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Abstract—In providing physical assistance to elderly people,
ensuring cooperative behavior from the elderly persons is a
critical requirement. In sit-to-stand assistance, for example,
an older adult must lean forward, so that the body mass
can shift towards the feet before a caregiver starts lifting the
body. An experienced caregiver guides the older adult through
verbal communications and physical interactions, so that the
older adult may be cooperative throughout the process. This
guidance is of paramount importance and is a major challenge
in introducing a robotic aid to the eldercare environment.

The wide-scope goal of the current work is to develop an in-
telligent eldercare robot that can a) monitor the mental state of
an older adult, and b) guide the older adult through an assisting
procedure so that he/she can be cooperative in being assisted.
The current work presents a basic modeling framework for
describing a human’s physical behaviors reflecting an internal
mental state, and an algorithm for estimating the mental state
through interactive observations. The sit-to-stand assistance
problem is considered for the initial study. A simple Kalman
Filter is constructed for estimating the level of cooperativeness
in response to applied cues, with a thresholding scheme being
used to make judgments on the cooperativeness state.

I. INTRODUCTION

According to a report [1], over 80% of those who died
from COVID-19 in the United States were age 65 or older,
and over 40% of those individuals were either nursing home
residents or staff. Additionally, as of April 28, 2021, it is
estimated that over one million people in the US have been
infected at nursing homes and long-term care facilities [2].
High COVID-19 transmission rates at nursing homes can
likely be attributed to cluster infections caused by current
in-person eldercare practices. The overarching goal of the
current work is to develop a robotic aid for assisting older
adults with virtually no direct physical interactions between
an older adult and a caregiver.

Existing elderly support technology has served primarily
for reducing caregiver physical effort and making maneuvers
more efficient. One common example are ceiling lifts and
floor lifters, such as the Arjo Maxi Sky [3], which are
used to fully support the weight of elderly patients who
cannot reliably walk, and transport them between seated
positions at different locations. Use of these devices still,
however, requires in-person care; the caregiver has to lift
the patient into and out of the lift, and to operate the
lift’s movement. More recently, robotic devices have been
developed to provide support to lift and lower a patient in/out
of a seated position, such as the Fuji Hug [4]. To use such
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a device, the caretaker assists the patient in getting in the
robot, which lifts the patient into an immobilized position;
then, the caretaker moves robot and patient together. While
this does significantly reduce caretaker physical effort, it still
requires sustained in-person interaction between patient and
caregiver, which can be dangerous during epidemics.

We seek to enable methods of remote care in which a
caretaker need not physically contact an elderly patient to
assist with everyday actions. An elderly support robot would
allow a caregiver or medical professional to remotely monitor
the patient and remotely control the robot. No direct physi-
cal interactions between caregiver and patient are involved.
However, the cognitive workload could increase in operating
the machine remotely, while physical workload reduces.
Furthermore, it is a challenge to provide the same level of
quality care services from a remote site. A fundamental issue
in introducing a robotic aid is whether older adults accept to
receive physical aids from robotic systems. Older adults may
fear robotic aids. Physical aids cannot be provided safely
and effectively, unless the older adult accepts the aid and
behaves cooperatively. Care must be taken before executing
a physical aid; the robotic system must make sure whether
the older adult is ready to work with the robotic system; in
other words, whether the older adult is cooperative.

This opens up a new research theme on human-robot
interactions. Unlike the traditional framing of human-robot
interaction problems [5], [6], [7], [8], the behavior of a
human can be completely different depending on the con-
ditions of the human. An older adult may be cooperative
or non-cooperative depending on his/her perception, mood,
and other factors, which we describe as mental state. In
the traditional setting, there is a premise or a consensus
between a robot and the human, sharing a mission, task goals,
and/or desired states. The challenge of eldercare is that it is
uncertain how the human behaves; whether the human agrees
and accepts the robotic aid, and cooperates with the robotic
system. The robotic system must estimate and ensure the
internal mental state of the human.

