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Abstract—In both planar and wire-wound transformers, large
copper cross-sections and parallel windings are often used to
increase conduction area and decrease copper loss. However,
at high frequency, current is not guaranteed to spread out
maximally over the cross-section of a single conductor or to
split evenly between parallel conductors. Finite element analysis
(FEA) and SPICE-based systems have been used to analyze
current distribution within magnetic components, but these
methods are computationally intensive. In this paper, we show
that Maxwell’s equations, in the high frequency limit, yield
a set of linear algebraic equations that are rapidly solvable
to yield both the current and magnetic field distribution and
hence can be used to predict loss and leakage inductance. Due
to its simplicity, this method is easily applied to cases with a
one-dimensional or two-dimensional distribution of current. We
show that predicted results match both FEA simulations and
experimental measurements very accurately for a variety of cases.
This paper is accompanied by several software implementations
of the method. This method can be used to rapidly analyze high
frequency current distribution in transformers and can easily be
integrated into numerical optimization algorithms.

Index Terms—High Frequency Transformers, Planar Trans-
formers, Current Sharing, Parallel Windings

I. INTRODUCTION

As switching frequencies have increased into the MHz
regime for many power converter applications, magnetic com-
ponents have emerged as a bottleneck to high efficiency and
density, primarily due to core and winding loss. For high-
power or high-turns-ratio transformers, large conductor cross-
sections or parallel-connected turns are often used to reduce
conduction loss. The distribution of current across the cross
section of a single conductor or between parallel conductors
is determined by resistive effects at low frequencies; the
distribution is easy to predict and uniform current distribution
for low loss is easy to achieve. At high frequencies, however,
current distribution within a conductor or between parallel
conductors is determined by magnetic effects and uniform
distribution is not guaranteed. The principle phenomenon, that
high frequency current crowds toward regions of high H field,
is known variously as the skin effect and the proximity effect
depending on the scenario. It is important to predict this effect
and design to mitigate it.

This material is based upon work supported by the National Science
Foundation under Grant No. DGE-1828974 and Enphase Energy.

It is increasingly necessary to consider these effects explic-
itly. Beyond a few MHz, the practicality of mitigating HF
current crowding using litz wire is limited due to cost, thermal
constraints, and decreasing efficacy as frequency increases [1].
Moreover, even in cases where conductors are thinner than a
skin depth, HF magnetic effects still govern sharing between
paralleled conductors, and analysis is necessary.

Analyzing current distribution is relatively straightforward
under certain assumptions which are often used and sometimes
unstated in textbooks, namely that the primary and secondary
currents are in phase or perfectly out of phase and that the
net current in each layer is known by virtue of their series
connections. In such cases, H fields between turns can be
readily calculated and the corresponding currents are then
known for any ratio of conductor thickness to skin depth
[2], [3]. Current distribution in scenarios with conductors in
parallel is substantially less straightforward, as the solutions
for the H fields and the net currents are coupled. Scenarios
with substantial magnetizing current such that primary and
secondary currents are neither in phase nor perfectly out of
phase are likewise more difficult to analyze, though such
analysis has been done [4].

Ensuring current distributes evenly between paralleled turns
is becoming increasingly necessary, requiring the use of spe-
cialized transformer designs to ensure even distribution [5]–
[7]. Note that in [5] and [7], these strategies are used despite
operation in the hundreds of kHz, well under the skin depth
limit.

Finite element analysis software (FEA) is often used to
analyze current distributions in transformers, especially for
verifying specific designs [8]–[10]. While very common, FEA
software is relatively slow and and difficult to integrate with
general-purpose programming languages and circuit simula-
tors, greatly limiting its utility for automated optimization.

One established strategy for predicting current behavior is
to extract circuit parameters from the physical structure of
the magnetic components, then use a circuit simulator (such
as SPICE) to solve [8], [11]–[13]. Predictions of current
distribution have been done based on Maxwell’s equations,
but their general application involves the solution of coupled
differential equations which again introduces intuitive and
computational barriers [14], [15]. Moreover, many of these
approaches are based on Dowell’s method and only hold for
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Fig. 1: Notation for the 1-D transformer model, axisymmetric around the Z-
axis with turn circumference l.

cases with one-dimensional (1-D) distributions of current [2].
[16] presents a linear application of Maxwell’s laws, but is
again limited in its applicability (1-D distributions of current,
only two parallel conductors, and secondary currents being in
phase).

In this work we propose that, in the high frequency limit,
Maxwell’s equations yield a set of linear algebraic equations
that fully capture the current distribution in transformer wind-
ings. By treating all current flow as surface currents, this
approach drastically simplifies the governing equations and
accelerates the simulation of current distribution, enabling
its integration into automated optimization programs. Fur-
thermore, this approach is also applicable to cases with 2-D
distributions of conductors and of current within conductors.
Previous work by the authors, presented in [17], restricted
this analysis to cases where the transformer was not designed
to store energy, and magnetizing current was negligible. The
full approach, presented here, applies to any instantaneous
current excitation, and thus can be used to estimate current
distribution and thus AC resistance in a variety of transformer
loading cases. Predicted results match FEA simulations very
accurately for a variety of cases. Several planar transformers
were built, and show good agreement with our predictions.
The contribution of this paper is a computationally lightweight
analysis method that can identify current distribution and
thus AC resistance and flux distribution in high frequency
transformers with high accuracy and at rates several orders of
magnitude faster than FEA simulation. The method is singular
in its flexibility and breadth of application. Its simplicity and
speed enable designers to rapidly test, optimize, and verify
transformer designs.

II. ASSUMPTIONS

To illustrate the problem statement and the proposed ap-
proach, consider the transformer cross-section in Fig. 1, which
is axisymmetric around its inner axis. A magnetic core sur-
rounds conductive turns which carry current into or out of the
page, and may be connected to each other in parallel or in
series (each layer is displayed as a single foil layer but may
be composed of a spiral of multiple turns and treated as a
single foil turn as in [3]).

We make several assumptions about current flow in the
transformer. We assume that currents are uniform along each
conductor surface. At high frequencies (where the skin depth δ

is much smaller than the dimension of interest), the proximity
effect causes current to crowd to the surfaces of the conductor;
therefore, the current in a layer is modeled as four surface
current densities on the top (KnT ), bottom (KnB), inner
(KnI ), and outer (KnO) edges of the layer, each with units of
amperes per meter.

This approximation further implies that, in the middle
section of the conductor, the current density J , the magnetic
field H , and the flux density B are all zero. Because of this
assumption, it is not necessary to use Dowell’s equations to
represent current density in conductors, greatly simplifying
the calculation. By a priori expecting the current distribution
to be spatial impulses (in the z and x dimensions) instead
of hyperbolic functions, applying Maxwell’s equations to
the system results in straightforward algebraic equations, not
complicated integrals. This assumption is responsible for the
great simplification of the solutions to Maxwell’s equations
that is at the heart of this approach.

