter,
Q = x + ∑N

i=1 yi .

X = {0 ≤ x ≤ L}.

F(x, y, ω) =

⎛
⎜⎜⎝

∇r2(y1) − p(Q, ω) − y1∇ p(Q, ω)

...

∇rn(yn) − p(Q, ω) − yn∇ p(Q, ω)

⎞
⎟⎟⎠ .

Y = {0 ≤ y j ≤ L, j = 1, . . . , n}.

The stochastic N -dimensional counterpart of Problem 2.

E[ f (x, y(ω))], where f (x, y(ω)) = ‖x − 1‖2 + ‖y(ω)‖2.
X = {0 ≤ xi ≤ 2, i = 1, . . . , n}.

F(x, y, ω) = (
2y − 2x + ω

)
.

Y = {‖y − 1‖2 ≤ 0.25},where ω ∈ U(−0.5, 0.5).
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