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ABSTRACT

We assess the treatment effect of juvenile stay-at-home orders (JSAHO) on reducing the rate of SARS-CoV-
2 infection spread in Saline County (“Saline”), Arkansas, by examining the difference between Saline’s and
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control Arkansas counties’ changes in daily and mean log infection rates of pretreatment (March 28-April

5, 2020) and treatment periods (April 6-May 6, 2020). A synthetic control county is constructed based on
the parallel-trends assumption, least-squares fitting on pretreatment and socio-demographic covariates,
and elastic-net-based methods, from which the counterfactual outcome is predicted and the treatment
effect is estimated using the difference-in-differences, the synthetic control, and the changes-in-changes
methodologies. Both the daily and average treatment effects of JSAHO are shown to be significant. Despite
its narrow scope and lack of enforcement for compliance, JSAHO reduced the rate of the infection spread
in Saline. Supplementary materials for this article are available online.

1. Introduction

In response to rising numbers of Covid-19 cases, state and
local governments in the United States have used their juris-
dictional authorities to implement a wide class of public health
and social measures (PHSMs) aimed at slowing the spread of
the SARS-CoV-2 (“Covid-19”) infections. At times, local gov-
ernments have stepped up and issued orders when the poli-
cies they deemed necessary were not implemented at the state
level. Much of these policy responses has focused on enforc-
ing social-distancing through measures ranging from tempo-
rary closures of public-facing businesses, shelter-in-place orders
(SIPO), and stay-at-home orders (SAHO) to mandatory mask-
wearing orders (Courtemanche et al. 2020; Friedson et al. 2020;
Hsiang et al. 2020; Dave et al. 2021; Abouk and Heydari 2021;
Chernozhukov, Kasahara, and Schrimpf 2021a). There have
been a number of studies to: quantify association between
Covid-19 infection spread and implementation of SIPO and
SAHO (Gao et al. 2020; Le et al. 2020; Lurie et al. 2020); evaluate
causal effects of SAHO on restraining social interactions (e.g.,
see Abouk and Heydari 2021) and mobility (Chen et al. 2020);
understand the effectiveness of SIPO in reducing the number
of cases and fatalities (Friedson et al. 2020; Courtemanche et al.
2020); and demonstrate the importance of time (relative to the
pandemic) and place of the implementation of SIPO on its
impact.

SIPO is the most restrictive form of social-distancing mea-
sures with its compliance assurance coming from law enforce-
ment and punitive fines (Caswell 2020; Friedson et al. 2020;
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Napoleon 2020; Dave et al. 2021) as well as social pressures
(Ronayne and Thompson 2020; Dave et al. 2021). Some govern-
ments have considered more lenient measures, including issuing
advisories (instead of orders) for all residents to restrict their
movements out of home only to essential ones and narrowing
the scope of orders to a certain segment of the residents. How-
ever, strict adherence to such measures is often not enforced;
instead, its effectiveness to a large extent relies on the willingness
of residents to voluntarily modify their behaviors to comply
in light of the pandemic (Arey 2020). A natural question that
arises is whether these measures are effective and, if so, to
what extent.

The juvenile stay-at-home order (JSAHO) was put into effect
in certain parts of Saline County of Arkansas (“Saline”) (Arey
2020; Simpson 2020) from April 6 through May 6 as a response
to the pandemic. Its scope was limited in two respects. First,
while JSAHO was declared by Saline County, it only applied
to unincorporated areas of the county. Of the incorporated
cities and townships in Saline, Benton City was the only one to
implement JSAHO over the same period. The unincorporated
areas and Benton had a combined population of 45,231, or
approximately 42% of the county population according to the
2010 U.S. Census. Second, JSAHO was restricted to residents
under the age of 18 and allowed them to leave home only if
accompanied by adults. To the best of our knowledge, Saline
was unique among the counties in Arkansas in having direct
jurisdiction to impose JSAHO on certain parts of the county
without having to work through local townships.
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Among the few states in the United States that did not impose
either SIPO or SAHO, Arkansas is unique in that a narrower-
scope SAHO was nonetheless implemented in one of its coun-
ties. This provides an invaluable setting for a natural experiment
to assess the effectiveness of the policy action adopted at the
county level while controlling the effects of other policies that
were concurrently implemented at the state-level.

Our main objective in this article is to study the effectiveness
of policy measures on reducing Covid-19 infection spread when
the scope is limited, and compliance is largely voluntary. The
details of the methods used in the article are covered in Sec-
tion 2. The results on the treatment effect of JSAHO based on
the log infection rates is covered in Section 3. Section 4 contains
a discussion on the results of the analysis and the effect of
JSAHO on public health. The supplementary material contains
an alternative analysis based on raw (rather than log) infection
counts, along with a comprehensive list of tables and figures
referenced throughout this article. Our implementation code in
R is also available as supplementary material.

2. Methods

Drawing causal inference often entails choosing a comparison
group to construct a “synthetic unit” and using it to estimate
counterfactual outcomes, and computing and checking the sig-
nificance of implied treatment effects. In this section, we discuss
each of these steps in sequence. To start, we first describe the
notation we use in this article.

