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Abstract— We consider the minimization of an L-Lipschitz
continuous and expectation-valued function, denoted by f and
defined as f(x) = E[f(x,w)], over a Cartesian product of closed
and convex sets with a view towards obtaining both asymptotics
as well as rate and complexity guarantees for computing an
approximate stationary point (in a Clarke sense). We adopt
a smoothing-based approach reliant on minimizing f, where
fn(x) 2 E,[f(x +nu)], u is a random variable defined on a
unit sphere, and n > 0. In fact, it is observed that a stationary
point of the n-smoothed problem is a 27n-stationary point for
the original problem in the Clarke sense. In such a setting,
we derive a suitable residual function that provides a metric
for stationarity for the smoothed problem. By leveraging a
zeroth-order framework reliant on utilizing sampled function
evaluations implemented in a block-structured regime, we make
two sets of contributions for the sequence generated by the
proposed scheme. (i) The residual function of the smoothed
problem tends to zero almost surely along the generated
sequence; (ii) To compute an x that ensures that the expected
norm of the residual of the n-smoothed problem is within e

requires no greater than O( n;) projection steps and O (ﬁ%
function evaluations. These statements appear to be novel with
few related results available to contend with general nonsmooth,

nonconvex, and stochastic regimes via zeroth-order approaches.

I. INTRODUCTION

We consider the following stochastic optimization problem
min  f(x) £ E[f(x, £(w))]

ey
subject to x € X 2 [[", A;,

where f : R™ — R is a real-valued, nonsmooth, and
nonconvex function, A; C R™ is a closed and convex
set for i = 1,....b with Y0 n; = n, £ : Q@ — R?
denotes a random variable associated with the probability
space (92, F,P). Throughout, we assume that f is Lo-
Lipschitz continuous on the set X, i.e., there exists a
scalar Ly > 0 such that for all x,y € X we have
|f(x) — f(y)] < Lo||lx — y||. Further, at any x € R",
flx) = E[f(x,w)} where we refer to f(x,f(w)) by f(x,w).

While there is a significant body of literature on contend-
ing with nonsmooth stochastic convex optimization prob-
lems [20], most nonconvex generalizations are generally
restricted to structured regimes where the nonconvexity often
emerges as an expectation-valued smooth function while the
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nonsmoothness arises in a deterministic form . However,
in many applications, f (e,w) may be both nonconvex and
nonsmooth and proximal stochastic gradient schemes [10],
[14] cannot be directly adopted. We now discuss some
relevant research in nonsmooth and nonconvex regimes.

(a) Nonsmooth nonconvex optimization. In [1], Burke et al.
disuss how gradient sampling allows for approximating the
Clarke subdifferential of a function that is differentiable
almost everywhere. A robust gradient sampling scheme was
subsequenly developed [2] for functions that are continuously
differentiable on an open subset D C R”; such functions
need not be convex nor locally Lipschitz. In [2], the authors
prove that a limit point of a subsequence is an e-Clarke
stationary point when f is locally Lipschitz while Kiwiel
proved that every limit point is Clarke stationary with respect
to f without requiring compactness of level sets [13]. There
have also been efforts to develop statements in structured
regimes where f is either weakly convex [7], [8] or f = g+h
and h is smooth and possibly nonconvex while g is convex,
nonsmooth, and proximable [14], [22].

(b) Nonsmooth nonconvex stochastic optimization. Much
of the efforts in the regime of stochastic nonconvex opti-
mization have been restricted to structured regimes where
f(x) = h(x) + g(x), h(x) £ E[F(x,w)], h is smooth and
possibly nonconvex while g is closed, convex, and proper
with an efficient proximal evaluation. In such settings, prox-
imal stochastic gradient techniques [10] and their variance-
reduced counterparts [10], [14] were developed.

(c) Zeroth-order methods. Deterministic [3] and randomized
smoothing [9], [21] have been the basis for resolving a broad
class of nonsmooth optimization problems [15], [23]. When
the original function is nonsmooth and nonconvex, Nesterov
and Spokoiny [17] examine unconstrained nonsmooth and
nonconvex optimization problems via Gaussian smoothing.

