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Abstract—While a transformer’s inductance matrix is reason-
ably constant with respect to drive and frequency (up until
self-resonance) and can be measured using a network analyzer,
its losses are nonlinear functions of frequency and therefore
difficult to characterize, especially at MHz frequencies and
above. This paper presents a resonant approach to measuring
a transformer’s losses, including the coupled effects of both
windings, at a specific operating point. We further show that, to
an acceptable error, the results can be extrapolated to different
operating points. The method is experimentally validated by
the characterization of several transformers whose losses are
confirmed by hand calculation, finite element analysis simulation,
and calorimetric measurement. This work enables accurate and
full characterization of transformer losses in the high frequency
regime.

Index Terms—High Frequency Transformer, Core Loss, Cop-
per Loss

I. INTRODUCTION

Many power converters rely on transformers for impedance
scaling and isolation. Such transformers are among the largest
and sometimes lossiest elements in a power converter. As
such, it is important to properly characterize their losses which
include both copper and core loss. Copper loss is regularly
treated as a resistive (linear) element. In the case of an N-
winding transformer, multiple windings have various lossy
interactions that must be captured by a resistance matrix [1]
with N(N + 1)/2 parameters. While somewhat complicated,
copper loss can be measured, in principle, with small-signal
measurements from instruments like network analyzers [2]-
[4]. By contrast, core loss is a nonlinear phenomenon that is
typically calculated using variations of the nonlinear Steinmetz
equation [5], [6]. As a result, low-drive network analyzer mea-
surements are inappropriate for capturing core loss at higher
(realistic) drive levels and hence the full loss characteristics
of the transformer. Large-signal loss can be measured directly
from the current and voltage at the transformer ports, but these
traditional IV measurements are not suitable because of the
extremely high phase accuracy needed to characterize high-
frequency, low-loss structures [7], [8]. As such, experimental
characterization of transformer losses is often absent from aca-
demic work and industry datasheets. Frequently, finite element
analysis [9]-[11] (ultimately model-based, not experimental)
or thermal measurements (both slow and prone to imprecision)
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are used as stand-ins for direct electrical measurements of
transformer losses.

A more suitable approach for inductors is to use a series
resonant circuit to identify the lossy elements in a magnetic
component [12]. In this approach, a high-Q capacitor is
selected to resonate with the device under test. At resonance,
the ratio of output to input voltage magnitudes (accurately
measurable at high frequency) is equal to the quality factor
of the system, which can be used to calculate the losses.
Various refinements of this fundamental approach have been
used to calculate the losses of magnetic cores and components
[7], [13]-[16]. Most significantly, [16] extended this method
to characterize the resistance matrix of air core transform-
ers. This article extends this work further by applying it to
transformers with non-linear loss elements, accounting for
parasitics, and formalizing the method.

This work presents a generalizable method of using a series
resonant circuit to fully characterize a transformer’s losses,
for both cored and air-core structures. We further argue that a
resistance matrix description, usually only applicable to linear
systems, sometimes may be used to extrapolate and predict
loss at other usefully-distinct operating points with acceptable
error. The full characterization approach is presented, and
various contributions to error are considered and accounted
for. A set of transformers are built and characterized using
this method, FEA simulation, and calorimetry. This approach
enables full and accurate characterization of transformers at
high frequency.

II. EXPERIMENTAL METHODOLOGY FOR MEASURING
TwoO-PORT RESISTANCE MATRICES

We propose the following methodology for determining the
resistance matrix of a two-port magnetic element. This method
uses a series resonant circuit, as described in [12], to measure
the effective series resistance of an inductive element. Multiple
open- and short-circuit measurements can be used to determine
the various parameters of the resistance matrix. We use another
series resonant test to isolate the core loss present in the
structure, using a modified version of the method presented
in [7]. By performing this suite of tests, we identify all of the
components of a transformer’s (large-signal) resistance matrix
and the effective core loss at a single operating point, allowing



full characterization of loss. Spreen [1] defines the loss in a
two-port transformer as follows:
| UV DR