In this context, two major challenges must be addressed
in eldercare robotics. One is to estimate the mental state
of an older adult through communication and interactions
prior to execution of a physical aid. The other is to guide
an older adult to be cooperative, persuading, convincing, or
changing his/her mental state to agree, accept, and cooperate
with the physical aid. Verbal communication, hand gestures,
physical demonstration, and other means of cues must be
given to older adults in order to guide their mental state. In
an attempt to establish a new methodology, the current work



presents a simple modeling and estimation framework in the
specific context of sit-to-stand assistance. In the following,
we will discuss how an older adult’s behavior may differ
depending on his/her mental state, how the characteristic
behavior difference can be detected and, through verbal and
light physical cues, how the mental state can be guided and
confirmed. Based on these arguments, a simple model and
estimation method will be presented. Initial human subject
tests are conducted, and the proposed method is evaluated.

II. CARETAKER—CARE RECIPIENT INTERACTIONS IN
SIT-TO-STAND ASSISTANCE

This section discusses interactions between a caretaker
and a care recipient (i.e., an older adult to receive phys-
ical assistance). Assistance in the sit-to-stand transition is
considered as an exemplary case study (see Fig. 1). A
caretaker needs cooperation from the care recipient for this
class of physical assistance. The caretaker cannot execute
a task without gaining a cooperative attitude and behavior
from the care recipient [9]. It is rude and even dangerous,
if the caretaker abruptly yanks the older adult on his/her
feet. During the sit-to-stand transition, the care recipient
first leans forward and bends the torso, so that the Center
of Mass (CoM) of the upper body goes over the Base of
Support (BOS) of the feet [10]. This allows the care recipient
to maintain balance when leaving the seat. Instead, if the
caretaker pulls the older adult although the CoM is away
from the BOS, the older adult may feel that the caretaker
is acting brutishly and dangerously, and may resist being
assisted. In the case of a support robot, the older adult may
be scared if the robot’s action is unexpected and he/she is
not ready to receive an assistive action. These caretaker-care
recipient interactions must be analyzed and understood in
order to develop a functional support robot.

We begin with investigating the current practice of in-
person assistance, and then derive a model describing the
caretaker — care recipient interactions. Eldercare handbooks
and caretaker training manuals are useful resources for
understanding the procedure and skills required for assisting
older adults[11], [9], [12]. Based on years of experience in
assisting various older adults with diverse physical and cog-
nitive abilities, key techniques and specific procedures have
been documented in these references [3]. A few important
points we can learn from these are:

« In providing older adults with physical assistance, it is
critically important to explain the goal and procedure
of assisting action; what the caretaker will be doing
and what the older adult should expect. Before taking
a physical action, the caretaker must let the older adult
prepare for the action.

o It is not likely that an older adult voluntarily takes
a cooperative action, e.g. bending forward, following
the caretaker’s verbal explanation. Rather, older adults
begin to take cooperative actions in response to the
caretaker’s physical cues, e.g. gently pushing the back
of the older adult. Physically touching, holding, and/or

pushing the body of care recipient must be combined
with verbal communication.

o The caretaker must assure that the care recipient is
engaged and cooperative before taking the action. The
caretaker must guide the care recipient with verbal
communication and physical cues, so that he/she can be
cooperative and ready for receiving assisting actions.

The most challenging is to confirm whether the care
recipient is cooperative and ready. This is to estimate the
internal mind or mental state, indicating to which degree
the care recipient is engaged, cooperative, and accepting
being assisted. This mental state cannot be measured di-
rectly. However, in the context of sit-to-stand transition, it is
conceivable that the care recipient’s behaviors and responses
to verbal and physical cues reflect the mental state of the
care recipient. For example, as a caretaker guides the care
recipient and gently pushes their back in order to prompt the
care recipient to bend forward, the care recipient may comply
to the gentle push if their own mental state is engaged and
cooperative. If not cooperative and not feeling comfortable
with the physical assistance, he/she may resist against being
pushed and may even try to bend backward. Such physical
responses to physical cues may reveal the mental state of the
care recipient. In the current work, we hypothesize that cue—
response behaviors reflect the mental state of a care recipient.
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Verbal Cue:
“I'm going to push you,
and you should stand up.”

Sustained Guidance:
Moving along with the
patient as they perform
the standing motion

Physical Cue:

A light push in the
direction of the standing
motion

T
Feedback from these cues allows the caretaker to
judge the patient’s readiness for the actual motion.