This high-frequency restriction is becoming increasingly
applicable for a variety of high-frequency magnetics. Due
to manufacturing difficulty, 48 AWG strands are about the
thinnest that can be manufactured at a reasonable price, and a
great deal of cost-sensitive applications will be economically
limited to even thicker strands. The skin depth of copper is
equal to the diameter of 48 AWG wire (31.6 µm) at 4.25 MHz.
Therefore, as more applications operate in the MHz regime,
it will become impractical to simply use extremely thin wires
that are smaller than a skin depth (often, several times smaller).
This impracticality extends to copper foil which also becomes
expensive below 1 mil (25.4 µm) thickness and to planar
magnetics on PCBs where the copper thickness offerings are
usually limited to 0.5 oz (17.5 µm).

Moreover, balanced current distribution between paralleled
turns is not guaranteed at high frequency, even for applications
that are not skin depth limited. The proposed method proves
accurate in such cases as well, as discussed in Section V.

While Figs. 1 and 5 show axisymmetric structures, this is
not an explicit requirement (indeed, the experimental examples
in this paper are not axisymmetric and are structured more like
Fig. 3). It is also not a requirement that the leakage inductance
be zero, or even small; likewise there is no requirement
that the magnetizing inductance be very large or that an
ungapped structure be used. Indeed, the proposed approach
can be used to predict leakage and magnetizing inductances for
implementing integrated magnetics in, e.g., dual active bridge
or LLC converters.

The approach proposed here also extends to scenarios
with 2-D distributions of current that ordinarily would not
be solvable with 1-D assumptions (e.g. having a primary
and secondary winding in the same layer, as discussed but
left unsolved by [12]). Components with a single winding
(inductors) can also be analyzed using the general method
presented, although these cases are not considered in this work.

In both the 1- and 2-D cases, fields and current densities are
treated as being either purely vertical or horizontal - we call
this the ‘1.5-D’ assumption. It further implies that conductors
are only affected by the magnetic fields in the section of
the core directly adjacent to them. In other words, that they
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Type Sample Equation(s) # in 1-D Stackup

(A) Primary & Secondary Current Definitions IP = I1 or IS = I2 + I3 2

(B) Total Current in a Conductor KnT b+KnBb+KnIh+KnOh− In = 0 N

(C) Amperian Loop Around Conductor Surfaces KnB ±Hn = 0 or KnI ± µrHnI = 0 4N

(D) Faraday Loop Between Paralleled Wires 1
2
δ2KnB − 1

2
δ2KmT +ΣΦenclosed = 0 j (j + k = N − 2)

(E) Series Current Connections I1 = I3 or I1 = I2 + I4 k (j + k = N − 2)

(F) Flux Conservation rnlHn + µrAiHnI − µrAiHn+1I = 0 2N + 1

TABLE I: Equations used in the most general version of the method, with variable b representing conductor breadth, h representing conductor height, l
representing conductor length, Ai representing the area of the core inner post, j representing the number of parallel layer interconnections, k representing
the number of series layer interconnections (where j + k = N − 2), and N representing the total number of conductors.

Fig. 2: Diagram of the cross-section of conductors in a 1-D planar transformer,
showing in green an amperian loop around a conductor surface described in
Section III.

Fig. 3: Labeled diagram of a set of layers in a planar transformer, where the
top and bottom layers are connected in parallel. In the method described in
Section III, Faraday’s Law is applied to the loop shown in green.

are not affected by fringing fields, which can cause current
crowding in conductors that are offset from the region of
high H field (like a gap) [18]. In practice, this assumption
also means that round conductors are modeled as square,
with four distinct surface current densities. FEA simulations
have confirmed that this simplification results in little loss of
accuracy when making current sharing predictions within or
between conductors. Further limitations of this assumption are

Fig. 4: Labeled diagram showing a set of layer cross-sections and magnetic
fields, as an example of applying of Gauss’s Law as described in Section III.

further discussed in Section VI.

III. ANALYSIS METHOD

A. General Method
Consider a scenario as shown in Fig. 1, with conductors

arranged in a single stack as would commonly be the case
in a planar transformer. For a system of N conductors, there
are 4N unknown surface current densities on the top (KnT ),
bottom (KnB), inner (KnI ), and outer (KnO) sides of each
conductor. One may also be interested in the corresponding
(N − 1) H fields between conductors, the (2N + 2) H
fields in the core adjacent to conductor edges, and/or the
net currents In in each layer. The latter unknowns are easily
calculated if the surface current densities are all known, but
the presented version of the analysis solves for all 8N + 1
unknowns. Note that making further simplifying assumptions
causes the number of unknowns to be substantially reduced.
In particular, assuming net zero ampere-turns in the core (i.e.
a situation with no magnetizing current), is of great utility and
significance, and will be presented in section III-B.

The analysis method constructs a system of equations based
on the structure of the transformer. The resulting solution
is true for any instantaneous combination of primary and
secondary currents, and can be used to predict current dis-
tribution for arbitrary net current waveforms or transformer
loading conditions. Readers may want to refer to the equation
list in Table I for the remainder of the article. The work
is also accompanied on IEEE Xplore by several MATLAB
implementations of the analysis method which may be helpful.

First, it is necessary to specify how the primary and sec-
ondary currents enter the transformer winding. For example,
if it is known that the primary winding begins by entering the
transformer on layer one, and the secondary current enters the
structure via the parallel connection of layers two and three,
we would define these relationships as shown in equation A in
Table I. This yields 2 equations. If the primary and secondary
currents are not known and depend on the magnetic behavior
of the transformer, one may first calculate the leakage and
magnetizing inductance using the approach in Sec. III-D and
then use these values to predict primary and secondary currents
to serve as inputs to this method.

In each layer, the surface current densities sum to the net
current in the turn, yielding N equations (see equation B in
Table I). Note that because these are surface current densities
with units of A/m, the product of a K and a distance indeed
yields a result with units of amperes.
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Series-connected layers have the same net current, yielding
k equations, where k is the number of series interconnections
(not series layers) in the structure. (see equation E in Table
I). Parallel-connected layers will be considered shortly.

Ampere’s Law can be applied by taking loops in the x-
z plane around conductor faces, capturing a surface current
density and the adjacent H field, either in the core or in the
air gaps between conductors (a total of 4N equations). This is
shown in equation C in Table I, and an illustrative diagram of
this loop is shown in Fig. 2. This is equivalent to expressing
the electromagnetic boundary condition for H fields, namely
that H1 −H2 = K.

Gauss’s law of flux continuity (an example is shown in F
in Table I and in Fig. 4) is used in order to relate the H
fields at their intersection points. Since winding length l is
not necessarily the same for each conductor (for example, in a
foil-wound transformer), the system of equations must account
for variable l when calculating the H fields and fluxes between
conductors. This needs to be applied to every magnetic node
except one, chosen arbitrarily. This is similar to the solution
of ordinary circuits, in which Kirchoff’s current law must be
applied to every node except one (usually the exception node
is arbitrarily chosen to be ground, whose assignment itself is
arbitrary). This produces (2N + 1) equations.