Motivation. Our work draws motivation from the recent
work by Zhang et al. [25] where the authors show that for
a suitable class of nonsmooth functions, computing an e-
stationary point is impossible in finite time. This negative
result is a consequence of the possibility that the gradient
can change in an abrupt fashion, thereby concealing a
stationary point. To this end, they introduce a notion of (4, €)-
stationarity, a weakening of e-stationarity; specifically, if x
is (0, ¢)-stationary, then there exists a convex combination
of gradients in a d-neighborhood of x that has norm at most
e. However, this does not mean that x is d-close to an e-
stationary point of x as noted by Shamir [18] since the



convex hull might contain a small vector without any of the
vectors being necessarily small. As observed by Shamir [18],
one needs to accept that the (4, €)-stationarity notion may
have such pathologies. Instead, an alternative might lie in
minimizing a smoothed function Ey[f(x + du)] where u is
a suitably defined random variable. This avenue allows for
leveraging a richer set of techniques but may still be afflicted
by similar challenges.

We consider a zeroth-order smoothing approach in
constrained, stochastic, and block-structured regimes
with a view towards developing finite-time and
asymptotic guarantees.

Contributions. We develop a randomized zeroth-order frame-
work in regime where f is block-structured and expectation-
valued over &', a Cartesian product of closed convex sets
in which locally randomized smoothing is carried out via
spherical smoothing. This scheme leads to a stochastic
approximation framework in which the gradient estimator
is constructed via (sampled) function values. Succinctly, our
main contributions are captured as follows.

(1) Almost sure convergence guarantees. On applying the
randomized scheme to an n-smoothed problem, under suit-
able choices of the steplength and mini-batch sequences, we
show that the norm of the residual function of the smoothed
problem tends to zero almost surely.

(ii) Rate and complexity guarantees. It can be shown that
the expected squared residual (associated with the smoothed
problem) diminishes at the rate of O(1/k) in terms of pro-
jection steps on X, leading to a complexity of O(n=2e¢~%)
in terms of sampled function evaluations.

Notation. We use x, x7, and |x|| to denote a column
vector, its transpose, and its Euclidean norm, respectively.
We use x(*) to denote the ith block coordinate of vector x =
(xW,...,x®). Given a mapping F' : R — R", F; denotes
the ith block coordinate of F. We define f* £ inf,cx f(X)
and fp £ infxex f,(x), where f,(x) denotes the smoothed
approximation of f. Given a continuous function, i.e., f €
C°, we write f € C%%(X) if f is Lipschitz continuous on the
set X with parameter L. Given a continuously differentiable
function, ie., f € C', we write f € CL1(X) if Vf is
Lipschitz continuous on X with parameter L;. We write a.s.
for “almost surely and E[Z] denotes the expectation of a
random variable Z. Given a scalar u, [u]y = max{0,u}.

II. STATIONARITY AND SMOOTHING

We first recap some concepts of Clarke’s nonsmooth cal-
culus [4] that allow for providing stationarity conditions. We
first define the directional derivative, a key object necessary
in addressing nonsmooth optimization problems.

Definition 1 (Directional derivatives and Clarke general-
ized gradient [4]). The directional derivative of h at x in a

direction v is defined as

2)

h°(x,v) £ limsup

y—x,tl0 t

<h(y + tv) — h()’)) .

The Clarke generalized gradient at x can then be defined as
Oh(x) £ {£eR" | h°(x,v) > Mo, WweER"}. (3)

In other words, h°(x,v) = sup g’v. O
gEDh(x)

If his C! at x, the Clarke generalized gradient reduces
to the standard gradient, i.e., dh(x) = Vxh(x). If x is a
local minimizer of h, then we have that 0 € 9h(x). In fact,
this claim can be extended to convex constrained regimes,

i.e., if x is a local minimizer of min h(x), then x satisfies
XEX

0 € Oh(x) +Nx(x), where Nx(x) denotes the normal cone
of X defined at x [4]. We now review some properties of
Oh. In particular, if h is locally Lipschitz on an open set
C containing X, then & is differentiable almost everywhere
on C by Rademacher’s theorem [4]. Suppose Cj, denotes the
set of points where h is not differentiable. We now provide
some properties of the Clarke generalized gradient.