Fig. 1: Illustration of the physical and verbal cues which are
used by human caregivers to prepare a patient for a motion

III. MODELING

Based on the hypothesis on cue-response behaviors re-
flecting a mental state, we aim to translate the current
practice and skills of sit-to-stand assistance into a computable
model to be identified from experimental data. The model
will be used for guiding and estimating the cooperativeness
mental state of a care recipient.

First, we represent the level of cooperativeness with a
scalar variable &:

+1 : Completely Cooperative
§=40

—1 : Completely Uncooperative

: Neutral / Unresponsive

The ‘¢’ variable could reasonably have more than three
possibilities (to reflect complex mental states); however, we
seek in this work to develop a minimal model of how
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Fig. 2: Illustration of the three states of cooperativeness, as
they connect cues to their corresponding responses.

Unresponsive

an internal mental state influences observable behaviors in
response to a caretaker’s cues. For the sit-to-stand assistance,
we consider a gentle push of the care recipient’s back as
a physical cue given by a caretaker. (Consequently, the
physical cue c, has a unit of force.) In an attempt to
connect the internal mental state £ to observable behaviors
in response to physical and verbal cues, we elaborate a
model representing the relationship based on the following
considerations:
Model Considerations

1) The human acts voluntarily to move their actual posi-
tion z to their intended position 7.

2) Cooperativeness  affects how the cues ¢, and ¢, lead
to changes in the human’s intended position 7. In the
cooperative case (£ = 1), the change of 7 induced by
a cue is in the same direction as the cue. The opposite
is true for the uncooperative case (£ = —1). A cue and
the resultant change in 7 are in the opposite directions.
In the neutral, or unresponsive case (£ = 0), cues do
not affect 7.

For Consideration 1, we can apply a neuromotor control
and biomechanic model. Considering only 1 dimensional
motion of the torso bending,

Z=—-Mi+k(n—2x)+kacy+wyy (D

where x is displacement of the torso, ¢, is the force applied
by a caretaker, and w, is process noise. The physical sense
of the three major terms is:

e —\1%; - The effect of damping. Parameter A\; is the
damping rate of physical motion.

e ki (n — ;) - The voluntary acceleration of the care
recipient, with the purpose of making x — 7. This is of
the form suggested by the equilibrium-point hypothesis
of human motor control [13], and is equivalent to
proportional control. Parameter k; is the proportionality
constant.

e ko cp - The involuntary acceleration due to being pushed
by a physical cue. Parameter ko is effective stiffness
constant for this interaction.

The above equation is in the physical domain, hence no
verbal cue is involved. The physical cue, although small in
magnitude, is involved in pushing the system. Parameters
—\, k1, and k5 represent the impedance of the motor control
system. In summary, the parameters for this physical model
are collectively represented as:

Oayn = {1, k1, ka} (2)

For Consideration 2, the intended position is generated
in response to both verbal and physical cues. Unlike phys-
ical cues, verbal cues cannot be represented as continuous
physical values. Rather, they are symbols and their effect
upon changes to intended position 7 is better represented in
discrete time.

Tt+1 = fint (nt: Cp,ty Cuty gt; Hint) + Wyt (3)

where subscript ¢ represents discrete time step, fin: is a
function with parameters 6;,,;, and wy, ¢ is noise.

This transition of the intended position significantly differs
depending on the mental state. As an example embodiment
of this relationship, we can consider the following simple
model where the variable of the mental state is multiplied to
the combined term of the verbal and physical cues.

Ney1 =Nt + & - (kg cpt + kacyr) dt + wy €]

There are two similar non-noise components to the 7 update:

e k3 & cpi - The effect of a physical cue ¢, on the change
of intended position 7. Parameter k3 is the effective gain
of physical cues here.

o ky &t eyt - The effect of a verbal cue ¢, on the change
of intended position 7). Parameter k4 is the effective gain
of verbal cues here.

For both of these, cooperativeness affects this cue-resultant
change of 1 in the following ways:

e &£ =1/ Cooperative: Cues to move in a given direction
change the human’s intended position in the same
direction.

e £ = —1 / Uncooperative: Cues to move in a given
direction change the human’s intended position in the
opposing direction.

e & = 0/ Unresponsive: Cues to move in a given direction
do not change the human’s intended position.

These behaviors are illustrated in Figure 2. In summary, the
parameters for this model stage are the following:

Oint = {ks, ka} &)

Finally, another model is necessary to represent how the
mental state of cooperativeness is changed or guided towards
the cooperative state by applying both physical and verbal
cues.

