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ABSTRACT
While guided wave structural health monitoring (SHM) is

widely researched for ensuring safety, estimating performance
deterioration, and detecting damage in structures, it experiences
setbacks in accuracy due to varying environmental, sensor, and
material factors. To combat these challenges, environmentally
variable guided wave data is often stretched with temperature
compensation methods, such as the scale transform and optimal
signal stretch, to match a baseline signal and enable accurate
damage detection. Yet, these methods fail for large environmen-
tal changes. This paper addresses this challenge by demonstrat-
ing a machine learning method to predict stretch factors. This
is accomplished with feed-forward neural networks that approx-
imate the complex velocity change function. We demonstrate that
our machine learning approach outperforms the prior art on sim-
ulated Lamb wave data and is robust with extreme velocity vari-
ations. While our machine learning models do not conduct tem-
perature compensation, their accurate stretch factor predictions
serve as a proof of concept that a better model is plausible.

1 INTRODUCTION
Structures, such as planes or buildings, are susceptible to de-

fects and damage over time. The goal of structural health mon-
itoring is to monitor these structures and the damage evolution
over time [1]. To maintain the safety of individuals who use and
interact with these structures, research has been conducted to cre-
ate structural health monitoring (SHM) systems and techniques
to perform in situ nondestructive evaluation (NDE) [2].

Guided wave ultrasonics (GWU) has become an attractive
monitoring technique due to its ability for damage diagnosis at
large scales in plate structures [3, 4]. GWU is common in NDE
due to its long range diagnostic capabilities with limited atten-
uation [5–7]. As illustrated in Figure 1, a transmitting sensor

FIGURE 1: ILLUSTRATION OF ULTRASONIC GUIDED
WAVES PROPAGATING THROUGH A MATERIAL FROM A
TRANSMITTING SENSOR AND READ AT A RECEIVING
SENSOR

creates ultrasound waves that propagate through a material and
reflects off surfaces and damage within the material. A receiving
sensor then measures the signal and saves the data to memory in
a computer. Advanced SHM algorithms can be applied to the re-
ceived data and perform numerous NDE oriented tasks, such as
damage detection [8].

Guided wave SHM has setbacks due to environmental, sen-
sor, and material factors. One of the most notable challenges
is changes in temperature [8, 9]. Temperature predominantly
changes the velocity of the ultrasonic signal [5] and makes the
prediction of damage and other features challenging [3]. Guided
waves are often more sensitive to changes in temperature than
material damage [5, 8]. To combat this sensitivity, environmen-
tally variable sensor data can be transformed to match a baseline
signal and enable accurate damage detection [9, 10]. Such meth-
ods for performing temperature compensation on guided waves
include the scale transform [5] and optimal signal stretch [9–11]
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methods. These techniques stretch the guided wave data to em-
ulate a change in velocity. By identifying the stretch factor that
minimizes the error between the two signals, the methods can
identify the velocity change between them. It has been shown
that with proper baseline subtraction with temperature compen-
sation, damage detection accuracy is greatly improved [5, 9–11].

The state-of-the-art in stretch based temperature compensa-
tion is the scale transform due to its quick computation speed
when compared to other methods [5]. The scale transform oper-
ates on signals in the stretch factor domain. The scale transform
assumes a time-stretch has occurred between two signals due to
changes in velocity, resulting from variations in temperatures [5].
Yet, as the stretch factors reach extreme values, performance de-
clines. This is because a stretch only approximates a velocity
change for low stretch factors. This leads to inaccurate velocity
estimates and reduces damage detection performance [3].

Note that the definition of an “extreme” stretch factor de-
pends on many conditions, including the signal bandwidth, cen-
ter frequency, travel distance, and number of reflections (i.e., the
diffuseness) of the waves [12]. As a result, bounds of perfor-
mance can be difficult to estimate. In addition, temperature also
effects the attenuation and dispersion of Lamb waves [5]. These
effects are not accounted for in temperature compensation mod-
els and provide more mismatch.

Such limitations call for a new approach. In this paper, we
utilize machine learning due to its high success rate in modeling
complex functional relationship, including in NDE [13]. Hence,
machine learning enables us to process Lamb waves despite their
complex, mutli-modal, and dispersive wave behavior. Machine
learning algorithms have the capability to learn features from
training data, make accurate predictions, and see patterns in new
data [14, 15]. Sufficiently large data sets are required but is at-
tainable with mass consumption of sensor data over long periods
of time and through simulations. Modern computers have the
capability to hold large data sets in memory and to run machine
learning algorithms.