For a structure with only series-connected turns, we have
achieved (8N+1) algebraic equations for (8N+1) unknowns
and the solution is readily available through matrix inversion.

Parallel-connected turns result in fewer known current
equations. For example a pair of series turns results in two
equations (each current is known), whereas parallel turns only
yield one equation (the sum of the currents is known). The
loss of these equations is overcome by invoking Faraday’s
law as an additional constraint (see equation D in Table I), as
detailed in [14]. This is relatively simple because the integral
of E ·dl around each parallel-connected turn must be the same
by virtue of the parallel connection. Each loop runs along the
surface of the conductor (i.e. where current is non-zero) in a
path into and out of the page in Fig. 1, traveling parallel to the
direction of current flow in the turns, as shown by the loop
in Fig. 3. The derivation is shown below, beginning with the
integral form of Faraday’s law.∮

E · dl = −
∫

dB

dt
· dA (1)

The analyzed loop passes through the surface current densities
of both faces, so E · dl is simply the resistive EMF induced
along the path.

ρ · ΣKpath = −ω · ΣΦenclosed (2)

Dividing through by ωµ0 gives us a term we can relate to the
skin depth, δ =

√
2ρ/ωµ0.

1

2
δ2 · ΣKpath +

1

µ0
ΣΦenclosed = 0 (3)

This will yield j equations, where j is the number of parallel
interlayer connections (not the number of layers in parallel),
where j+ k = N − 2. Note that we do not express inter-layer
fluxes as independent unknowns in the system of equations;

rather fluxes are expressed in the form µ × A × H , where
the relevant permeability and cross-sectional area are known
and the H field is the variable of interest (these equations
may further be merged with Ampere’s law which simply states
that the H field and adjacent surface currents K are equal in
magnitude). As Faraday’s law is taken around full turns of
the transformer, the integrals will involve the turn length l.
In a scenario such as the one shown in Fig. 1, l will be the
same for all windings, although inter-layer distances may vary.
In a traditional foil-wound transformer, some conductors are
wrapped farther away from the central axis and have a larger
circumference, and l will vary for each conductor. For a design
with a series-connected primary and a secondary with p turns
all connected in parallel, we extract j = p− 1 equations. This
approach can easily accommodate atypical windings, such as
parallel turns in series with another turn.

This method can also accommodate designs with multiple
turns in a given layer. When flux is not expected to flow in
between the spaces between intra-layer turns, it is possible
to simply treat a group of turns as a single conductor with a
higher current density. A simple implementation of this can
be accomplished by modifying equations (A) and (E) in Table
I: If a layer has n series connected turns, equation (A) can be
expressed as ΣK = n× I , and the Φenclosed term in equation
(E) is modified to account for the extra current enclosed. In
other cases, when flux is expected to flow between intra-
layer turns (e.g. when a gap is positioned perpendicular to the
layer), the turns may need to be treated as separate conductors,
distributed in two dimensions, and analyzed as described in
Section III-C.

The resulting system of equations, summarized in Table
I, has 8N + 1 equations and 8N + 1 unknowns: 2 primary
& secondary current definitions; N equations defining total
current in a conductor as the sum of its surface current
densities; 4N Amperian loops around conductor faces; 2N+1
applications of Gauss’s Law; and N − 2 Faraday loops
around paralleled conductors and series connected conductor
current identities (the distribution between these last two
types of equations varies depending on the exact structure
being analyzed). As such, the analysis method produces a
(8N+1)×(8N+1) square matrix M of coefficients of these
equations; a solution vector (x) composed of the unknown net
currents per layer (I1, I2 . . . IN ), the individual surface current
densities (K1T ,K1B ,K1I ,K1O,K2T . . .KNB), the H fields
between layers (H1 . . . HN ), and the H fields within the core
(H1I . . . HNO); and a known column vector also extracted
from the equations above (b, where entries are zero except
for the total primary and secondary currents). This produces
an easily solvable linear matrix equation (Mx = b). Note
that the M matrix is extremely sparse, and thus the resulting
equation is rapidly solvable. We note that the linear matrix
equation may be solved through a matrix inversion explicitly,
or as is more common (and often faster) in numeric computing,
the use of well-known linear algebra solvers. For inclusion in
an optimization program, a designer might choose to use an
implementation with a limited number of unknowns (e.g. just
the surface current densities & H fields) so as not to burden the
computation with larger systems of equations than necessary.
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There are two cases that can result in even further simpli-
fications – when the primary and secondary currents are in
phase or when one of the currents is zero. First, primary and
secondary currents are in phase when there are no net ampere-
turns in the core (no magnetizing current) – this is a special
case where the calculation method can be drastically simpli-
fied, as described in section III-B, that applies to transformers
in many PWM, series-resonant, dual-active bridge, and other
converters. Second, current in one of the windings may be
zero for part of the cycle such as in a flyback converter, and
the value of the non-zero current can simply be substituted in
to the solution vector.

In cases where the primary and secondary current depend
on the behavior of the transformer, careful consideration of the
loading conditions is necessary. First, the proposed approach
can be used to predict magnetizing and leakage inductance (as-
suming that magnetic impedance dominates the behavior of the
transformer, as is expected in high-efficiency structures). The
magnetic behavior of the transformer, together with known
excitation and loading conditions, can be used to predict the
total primary and secondary currents. Finally, it can be noted
that the proposed approach yields a time-domain solution,
i.e. a solution that is true for any instantaneous combination
of IP and IS . Thus it is possible to apply the proposed
solution at a set of sample time points across a period to
reconstruct a full solution for individual turn currents, surface
current densities, and H fields (which may not be in phase
with one or either port current). For sinusoidal excitations and
linear loads, unknowns can be expressed as sinusoids with
amplitudes and phases by extracting these parameters from the
time-domain reconstruction. In addition, while this method is
simple to perform with sinusoidal currents to the transformer,
it is trivial to input more complex current waveforms as well
(e.g. sawtooth or trapezoidal waveforms, commonly found
in many converters). If the fundamental waveform frequency
is high enough to meet the skin-depth assumptions of the
approach, then the harmonics (at higher frequency) will as
well. Therefore, we expect the proposed approach to work for
arbitrary waveforms (i.e., waveforms with multiple frequency
components). This full process can be summarized as follows:

• Use the proposed approach to calculate leakage and
magnetizing inductance

• Use the magnetic behavior of the transformer to predict
primary and secondary current based on known excitation
and known loading (this may be sinusoidal or not; linear
or not)

• Use the predicted primary and secondary current in the
proposed approach to predict current distribution within
conductors, current distribution between parallel conduc-
tors, and H fields

Note that this full process is only necessary if the primary
and secondary currents can not be treated as known excita-
tions. If the load impedance is significantly larger than the
secondary-referred magnetizing impedance, the secondary cur-
rent will be near zero across an entire period, and a single ap-
plication of the approach will be sufficient to provide accurate
characterization of current distribution and AC resistance. If

the load impedance is significantly smaller than the secondary-
referred magnetizing impedance and the transformer is excited
such that both windings have currents in phase, we suggest
the use of the simplified method described in the following
section. A decision tree that summarizes how to apply the
method is presented in Appendix B.