£t+1 = fcoop (gtu Cp,ty Cuts ecoop) + We,t (6)

where feo0p is a function of the current mental state 7;, and
physical and verbal cues, and contains parameters 6,0, and
W, 18 Noise.

The proposed model serves to elucidate how the ob-
servable behaviors of a care recipient reflect the internal
mental state of cooperativeness at three levels of physical
and mental dynamics. If the sole objective is to let a care
recipient take a bending posture, there is no need to estimate
the internal mental state. Simply measuring the bending
angle, the caretaker could execute an assisting procedure.
However, the caretaker — care recipient relationship is more
complex. The caretaker would make a costly mistake if



he/she misunderstands that the care recipient is ready and
cooperative. Two failure scenarios for such a naive method
are:

Potential Failure Scenarios

o As the caretaker applies a force, i.e. pushing the back
of the care recipient, he/she may bend forward if the
force is significantly large and/or the care recipient is
too infirm to resist against the force. Although the care
recipient is not ready or not accepting the physical
assistance, he/she may bend forward.

« Due to uncertainties at all three levels, the care recipient
may exhibit a cooperative behavior although he/she has
not yet been ready.

Simply detecting a body movement alone may not be a
reliable method for determining the cooperativeness state.
The method should be robust against uncertainties. The
judgement must be made not merely based on a snapshot
observation; a series of observations and previous history of
individual care recipients must be incorporated and exploited
for reliable judgement. The proposed model provides us with
a framework for constructing a robust estimator.

IV. COOPERATIVENESS ESTIMATION USING A KALMAN
FILTER WITH THRESHOLDING

A simplified linear model is used for constructing a
Kalman Filter for estimating the cooperative mental state.
Namely, we use (1) for the biomechanic model and (4) for
the intention model. As for the mental state transition, we
use the following random process:

§to1 = &+ we g 7

Due to only focusing on cooperativeness estimation, not
cooperativeness prediction, for this portion of the analysis,
a naive model is used for the cooperativeness model stage.
Ideally, a rich predictive model for cooperativeness could be
used to bolster the effectiveness of cooperativeness estima-
tion; however, given the current lack of such a predictive
model, the naive random process of (7) can serve as a
placeholder.

In order to run the Kalman filter, we can assemble the
following linear time-variant state-space model to reflect our
simplified version of the three-stage model:

State Update Model

Tty1 = A (Cp,tv 01)715) Ty + B Cp,t —+ wy (noise) (8)

where the state vector is x; := [;vt Ty My §t]T, and the
time-dependent parameter matrices are constructed from the
three governing equations.

Measurement Model

ys = Haxy + vy (noise) 9

H=[1 0 0 0 (10)

1) Cooperativeness Judgment with Thresholding: The
Kalman filter is a continuous-domain filter; as such, it gener-
ates a continuous estimate é Nevertheless, cooperativeness
&, as defined, is discrete, with a domain of £ € {—1,0,1}.
Practical judgments of cooperativeness ¢ should be made
discretely. To bridge this gap, we propose the following
thresholding method: at a given time after the initial onset
of an applied cue, the Kalman-filter estimated value of £ is
sampled, then compared to a threshold &;p,esh, Which was
selected to effect a low false-negative rate in cooperativeness
judgments. If é > &ihresh, then cooperativeness is judged to
be{ =1.1If 5 < —&ihresh, then cooperativeness is judged to
be £ = —1. If —&ipresn < é < &hresh, then cooperativeness
is judged to be £ = 0. This scheme is illustrated in Fig. 3.

Est. Coop. £

Time (s)

Fig. 3: Demonstration of the judgment threshold. Here it
is performed 0.7 seconds after the initial cue (1.2 seconds
on the time axis), with a threshold of & = +0.3. The
cooperativeness is judged to be £ = 1 (lightest gray region).