Proposition 1 (Properties of Clarke generalized gradi-
ents [4]). Suppose h is Ly-Lipschitz continuous on R™. Then
the following hold.
(i) Oh(x) is a nonempty, convex, and compact set and
llgll < Lo for any g € Oh(x).
(i1) h is differentiable almost everywhere.
(iii) Oh(x) is an upper semicontinuous map defined as

Oh(x) = conv {g |g= klim Vxh(xi),Ch 3 x — x} . O
— 00
We may also define the e-Clarke generalized gradient [11]

as Och(x) £ conv{¢: £ €Oh(y), ||x—y|| <e. @

When f is nonsmooth and nonconvex on X, a closed and
convex set, then to contend with nonsmoothness, we consider
a locally randomized smoothing technique described as fol-
lows. Given a function h : R — R and a scalar n > 0, a
smoothed approximation of h is denoted by h, defined as

hy(x) £ Eyenlh(x + nu)). 5)

where B £ {u € R" | ||u|| < 1} denotes the unit ball
and u is uniformly distributed over B. We now recall some
properties of spherical smoothing. Throughout, S £ {v €
R™ | |lv|| = 1} denotes the surface of B and X, £ X + 1B
represents the Minkowski sum of & and nB.

Lemma 1 (Properties of spherical smoothing (cf. Lemma
1 in [5])). Suppose h : R” — R is a continuous function
and its smoothed counterpart h, is defined as (5), where
1 > 0 is a given scalar. Then the following hold.
(i) h, is C' over X and

Vihin(x) = (2) Bueys [h(x+0) | vxex. ©)

flv]]

Suppose h € C%°(X,) with parameter Lg. For any x,y €
X, we have that (ii) — (iv) hold.



(i) |hy(x) = hn(¥)] < Lollx =yl
(iii) [/, (x) — gl(X)l Lon.

(V) [[Vxhy(x) = Vxhy(¥)Il < 222 x — .
(v) Suppose h € C*%(X,) with parameter L, and
n\ (h(x+v)—h(x))v
2 (2 |
! U o]
for v € nS. Then, for any x € X, we have that
Evenslllgn(x,v)|1?] < Lgn®. O

We restrict our attention to functions f that are Lg-
Lipschitz continuous over X, £ X + nyB. Further, we
assume that f(x,w)— f(x) admits suitable bias and moment
properties. We intend to develop schemes for computing
approximate stationary points of (1) by an iterative scheme.
However, we first need to formalize the relationship between
the original problem and its smoothed counterpart. This is
provided in [5] by leveraging results from [15], [16].

Proposition 2 (Stationarity of 5, and 7-stationarity).
Consider (1) where f is a locally Lipschitz continuous
function and X is a closed, convex, and bounded set in R".
(i) For any n > 0 and any x € R", Vf,(x) € 0o, f(x).
Furthermore, if 0 ¢ 0f(x), then there exists an 7 such that
Vi /(%) # 0 for 7 € (0,].

(i1) For any 7 > 0 and any x € &,

0 € Vify(x) + Nx(x) = 0 € 8z, f(x) + Nx(x). O (1)

Intuitively, this means that if x is a stationary point of
the n-smoothed problem, then x is a 2n-Clarke stationary
point of the original problem. Next, we introduce a residual
function that captures the departure from stationarity. Recall
that when h is a differentiable but possibly nonconvex
function and X is a closed and convex set, then x is a
stationary point of (1) if and only if

Ga(x) 2 B (x_ T {x— %fo(x)D = 0.

When f is not necessarily smooth as is the case in this
paper, a residual of the smoothed problem can be derived
by replacing Vx f(x) by Vx f,,(x). In particular, the residual
G, denotes the stationarity residual with parameter 3 of the
n-smoothed problem while CNJ,,,B represents its counterpart
arising from using a sampling-based estimate of Vy f;(x).