B. Analysis of Structures with Zero Net Ampere-Turns

In cases where the magnetizing inductance of the trans-
former is not substantially excited (i.e. the transformer is de-
signed to store minimal energy in the core and the magnetizing
current is much smaller than the primary current, implying
zero net ampere-turns or N1i1(t) ≈ −N2i2(t)), the above
method can be further simplified. This particular assumption
is routinely true in a number of applications: most power
transformers for PWM converters, gate-drive transformers,
dual active bridge transformers, current transformers, series-
resonant transformers, etc. However, in cases where gapped
transformers are used to store energy (e.g. in flyback or LLC
converters), this assumption will not hold and the more general
analysis technique may be necessary.

In zero-ampere-turns cases, we can simplify the problem
by assuming that the H fields in the core are negligible. From
this, Ampere’s Law simplifies for conductor faces adjacent to
the core which must be zero. In addition, for many structures
(planar structures included) it may no longer be necessary
to apply Gauss’s law, since the H fields in the core are not
relevant. Nevertheless, it would still be necessary to apply
Gauss’s law when there are magnetic nodes within the core
window where different flux paths intersect, as shown in Fig.
5.

For the same scenario described above, a 1-D stack of
N conductors, it is now only necessary to consider 3N
unknowns: N layer currents and 2N surface current identities.
It is convenient to abstract away H fields for the purpose of
more rapid calculation, because they can be readily expressed
as linear combinations of the other unknowns. As such, the
current identities are unchanged compared to the full method.

The amperian loops are now drawn around adjacent conduc-
tor faces, capturing the bottom surface current density of one
layer and the top surface current density of the next (N − 1
equations, see equation C in Table II). However, no net H
field is captured when taking this loop (the H field is zero
while inside the conductors and the core), so the resulting
equation tells us that adjacent current densities must be equal
in magnitude and opposite in polarity. This simply replicates
the well-known boundary condition for H field parallel to the
conductor-air boundary: |∆H| = |K|, where the H field is
shared by adjacent conductors. Amperian loops are also taken
around conductor faces which border the core (2 additional
equations, for a total of N + 1 amperian loop equations).

Applying Faraday’s law is similar to the general 1-D case.
Note that it may be necessary to express inter-layer flux as
a linear combination of layer currents and inter-layer cross-
sectional areas, calculated using an amperian loop that only
crosses the window in one inter-layer space. This is made
simple because, by our assumptions, there is negligible H field
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Type Sample Equation # in 1-D Stackup

(A) Primary Current Definition IP = I1 or IP = I2 + I3 1

(B) Total Current in a Conductor KnT b+KnBb− In = 0 N

(C) Amperian Loop Around Adjacent Surfaces KnBb+K(n+1)T b = 0 N + 1

(D) Faraday Loop Between Paralleled Wires 1
2
δ2KnB − 1

2
δ2KmT +ΣΦenclosed = 0 j

(E) Series Current Connections I1 = I3 or I1 = I2 + I4 k

TABLE II: Equations used in the simplified no magnetizing current case, as presented in Section III-B, with variable b as conductor breadth; δ as the skin
depth, l as conductor length; j as the number of parallel layer interconnections; k as the number of series layer interconnections (where j + k = N − 2);
and N as the total number of conductors.

in the core. Thus, the H field between any two windings is
simply equal to the sum of currents ’above’ or ’below’ it (sign-
adjusted). For example, if an amperian loop is taken through
the core on three sides and around the top two layers in a
planar stack, the H , B, and Φ between the second and third
layers can be found:

Φ23 = rlB23 = µ0rlH23 = µ0rl(I1 + I2) (4)

Because the amperian loops taken have assumed zero net
ampere-turns in the core, they imply that the secondary cur-
rent must be the negative of the turns-ratio-adjusted primary
current. As such, there is no need to specify the secondary
current explicitly, and only one current definition is needed
(equation A in Table II).

The final system of equations has 3N equations and 3N
unknowns, a marked decrease in complexity from the full
method outlined above. It is possible to decrease the matrix
size further by expressing everything in terms of current densi-
ties and eliminating the outermost current densities (which are
always zero, based on these assumptions). We retain the total
layer currents and all surface current densities for purpose of
clarity. For many applications, it may be most appropriate to
use this method, especially when integrated into optimization
engines. Note that Section V and Fig. 13 show the full system
of equations and corresponding matrix respectively for an
application of this method to an eight layer planar transformer.
In addition this work is accompanied on IEEE Xplore by
several MATLAB implementations of the method.

Compare this to the method presented in [15], where a
linear matrix equation is also constructed, but its coefficients
must be extracted from several other systems of equations
involving second order differential equations and hyperbolic
functions. In contrast, the method presented in this paper
is entirely algebraic and significantly more straightforward.
Both symbolic and numerical solutions for transformers with
many layers can be computed extremely quickly. Moreover,
the solution yields a great deal of information about the
transformer, including the values of the H fields, the current
carried in each layer, and the current distribution between the
multiple ‘skins’ on each conductor. The primary restriction
here is the assumption that the transformer is “skin-depth-
limited,” i.e. that the frequency of operation is high enough to
force currents to flow in distinct skins on conductor surfaces.
This is neither an unusual situation nor as restrictive as it
may seem for predicting current sharing in parallel layers (see
Section V).

C. Analysis of Structures with 2-D Distribution of Conductors

The above method is described for a structure with a 1-D
distribution of conductors, i.e. planar or foil wound transform-
ers. However, it extends straightforwardly to structures with a
2-D distribution of conductors, as shown in Fig. 5. The same
equations are used, and the ‘1.5-D’ assumption (that the H
fields are entirely vertical or horizontal) already present in the
general method figures prominently in 2-D problems. Analysis
of these structures was previously limited to FEA software; the
authors are unaware of any existing analytic approach in these
cases.

Choosing loops on which to apply Faraday’s law is slightly
more complex in the 2-D case, because parallel-connected
turns may sit in different columns and/or rows. This simply
requires us to account for the flux flowing through the loop in
both the x and z dimensions. For example, in Fig. 7b, turns 2
and 3 (the top conductor of the outer column, and the middle
conductor of the inner column, respectively) are in parallel.
To accurately apply Faraday’s law, we draw a loop running
through K2I and K3T (labeled on the figure), and sum the
flux flowing through this loop, either H13 and H12, or H24

and H34. We then construct a linear matrix equation and solve
as in the 1-D case.

While this extension is more general, it is not always nec-
essary. When columns or rows consist of a series connection
of turns, they can often be grouped and treated as a single
foil turn [3], and the 1-D assumption is more straightforward
and yields accurate results for the one dimension considered.
Nevertheless, even in these cases the H field between series-
connected turns and the corresponding surface currents may
be of interest and the 2-D calculation approach is required
to solve for them. In both the 1-D and 2-D models, many
of the equations are extremely simple, and can be simplified
further. Much like the 1-D case, the resulting system is entirely
composed of linear, algebraic equations, and can be assembled
into a sparse matrix which has very low computational burden.

