Teaching Data Models with TriQL

Abdussalam Alawini
Leyao Zhou
Lujia Kang
alawini@illinois.edu
leyaoz2@illinois.edu
lujiak2@illinois.edu

The University of Illinois at
Urbana-Champaign

USA
Abstract

With the abundance of database systems implementing various data
models, such as the relational, graph, and document-oriented mod-
els, learners often find it challenging to understand the trade-offs
between different data models and to decide which database system
they should learn and why. Additionally, most introductory data-
base courses focus on the predominant relational model for teaching
database design and programming, and do not discuss other emerg-
ing databases. While the relational database systems still play a
vital role in modern data systems, especially with the emergence
of NewSQL, it is crucial to introduce students to databases imple-
menting other data models. In this paper, we introduce TriQL, a
system for helping novices learn the schema and query languages
of three major database systems, including MySQL (a relational
database), Neo4] (a graph database), and MongoDB (a document-
oriented database). TriQL offers learners a graphical user interface
to design and execute a query against a generic database schema
without requiring them to have any database programming ex-
perience. TriQL follows an interactive approach to learning new
database models, supporting a dynamic and agile learning environ-
ment that can be easily integrated into database labs and homework
assignments.

Keywords
database education, SQL, Neo4], MongoDB

ACM Reference Format:

Abdussalam Alawini, Leyao Zhou, Lujia Kang, Ping-Che Ho, and Peilin
Rao. 2022. Teaching Data Models with TriQL. In Ist International Workshop

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DataEd’22, June 17, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9350-8/22/06...$15.00
https://doi.org/10.1145/3531072.3535320

Ping-Che Ho
pingrogerche1995.ho@gmail.com
Pure Storage

USA

16

Peilin Rao
peilinr@andrew.cmu.edu

Carnegie Mellon University

USA

on Data Systems Education (DataEd’22), June 17, 2022, Philadelphia, PA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3531072.
3535320

1 Introduction

With the emergence of database systems implementing non-relational
data models, such as graph, document-oriented, and key-value
stores, beginner learners often find it challenging to decide what
database model they should learn. Experienced developers also
struggle to understand new database models as different models
have different data structures and query languages. Thus, intro-
ductory database courses should introduce students to the abstract
concept of a data model (i.e., the notation for describing data or
information and generally consists of three parts 1) structure of the
data, 2) operation on the data, and 3) constraints on the data) and
provide them with the opportunity to compare and contrast the
structure, operations and constraints of databases implementing
different data models.

Several educational institutions realized the importance of intro-
ducing students to other data models and have adopted a curricu-
lum that includes relational and NoSQL (Not only SQL) databases
[Fowler et al. 2016; Guo et al. 2016; Li et al. 2016; Mohan 2018].
However, most database courses teach each data model separately
using independent labs and homework assignments without provid-
ing students with insights into the tradeoffs between different data
models [Alawini 2022; Davidson 2020; Kristin Tufte 2014]. Such
limitation hinders students’ ability to generalize their knowledge
to learning new data models.

In this paper, we introduce TriQL (i.e., Tribus linguis query, Latin for
three query languages), a system for helping novices and learners
with limited database experience learn the structures (schema) and
query languages of three major database systems, including MySQL
(a relational, SQL-Structured Query Language, database), Neo4] (a
graph database), and MongoDB (a document/collection-oriented
database). Our system also helps learners explore structural and
query language variations among different data models. Our system
uses advanced database techniques, such as data integration and

https://doi.org/10.1145/3531072.3535320
https://doi.org/10.1145/3531072.3535320
https://doi.org/10.1145/3531072.3535320

DataEd’22, June 17, 2022, Philadelphia, PA, USA

logical programming, to capture the core data operations common
between the relational, graph and document-oriented data models,
including selection (filtering data), projection (redefining the output
schema), grouping and aggregation.

TriQL offers learners a query builder interface for users to design
and execute a query against a generalized database schema without
requiring them to have any database programming experience. Our
generalized schema can capture applications’ business logic while
embedding properties of different data models. TriQL converts the
generated user-query into three database query languages: SQL,
Cypher (Neo4J’s query language), and MongoDB. The user will then
examine each generated query and can view its results on the native
database. For instance, TriQL produces an interactive Neo4] graph
for Cypher queries, allowing users to interact with the resulting
graph giving them the same experience working with the native
Neo4] database engine. Enabling users to examine their queries
on three database models help them quickly learn the three query
languages and understand the tradeoffs among different database
models.