Definition 2 (The residual mapping). Suppose Assump-
tion 1 holds. Given 3 > 0 and a smoothing parameter 1 > 0,
for any x € R" and é € R" an arbitrary given vector, let
the residual mappings G, 5(x) and G, 5(x, €) be defined as

Gy p(x) = ﬁ(x — Iy [X — %Vg;fn(x)}) and (8)
Gyp(x,8) 2 B (x Il [x — L(Vofy(x) + é)D .0 )

Unsurprisingly, one can derive a bound on én, 5(x,€) in
terms of Gy, g(x) and €, as shown next.

Lemma 2 (Lemma 10 in [5]). Let Assumption 1 hold. Then
the following holds for any 5 > 0, n > 0, and x € R".

1G5 < 211Gy 5(x, )| + 2]1e].

III. A RANDOMIZED ZEROTH-ORDER ALGORITHM

In this section, we provide the main assumptions, outline
the proposed algorithm, and derive some preliminary results
that will be utilized in the convergence analysis.

Assumption 1 (Problem properties). Consider problem (1).
(i) f is Lo-Lipschitz on X + ngB for some 7y > 0.

(i) X; € R™ is a nonempty, closed, and convex set for i =
1,...,0.

(iii) For all x € X, + 1oS we have E[f f(x,w)|x] =

(iv) For all x € X, + 1S we have E[|| f(x,w) —
|x] < v? for some v > 0.

f().
F&) P

We introduce a variance-reduced randomized block-
coordinate zeroth-order scheme presented by Algorithm 1.
To this end, we define a zeroth-order gradient estimate of
f(xp,wj i) as follows.

& P+ 0y W) = F (0w )0k
llvg.kllm

9n (Xka Vj ks wj,k)

Intuitively, g,(Xg,vj %, wjk) generates a gradient estimate
by employing sampled function evaluations f (xk,wj k) and
f (Xk + 5,1, wm) in short, the zeroth-order oracle, given an
x and a perturbation vector v; j, produces two evaluations,
ie. f(xk,wj_’k) and f(xk + vj K, wj k). We then employ a
mini-batch approximation of this gradient estimate within
a block coordinate (BC) structure. We formally define the
stochastic errors emergent from the randomized BC scheme.

Ny we define
(10)

(1)
12)

Definition 3. Forall k>0 and j =1,...,

ek = Vi (xu,wjk) — V fo(Xk),
Osk = 9y (Xn, Vit W) — V fiy (X, k),
8j.k = DU g (X, Vjokes W) ks Tk) — G (Xbes 0k, Wik
Nk LAY
where ¢ £ Zut, g, 2 LT NS Zgt,
and we define U, € R"*"™ for K € {1 ,b} such that
[Ui,...,Uy) =1, and 1,, denotes the n. xn zdentity matrix.

The history of Algorithm 1 at iteration £ is defined as

({lt} U (ij:tl{wj,t» vjﬁ)) :

We impose the following independence requirement on
wj k, 4k, and 4. Recall that both v; ;, and 7, are user-defined
so this is a mild requirement.

fk—U for k > 1.

Assumption 2 (Independence ). Random samples w; i, v; 1.,
and iy, are generated independent of each other for all k > 0
and 1 < j < Ng.

We now analyze the bias and moment properties of three
crucial error sequences. The proof of this result is available
in the extended version of this work [19].

Lemma 3 (Bias and moment properties of e¢,J, and 6).
Consider Definition 3. Let Assumptions 1 and 2 hold. The
following hold almost surely for £ > 0 and Ny > 1.

@) E[ej,k | ]:k] = E[ej,k ‘ ]:k] = E[(Sj’k | ]:k} = 0 almost
surely for all j =1,..., Ny.



Algorithm 1 VR-RB-Z0: Variance reduced projected randomized block zeroth-order method

input: Given x() € X, stepsize v > 0, smoothing parameter 77 > 0O, mini-batch sequence { N, }, and an integer R randomly selected from { [AK], ..., K} using a discrete uniform distribution
fork =0,1,...,K —1do
(i) Generate a random mini-batch Vi k e€enSforj=1,..., N
(ii) Generate a discrete uniform random variable i from {1,...,b}
n(Flogtog g ) —Floeg g ) ol
(iii) Compute a mini-batch of zeroth-order gradient estimates for j = 1, ..., N as gn (xk, Vjks Wik ik) = H YAl
vkl