V. EXPERIMENTATION

We sought to verify the efficacy of this Kalman-Filter-
based cooperativeness estimation technique, using basic ex-
perimental testing. In this stage of experimental testing, we
focused on characterizing response to visual and physical
cues given by a human caregiver to a human test subject.
This test is meant to be the basis for development of sensing
methods that could be used by a robotic elderly assist
device; as such, though the cues were given by a human, we
limited the observables to those that could be measured by
a robotic system. As the main purpose of these experiments
is to reinforce the mathematical basis for a cooperativeness
estimation algorithm, not to establish the actual behavioral
patterns of potential patients, we deemed it unnecessary to
request the participation of elderly or physically disabled test
subjects. We ran the following test on four healthy young
adult human subjects:

A. Experimental Procedure

This procedure was determined to be exempt by MIT’s
IRB, COUHES, on grounds of being a benign behavioral
intervention (MIT COUHES Exempt ID E-3420).

For reference, this experimental setup is illustrated and
photographed in Fig. 4.

Before the test, the human test subject is explained the
general purpose of the experiment, but not the details of
the cue response model. The human test subject is seated
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Fig. 4: Left: Illustration of the first stage of experimental
setup used to collect human cue response data. Right: Video
frame of the experimental procedure, taken during the exe-
cution of an experimental trial.

® @O

Fig. 5: The emojis used to communicate to the test subjects
the approximate meanings of the three cooperativeness states.
Left to right: Cooperative, Unresponsive, Uncooperative

on a stool. To request a specified cooperativeness state
of a given trial, the experimenter provides the human test
subject with a card which displays the word “Cooperative”,
“Unresponsive”, or “Uncooperative”, as well as an emoji
which approximately represents the emotional context of the
requested cooperativeness state (see Fig. 5). The subject is
NOT explained the modeled definitions of the cooperative-
ness states, in the concern that awareness of the model may
influence their behavior.

The experimenter then proceeds to provide the test subject
with a physical cue: a push forward to the upper back,
a verbal cue: a command to move forward or backward,
or both. The human test subject responds as they see
fit, given the requested cooperativeness state provided by
the experimenter beforehand. The physical cue is delivered
though an Optoforce compressive force sensor held by the
experimenter; thus, the force magnitude of the physical cue
is measured. The timing and direction of the verbal cue is
recorded using a microphone. The response of the human test
subject is characterized in terms of the horizontal position of
their shoulder; this is measured using a video camera, which
tracks a visual target taped to the subject’s shoulder.

B. Experimental Parameters

Four subjects were tested, in a series of 25 different trials.
Each of the 25 trials was randomly assigned one of each of
the following properties:

o Requested Cooperativeness: £ € {—1,0,1}
o Physical Cue Intensity: {None, Soft, Hard}
o Verbal Cue: {None, Move Back, Move Forward}
« Relative Timing Between Physical and Verbal Cues (if
both): {—4,-3,-2,—-1,0,1,2,3,4} seconds
The same set of trial parameters was used for each human
test subject, and implemented by the same tester.

C. Experimental Results

1) Kalman Filter Performance Analysis: The results of
a single trial are shown in Figure 6. In this trial, Subject
1 was requested to be cooperative (£ = 1). Subsequently, a
hard forward physical cue was applied, immediately followed
by a verbal cue to move forward. Subject 1 was accelerated
directly by the push, and then proceeded to move themself
forward further. As shown in Fig. 6, the Kalman filter
estimates two pulses in intended position 7, an initial large,
brief pulse corresponding to the initial acceleration, and a
second smaller, sustained pulse corresponding to the addi-
tional motion. This two-pulse estimation of intended position
71 leads to a similar two-pulse estimation of cooperativeness
&, which briefly goes negative between the pulses.

This brief negative estimate of £ (which should be £ =1
throughout) is due to one of the main disadvantages of
this Kalman filter: it cannot perfectly distinguish the direct
dynamic motion caused by hard physical cues from the
indirect voluntary motion caused through cooperativeness.
While ks cp, the direct mechanical compliance term of the
dynamics equation (1), does serve to predict the x motion
directly caused by a physical push, any variation in the effec-
tive mechanical compliance of the human subject will result
in  motion being attributed to intended motion 7 instead.
This can be seen in Fig. 6, where the initial acceleration is
attributed to an unusually large spike in intended position
n of 1 meter. Nevertheless, the fact that Subject 1 does
not resist the motion results in their cooperativeness being
correctly estimated as £ = 1 by the threshold judgment. The
threshold judgment for all data was made at a delay of 0.75
seconds after cue initiation, and a threshold of £ = £0.3.

Requested §

-1 0 +1

TOTALS | 32 24 44

W —1 16 11 3 2
?