The paper is organized as follows. Section 2 discusses related work
and introduces MongoDB and Neo4] databases. The TriQL system
architecture is detailed in section 3. Section 4 presents our future
plans and we conclude the paper in section 5.

2 Background

In this section, we first discuss related work. Then, we introduce Dat-
alog, an intermediate logical database language we use to capture
the generic user query, and provide a quick tutorial on MongoDB,
and Ne04]J!.

2.1 Related Work

While there is not much research on students’ difficulties while
learning different database models, there are multiple reports of
instructors including other database models into their database
courses [Fowler et al. 2016; Guo et al. 2016; Li et al. 2016; Mohan
2018]. Mohan reported experiences of a database education cur-
riculum that incorporated NoSQL [Mohan 2018]. In Mohan’s work,
students were exposed to several NoSQL paradigms and had a set
of projects, lab and research assignments to complete using the
knowledge they gained during the course. However, their course
did not provide labs for exploring the trade-offs between different
database models. Other NoSQL databases have also been incorpo-
rated into university curricula. For example, Fowler et al. reported
their experience in two database courses with teaching CouchDB,
a NoSQL data management system that uses JavaScript as its query
language [Fowler et al. 2016]. They mainly focused on measuring
students’ improvement of understanding NoSQL systems.

Researchers have proposed several tools for teaching databases.
SQLator, proposed by Sadiq et al. [Sadiq et al. 2004], is an SQL learn-
ing tool that attempts to evaluate student queries. It compares SQL
queries to plain English prompts to verify whether a student-written

1SQL and the relational model are well known, so we do not introduce them here.

17

Abdussalam Alawini, Leyao Zhou, Lujia Kang, Ping-Che Ho, and Peilin Rao

query is correct. SQLator uses a “'workbench’ of tools, including a
multimedia tutorial and a collection of practice databases. While
this provides students with additional resources, it is focused on the
relational database and SQL, and thus inadequate for teaching the
tradeoffs of the relational, graph, and document-oriented databases.
Other database learning tools include WebSQL[Allen 2000], an in-
teractive system for executing SQL queries, and MDB[Hilles and
Naser 2017], a tool for teaching MongoDB. These tools also focus
on helping students learn a particular database system, and none
of these tools combines relational and NoSQL. TriQL is different as
it allows students to learn query languages, focusing on teaching
students the trade-offs between the various data models and query
languages.

TriQL uses DataLog to capture the core of relational, graph-based,
and document-oriented query languages. Datalog is a powerful
logical and declarative programming language [Minker 1997]. Due
to its simplicity and query expressiveness, DataLog became the
standard choice for intermediate query language generated based
on the user’s input [Alawini et al. 2018; Wu et al. 2018, 2019]. In
Datalog, each formula is a function-free Horn clause, and every
variable in the head of a clause must appear in the body of the
clause. Such simple yet powerful formalization can maintain the
query logic and express it in several database models, enabling our
system to be flexible, easily plugable, and extendable with different
database technologies.

We briefly demonstrate the syntax of Datalog queries through two
examples. We use the following university database as a running
example. This database has three relations (tables):

Course(course_id, Name, Instructor);

Has (course_id, student_id);

Student (student_id, FirstName, LastName, Age, Year, Major)

The following query (Q;) will find the major of a student named
"James Smith":

output(E) :- Student(A, B, C, D, E, F), B = "James", C = "Smith"

Student(A, B, C, D, E, F) isthe definition of the Student re-
lation with each variable corresponding to each field in the student

relation. For example: A represents student_id, Brepresents FirstName,

Crepresents LastName. This query has two conditions:B = "James"
and C = "Smith" and projects (i.e., outputs) the result of E, which
is the Major attribute.