D. Calculation of Leakage Inductance

Leakage inductance can be readily calculated with this
solution and the dimensions of the transformer. By applying
a thought experiment in which the primary and secondary are
excited by opposite and turns-ratio-adjusted current sources,
the total energy storage in the transformer is attributable
to leakage inductance, as the magnetizing inductance is not
excited. Although we apply a thought experiment that matches



7

Fig. 5: Notation for the 2-D transformer model, axisymmetric around the Z-
axis with inner turn circumference li and outer turn circumference lo.

RB

Router

Router

RT

ΦA

Rinner

ΦB

Rinner

ΦC

ΦD

Φ34

Φ23

Φ12

Fig. 6: Magnetic circuit model of a four-layer transformer with pre-solved
inter-layer fluxes used to calculate leakage inductance.

the zero-net-ampere-turn assumption, it is not necessary for
the intended application to fit this assumption, as leakage
inductance is a property of the transformer independent of
its application. Computing the result when the transformer is
excited in this way, the total leakage energy can be found
as Wlk = 1

2µ0

∫
H2 · dV , yielding the sum of the leakage

inductances as viewed from the primary Llk,pri = Wlk/I
2
pri

or the secondary Llk,sec = Wlk/I
2
sec = Wlk/I

2
pri×(N2/N1)

2.
If it is important to distinguish between primary leakage Ll1

and secondary leakage Ll2 as commonly defined in the T
model of the transformer [19], the designer can convert the
calculated H field values to their corresponding fluxes, then
build a magnetic circuit model (an example for a four-layer
transformer is shown in Fig. 6) using the known interlayer
fluxes as sources (Φ12, etc.) and core reluctances based on
the transformer structure. The magnetic circuit can be solved
and the flux linkage λ in each winding can be determined
by summing the fluxes that penetrate the turns/layers that
correspond to that winding, and the leakage inductance is
found by dividing by current, e.g., Ll1 = λpri/ipri, where
λpri is the flux linkage for the primary winding and ipri is
current in the primary winding.

IV. COMPARISON TO FEA SIMULATION

A. Zero Ampere Turns Case

We begin by demonstrating the validity of the approach
presented in III-B as it is a specific simplification of the general
approach. Due to its lighter computational load and broad
applicability, it may be more suitable for many applications.
We compare its predictions to those of FEA simulation for
several example cases. We simulated several transformers with
six conductors arranged in 1- and 2-D configurations at 300
kHz (resulting in a skin depth much smaller than the conductor
thickness) in ANSYS Maxwell, an FEA solver. We extract
the current in each conductor, and analyze the same structures
using the presented method. Results from one 1-D and two
2-D six-conductor transformers are presented in Table III. We
use the notation a/b/c/ . . . to indicate how current divides
between parallel layers, where a,b,c, etc. are given as decimals
whose sum is unity.

In the 1-D, 6-layer model (Fig. 7a), solving the system of
equations from Table II predicts current to split .5/.333/.167
between layers 2, 4, and 6 when those layers are paralleled
as secondary windings. FEA simulation produces the same
results. The model also has good matching in cases with
more complex winding arrangements, for example the 8-layer
winding shown in Fig. 7d where the secondary consists of
layer 5 connected in series with layers 2 and 6 connected in
parallel. The analysis method predicts that if the primary is
excited with 1 A, layers 2, 5, and 6 should have currents
with peak magnitudes of 1.624, 2.5, and 0.874 A flowing
through them respectively. FEA predicts 1.624, 2.498, and
0.874 through layers 2, 5, and 6 respectively, indicating very
strong agreement between the model and FEA simulation.

FEA simulations also align closely with our predictions
for 2-D models. In both 4- and 6- wire configurations with
paralleled turns in different columns, the predicted current
sharing ratio is consistently within 1% of the simulated value.
Table III shows predictions and simulated data from two 2-D
simulations, one where parallel turns are alternated between
columns, and one where they are crowded at the top of the
structure. In both cases, the algebraic matrix equation of Table
III yields results with excellent agreement with FEA simula-
tions. Moreover, the proposed method predicts surface current
densities well, indicating which sides of conductors are subject
to the most current crowding. This is slightly more difficult
to quantify while accounting for the conductor corners, which
are shared by two surfaces, but can be qualitatively validated
by inspecting FEA outputs, as shown in Fig. 7. For example,
for the structure shown in Fig. 7c, the proposed approach

Design Method Ip1 Ip2 Ip3

1D; 2/4/6 Paralleled Model 50.0% 33.3% 16.7%
FEA 50.0% 33.3% 16.7%

2D; 2/3/6 Paralleled Model 24.0% 52.0% 24.0%
FEA 23.8% 52.4% 23.8%

2D; 1/2/3 Paralleled Model 0.0% 22.1% 77.9%
FEA 1.4% 22.4% 76.2%

TABLE III: Predicted and FEA simulated current sharing ratios for several
transformer structures, showing close agreement between the two.



8

1
2
3
4
5
6

(a) FEA simulation of a 1-D, 6-layer
transformer with layers 2, 4, and 6 as a
parallel-connected secondary
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K3T

(b) FEA simulation of a 2-D, 6-turn trans-
former with turns 2, 3, and 6 as a parallel-
connected secondary
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(c) FEA simulation of a 2-D, 6-turn trans-
former with turns 1, 2, and 3 as a parallel-
connected secondary

1
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8

(d) FEA simulation of a 1-D, 8-layer
transformer with a secondary consisting
of layer 5 connected in series with layers
2 and 6 connected in parallel.

Fig. 7: ANSYS Maxwell FEA simulations of transformers operating at 300kHz, with J field plotted on conductors, showing current distribution that closely
matches predictions. Extracted current sharing ratios and comparison are shown in Table III.

predicts that the second wire in the inner column, should
have current densities of 0, 0, 762, and 1413 A/m, starting on
the inner (left) face and moving clockwise. Since we assume
current distribution solely on the surface, these values will not
directly correspond to values extracted from a FEA simulation.
However, we observe that this wire seems to have no current
traveling along its inner and top faces, and average J of
approximately 7 ∗ 10−6 and 1.4 ∗ 10−7 A/m2 on its outer
and bottom faces respectively. These current densities, as well
as those from other conductors, correspond well to the surface
current density predictions.

B. General Method

We proceed by showing similar agreement between FEA
and the general form of the proposed approach, for both one-
and two-dimensional distributions of conductors. In ANSYS
Maxwell, we simulated a foil-wound 3:1 transformer, shown
in Fig. 8a, with an interleaved primary (3 turns in series) and
secondary (3 turns in parallel). A gap was placed in the center
of the core to ensure non-negligible magnetizing current.
We also simulated a 2:1 transformer with two dimensional
distribution of conductors, shown in Fig. 9a. The upper, inner
turn (conductor 1, by our notation) and the lower, outer
turn (conductor 4) compose a series connected primary, and
the other conductors (2 & 3) compose a parallel connected
secondary. Again, a gap is inserted into the structure to ensure
the presence of magnetizing current.