(iv) Evaluate the mini-batch inexact zeroth-order gradient. 90, Ny, i (x) =

N
50 o Cegeov k@ ko ik

Ny
) Oy, [x(}) —vay Ny i (X)) | it Q= i,

(v) Update ;s follows. ;") | := (i)l k Nk

=, i i A .

end for

Return x

2

2,2
(i) Efllex]® | Fr] < 2, El6sl? | Fi] < -, and

%N
2 A\ 2
BlIsI? | 7] < 25070 (54 rg+ (£)) ) amon

surely where f = sup,c v ,s ().
IV. CONVERGENCE AND RATE ANALYSIS

In this section, we analyze the rate and complexity guaran-
tees for the proposed zeroth-order randomized scheme. The
reader may note that in the proposed block-coordinate frame-
work, the ith block is randomly selected. If this randomly
selected block is denoted by 7 at the kth epoch, then a
projected (inexact and smoothed) gradient step is taken with
respect to this block, i.e.

iy o= Ty [

while xfg 4)_1 = x,(j ) for j # ir. The next lemma shows that
this step can be recast as a projected gradient step for the
entire vector x with respect to the set X'. Similar results have
been proven in [6], [12], [24].

- VQW,Nk,i(Xk)} , where i = i,

Lemma 4. Consider Definition 3 and Algorithm 1. Then the
update rule of xi, can be compactly characterized as

Xk4+1 = Iy [Xk — b_l’y (Vf,,(xk) +ep + 0, + (Sk)] .

Proof. Invoking the definition of U;, and the Cartesian
structure of &X', from Algorithm 1 we can write

X1 = W (X — YUi, G vy i (X8)] - (13)

Summing relations (10), (11), and (12) we have for all £ > 0
and j =1,..., Ny that

ejk + 05k + 656 = Ui, gy (X, vj e, Wi ke, k) — V f (%)
Summing over j and dividing by N, we obtain for £ > 0

N .
Z]:Al 9n (Xka Vjks Wy ks Zk)

er + 0k + 6 = bU;, N — V fn(xk)
k

= bU, g, Ny in (Xk) — V [ (Xi)-

From this relation and (13), we obtain the result. O

Next, we derive a bound on the residual |G, /- (xx)]*.

Lemma 5. Let Assumption 1 hold. Consider Definition (3).
Suppose xy, is generated by Algorithm 1 where v € (0, nbgo)
for n > 0. Then for all k > 0 we have

(1 252) 3G Ca0)I” < Folos) — oo

+ (17%)g|\ek+0k+5kn2. (14)

Proof. From Lemma 1 (iv), the gradient mapping Vf,, is

Lipschitz continuous with the parameter L, = ”TL]". From

the descent lemma,
Fo(peg1) < Fo(xp) + Vo (x) T (k41 — %)
Ly 2
+ Stk — Xkl
= fu(xk) + (Vfo(xi) + ex + O + k)" (X1 — Xu)
— (ex + O + 00) T (X1 — %) + 5 X1 — xi ]2 (15)

Invoking the properties of the FEuclidean projection
and the Cartesian structure of X, we have (x; —
b1y (Vfy (k) + ex + Ok + 0k) — Xpr1) " (3% —Xp41) < 0.
This implies that
(Vi) + e + 0, + 0k) T (Xip1 — )
< =2l — x|

(16)

In addition, we may also express (e + 0 + 6k)T (Xpt1 —
xy,) as follows.

—(ex + 0k + 1) (Xpp1 — xi)

< gpller + 0k + 0l + 2 lIxper — x24T

Combining the inequalities (15), (16), and (17) we obtain
Falxin) < Foloxi) + (=2 + 5 ) s =l
+ %Hek + 0y, + 5k||2~
From Definition 2 we obtain
So(Kpt1)
< b Ly o2
>~ f’n(xk) + <_ﬂ + 7) bz
+ e + 0k + 0kl
. 2
= fn(xx) — (1 - Lﬁ) % HGmb/n,(Xmek + 0, + 5k)H
+ & llex + 6k + 0k

~ 2
Gop/y Xk, en + 0p + 5k)H

Using Lemma 2 and by the requirement that v < L%,
L, 2
Falxisn) < Fy(o) = (1= 52) 5 [ G (0|

+ (5 + (1= 52) %) llew + 0+ 00l1%. (18)

From the preceding relation, we obtain the result. O

We now present an almost sure convergence guarantee for
the sequence generated by Algorithm 1 by relying on the
Robbins-Siegmund Lemma.