A more complex query (Q2) that finds, for each course, the number
of students majoring in ECE:

output(B, V@) :- VO = Course(_, B, _), COUNT(D):
{Course(A, B, C), Student(D, E, F, G, H, I), Has(J, K),
A=17J,D=K, I="ECE"}

This is an example of the aggregation operation. In order to find the
number of ECE students in every class, we first select tuples with
the ECE major. Then, we JOIN Course and Has on course_id, and

Student and Has on student_id. Finally, we GROUP BY course_name

in Course table. V@ is the result of the COUNT operation, which
counts the student_id. The output is course_name and Ve.

2.2 Introduction to Neo4]J and Cypher

Cypher is the query language used to query Neo4j databases. It
has a similar syntax to SQL, with declarative pattern-matching

Teaching Data Models with TriQL

features added for querying graph relationships. As one of the
most popular graph databases, Neo4j stands out among the current
graph models for its performance, simplicity, and powerful query
language [Fernandes and Bernardino 2018; Guia et al. 2017]. We
briefly demonstrate the syntax of Neo4j structure and queries. Fig-
ure 1 shows the Neo4] database equivalent to the database from our
running example. It has two types of nodes: Course and Student,
and one relationship HAS. Notice that the HAS relationship was
represented as a relation (table) in the relational database.

Course 1
{1, "Intro to Database
Systems", "David Young"},

Student 1
{1, "James", "Smith",21,
" 57

Student 2
{2, "Petter", "Jackson",
22, "Senior", "ECE"}

Student 3
{3, "Mick”, "Young", 20,
"Sephomore”, "CS"}

Figure 1: The Neo4] (graph) version of the university database pre-
sented in Section 2.1

Figure 2 shows the Cypher query for Q1 and Q. The Cypher version
of Q1 (Figure 2(a)) is similar to Q1’s SQL version. We first find the
Student nodes and use the WHERE clause to select students with the
name ‘James Smith’. Then, we RETURN (output) the Major property
of the student. Figure 2(b) shows the Cypher query equivalent to Q2
and demonstrates Neo4]’s power in querying interconnected data.
The graph pattern matching clause shown in the MATCH finds all
Students measuring ECE and taking a class (represented by the re-
lationship Has). The RETURN clause group the result by course name
and COUNT student_ids per course name. Notice that Cypher
does not use explicit GROUP BY cluase. If the RETURN clause con-
tains any aggregate function (such as COUNT()), it will group by all
listed attributes in the RETURN.

2.3 Introduction to MongoDB

MongoDB [MongoDB, Inc. 2019] is a document-oriented NoSQL
database that stores JSON-like data in documents with flexible
schema, removing the need for pre-defining the structure before
inserting the data into documents. A MongoDB consists of a set
of Collections, which consists of a set of Documents, which con-
sists of a set of key-value pairs. We show examples of MongoDB
documents and code snippets that exhibit the basic syntax of Mon-
goDB. Note that the _id attribute is an indexed attribute that must

MATCH (s:Student)

WHERE s.FirstName = "James"
AND s.LastName ="Smith"

RETURN s.Major

(a) Qg: for each course, find the
number of students majoring in
ECE

MATCH (s:Student {Major:"ECE"})-[:HAS]->(c:Course)
RETURN c.name, COUNT (s.student_id) AS count_student

(b) The Cypher queries corresponding to the DataLog queries
presented in Section 2.1

Figure 2: Examples of Cypher (Neo4] queries)

18

DataEd’22, June 17, 2022, Philadelphia, PA, USA
be included in every object. Figure 3 shows a MongoDB database
equivalent to our running example’s database.

Course: Student: Fas:

{ (. (

-
scen’, "Las

M. Mag

Senior",
"Major": "ECE"

}
Figure 3: The MongoDB version of the university database pre-

sented in Section 2.1

MongoDB databases can be queried from many different program-
ming languages, but the most straightforward interface is through
MongoDB’s JavaScript shell. The MongoDB’s version of Q; is
shown below.

db.Student.find(
{ FirstName: "James", LastName:
{ _id: @, Major: 1})

"Smith" 3},

The find operation takes two arguments (selection and projection)
and returns documents in a collection or view, and returns a cursor
to the selected documents. In the query above (Q1), the second line
represents the selection part of the query. The selection condition
finds a document with FirstName ‘James’ and LastName ‘Smith’.
The third line ({_id:@, Major:1})returnsMajor and hides (_id: @)
the _id property.