Recall from Section III-A that we solve for a solution
vector in terms of total primary and secondary currents, then
substitute in values for each based on loading conditions
and our inductance predictions. We show these results in the
time domain, and compare to transient simulations in ANSYS
Maxwell. Results can be expressed as amplitude and phase by
extracting from the time-domain solution. Figures 8 & 9 show
the combined FEA and analytical results for both methods
for two different loading conditions, various frequencies, and
various kinds of exciting currents (sinusoidal, sawtooth, and
square). Note that in both the 1-D 40 Ω load and 2-D 10 Ω
load cases, total secondary current is expected to be very small,

due to the large load impedance compared to the secondary-
referred magnetizing impedance. However, in the 1-D case, the
individual layer currents still have significant current flowing
through them, while the secondary conductor currents in the 2-
D case also decay in magnitude. Furthermore note that currents
need not be sinusoidal. Figure 8 shows a case with accurate
current distribution predictions where the primary excitation
is a sawtooth waveform and Fig. 9 shows a case with a
square wave excitation. The proposed method compares very
favorably to FEA simulation in these cases. These results
indicate the power and robustness of the proposed method.

It may not be necessary to use the full, general method in
many cases. Fig. 10 plots the peak amplitude of I2 in the
foil transformer shown in Fig. 8a across a range of loading
conditions. FEA and the general version of the proposed
method show strong agreement over the entire range of loading
conditions. We highlight that the zero ampere turns prediction,
which does not account for loading conditions, produces the
same result as both FEA simulation and the proposed general
method as long as the magnitude of the load impedance is
an order of magnitude or more smaller than the secondary re-
ferred magnetizing impedance. As discussed, the zero-ampere-
turns case can be very useful by directly calculating current
amplitudes without time-domain extraction.

V. EXPERIMENTAL VERIFICATION

In order to further validate the accuracy of our layer-level
current predictions, we built and tested several 1-D planar
transformers in which we directly measured layer currents.
We used two kinds of set-ups: 1 eight-layer planar transformer
with a 4:1 turns ratio inside of a Ferroxcube 4F1 core; and
one with several custom transformers composed of one- and
two-layer boards connected by bus wire inside a KoolMu
90 core. To ensure accuracy (considering our assumption
that the transformer was completely enclosed by the core),
tested transformers were designed to be abnormally long, with
multiple core pieces taped together to form one extended
core (as shown in Fig. 11), similar to those built in [12].
In all tests, a primary winding was excited using an AR
100A400A power amplifier, and current was measured using
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(a) FEA simulation of a 1-D, foil-wound 3:1 transformer.
The layers are interleaved, with the innermost layer being
a primary turn. The layers are numbered sequentially, with
the innermost being layer 1 and the outermost layer 6.
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(b) Simulated and predicted current distribution over a period with varying transformer loading conditions,
labeled with the ratio of the loading impedance to the secondary referred-magnetizing impedance.

Fig. 8: Comparison of FEA simulated and predicted current for a transformer with 1-D distribution of conductors and magnetizing current operating at 1 and
2 MHz, showing extremely strong agreement.
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(a) FEA simulation of a 2-D, 4-conductor 2:1 transformer.
Conductors are interleaved in two dimensions, with the
upper outer turn (2) and the lower inner turn (3) composing
the parallel-connected secondary.

0 0.25 0.5 0.75 1

−1

0

1

I
(A

)

ZL/ZM = 2.04 (2Ω)

0 0.25 0.5 0.75 1

−1

0

1

ZL/ZM = 10.2 (10Ω)

0 0.25 0.5 0.75 1

−1

0

1

Time (µs)

I
(A

)

ZL/ZM = 1.02 (2Ω)

0 0.25 0.5 0.75 1

−1

0

1

Time (µs)

ZL/ZM = 10.2 (10Ω)

I1/4 (FEA) I2 (FEA) I3 (FEA)

I1/4 (Analysis) I2 (Analysis) I3 (Analysis)

(b) Simulated and predicted current distribution over a period with varying transformer loading conditions,
labeled with the ratio of the loading impedance to the secondary referred-magnetizing impedance.

Fig. 9: Comparison of FEA simulated and predicted current for a transformer with 2-D distribution of conductors and magnetizing current operating at 1 and
2 MHz, showing extremely strong agreement.
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Fig. 10: Plot of predicted |I2| of the gapped foil-wound transformer shown in
Fig. 8a, versus loading condition, showing the applicability of the zero ampere
turns method over a large range of loading conditions and the accuracy of the
proposed general method.

Fig. 11: Experimental set-up, with 8-layer planar transformer in the back-
ground, and a stack-up of three 2-layer boards in the foreground

10mΩ sense resistor

SMA Connector

Interlayer Connections

Fig. 12: Close-up of the measurement side of a paralleled secondary layer,
showing a SMA connection to a sense resistor

10mΩ sense resistors on a secondary winding consisting of
multiple paralleled layers (see Fig. 12 for a closeup of the
measurement set-up on a paralleled layer). Each parallel layer
was equipped with its own sense resistor, meaning we could
make granular measurements of layer-level current flow at high
frequency. All measurements were made with Tektronix IsoVu
probes directly connected to the test boards via SMA adapters.
In all cases, transformers were excited with sinusoidal currents
(and sinusoidal signals were measured by the sense resistors).

The eight-layer board was composed of 1oz copper (ap-
proximately 35 µm thick), with layers 2, 3, 4, & 7 as a series-
connected primary and layers 1, 5, 6, & 8 as a parallel-
connected secondary. The 1.6 mm board had a interlayer
spacing of 0.13 mm between layers 3 and 4 and between layers
5 and 6, and a 0.185 mm spacing between all other layers.
Using the approach outlined in Section III-B, we predict high
frequency current distribution in the structure. We identify
24 unknown layer currents and surface current densities - I1
through I8 and K1T through K8B . We then construct a system
of equations composed of:

• 1 known primary current identity (I2 = Ip)
• 3 series current relationships (I2 = I3; I3 = I4; I4 = I7)
• 8 summations of current densities to make total layer

current (I1 = bK1T + bK1B ; I2 = bK2T + bK2B . . .
I8 = bK8T + bK8B)

• 9 Amperian loops which relate surface current densi-
ties in adjacent surface current densities (K1B = −K2T ;
K2B = −K3T . . . K7B = −K8T )

• 3 Faraday loops between parallelled secondaries:
1/2δ2(K1B −K5T )

= −1/µ0(Φ12 +Φ23 +Φ34 +Φ45)

= −1/b(r1lH12 + r2lH23 + r3lH34 + r4lH45)

= −l/b[(r1 + r2 + r3 + r4)I1 + (r2 + r3 + r4)I2+

(r3 + r4)I3 + r4I4]