Proposition 3 (Asymptotic guarantees for Alg. 1). Con-
sider Algorithm 1. Let Assumptions I and 2 hold and Ny, =
(k+ 1) for k > 0 and 6 > 0. Then the following hold.
(i) ”Gn,b/'y(xkt)n %) 0.

(ii) Every limit point of {xy} lies in the set of 2n-Clarke
stationary points of (1) in an almost sure sense.

Proof. Let f, £ inf,ecx f,(x). By taking conditional expec-
tations on the both sides of the inequality (14), we have

[(fn(xerrl | Fl

< (falow) = £7) - (1 ~5) 5 G )|
+(2lb+ ( LZW> %)E H6k+9k+5k”2 ‘.Fk]
< (alxi) = 1) = (1= 52)  1Ga/n x)|I”

19)

By the Robbins-Siegmund Lemma, the summability of
llex + Ok + 6k||* (which holds by choice of Nj), and the
nonnegativity of f,(xx) — f, we have that {(f,(xx) —

[} is convergent as. and Y .7, HGn,b/W(X;@)H2 < o
almost surely. It remains to show that with probability one,
lGyp/y(xk)|l — 0 as k — oo. We proceed by contra-
diction. Suppose for w € Q1 C Q and p(Q;) > 0 (ie.

. . . keK(w)

with finite probability), |G,/ (xk)[| —— €(w) > 0
where K(w) is a random subsequence. Consequently, for
every w € ()3 and 6 > 0, there exists K (w) such that
k> K(w), |Gyl = # Consequently, we have
that 37, oo Gy (i)l = Fpercqw) 1G04 G0)IP >
D hek(w) k> K(w) IGn A (x0)II> = oo with finite prob-
ability. But this leads to a contradiction, implying that

2 a.s.
G/ (X1) ] 0

(ii) Recall from Proposition 2 that if x satisfies G/~ (x) =
0, it is a 27-Clarke stationary point of (1), i.e. 0 € 9o f(x)+
Nx(x). Since almost every limit point of {x;} satisfies

Gop/~(x) = 0, the result follows. O

Remark 1. The condition Ny, := (k + 1)'*% with § > 0 in
Prop. 3 is necessary to ensure that the last term in (19) is
summable.

We now conclude this section with a formal rate statement
and complexity guarantees in terms of projection steps on X&;
as well as sampled function evaluations.

Theorem 1 (Rate and complexity statements for Alg. 1).
Consider Algorithm 1. Let Assumptions 1 and 2 hold and
N =1+ %] for k > 0 and for some a > 0.

(i) For v < nbi’o and all K > {25 with £ £ [AK] we have

E [[IGy - (xR)IIP] < ((1 — ”f—;;”) 2(1— /\)K>_1
(E[f(x0)] — f* + 2Lon + 302 ((3b — 2) (v* + L)
+3(b — 1)f2) (0.5 — ln(/\))nZ_“') ,

(ii) Suppose v = 5 L . Let € > 0 be an arbitrary scalar and
K. be such that E [||Gn7b/,y(xR)|H < e. Then:

(ii-1) The total number of projection steps on component sets
is K. = O (p~itla=2se-2),

(ii-2) The total sample complexity is O (17*“*”2[“*2]+ 6*4).

Proof. (i) Consider the inequality of Lemma 2. Summing

from k = /,. ,K — 1 where £ = [MK] we have
1- nLr(;w b Z ||Gn b/v(Xk H2 < fn(XZ) fn(XK)+
1= nsz(;ﬁ 1 Z Hek + 0 + 01 ||*. Taking expectations

on both sides, we obtain

(1 282) H(K = O |Gy (xn)|1?] <

K-—1
(1 E) 2 ST E [llew + 0 + 64]2) +E fy(x0)] — f;.
k=/{

The last term on the right can be expressed as
E [fy(x0)] = f = E[f(xe) + fr(xe) — f(x0)] =
— [T =E[fx)] = f*+ Bl fy(xe) — f(xe)l] +

Lemma 1(iii)
Elf(xo)] = f* + 2Lon.