Machine learning has been successfully used in SHM on
ultrasonic guided waves to detect and predict damage [16].
With guided waves, specifically, machine learning models have
demonstrated a capability to achieve fast and automated damage
detection with accuracies of 90 percent or higher, achieving per-
formance higher than other state-of-the-art techniques [15]. To
date, most machine learning algorithms have focused on dam-
age detection and damage localization problems. Such research
implies that machine learning can have a reach into other SHM
domains such as temperature compensation.

Due to the high variability in ultrasonic waves, machine
learning techniques can be successfully used to predict desired
material features. The neural network, a machine learning
model, can tackle such a task through its ability to act as a univer-
sal approximator [17]. Prior unknown information is hidden in
data and the neural network can capture this information through

training [17]. Training is done over a large data set and known
labels, the desired output values. After many iterations, the neu-
ral network model is able to predict the desired labels. There
are many different models each having applications for different
problems [17].

To estimate velocity variations at extreme values, we created
two machine learning models. The labels are defined as changes
to the ultrasound wave velocity resulted from changes in temper-
ature. The models created for this work are both feed-forward
neural networks (FFNN). We use FFNNs due to their ability
to accurately approximate complex, continuous functions [17].
Note that this work only predicts stretch factors / velocity esti-
mates. It does not perform temperature compensation, which is
a topic for future work. If a machine learning model can more
accurately predict stretch factors than the prior art, it can be con-
cluded that a better machine learning inspired temperature model
is plausible.

In Section 2 a brief background of neural networks is given
to aid in the scope and context of this work. In Section 3 we
describe our simulation data, neural network frameworks and ar-
chitecture, and training algorithms. We then present our stretch
factor prediction results compared to the scale transform prior art
in Section 4.

2 BACKGROUND OF NEURAL NETWORKS
Machine learning is a class of methods for automated data

analysis and model creation. Machine learning is based on the
artificial intelligence philosophy that computer systems can learn
and identify patterns in data without human intervention [18].
Machine learning models have been better interpreters of data
than humans. Neural Networks (NN) are a subset of machine
learning and with numerous layers for learning. Neural networks
with many layers form the basis for deep learning.

Neural networks are loosely inspired by neurons from the
human brain in which each neuron holds data and sends infor-
mation to numerous other neurons in a directed graph architec-

FIGURE 2: NEURAL NETWORK DURING LEARNING
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ture [17]. FFNNs are a type of neural network where connections
between nodes do not form a cycle. FFNNs can have numerous
layers consisting of an input layer, one or more hidden layers,
and an output layer. In the case of FFNNs, each neuron from
a layer attaches to each neuron of the next layer by connections
called weights [17].

f (b+
n

∑
i=1

xiyi) (1)

Equation 1 shows each neuron’s value, starting with the sec-
ond layer onward, which is the sum of a bias b and the summa-
tion of the products of all the previous neurons values xi and their
respective connecting weights wi. The resulting value is then
passed through an activation function, f (·), which conforms the
result to be within a range of desired values. Each neuron has its
own set of weights and bias that connect to it from the previous
layer. Neuron values can be passed through other functions like
batch normalization, if needed. Neurons follow this computation
and connection pattern until a final set of one or more value(s) is
collected at the output layer. The first layer of a FFNN takes in
input data. FFNNs can have numerous layers and use different
activation functions to fit a problem’s needs [17].

In order to characterize a problem’s high dimensional be-
havior to output accurate predictions, the process of training
must occur on an FFNN. Training is the process of repeatedly
inputting data, from a designated dataset, into the FFNN and
constantly modifying biases and weights of all neurons through
a method called backpropagation [19]. Backpropagation works
by computing the gradient of a chosen loss function by compar-
ing correct output values, called labels, to the predictions of the
FFNN and corrects the values of the respective weights and bi-
ases through gradient descent [20]. Stochastic gradient descent
is done on subsets of the input data, called batches, to increase
efficiency of learning, whereas, gradient descent uses the entire
dataset [21]. Stochastic gradient descent makes approximations
for the new values of weights and biases, but over many iterations
does not sacrifice efficiency [20, 21].