1/2δ2(K5B −K6T ) = −r5l/b(I1 + I2 + I3 + I4 + I5)

1/2δ2(K6B −K8T )

= −(r6 + r7)l/b(I1 + I2 + I3 + I4 + I5 + I6)− r7l/bI7

These equations are then mapped into a 24x24 matrix
and a 24x1 vector shown in Fig. 13. Note that while we
have calculated the full symbolic solution (not shown) using
MATLAB, it may be more appropriate and faster to calculate
a numerical solution depending on the application. Using
a MATLAB script running on an AMD Ryzen 3800X, the
symbolic solution was produced in 0.3162 seconds, and the
numerical solution was produced in 1.515 · 10−5 seconds.
Running on the same computer, an 2D ANSYS Maxwell FEA
simulation of an axisymmteric approximation to the same
structure ran in 44.5 seconds. When compared to obtaining
a single numerical solution (the most equivalent comparison),
the proposed method is over 6 orders of magnitude faster.
This increase in speed is consistent across a variety of cases,
since linear systems of equations can be solved very rapidly by
computational solvers. FEA approaches may be slower if finer
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Fig. 13: Full matrix equation Mx = b for the 8-layer experimental board constructed with the zero ampere turns analytical method. To conserve space, rα
has been used to represent the distance between layers 1 & 2, 2 & 3, 4 & 5, 6 & 7, and 7 & 8, while rβ has been used to represent the distance between
layers 3 & 4 and 5 & 6.

meshing or 3D modeling is required. This enormous increase
in analysis speed is significant because it allows for integration
into automated optimization. [20] describes a software tool
that does exactly this - implementing the zero-ampere turns
version of the presented method for a simulator and brute-force
optimizer of HF planar transformers. The resulting optimizer
can process thousands of designs a second, a speed enabled
by the lightweight analysis approach presented here.

In the low frequency domain, layer thickness is much
smaller than a skin depth and resistive effects dominate how
current distributes. There, we expect even current sharing
between all parallel-connected layers. At high frequencies, we
solve for the unknown vector in Fig. 13. We predict that if
the primary is excited with 1A of current, 1.46A, 1.54A, .5A
and .5A will flow through layers 1, 5, 6, & 8 respectively.
We use the current sharing ratio between the top and bottom
layers (both in parallel) as a way to verify the accuracy of our
prediction, because these are the only two layers accessible
for experimental current measurement. Per our predictions,
in the high frequency domain, 2.92 times as much current
should flow through layer 1 than layer 8. Experimental results
(shown in Fig. 14) validate this, up to transformer self-resonant

frequencies.

It should be noted that while the skin depth only becomes
equal to copper thickness at approximately 3.5MHz, the high
frequency prediction is quite accurate at frequencies as low as
400kHz. This is because the H field in the (much thicker)
spaces between parallel-connected layers contributes to the
mathematics of the magnetic diffusion equation. The approach
in this paper does not predict the transition frequency between
the low frequency approximation and the high frequency one;
as a rule of thumb, identifying where the high frequency
approximation prevails for current splitting between parallel
layers may be better estimated by comparing the skin depth
to the spacing between parallel layers, rather than the thickness
of the layers themselves.

Several other planar transformers were built using one- and
two-layer boards. These boards were designed to have one
turn per layer, and could be configured either in parallel or
in series with each other at arbitrary layer spacing using
connections of solid bus wire. Moreover, because these are
stand-alone boards, the distance between each layer can also
be varied. Compare this to the 8-layer board test case, where
the inter-layer distance (rn in our notation) is fixed. When this
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Fig. 14: Experimental current-sharing data from a 8-layer planar transformer with predicted current-sharing ratios overlaid, showing model fidelity at low and
high frequency (up to transformer self-resonance).
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Fig. 15: Experimental current-sharing data from several custom transformers made from several one- and two-layer boards, showing model fidelity at low
and high frequency. See the text for details of the transformer structures.
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Fig. 16: Current sharing data from a 1:1 Pri-
mary/Secondary/Secondary/Primary Transformer, where the distance
between layers 1 and 2 (and consequently the distance between layers 3
and 4) is varied to produce different current sharing ratios, showing good
agreement with predicted current relationships at various frequencies.

distance is different from layer to layer, this affects the area
terms when calculating inter-layer flux (shown in the bottom
three equations in Fig. 13. As a result, high frequency current
sharing ratios are dependent on the distance between layers.

Fig. 15 shows experimental results from two test cases
constructed with the customizable boards (shown in the fore-
ground in Fig. 11). The first is a 2:1 transformer made from
four 2 oz copper turns split across two 1.6 mm thick boards.
The two paralleled secondary turns sit on the outer two layers,
while the series-connected primary turns are on the inner
layers. The boards have a turn length of approximately 225
mm, are separated by an 8 mm air gap, and are connected
together using bus wire. They are enclosed by five K4020E090
KoolMu cores taped together (shown in Fig. 11). Our analysis
predicts that this symmetric structure should experience even
current sharing between the two paralleled secondary layers
at both low and high frequencies, as shown in Fig. 15.

We predict leakage inductances for the above case, as
well as the 8-layer case. For the 8-layer board, when all

leakage inductances are referred to the series-connected side:
a cartesian FEA simulation predicts 28.4 nH, the energy
storage method predicts 29.0 nH, the magnetic circuit method
predicts 30.7 nH, and measuring the leakage on the board
from the series connected layers using a Keysight E5061B
network analyzer yields 53 nH. For the symmetric 4-layer
board, when all leakages are referred to the parallel-connected
side: a cartesian FEA simulation predicts 17.1 nH, the energy
storage method predicts 22.1 nH, the magnetic circuit method
predicts 31.7 nH, and measuring the leakage experimentally
from the parallel connected layers yields 34 nH. We note
that the proposed method fails to reflect all possible leakage
paths, considering the 3-D nature of the structure. Despite
this, our predictions agree well with with FEA simulations
and represent a lower bound on leakage, within a factor of
two.

The second test case shown in Fig. 15 is a 1:1 transformer
composed of one primary turn interleaved with two paralleled
secondary turns, split between two boards (of the same di-
mensions & composition as those above). The gap between
the boards is 8.5 mm. Our prediction indicates that the ratio
of between paralleled layers, I1/I3, should be equal to r2/r1,
where r1 is the distance from layer 1 to 2 and r2 is the distance
from layer 2 to 3. The calculated current sharing ratio is thus
5.3 : 1, which matches the experimental data extremely well.