From Lemma 3 (ii), we obtain

W+

E [llex + 0k + 6klI*] < 3E [E [|lexl|® + 10 ]1* + [16x]1* | Fi]]
2 2 2\ 2
< 3g” y SLgnt y en’01) <V)§ + 13+ (£) )
N\ 2
g <<3bn“‘> +(3b—2)L2 +3(b— 1) (g) )

From the preceding relations we obtain

| /\

E (G, er)IP] < (1 2) 25— 0) " x

(E[f(xe)] = f*+2Lon + ((3b — 2)v* + (3b — 2) Lin?
K-—1

36— 1)(7)?) ,73’;V>
k=¢

< ((1- %) s -0) >

(E[f(xe)] = f* +2Lon + ((3b — 2)v* + (3b — 2) Lin?
K-—1

+30-1)()?) Y H) ,
k=¢

where the last inequality is a consequence of N :=
1+ k"‘l} > ﬂ Recall that K > 25 implies { < K — 1

and Zk =¢ k+1 <05+In (/\N+1) < 0.5 —1In()). Further,
K —{¢> K — MK = (1 - )\)K implying that

E [ Goan(xr)I?] < (1 222) 31 - )\)K)_l y
(E[f(x¢)] = f* 4 2Lon + 3n* ((3b — 2)v° + (3b — 2) Lgn”
+3(b — 1)f2) (0.5 — 1n(A))n“—2) .



(ii) To show (ii-1), using the relation in part (i) and substi-

tuting v := 2220 we obtain

E IG5 (xr)[I7] < (16nLo) (n(1 = A K) ™" x

(E[f(x¢)] = f* 4 2Lon + 3n* ((3b — 2)v° + (3b — 2) Lgn”
+3(b — 1)f2) (0.5 — ln()\))na_z) :

From Jensen’s inequality, it follows that

E[|Gya/r(xR)] < }/o (y=+la=2l+ K-1) and thus,

we have K. = O (p~1*la=2+¢72). Next, we show (ii-2).
The total sample complexity of upper-level is as follows.

2
Shco Nk = Ypso[1+ 2] < O(K) + O(5¢)
<0 <n—a—2+2[a—2]+€—4) .
O

Remark 2. (i) For 0 < a < 2, we attain the optimal
iteration complexity of O (n_le_g) and a sample complexity
of O (77_26_4) in terms of dependence of n when a = 0. (ii)
When a > 2, these statements change to O (1]“’3672) and
O (77“*66’4), respectively. Within this range, for a := 6 we
obtain a sample complexity of O (6*4) that is invariant in
terms of m, but a small n leads to a large batch size making
the implementation of the scheme less appealing. Exploring
these trade-offs remains a future direction to our research.
(iii) Our results are comparable to those obtained in [25],
which uses neither smoothing nor a zeroth-order framework.

V. CONCLUDING REMARKS

While a significant amount of prior research has analyzed
nonsmooth and nonconvex optimization problems, much of
this effort has relied on either the imposition of structural
assumptions on the problem or required weak convexity,
rather than general nonconvexity. Little research, if any,
is available in stochastic regimes to contend with general
nonconvex and nonsmooth optimization problems. To this
end, we develop a randomized smoothing framework which
allows for claiming that a stationary point of the n-smoothed
problem is a 2n-stationary point for the original problem in
the Clarke sense. By utilizing a suitable residual function
that provides a metric for stationarity for the smoothed
problem, we present a zeroth-order framework reliant on
utilizing sampled function evaluations implemented in a
block-structured regime. In this setting, we make two sets
of contributions for the sequence generated by the proposed
scheme. (i) The residual function of the smoothed problem
tends to zero almost surely along the generated sequence; (ii)
To compute an x that ensures that the expected norm of the
residual of the n-smoothed problem is within €, we proceed
to show that no more than O(n~te~?2) projection steps and
@) (77*26’4) function evaluations are required.
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