The process of training is illustrated in Figure 2, where des-
ignated training dataset values are passed into the FFNN. All
neuron values are computed for each layer, passing through the
computations from (1). The output(s) are collected and com-
pared to labels, the loss is calculated with a loss function, and
weights and biases of the model are updated using training,
which includes backpropagation [22]. This process is repeated
until the predictions reach a desired accuracy [22]. The pro-
cesses just described have a powerful effect of modeling high
dimensional system behavior to high accuracy, even on data not
seen before as patterns within data shape the NN function. Gra-
dient descent brings the NN weight and bias values to a subspace

FIGURE 3: NEURAL NETWORK DURING TRAINING,
TESTING, AND USE

defining a high dimensional local minima [23].
Once training is completed, validation is applied by showing

the FFNN new data it has not seen before. The FFNN model pa-
rameters are repeatedly tweaked until the validation data predic-
tions are desirable. Lastly a dataset, separate from training and
validation, is used to test to see if the model’s outputs still per-
form well through a process called testing. If desirable outputs
are achieved from testing, it can be accepted that the FFNN per-
forms well [24]. The FFNN can then be used in the field to make
accurate predictions for the task assigned. The machine learning
tasks described here are a form of supervised learning [25].

The flow of training, testing, and use is illustrated in Fig-
ure 3. Separate data from learning is passed into the model and
a prediction is collected. If training is conducted, the process of
updating model parameters and training will be done until pre-
dictions are desirable. Otherwise, FFNN outputs can be collected
for testing or use in the field.

3 METHODS
This section discusses the data we generate to estimate ve-

locity changes as well as the neural networks we train with this
data.

3.1 DATA
Our dataset has 50,000 simulated ultrasonic guided Lamb

wave pairs, created from the Rayleigh-Lamb equation. Each pair
of waves contains a baseline and a “stretched” baseline with a
different velocity, as seen in Figure 4. Lamb waves propagate in
solid plates. They are elastic waves whose motion lies with the
particles in the material. Each guided wave signal is 2,500 data
points, representing 2.5ms of data. The velocity stretch factor, s,

3 Copyright © 2021 by ASME



FIGURE 4: INPUT DATA TO FFNN

is ranged from 0.5 to 1.5 times the baseline wavenumber

knew = sk (2)

which can be understood as a change in velocity based on

k =
ω

v
(3)

where k is wavenumber, v is velocity, and ω is angular frequency.
These velocity stretch factors were saved as labels (the output of
the FFNN). The first 40,000 measurements were used for train-
ing, and the last 10,000 were used for testing.

The baseline signals wavenumber is k and the “stretched”
signals wavenumber is sk. This change in velocity represents
how changing temperatures change a signal in a material [5]. The
difference between the two signals has more complexity than a
time stretch done by the scale transform, as seen in Figure 4. The
change in velocity does indeed cause the signal to arrive later, but
the late arrival also accounts for attenuation. The changing veloc-
ity lastly affects Lamb wave dispersion, seen in Figure 4, where
the time-varying frequency behavior changes after the velocity
change [5].

The two excitations in each signal account for the S0 (ze-
roth symmetric) mode and A0 (zeroth asymmetic) mode. As
ultrasound waves are excited in a plate, different modes result,
each having the same frequency and a fixed phase relation. The
modes are characterized as sinusoidal motion [26]. The simula-
tions were designed to have limited reflections, which makes the
stretch based temperature compensation methods less effective,
as they have superior performance in diffuse wavefields.

3.2 FFNN MODELS
The machine learning framework Pytorch was used to train

the machine learning task of predicting velocity stretch factors
in ultrasonic wave measurements of a plate with a training al-
gorithm and two FFNN models. The first model was a 3-layer
model with tanh activation functions, as seen in Figure 5a. The
second model omits the activation functions and instead applies
a natural log to the input data and an exponential operation af-
ter hidden layers, as seen in Figure 5b. Both approaches were
constructed the same, besides the activation function, for direct
comparison. The model structure and learning algorithms were
influenced using tutorials from [27].

The tanh model was used as it is in the standard construc-
tion of a FFNN [28]. A second model was chosen so that data
could mix in the logarithm space, where multiplication becomes
addition.

log(ab) = log(a)+ log(b) . (4)

The mixture of logarithm and exponential operation enables the
neural network to learn how to compute dot products. We chose
this framework since the dot product is used for many algorithms
for signal comparison. It is more difficult for nonlinearities, like
activation functions, to compute the solution to the inner prod-
ucts alone [29]. The data was normalized between the largest
and smallest value before entering as logarithm cannot take zero
or negative numbers.