MongodB offers a variety of complex data operations. For example,
$match is an operator that takes conditions as arguments to filter
and produce documents that have met set conditions. The $unwind
is an aggregation operator, which takes a reference to an array
and produces multiple objects from the array elements. Another
aggregation operator $group, which takes an _id field as its first
argument, continually takes fields combined with accumulator op-
erators to perform basic operations, such as $sum, on the collection.
Finally, $project is an operator that takes fields as its arguments,
then adds, renames, excludes, or includes the specified fields in the
resulting collection.

Below we list the MongoDB version of Qa. This query uses the
aggregate pipeline on the Course collection. The $lookup op-
eration finds documents in the Has collection that match on the
course_id. Then, the $unwind creates a document for each ele-
ment in the newly constructed array has. The same two operations
will be repeated again to connect has to Student based on the
student_id property. Next, we use the $MATCH operator to select
students majoring ‘ECE’. Then, the $group operator groups doc-
uments by the course name; and finally the $project operator
outputs the course name and the size of the student array.
db.Course.aggregate([
{$lookup:
{ from: "HAS",

local_field: "course_id",
foreign_field: "course_id",

as:"has" }
},
{$unwind: "$has"},
{$1lookup:

{ from: "Student",
local_field: "has.student_id",

DataEd’22, June 17, 2022, Philadelphia, PA, USA

foreign_field: "student_id",
as:'"student" }

}
{$unwind: "$student"},
{$match:

{ Student.Major: "ECE" }
}
{$group:

{ _id: {name: "name"},

students: {$push: "$student.student_id"} }

}

{$project: {_id: 1, count_student: {$size: "$students"}}}
D

3 System Overview

Figure 4 shows the main components of TriQL. Once a user submits
a generic query (represented as a JSON, JavaScript Object Notation,
structure) via the Query Builder Interface (QBI), the Intermediate
Query Generator (IQG) converts the user query into DataLog. Then,
the Schema and Query Translator (SQT) 1) transforms the generic
database (JSON) schema shown to the user into MySQL, Neo4],
and MongoDB, and 2) concurrently converts the DataLog query
into SQL, Cypher, and MongoDB. Finally, TriQL executes each
generated query on its corresponding database engine and shows
native result to the user on the Query Result Interface. The user can
then examine the three generated queries along with their outputs.
They can also modify their query using TriQL’s QBI and resubmit
it again to see the effects of their changes. Such an interactive
approach is beneficial for users to learn by examples in a dynamic
and agile fashion.

Intermediate
Query Generator
(IQG)

Query Datal.og|Query

Query Builder
Interface
<
o\

Query
Result
Interface

Schema and

Query
Translator (SQT)

ypher Cuary

Generalized
Schema

Figure 4: TriQL System Architecture: The Query Builder for build-
ing queries using a GUI; the Intermediate Query Generator converts
user queries to DataLog; The Schema and Query Translator gener-
ates the schema of the three database and coverts the DataLog query
into SQL, Cypher and MongoDB

3.1 Generalized Schema

The database schema describes data entities and their relationships
based on the real-world application’s underlying business logic.
Database systems vary significantly in how they represent data. For
example, the relational database has a fixed schema where users
must define the data structure before uploading it into the database.
In contrast, other databases, such as MongoDB and Neo4], have
a more flexible schema where users can upload the data without
worrying about its structure. Such variations in database struc-
tures make it challenging for novices to learn database program-
ming.

19

Abdussalam Alawini, Leyao Zhou, Lujia Kang, Ping-Che Ho, and Peilin Rao

In this paper, we introduce our generalized JSON-based (JavaScript
Object Notation) schema (GS), capable of capturing properties of re-
lational (SQL) and NoSQL databases. We choose JSON to represent
our generalized schema because of its expressive and straightfor-
ward structure. JSON is also widely supported by many program-
ming languages.

The ability to generalize the structure of databases has several
key learning outcomes: 1) learners can easily understand the data
entities and how they are connected without having to learn com-
plex data definition languages, 2) because we capture various data-
base properties in GS, TriQL can easily transform GS into other
database structures, and 3) our GS provides learners with the abil-
ity to examine the properties of relational, graph and document
databases.