‘g 0 59 21 19 19
B

& +1 25 0 2 23

TABLE I: Number of trials across all test subjects (N =
100), sorted by their requested (true) value of cooperative-
ness & and their estimated cooperativeness &, as estimated by
the Kalman filter with threshold judgment.

2) Aggregate Analysis of Cooperativeness Judgment:
While only one trial is presented in Fig. 6, there were
100 different trials actually performed across the 4 human
test subjects. For the sake of brevity and ease of reading,
aggregate data is presented only in Tables I-III. Table I
shows the overall results of the thresholded Kalman filter
cooperativeness judgment scheme; specifically, it sorts the
100 trials in terms of the cooperativeness value requested
of the test subject (the effective ground truth) and the
cooperativeness value estimated by the judgment scheme.
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Fig. 6: Response of Subject 1 to both a forward push cue
and a “Move Forward” verbal cue, with a requested cooper-
ativeness of £ = 1. Given the measured cues ¢, and c,, and
measured position x, the human subject’s modeled position
x, velocity &, intended position 7, and cooperativeness £ are
estimated using a modified Kalman filter. The thresholds and
time window for cooperativeness judgment are shown in the
plot for estimated &.

This table effectively shows the joint sample distribution of
requested ¢ and estimated &.

These results can also be analyzed in terms of conditional
sample distributions. Table II shows the sample conditional
distribution of estimated £ given requested £. In other words:
if a trial if known to have a certain requested &, what
is the sample probability of it having been estimated to
be a certain value? The judgment scheme is very good at
judging unresponsive cases to be unresponsive, at a rate of
79.2%. An uncooperative cases is most likely to be judged
as unresponsive, with a dismal correct rate of judgment of
34.4%. Cooperative cases are most likely to be judged as
such, with a correct rate of judgment of 52.3%.

The dual conditional analysis also sheds some valuable
light. Table III shows the sample conditional distribution of
requested £ given estimated £. In other words: if a trial is
estimated to have a given £, what is the sample probability of
it having actually been requested to be a given value £? The
judgment scheme is relatively trustworthy in judgments of
being cooperative, with a 92% true positive rate. Judgments
of uncooperative are more likely than not to actually be
uncooperative, with a 68.8% true positive rate. Judgments of

Requested &

-1 0 +1
*_;* -1 34.4% | 12.5% | 4.5%
§ 0 65.6% | 79.2% | 43.2%
.‘5 +1 0% 83% | 52.3%

TABLE II: Conditional sample distribution of estimated
cooperativeness &, conditioned on the requested (true) co-
operativeness &

Requested §

-1 0 +1
*_;* -1 68.8% | 18.7% | 12.5%
g 0 35.6% | 32.2% | 32.2%
.‘5 +1 0% 8.0% | 92.0%

TABLE III: Conditional sample distribution of requested
(true) cooperativeness &, conditioned on the estimated co-
operativeness &

unresponsiveness mean effectively nothing, however, with a
roughly equal chance of having been caused by any requested
cooperativeness.

VI. CONCLUSION

This paper has addressed one of the key challenges in
applying robotic systems to the eldercare environment. To be
viable, the technology must be accepted by elderly people,
and robots must be able to gain a cooperative behavior from
the elderly. We have presented a basic modeling framework
for estimating the mental state of cooperativeness in the
context of sit-to-stand assistance. From existing literature
and practical eldercare knowledge, we have found that the
internal mental state of an older adult is reflected to his/her
observable behaviors in response to verbal and physical
cues given by a caretaker. Based on this, a mental-physical
model has been constructed at three levels. The lowest is a
biomechanic, neuromotor control model relating observable
behaviors to his/her intended posture and movement. The
highest is a mental model indicating his/her cooperativeness,
which can change depending on a caretaker’s guidance,
i.e. verbal and physical cues. The middle layer is a model
linking the mental state to intended posture and movement.
Based on this model, a thresholded Kalman filter judgment
scheme has been constructed to estimate the mental state
from observable body responses to a caretaker’s cues. IRB-
approved human subject tests were conducted to verify the
efficacy of this judgment algorithm in healthy adults. The
thresholded Kalman filter cooperativeness judgment scheme
proposed in this work successfully identified cooperative
response, with a 92% true positive rate.
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