The models’ input was of size 5000, the hidden layer was of
size 2500, and the output was of size 1. The input size equates to
each pair concatenated as each was of size 2500. The single out-
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(a)

(b)

FIGURE 5: (a) TANH FFNN (b) LOGARITHM FFNN

put is the stretch factor prediction. Each model used 500 epochs,
meaning they ran through the whole data for each epoch. They
had a batch size of 100, as stochastic gradient descent is used.
They used a mean squared error loss function, and a learning
rate of 10−5, which is how large steps are taken during stochastic
gradient descent, seen in Table 1.

Batch normalization was used as seen in Figures 5a and 5b
to standardize each batch, creating consistent mean and variance,
allowing for correct predictions [30]. Batch normalization is a
technique that aims at improving training by stabilizing the dis-
tribution of layer inputs [30]. Introducing 1D batch normaliza-
tion allowed for re-centering and re-scaling adjustment of the in-
put layer, exactly what each model needed to function. It is be-
lieved that batch normalization works by decreasing internal co-
variate shift, which has a negative impact on training [30]. Over-
all, the models would not train properly without batch normal-
ization because each training batch was very different from each
other. Without it, the models predictions would converge to the
average and “central prediction” as each batch moves the model
weights in different directions, making the correct predictions a
moving target.

4 RESULTS AND DISCUSSION
The testing data, separate from the training data (note: our

setup had no validation step), was applied to both FFNN models
as well as with the scale transform to estimate the stretch factors

Training Specifications
Model Feed Forward
Epochs 500
Batch Size 100
Inputs 50,000
Input Size 5,000
Hidden Dimension 2,500
Output Size 1
Criterion Mean Squared Error Loss
Learning Rate 1.00 * 10-5

TABLE 1: NEURAL NETWORK TRAINING SPECIFICA-
TIONS

and compare results. Figure 6a and figure 6b plot the FFNN out-
put predictions compared to the stretch factor labels. The figures
display a 100 point sample, the values are not related to each
other and are random stretch factor values. The values are con-
nected for improving the visual comparisons. It can be seen that
both models did well, but the log model performed better in Fig-
ure 6b. An example, among others, is the left most prediction,
where the log model performs significantly better.

MSE =
1
n

n

∑
i=1

(Xi−Yi)
2 (5)

Mean squared error (MSE) was used as a measure of per-
formance across the models. MSE measures the average squared
error and corresponds to the expected value of the squared error
loss [31]. MSE is used to evaluate how close the models’ predic-
tions were to the actual values. As it is the second moment of the
error, it incorporates the variance and bias of the estimator. With
this, MSE gives the spread of the values and how far they are
from the true values [31]. In (5), n refers to the size of the testing
data. X and Y refer to the FFNN prediction and label values.

From our predictions, the scale transform MSE was 0.0525,
the standard FFNN MSE was 0.0084, and the logarithm FFNN
MSE was 0.0037, shown in Table 2. The log FFNN model MSE
overcame the scale transform MSE by a factor of 14.2 and the
tanh FFNN model MSE by a factor of 2.25. It is believed that the
natural logarithm performs better because the logarithm transfor-
mation changes multiplication to addition and enables dot prod-
ucts to be computed with a neural network, from Equation 4 [29].
With further experimentation with hyperparameters, both mod-
els’ performance can be optimized, yielding even higher predic-
tion accuracy [32].

Figure 7 displays the error between all three models’ predic-
tions and labels, the actual stretch factors. The error is defined
as the absolute value of the difference of the label and prediction
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(a)

(b)

FIGURE 6: 100 POINT SAMPLE OF (a) TANH and (b) LOGARITHM MODEL OUTPUT OUTPUT VS LABELS

values

Error = |label− prediction| (6)

since the stretch factors already serve as percent difference in
velocity. It can be visibly seen in Figure 7 that scale transform
has the worst results and as stretch factors reach extreme val-
ues, moving away from 1.0, the error gets progressively worse.
That result is seen in all model errors but the worst with the scale

transform. The log model error maintains low error even at ex-
treme stretch factors. The scale transform has strange behavior
around the extreme stretch factor of 0.6.

It has been proven that the standard feed-forward multilayer
perceptron (MLP) with a single hidden layer can approximate
any continuous function to any degree of accuracy [29]. How-
ever, to achieve desired levels of accuracy, network sizes increase
dramatically with the complexity of the desired task. This ex-
plains why the machine learning models can accurately predict
the stretch factor and why the tanh model does not perform as
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Model MSE
Scale Transform 0.0525
Standard machine learning Model 0.0084
Log machine learning Model 0.0037

TABLE 2: MSE CALCULATIONS FROM EACH MODEL

FIGURE 7: ERROR PLOT OF EACH MODEL

well as the log model. The problem at hand is complex, how-
ever, the machine learning models are able to learn the behavior.