The general schema stores information of the underlying data mod-
els using two primary substructures: ENTITY and RELATION. Enti-
ties contain attributes that describe real-world objects; relationships
capture connections between these entities. Each relationship cap-
tures the relationship cardinality (i.e., one-to-one, one-to-many, or
many-to-many), and the relationship direction for directed relation-
ships. Such a simple yet powerful representation of structure allows
learners to quickly identify entities and their attributes and relation-
ships between these entities. Additionally, capturing information
such as relationship direction and cardinality allows our system to
transform this schema into relational, graph, or document databases
without human intervention.

3.2 Query Builder and Result Interface

TriQL’s Query Builder Interface (QBI) allows users to construct
queries using a user-friendly Graphical User Interface (GUI). The
GUI allows users to select a database schema from a set of preloaded
databases. Users can examine the conceptual design by clicking
the "show UML diagram" button, which displays the design as
a Unified Modeling Language (UML) diagram. Once the user is
comfortable with the database schema, they can use the QBI to
query the database. They can select entities and attributes (fields),
define selection criteria over attributes, and decide whether to
return an attribute with the output. The user must use the "Show"
checkbox to choose the queries’ attribute or aggregations output.
They can also define grouping and aggregation functions. After
clicking the "Generate" button, the QBI sends the user query as a
JSON structure to TriQL’s intermediate (DataLog) query generator.
The generated Datalog query is then translated into SQL, MongoDB,
and Neo4] queries, displayed in the Query Result Interface (see
Figure 5). To see each translated query’s output, users can click the
"show data" buttons to see the query result in its native structure.
Figure 5(b) shows an example of TriQL’s Query Result Interface
showing a Cypher query in its native Neo4] database. Users can
interact with the graph and visualize the properties of the nodes
and edges.

Teaching Data Models with TriQL

Schema: Course ~

Table Field Show Operator Criteria Aggregation

SHOW UML Setecton Crtens

DIAGRAM v Student First_name D =v John v
Courses v Selection Cilteria
v Student Last_name D = Smith v
Has v
v Student Major - -
Student ~
[student_id Queries
‘GENERATE
First_name
Last_name Datalog
O A output(E) :- Student(A,8,C,D,E,F), B = "James", C = "Smith"
ge
O Year 0
SHOW SQL DATA
Major

SELECT
Major
FROM
Student
WHERE
First_name = "John" AND Last_name = "Smith"

MongoDB

SHOW MONGODB DATA

db Student . find({FirstName:"James",LastName:"Smith" Major: 1, _id: @

(a) TriQL’s Query Builder and Query Result Interfaces. The QBI allows users to
construct the query using a user-friendly GUI and the Query Result Interface
shows the query result in its native database.

GENERATE sHOW.

MATCH (a:User)-[r:has.
RETURN a, r, b

- (b:Pokenon

has'Pokemon has.
User

(b) An example of TriQL’s Query Result Interface showing a Cypher query in
its native Neo4] database. Users can interact with the graph and visualize the
properties of the nodes and edges.

Figure 5: TriQL User Interface

3.3 Intermediate Query Generator

The Intermediate Query Generator (IQG) translates the JSON query
received from the query builder into DataLog. The process starts
with converting entities into Datalog relations. For instance, the
user input from Figure 2 will output relation tmp(Major). Next,
the IQG creates a mapping between entities’ attributes and the
Datalog variable. Using the relations and mappings, the IQG can
now generate a Datalog query that matches the user query. Here is
the Datalog query for Qy:

output(E) :- Student(A, B, C, D, E, F), B = "James", C = "Smith"

The head of the DataLog query (output (E)) specifies the attribute(s)
that the user would like to output. The query body contains the

20

DataEd’22, June 17, 2022, Philadelphia, PA, USA

input relation (Student) and the conditions for filtering the tu-
ples (records). The query, the generated intermediate relations, and
dictionary are passed to the Schema and Query Translator (SQT),
which converts the DataLog to the corresponding SQL, Cypher, and
MongoDB queries.

3.4 Schema and Query Translator

The Schema and Query Translator (SQT) has two subsystems:
Schema Generator and Query Translators. The schema genera-
tor converts the JSON-based Generalized Schema of the selected
database and converts it into relational (MySQL), graph (Neo4]),
and document (MongoDB) databases. The Query translators subsys-
tem receives the DataLog and translates it into into the equivalent
SQL, Cypher, and MongoDB queries.