P = §R11’Llll + §R222212 + §(Z112 + 7,122) (D)
Where the R terms represent true resistance values, originating
from conduction loss. Note that the original text of [1] uses R
to primary self-resistance, which we denote as R;1, instead us-
ing R; as the measured large-signal resistance on the primary
with the secondary opened. In an effort to characterize these
terms, we will evaluate the effective large-signal resistance in
several different test configurations, then isolate the resistance
matrix values by taking a core loss measurement. We will
express this core loss as a large-signal resistance at a particular
operating point: Reore = 2Pcore/12, . In the next section, we
will demonstrate that these resistances can also be used to
extrapolate losses at other operating points with reasonable
accuracy. For now, we note that only core loss is nonlinear.
Therefore, the constant operating point can be maintained by
ensuring that each test excites the same B field in the core.

First, consider driving the primary while opening the sec-
ondary winding, and resonating (by choosing C..;) with
the primary self inductance (Li; = L,, + L;;, where L,,
and L;; are the magnetizing and primary leakage inductance
respectively, both referred to the primary). Per (1), since
ip = 0, P = 1/2R1I? — i.e., the copper loss component
measured is simply a function of R;;. In a transformer with
core cross sectional area A., the peak B field, B can be
calculated based on the measurement current [:

V= NlACB()w = LMI1w (2)
Ly

By = 3

0= N, A (3)

The total loss measured, expressed as a large-signal resistance,
Ry, is thus:

1
Ry = F(IfRu +kfeBEVol) =
1
1
Rll + ﬁPcore = Rll + Rcore (4)
1

We choose to express core loss as a large-signal resistance,
Rcore, that is a function of 7, the primary excitation current.
Depending on the transformer under test, it may be more
convenient to express R, in terms of the secondary exciting
current, and consequently refer it to the primary in further
calculations.

To measure Ro5, we repeat the same process but open-
circuit the primary winding while measuring on the secondary.
The peak B field will be B= %. To maintain constant
B field in the core between this test and the last, Iy = %Il.
The calculated large signal resistance, Ry, will be a function
of Ry and P.,,.., where P,,,. is the same value as in the R,
test due to the constant B field requirement.

1 I
R2 — F(I§R22 -+ kfaBgVOD = R22 + TIQRCOTS (5)
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To identify the lossy interaction between the windings,
known in linear systems as the mutual resistance, the sec-
ondary is shorted and the primary is excited. This yields
an equivalent circuit as shown in Fig. Ic. We continue to
assume that inductive elements will dominate over resistive
ones, and that the secondary current will be in phase with
the primary (which occurs when the leakage inductances are
much smaller than the magnetizing inductance when all are
referred to the same side of the transformer). The capacitor
is now selected to resonate with the sum of the primary-
referred leakages (assuming Lj; >> (%)2.[/[2). B field is
now related to the magnetizing current and the secondary

leakage inductance, B= %I 1s- Thus the magnitude of the
.. . 2 .
exciting current will need to be I, = é—g% I;. Assuming

small secondary leakage inductance compared to magnetizing
inductance, the secondary current is —I 13%. Measuring the
effective resistance of this setup yields a resistance which is a
function of the core loss and all the elements of the resistance
matrix. We denote the large signal resistance in this test as
R1,, and the copper loss component as Ry, cy.

1
R

I2
(I125Rls,cu + kfaBgVOl) = Rls,cu + ITchore
i
(6)
Per [1], the resistive power loss in this case will be a function
of the self and mutual resistances:

1 Ni o N, 2 1 2
P, =-(R —V)°Roo —2—R12)I7. = =Ris eIy (7
2( 11+(N2) 22 i 12) 15, o ftscull @)
Thus, we can extract the mutual resistance from the measured
resistance values:

Rls

S

N
Ris = iﬁl(Rn + (F;)2R22 - Rls,cu) ®)