It is believed that the natural logarithm model worked bet-
ter due to the very nature of mathematical rules governing log-
arithms. The task involved in this research requires the compu-
tation of the Taylor series expansion of inner products. Trans-
forming the non-linear function computation to the logarithm
space changes multiplication to addition (4), this greatly eases
the computation in learning, leading to a higher model perfor-
mance [29]. Using ex allows the model to exit the logarithm
space after successful model parameter assignments [29]. Using
logarithm forces an answer into the neural network [29]. FFNNs
are not well suited to some non-linear approximations, includ-
ing multiplication. It has been shown that logarithmic neural
network architectures are better suited to non-linear function ap-
proximations, outperforming the MLP [29]. This intuition aids to
explain why the natural log model outperforms the tanh model.

5 CONCLUSION
In order to achieve accurate damage detection in NDE, the

full operation pipeline must be complete and without faults. This
paper discussed the limitations in accuracy due to large variations
in signal velocity in guided wave ultrasonics, causing tempera-
ture compensation techniques to fail. Our machine learning tech-
niques, using a log-based FFNN, outperformed the prior art scale

transform temperature compensation approach. With the success
of the machine learning model in predicting stretch factors, it
is likely that a better machine learning approach to temperature
compensation exists.
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[17] Svozil, D., Kvasnička, V., and Pospı́chal, J., 1997. “In-
troduction to multi-layer feed-forward neural networks”.
Chemometrics and Intelligent Laboratory Systems, 39(1),
11, pp. 43–62.

[18] Jordan, M. I., and Mitchell, T. M., 2015. “Machine
learning: Trends, perspectives, and prospects”. Science,
349(6245), 7, pp. 255–260.

[19] Günther, F., and Fritsch, S., 2010. “neuralnet: Training of
Neural Networks”. The R Journal, 2(1), pp. 30–38.

[20] Ruder, S., 2016. “An overview of gradient descent opti-
mization algorithms”. CoRR, abs/1609.0, 9.

[21] Bottou, L., 2010. “Large-scale machine learning with
stochastic gradient descent”. Proceedings of COMP-
STAT 2010 - 19th International Conference on Computa-
tional Statistics, Keynote, Invited and Contributed Papers,
pp. 177–186.

[22] Hecht-Nielsen, R., 1992. Theory of the Backpropagation
Neural Network. Academic Press, 1.

[23] Sarle, W. S., 1994. “Neural Networks and Statistical
Models”. In Proceedings of the Nineteenth Annual SAS
Users Group International Conference, SAS Institute Inc.,
pp. 1538–1550.

[24] Bishop, C. M., 1994. “Novelty detection and neural net-
work validation”. IEE Proceedings: Vision, Image and Sig-
nal Processing, 141(4), 8, pp. 217–222.

[25] Goldberg, X., 2009. “Introduction to semi-supervised
learning”. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 6, 6, pp. 1–116.

[26] Su, Z., Ye, L., and Lu, Y., 2006. “Guided Lamb waves
for identification of damage in composite structures: A

review”. Journal of Sound and Vibration, 295(3-5), 8,
pp. 753–780.

[27] Ritchie Ng, J. F., 2019. “Deep Learning Wizard”.
https://zenodo.org/record/2644957, 4.

[28] Sibi, P., Allwyn Jones, S., and Siddarth, P., 2013. “Analy-
sis of different activation functions using back propagation
neural networks”. Journal of Theoretical and Applied In-
formation Technology, 47(3), pp. 1344–1348.

[29] Hines, J. W., 1996. “A Logarithmic Neural Network Archi-
tecture For Pra Approximation”. Proceedings of the 1996
American Nuclear Society, International Topical Meeting
on Nuclear Plant Instrumentation, Control and Human-
Machine Interface Technologies, 1, 2, pp. 235–241.

[30] Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A., 2018.
“How does batch normalization help optimization?”. Ad-
vances in Neural Information Processing Systems, 2018-
Decem, 5, pp. 2483–2493.

[31] Wallach, D., and Goffinet, B., 1989. “Mean squared er-
ror of prediction as a criterion for evaluating and compar-
ing system models”. Ecological Modelling, 44(3-4), 1,
pp. 299–306.

[32] Feurer, M., and Hutter, F., 2019. Hyperparameter Opti-
mization. Springer International Publishing.

8 Copyright © 2021 by ASME