The Query Translator uses predefined rules to convert a DataLog
query into SQL, Cypher and MongoDB queries (See Figure 5). The
generated queries can capture the primary data querying operations,
including selection, projection, grouping, and aggregation. Once the
three queries are generated, each query will be executed in its
corresponding database and the data will be returned to the user in
its native structure.

4 Ongoing and Future work

We are currently working on making the TriQL service publicly
available online to collect and analyze users’ interactions with the
service. This data we plan to gather will help us understand how
learners use TriQL to learn databases.

Most importantly, we plan to use TriQL in our database course (CS
411) to evaluate its learning effectiveness. We will have students
use TriQL as part of lab and homework assignments. We will then
conduct quantitative and qualitative analysis to measure the impact
of TriQL in students’ understanding of database schema and query
languages. To that end, we are now integrating TriQL in two lab
assignments. TriQL lab 1, which precedes the SQL, MongoDB, and
Neo4] labs, introduces students to the generalized schema and the
query builder interface. The first part of this experimental lab would
help students explore the generalized schema of a real-world ap-
plication. Examining a generic schema helps students understand
the data entities and their connections without worrying about
understanding any particular database’s structure. The second part
of this lab focuses on teaching students the principal data querying
operations, including selection, projection, grouping, and aggre-
gation. Using the TriQL QB interface, students can immediately
query the database without any prior knowledge of any database
programming language.

TriQL lab 2, which will succeed all SQL, MongoDB, and Neo4] labs,
will include open-ended questions that encourage students to use
TriQL to solve problems and reflect on the differences between the
relational, graph, and document-oriented models and their query
languages. We will design this lab to showcase the advantages and
disadvantages of each data model. For example, students can work
on a scenario in which data entities are highly connected. Cypher

DataEd’22, June 17, 2022, Philadelphia, PA, USA

(graph) and the graph model of Neo4] would be more effective in
such a scenario compared to SQL or MongoDB.

Lab 2 will also help student learn about the structure of the three
database. Because students can examine their query results on its
native structure, they can quickly learn the tradeoffs among differ-
ent database structures. Additionally, this lab will require students
to reflect on the difference among the three data models. Students
will use TriQL to view the generalized schema, the database con-
ceptual design (viewed as a Unified Modeling Language chart), and
the native structure of each of the three databases. For instance,
students can view the Data Definition commands for the relational
database.

We plan to improve TriQL’s functionality by allowing users to sub-
mit queries in the native database query language (without using
the GUI) and see the equivalent query in another database query
languages. We are testing a data import function that allows users
to upload a new database to TriQL by uploading their SQL DDL
(.sql) files to TriQL. Additionally, we aim to develop an API to in-
tegrate TriQL with online assessment tools, such as PrairieLearn.
Another future direction is to extend TriQL to support other mod-
ern data models, including Key-Value, Column-Family and Array
databases.

5 Conclusions

We developed TriQL, a system for helping novices learn three major
database systems, including relational (MySQL), graph (Neo4]),
and document-oriented (MongoDB), and their query languages.
Learners can explore the trade-offs among data models and the
different querying paradigms, including the abstract declarative
paradigm of SQL and Cypher and the imperative paradigms of
MongoDB shell. We also discussed how TriQL can be integrated
into an introductory database curriculum as part of the database
programming lab assignments.

Acknowledgments

This work was partially funded by NSF (Award number: 2021499)

References

Abdussalam Alawini. 2022. Database Systems.
teaching/database-systems/

Abdussalam Alawini, Susan B Davidson, Gianmaria Silvello, Val Tannen, and Yinjun
Wu. 2018. Data Citation: A New Provenance Challenge. (2018).

Grove N Allen. 2000. WebSQL: An Interactive Web Tool for Teaching Structured Query
Language. AMCIS 2000 Proceedings (2000), 384.

Susan Davidson. 2020. Data Management in the Cloud. https://www.seas.upenn.edu/
~cis550/

Diogo Fernandes and Jorge Bernardino. 2018. Graph Databases Comparison: Allegro-
Graph, ArangoDB, InfiniteGraph, Neo4], and OrientDB.. In DATA. 373-380.