Note that if the leakage inductance is small relative to the
magnetizing inductance, the current necessary to maintain
constant B in the core may be an order of magnitude (or more)
larger in the mutual resistance measurement test. Depending
on the capabilities of the power amplifier used to generate the
resonant signal, this may be a limiting factor for testing, par-
ticularly for cored magnetics. Section IV presents an analysis
of several additional sources of error and possible solutions.
The final necessary task is to isolate core loss, such that
Ri1, Rag, and Rys ., can be extracted from (4), (5), and
(6) respectively. To measure core loss accurately, we use a
modified version of the method described in [7]. Similar to
the other tests described, this approach uses series resonance
to isolate the relevant loss. C,..s is chosen to resonate with
a turns ratio-modified version of the magnetizing inductance.
One terminal of the secondary transformer is shorted to that
of the primary, and voltage is measured from the ground node
to the non-shorted secondary winding. The voltage on the
secondary should only depend on the magnetizing inductance,
resonant capacitor, and the core loss. Since the measurement
is made from the secondary winding, 1, does not effect the
measured value. No current flows in the secondary, so Rao
and Ri5 also do not contribute to loss. The equivalent circuit
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(a) Equivalent circuit for the primary self
resistance measurement

(b) Equivalent circuit for the secondary
self resistance measurement

(c) Equivalent circuit for the mutual resis-
tance measurement

Fig. 1: Equivalent circuits for each of the three measurement methods described.

for the core loss test is shown in Fig. 2.

This version eliminates the sense resistor in the original
core-loss method, in favor of using the voltage on the resonant
capacitor as a proxy for current. In addition, we choose not to
calculate power by integrating voltage & current in the time
domain, but by utilizing the peak voltage magnitudes, further
reducing error.

We show the test conducted on the primary, with an open
secondary winding, but it just as easily can be conducted by
exciting the secondary. Just as before, the B field must be
held constant, so the exciting current will simply be I; (the
same as in the R; test). As described in [7], C,.. is chosen to
resonate with the magnetizing inductance adjusted by the turns
ratio (the rationale for this will become apparent shortly).

1 M
w2LM NQ
As a result, the core loss can be calculated from the ratio of

Va.pk 10 Vout pk, When the system is tuned to resonance (i.e.
V3 and V,,; are 90° out of phase with each other):

Cres = (9)

V3,pk o |%11(Rcore +jWL]u) + Il,#

JWCres
Voutph \hs— -
| %2 (Reore + (@l —=wLar)|  Regre 10)
|%wLM| wlL

With R, isolated, it is now trivial to solve for Ri1, Rao,
Ris cu, and consequently .

From these measurements, full characterization of loss in
a transformer at a particular operating point can occur. For a
transformer operating with primary current /p and secondary
current Ig, with expected B field By, a user would identify the
necessary current to achieve By in the core based on (3), then
conduct all of the remaining tests as described. Final loss in
the transformer will then be a function of all of the calculated
resistances:

1
Ptotal = Pcu + Pcore = §(R11I123 + R22Ig+

1
R]_Q(IPI; + II*JIS)) + §I]%Rcore (1 1)

We further note that in many applications, calculation of R12
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Fig. 2: Equivalent circuit for the core loss measurement
method, with secondary leakage inductance and resistance
omitted.

and measurement of R.,.. may not be necessary. When the
transformer of interest is not designed to store energy (i.e.,
its primary and secondary currents will be nonzero and in
phase), loss may be estimated with a high degree of accuracy
by simply using the raw R; value. Similarly, in a transformer
where the primary and secondary are not designed to conduct
at the same time (such as a flyback transformer), loss will be
dependent on Ry and R, and further measurement will not
significantly increase accuracy.

III. LINEAR EXTENSION TO A RANGE OF OPERATING
POINTS.

The above approach can accurately characterize transformer
losses at one sinusoidal operating point (i.e., one voltage and
load resistance). Naturally, these tests can be performed at
multiple operating points to gain a more clear picture of
transformer losses under varying conditions. In this section,
we investigate the feasibility of extrapolating from a single
operating point measurement to estimate the losses at other
operating points.