We performed a further experiment on a 1:1 transformer
composed of three boards: a two-layer board with paralleled
copper turns on either side, sandwiched between one-layer
boards connected in parallel with each other. The structure
is built such that the inner board can be shifted up and down,
changing the inter-layer distance and the current sharing ratio.
Based on our analysis, the current sharing ratio between the
paralleled secondary layers should be (δ2 + r3l)/(δ

2 + r1l),
which, in the high frequency regime, simplifies to be simply
equal to the distance between layers 3 and 4 divided by the
distance between layers 1 and 2, or r3/r1 in our notation. Fig.
16 shows these measurements at three different frequencies,
and shows very strong agreement between experimental results
and our model (note that the high frequency prediction prevails
even at 100 kHz, where the skin depth of 200 µm is well above
the thickness of a layer but still much smaller than any inter-
layer spacing).
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This Work 2D FEA 3D FEA M2SPICE [12]
Simulation Speed (s) ∼ 10−5 ∼ 101 – 102 ∼ 102 – 104 ∼ 10−2 – 100

Model Complexity Low Medium High High
Accuracy High High Best High

Frequency Range Only HF No Restriction No Restriction No Restriction

TABLE IV: Comparison of the relative advantages of the proposed method and alternative approaches to determining current distribution.

Fig. 17: Close up of a FEA simulation of a planar transformer with a gap
inserted into its center post, showing current crowding due to fringing fields
that extends to conductors not directly adjacent to the gap.

VI. LIMITATIONS

The method presented in this work relies on several sim-
plifying assumptions. While applicable in a wide variety of
cases, as detailed in Section IV, these assumptions may not
always hold true. Of particular concern is the applicability of
the 1.5-D assumption, which enables us to reduce Maxwell’s
equations to a set of linear algebraic equations.

While the method is capable of predicting current distribu-
tion in structures with gapped cores, as shown in Section IV-B,
fringing fields around gaps may violate the 1.5-D assumption.
Consider, for instance, a planar transformer with a gap inserted
in the center post of its core. Depending on the core and
gap geometries, the fringing fields may extend far past the
boundaries of the gap itself [18]. This in turn, may cause
current crowding in conductors not directly adjacent to the
gap, as shown in Fig. 17. The proposed method has no way of
accounting for these fringing fields, as surface current densities
are assumed to be related to the H fields in the segment of the
core directly adjacent to them. In the case shown in Fig. 17,
the proposed method does not predict current crowding along
the inside edge of the conductors directly above and below
the gap, leading to general inaccuracy in the full calculation
and prediction. Note that this is not a problem for the case
where there are zero ampere-turns in the core, as gaps do not
cause current crowding when there is not substantial flux in
the core.

The 1.5-D assumption also implies uniformity of current
density across conductor surfaces, which is not always true.
For larger conductors, as shown in Fig. 7, current may still tend
to crowd to certain edges of conductors due to the influence
of DC resistance effects. While this is unlikely to effect pre-
dictions of current distribution between and within conductors
(based on our validation of the method), it may contribute to
underestimation of AC resistance and loss.

Violations of the 1.5-D assumption may also occur when
dealing with structures with extreme aspect ratios. Again, con-
sider the case of a planar transformer. Such a structure might
have conductors with total breadths (considering all turns in
a layer as a single conductor) on the order of a centimeter or
more. These conductors may have typical thicknesses of one
or two ounce copper (i.e. ≈ 35 µm or 70 µm) and inter-layer
spacing in the fractions of millimeters. These small dimensions
are not typically an issue when magnetizing current is not
considered, as evidenced by strong experimental results with
planar transformers. However, when it is important to consider
flux through the core (i.e. when magnetizing current is not
negligible), the relative dimensions of the structure may prove
an issue. For example, consider an ungapped 1:1 transformer
with 1 primary turn and 3 turns in parallel on the secondary
(with one turn per layer), excited on the primary with an open
secondary. Assume that the inter-layer distances, r, are equal
to each other, and the layer thicknesses, h, are all equal to
each other. The proposed method indicates that changing r
and h should cause small variations in the absolute magnitude
of the current on each secondary layer, but that the ratios of
current distribution should not vary - e.g., when varying r
from 0.5mm to 10mm and h from 0.5mm to 5mm, our
prediction of |I3|/|I4| remains constant at 0.992. However,
when the same structure is simulated using FEA software, and
those same parameters are swept, |I3|/|I4| varies from 0.182
(when both r and h are 0.5mm) to .951 (when both r and h
are at their maximum values). These results are shown in Fig.
18. We observe a much stronger dependence on the value of r
than of h. This indicates that the 1.5-D assumption potentially
breaks down as interlayer distances become very small – our
assumptions about flux being totally enclosed in the core and
branching off at defined nodes are not necessarily accurate.
We emphasize, however, that the PCB structures analyzed in
Section IV all showcased the accuracy of the proposed method
in the zero ampere-turns domain, despite extreme aspect ratios.

VII. CONCLUSION

Many high-frequency power converters rely on magnetic
components of various constructions, including planar, wire-
wound, and foil-wound, for voltage conversion, energy stor-
age, and isolation. The detailed distribution of current in
conductors is important to calculate to understand ac losses.
In addition, paralleling turns may be necessary to minimize
loss, especially in cases with high turns ratios, and predicting
current sharing between parallel turns is equally important. We
have presented a generalizable method for predicting current
distribution in these cases that is easily applied and rapidly
solved. The relative advantages of this new method, com-
pared to typical commercially available alternatives and prior
academic work, is shown in Table IV. The method achieves
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Fig. 18: Comparison of predicted relative current distribution between par-
alleled layers in 1:1 transformer with varying layer thickness (t) and layer
spacing (r), showing greater inaccuracy in the proposed method as interlayer
spacing becomes small.

these benefits by virtue of the high-frequency assumption in
which currents are assumed to flow only as surface currents on
the edges of conductors. This yields a set of linear algebraic
equations which is uniquely fast to solve numerically and
integrate into optimization algorithms. The simplicity of the
approach allows it to extend to cases where the current and
magnetic field distributions may be significant in two dimen-
sions; we are unaware of prior approaches that extend to 2-D
distributions. Its algebraic nature enables it to be extremely
rapid – orders of magnitude faster than FEA simulation.
Both FEA simulations and experimental results validate the
accuracy of our predictions at a large range of frequencies
and for many different structures. Due to its simplicity, such a
method can be easily integrated into optimization engines for
transformer layer arrangements, and can facilitate the design
of low loss high frequency transformers.

APPENDIX A
EXPERIMENTAL DIMENSIONS

8-Layer Board
Board Thickness 1.6mm

Copper Thickness 1 oz (35 µm)
Turn Length 46 cm
Turn Width 2 cm

Layer Spacing 0.185mm, 0.13mm
Customizable Boards

Board Thickness 1.6mm
Copper Thickness 2 oz (70 µm)

Turn Length 22.5 cm
Turn Width 9mm

Operated
with 0

ampere-
turns?

Use simplified
method to

produce solution
(Section III-B)

Use general method
(Section III-A)

Either
winding

has I = 0?

Predict magnetizing
(and potentially

leakage) inductance,
calculate IP and
IS over a period.

Substitute predicted
current values into

solution vector.

Substitute predicted
peak current value.

Yes No

No

Yes

Fig. 19: Decision tree for selecting the most suitable analysis method.

APPENDIX B
METHOD CHOICE DECISION TREE

To assist in the selection of the most appropriate version
of the analysis method presented for a particular application,
refer to the decision tree shown in Fig. 19.
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