Brad Fowler, Joy Godin, and Margaret Geddy. 2016. Teaching Case: Introduction
to NoSQL in a Traditional Database Course. http://jise.org/Volume27/n2/
JISEv27n2p99.html

https://alawini.web.illinois.edu/

21

Abdussalam Alawini, Leyao Zhou, Lujia Kang, Ping-Che Ho, and Peilin Rao

José Guia, Valéria Gongalves Soares, and Jorge Bernardino. 2017. Graph Databases:
Neo4j Analysis.. In ICEIS (1). 351-356.

Minzhe Guo, Kai Qian, and Li Yang. 2016. Hands-on labs for learning mobile and NoSQL
database security. In 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC), Vol. 2. IEEE, 606-607.

Mohanad M Hilles and Samy S Abu Naser. 2017. Knowledge-based intelligent tutoring
system for teaching mongo database. (2017).

David Maier Kristin Tufte. 2014. Data Management in the Cloud. http://datalab.cs.pdx.
edu/education/clouddbms-win2014/page.php?content=index

Lei Li, Kai Qian, Qian Chen, Ragib Hasan, and Guifeng Shao. 2016. Developing Hands-
on Labware for Emerging Database Security. In Proceedings of the 17th Annual
Conference on Information Technology Education (Boston, Massachusetts, USA)
(SIGITE ’16). Association for Computing Machinery, New York, NY, USA, 60-64.
https://doi.org/10.1145/2978192.2978225

J. Minker. 1997. Logic and Databases: Past, Present, and Future. AI Mag. 18 (1997),
21-47.

Sriram Mohan. 2018. Teaching NoSQL Databases to Undergraduate Students: A Novel
Approach. In Proceedings of the 49th ACM Technical Symposium on Computer Science
Education (Baltimore, Maryland, USA) (SIGCSE ’18). Association for Computing
Machinery, New York, NY, USA, 314-319. https://doi.org/10.1145/3159450.3159554

MongoDB, Inc. 2019. MongoDB. https://www.mongodb.com/

Shazia Sadiq, Maria Orlowska, Wasim Sadiq, and Joe Lin. 2004. SQLator: An Online
SQL Learning Workbench. SIGCSE Bull. 36, 3 (June 2004), 223-227. https://doi.
org/10.1145/1026487.1008055

Yinjun Wu, Abdussalam Alawini, Susan B. Davidson, and Gianmaria Silvello. 2018. Data
Citation: Giving Credit Where Credit is Due. In Proceedings of the 2018 International
Conference on Management of Data (Houston, TX, USA) (SIGMOD °18). Association
for Computing Machinery, New York, NY, USA, 99-114. https://doi.org/10.1145/
3183713.3196910

Yinjun Wu, Abdussalam Alawini, Daniel Deutch, Tova Milo, and Susan Davidson. 2019.
ProvCite: Provenance-Based Data Citation. Proc. VLDB Endow. 12, 7 (March 2019),
738-751. https://doi.org/10.14778/3317315.3317317

https://alawini.web.illinois.edu/teaching/database-systems/
https://alawini.web.illinois.edu/teaching/database-systems/
https://www.seas.upenn.edu/~cis550/
https://www.seas.upenn.edu/~cis550/
http://jise.org/Volume27/n2/JISEv27n2p99.html
http://jise.org/Volume27/n2/JISEv27n2p99.html
http://datalab.cs.pdx.edu/education/clouddbms-win2014/page.php?content=index
http://datalab.cs.pdx.edu/education/clouddbms-win2014/page.php?content=index
https://doi.org/10.1145/2978192.2978225
https://doi.org/10.1145/3159450.3159554
https://www.mongodb.com/
https://doi.org/10.1145/1026487.1008055
https://doi.org/10.1145/1026487.1008055
https://doi.org/10.1145/3183713.3196910
https://doi.org/10.1145/3183713.3196910
https://doi.org/10.14778/3317315.3317317

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Introduction to Neo4J and Cypher
	2.3 Introduction to MongoDB

	3 System Overview
	3.1 Generalized Schema
	3.2 Query Builder and Result Interface
	3.3 Intermediate Query Generator
	3.4 Schema and Query Translator

	4 Ongoing and Future work
	5 Conclusions
	Acknowledgments
	References