The loss in a magnetic component (i.e. a transformer or
inductor) is composed of contributions from both core and
copper loss. Copper loss is typically treated as a linear
phenomenon and modeled by a resistive element (although
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Fig. 3: Ratio between linearized and actual predicted loss in
a magnetic component (assuming equal core and copper loss
at the linearization point) as drive current varies. Dashed lines
indicate boundaries of +20% error.

copper loss does vary with temperature). Core loss, however,
is non-linear, meaning it does not scale as V2 or I2, and is
usually modeled by some variation of the Steinmetz equation
which depends on B-field, and hence current, to the power of
(. Typical values of 3 range from 2 to 3. If drive level (i.e.
the exciting current) is fixed, an equivalent large-signal core
loss resistance for a certain operating point can be generated:

. LI
Poore = kf*BP Vol = kf“(m)ﬁ Vol =

L
kf“(N—Ac)ﬂ Vol I'P=2 x I? = RepreI?  (12)
Thus, total loss in a magnetic structure can be expressed as
simply the sum of two linear resistances:

Ptot = Iz(Rcu + Rcore) = IQReff (13)

where both R., and R.,.. are functions of frequency and
drive current, i.e. they are not constant as one would expect
from linear loss mechanisms.

This expression holds for constant exciting current (one
experimental data point), but it is potentially useful to identify
its accuracy as the component’s drive current changes. Often,
loss-limited magnetic components are designed to have an
approximately equal division between core and copper loss
in order to minimize total loss [17]. With this assumption, a
ratio between the linearized and true loss can be calculated.
This can be understood by considering an inductor where the
core loss has been linearized around a drive current of [y using
the equivalent large-signal resistance, and is being excited with
current I’ # Iy:

Plz'near _ 1/2 *2R
= G
Preal 1/2(R+R(%)

T —

This expression is plotted for various values of 5 in Fig.
3. Note that for a case where § = 2.5, which is typical
for many materials and frequencies, the drive current can be
doubled or halved relative to the experimental test point, which
covers a very useful range of operation, while maintaining
+20% error. Furthermore, the more copper-loss-dominated
a particular design is, the more accurate the linearization
becomes. This is often the case for designs where large turn
ratios are necessary, or potentially high current designs [18].
Also, many transformers are operated with the same voltage
excitation regardless of load level. In these cases, core loss
is not a function of load and treating it as a linear element
incurs no inaccuracy when evaluating loss across power levels.
All of this suggests that expressing loss using the large-
signal linearized resistance equation is fairly robust while
relying only on a single measured operating point. It may be
particularly suitable for many applications where the primary
interest is in estimating loss in a transformer that is typically
excited around one or several operating points.

We further note that cored inductors are routinely character-
ized by their quality factor, @ (%), which implicitly linearizes
the core loss present in the structure. Industry datasheets often
simply provide a single ) for a part [19]. The near total
ubiquity of the ) expression for inductors further indicates
the utility and defensibility of the approach presented here.

IV. ERROR ANALYSIS

A. Accounting for Parasitic Capacitance

Transformers often exhibit self-resonant behavior at high
frequencies due to the presence of parasitic capacitances.
As the selected measurement frequency approaches the self-
resonant frequency, these capacitances more substantially af-
fect the measurements made. We attempt to quantify this
effect and correct for it. While there are multiple capacitances
present in the transformer under test (e.g. inter- and intra-
winding capacitances), for the purposes of calculation we
choose to lump these in a single parasitic capacitance C,,
as shown in Fig. 4. As the operating frequency approaches
the self-resonant frequency of the test (w, = 1/,/LC),), much
more current will circulate in the mesh involving L, C), and R,
causing more loss for a given net current. This is an admittedly
crude model for the losses in magnetic components near self-
resonance, but it has been used before to good effect [13],
[14].

Note that in this analysis, the inductance and impedance
are denoted as simply R and L, but they may be the relevant
impedances in any of the tests depicted in Fig. 6. The core
loss test, shown in Fig. 2, has a more sophisticated model
for parasitic capacitances as presented in [7]. The ESR of
the resonant capacitor (i.e., the one explicitly included in
the measurement setup) is omitted to simplify the expression
with little loss of precision. The presence of the parasitic
capacitance affects both the effective resonant frequency as
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Fig. 4: Equivalent circuit showing model for parasitic capaci-
tance in measurement setup. Note that L and R can represent
the impedances of concern in any of the three tests.

well as the peak input voltage reached.
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The output voltage is unchanged, so the final expression for the
relationship between input and output voltage at the modified
resonant frequency is given by:

Vout,pk: _ l C’res 1
‘/z'n,pk’ R Cp + Ores jw;-es (Cp + Cres)
g el o 1)
Cp+Cres R
where v denotes the parasitic capacitance correction factor.
Note that to correct a resistance measurement, one must divide
through by 2. Refer to Fig. 5 for a plot of the correction factor
versus normalized frequency. Note that when the measurement
frequency is over a decade below the self resonant frequency,
99 < ~ < 1. As such, correcting for parasitic capaci-
tance only becomes necessary as the measurement frequency
approaches the self-resonant frequency. This typically is a
more significant source of error for the Ry; and Rgo tests,
due to higher inductances and correspondingly, lower self-
resonant frequencies. It is not recommended to use this method
to characterize transformers operating above self resonance
because measurements become extremely sensitive to 7.

In addition, parasitic capacitance may lead to additional
circulating current to flow through the inductance under test
(the loop consisting of Cp,, L, and R in Fig. 4). Higher peak
current would lead to higher B field in the core and a violation
of the constant B field assumption outlined in Section II.
As such, drive current may need to be lowered to mitigate
this effect as the test frequency approaches the SRF. For a
measured drive current, I, the peak current in the device under

O, =
Lol Lol Lol L
1073

1072 107! 10° 10*
w/wselffresonant

Fig. 5: Plot of parasitic capacitance correction factor y versus
frequency, normalized to the self resonant angular frequency,
assuming that C..s is chosen simply to resonate with the
inductance (and not adjusted per equation 15)

test, Ir, p at the new operating point can be calculated using:

C
1 =(1+CyRw. g — — 22—
L,pk ( p res Cp 4 Ores
Note that while this expression requires knowledge of the
value of resistance a priori, in practice the C,Rw,., term
is typically insignificant. As such, a further simplification can
be made to express the adjusted peak device current in terms

of the correction factor:

N (18)

1
IL, kN *IO
Py

(19)
This may or may not be a significant source of error depending
on the magnitude of the drive current, the proximity to the self
resonant frequency, and the relative dominance of nonlinear
core loss phenomena in the structure. Note that (16) & (17)
are not dependent on drive current, and the extracted resistance
value does not need to be adjusted further. This additional
expression is only relevant to peak current magnitude and
resulting effects on peak B field and core loss.

We note that parasitic capacitance is most problematic when
making the R; and Ro measurements of the transformer, since
the magnetizing impedance Z,, is very large and therefore
the self-resonant frequency of the transformer is closer to
the operating frequency. However, transformers designed with
very high magnetizing impedance (e.g., ungapped transform-
ers) are intended to be operated with very low magnetizing
current, making the loss at the operating conditions similar to
the loss measured in the R;, measurement. Due to the small
inductance (approximately the sum of the primary-referred
leakage inductances) in this case, parasitic capacitance is not
a significant factor. Thus, the measurements that have the
largest difficulties with parasitic capacitance are also the least
important.



B. Accounting for Large Leakage Inductance

The analysis presented in Section II assumes that in the
mutual resistance test virtually all current will flow through
the shorted secondary, because Ls >> (%)ZL[Q. This may
not always be the case, leading to potential errors: If a
more significant portion of current excites the magnetizing
inductance, the B field will not be constant relative to the other
tests. Moreover, the calculation of R will be inaccurate.

To maintain constant B field between tests, the exciting
current must be: I, = (1 + %)h. When the leakage
inductance is not negligibly small compared to the magnetiz-
ing inductance, the general solution is as follows:

Ny L

ISGC: 727
N M Lip+ Ly

—Is (20)

Ny Ly
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N L

N2 %2&2 + L

1
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1
R12) - §Rls,cu1125 (21)
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(22)

C. Calculating R1o

Since Rjo is calculated based on the results of multiple
experimental measurements, errors have the potential to com-
pound in its calculation (Rjo = %%(R1+(%)2R2—R15,cu).
It is difficult to do a comprehensive sensitivity analysis on
this calculation because error will depend not only on the
relative values of each of the three measured resistances, but
also the turns ratio. Qualitatively, the error in this calculation
is purely a linear phenomenon. For example, in a case with
a 1:1 turns ratio and Ry; = Rss = Ryieqs, @ 10% error
in each value translates to a worst case error of 30% in the
calculated R;». This error, of course, could be less depending
on the magnitudes and directions of the errors of the initial
experimental measurements. In particular, if Rj;s is much
smaller compared to Rj;, Rgs, and R, it may be very
sensitive to error in those other measurments.

V. EXPERIMENTAL VALIDATION

The proposed approach promises to accurately characterize
transformer loss at a single operating point using purely
electrical measurements. We validate these experimental mea-
surements through several transformer structures, shown in
Fig. 6. In each test case, the resistance matrix was extracted
from finite element simulation using ANSYS Maxwell. The
resistance matrix was then experimentally measured using the

method presented above. A comparison of the predictions and
experimental measurements is presented in Table I.

Each test was particularly designed to test a unique resis-
tance matrix. The transformer with the small gap and shield
(Fig. 6a) was designed to be core loss dominated, such that our
measurements would have to distinguish between relatively
small copper loss values, compared to a large core loss large-
signal resistance. The transformer had a 1:1 turns ratio and
was constructed with a KoolMu 90 ferrite core. Its L1, Loo,
and Ljo were 61.37 pH, 62.30 uH, and 59.99 uH respectively.

A second test was performed using the transformer di-
agrammed in Fig. 6b, where we assume that there is a
much larger MMF drop across the inner side of the primary
winding, due to the smaller cross-sectional area (and thus
higher reluctance) of the center post gap relative to the outer
leg return path. As such, exciting the primary winding alone
should only excite a current that flows along the inner side of
that winding. Exciting the secondary, however, will excite a
current that flows on the inner side of that layer and circulating
currents in both the primary and shield windings. As such,
it should experience significantly higher loss compared to
the primary (R;; << Ra2). Moreover, this structure should
experience very little core loss compared to test 6a, due to its
relatively large gap and small proportion of core volume. It
was also constructed with a KoolMu 90 ferrite core, and had a
1:1 turns ratio. Its Lq1, Loo, and Lio were 5.34 uH, 5.59 uH,
and 4.92 uH respectively.

The third test was designed to operate at a higher frequency,
and did not use a shield winding. It was also a 1:1 transformer,
and used a PC200 RM core. Its L1, Lo, and L5 were
16.66 pH, 16.77uH and 16.387 uH respectively.

We find that the measured resistance matrices match well
with FEA simulation in all three cases, as shown in Table I.
Note that ANSYS Maxwell produces a resistance matrix and
a core loss value, from which we calculate a R, value for
comparison. It would be equivalent to express R.ore as its
equivalent power loss value. In the test cases designed to have
substantial core loss (the 500 kHz transformer with a small
gap and the 2 MHz transformer), the experimental core loss
is extremely close to the predicted values.

In the second test case, however, FEA simulation and exper-
imental measurement diverge substantially — our experimental
measurement of R... is approximately 40x larger than FEA
simulation. In this case, the B field in the core is extremely low
- both simulation and hand calculation agree that it should be
approximately 0.1 mT. As magnetic fields become extremely
small, core loss becomes a linear phenomenon, better modeled
as a true resistance (or using complex permeability) than
using the non-linear Steinmetz model for loss [2]. Since the
FEA solver relies on user-provided Steinmetz parameters, it
categorically underestimates core loss in applications where
B field is extremely low. We further validate this claim by
measuring the equivalent resistance of an ungapped KoolMu
90 transformer using a E5061B Keysight Network Analyzer
across various drive levels. This test confirmed that at 0.1 mT,
the core is in a linear loss region, where the Steinmetz
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(b) 1:1 Transformer with large gap and

(a) 1:1 Transformer with small gap and
shield winding

shield winding, with large center-post re-
luctance compared to outer-leg reluctance

(c) 1:1 Transformer with no shield winding

Fig. 6: Cross-sections of three test transformers built. Red, blue, and green rectangles represent groupings of parallel, secondary,

and shielding turns respectively.

Design Frequency I Method Ry Ro» Ria Reore
1:1 w/ Shield & Small Gap | 500 kHz | 37 mA F].EA 670 | 878 48 Q) 3.63 Q)
Experimental | 1.11 Q | .84 Q | .36 Q | 3.66 Q
FEA 230 1920 ].190Q .2mf

1:1 w/ Shield & Large Gap | 500 kHz | 100 mA . > i o4 32m
Experimental | .22 Q | 88Q | .12Q | .12 Q

1:1 w/ no Shield 2 MHz 23 mA FEA ASSL 16581 312630
Experimental | 22 Q | .62Q | 15Q | .77 Q

TABLE I: Predicted and experimental resistance matrices for each test case, showing strong agreement.

parameters (and thus FEA) will underestimate loss. Not only
does this suggest the validity of our experimentally measured
value of core loss, it serves as a powerful demonstration
of the usefulness of an experimental method for transformer
characterization — FEA simulation simply cannot fully model
the complexities of real-world structures.

The proposed method has been additionally validated by
comparison with calorimetric measurements. Calorimetry is an
established method for evaluating power loss in transformers
[20]-[23]. Our approach most closely resembled the procedure
described in [23]. A constant volume calorimeter with no
temperature feedback control was built. Measurements of the
transformer temperature were made using a thermal camera.
Calibration was done by putting known DC current through
the structure and measuring steady-state temperature. High
frequency measurements were taken while the transformer
was excited at the frequency of interest by a RF power
amplifier, as shown in Figure 8. Fig. 7 shows calibration and
experimental data from a pot-core transformer designed to
have extremely low loss when the magnetizing inductance
is not excited [24]. When the secondary is shorted and the
primary is driven (our R, measurement) at 1 MHz and with
a drive current of 1.3 A, calorimetry found approximately 0.36
W of loss, corresponding to an effective resistance of 0.42 (2.
This compares favorably with the series resonant approach,
which measured 0.40 2. Moreover, for the R;, measurements
for the structures shown in Figs. 6b & 6c¢: The proposed series
resonant approach yields 1.14 Q) & 0.495¢2, and calorimetry
yields 0.9Q & 0.46 2 respectively. Another structure, built
to minimize loss when only one winding is conducting at a
time [25], had its R; measured using both methods: the series
resonant approach yielded 0.42(2 and calorimetry yielded

80
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Fig. 7: Calibration and experimental calorimetry measure-
ments for a pot-core transformer.

0.43€). These results all further indicate the accuracy and
validity of the proposed series resonant approach.

To evaluate the correction method presented in Section
IV-A, the transformer depicted in Fig. 6b was tested at
3 MHz. When its primary and secondary self inductances
were measured, a self resonant frequency of 11.77 MHz
was measured, corresponding to an estimated 34.3 and 32.7
pF of parasitic capacitance on the primary and secondary
windings respectively. When the secondary was shorted (as
done in the R;s measurement, the self resonant frequency
was identified to be 42.57 MHz, corresponding to 12.0 pF
of parasitic capacitance. The calculated correction factors for
R1, Ro, and R;4 were thus .936, .939, and .995, respectively.



Fig. 8: Picture of the experimental high frequency calorimetry
measurement setup.

R.ore Was corrected based on the methodology suggested in
[7]. The original, uncorrected values for Ry1, Ros, Ri2, and
Reore were 29 Q, 249 Q, .01 Q, and 91 Q) respectively.
After correction, these figures changed to: .59 Q, 3.07 €,
44 ), and .78 Q respectively. FEA simulations resulted in
predictions of .62 2, 2.25 €2, .26 €2, and .06 (2 respectively. The
correction factors significantly improved the accuracy of the
copper resistance measurements, compared to FEA simulation.
We again note that, as described above, this test case has
extremely small B field in the core, leading to inaccurate core
loss predictions when using the Steinmetz based model. As
such, we believe the experimental core loss value is a more
accurate characterization of the transformer.

VI. CONCLUSION

This article presents a method for experimentally measuring
transformer losses at one operating point. It is further argued
that using the large-signal resistance matrix of a two port
magnetic network can be useful to extrapolate beyond a
single measured operating point with manageable error. The
methodology is explained in detail and several possible sources
of error are examined. The approach is tested on several
test transformers and compared to theoretical calculations,
FEA simulations, and calorimetric measurements — all of
which show strong agreement with the presented method.
This method can fully characterize the resistance matrices of
magnetic components, previously only limited to simulation.
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