2.1. Notation

A county i is classified as either a treatment group G; = 1 or
a control group G; = 0, and is observed in time points ¢t €
{0,...,To, To + 1,..., T} with the first Ty points denoting the
pretreatment period and {To+1, . .., T} denoting the treatment
period. Our outcome of interest is the log of infection rates,
defined as the number of infections per 100,000 residents in a
county and denoted Yj. As is standard in the literature, we use
the notation introduced in (Rubin 1974, 1978) and denote by Y{\;
the potential outcome for the treated county without treatment
and Y7}, with treatment. Observed outcome for county i at time
t is denoted Yj;. Hence, the treatment effect is denoted 0; =
Y1, — YN.In our study, Saline County is the sole treatment group
and “control county” refers to either one of the other counties in
Arkansas that meet the “parallel-trends” criteria or a synthetic
county, as discussed in Section 2.2 below. {Yo;,;}ic[n] denotes
the set of counties that comprise the synthetic control county
and Nc refers to the number of counties in that set. Following
the terminology in the matching literature, we refer to the pool
of potential counties from which a comparison group is chosen
as the “donor pool”

2.2. Selection of Control Counties

The composition of synthetic control depends on the choice of
a similarity measure to be optimized relative to the treatment
unit. A common approach to selecting a control group is to
apply the parallel-trends assumption, in which those whose
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fitted lines based on pretreatment outcomes are most parallel
to the treatment unit’s comprise the comparison group.! Other
approaches select control groups that minimize the difference in
pretreatment observations and covariate values deemed relevant
for the situation.”> Depending on the specific form in which
individual units are combined to produce the counterfactual
outcome, the set that optimizes the given similarity measure is
selected. Different methodologies make different assumptions
on the parameters of this counterfactual estimation model. Pop-
ular methodologies in the Covid-19 policy evaluation literature
include difference-in-differences (DID) (Ashenfelter and Card
1984; Card 1990; Meyer, Viscusi, and Durbin 1995; Bertrand,
Duflo, and Mullainathan 2004; Abadie 2005; Doudchenko and
Imbens 2016; Abouk and Heydari 2021), synthetic control (SC)
(Abadie and Gardeazabal 2003; Abadie 2005; Abadie, Dia-
mond, and Hainmueller 2010, 2015; Hainmueller 2012; Doud-
chenko and Imbens 2016; Friedson et al. 2020), and elastic-net-
based methods (Doudchenko and Imbens 2016; Chernozhukov,
Wiithrich, and Zhu 2021b). Other methods discussed in the
causal inference literature include propensity scores matching
(Courtemanche et al. 2020), event-studies (Courtemanche et al.
2020; Dave et al. 2021; Abouk and Heydari 2021), matrix com-
pletion, interactive fixed effects, and changes-in-changes (CIC)
(Athey and Imbens 2006).

An assumption that is of particular importance in the lit-
erature is that counterfactual outcomes can be represented as
a linear combination of control unit outcomes, that is, Y{t =
a+ Zficl bi - Yot,i- Doudchenko and Imbens (2016) presented
a simple canonical context for considering the parameteric con-
straints underlying many popular linear methods, namely:

1. a = 0 (systematic additive difference between the control and
the treated);

2. b; > 0,i € [Nc] (positive coefficients);

3. Zficl b; = 1 (coefficients adding up to 1);

4. bj = bj,Vi # j, bj, bj # 0 (identical coefficients).

As we will see shortly, constraints (1)-(3) characterize SC and
several of its variants, and (2)-(4) comprise what is known as the
“parallel trends” assumption that underlie DID, while certain
elastic-net based methods relax these constraints (Doudchenko
and Imbens 2016). On the other hand, CIC allows the underly-
ing counterfactual representational form to be nonlinear (Athey
and Imbens 2006). Below, we discuss each of these methodolo-
gies in the context of control county selection.

2.2.1. Control Selection Based on the Parallel Trends
Assumption

DID relies on the “parallel trends assumption,” that is, that the

time trends for the treatment and control counties are similar,

and assigns equal positive weighting to each control unit that

adds up to 1. To select counties that best satisfy this assumption,

we plotted the gap in logs of pretreatment infection rates for each

This assumption underlies the difference-in-differences methodology of
estimating the counterfactual outcomes.

2These are used in various forms of the counterfactual estimation methodol-
ogy known as the synthetic control.
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county in Arkansas that had reported pretreatment infections:

log(infection rate in Saline)

— log(infection rate in Control County) (1)

and chose as control counties those for which the trends of
this difference in logs are relatively flatter over the latter part
of the pretreatment period, that is, days near the JSAHO start
date of April 6. We use SC-DID to denote the synthetic county
comprised of counties selected based on the parallel trends
assumption.

2.2.2. Synthetic Control Construction

Constructing the comparison group for SC is a bit more
involved. This is due in part to the question of whether con-
sidering socio-demographic covariates on top of pretreatment
outcomes leads to a more accurate synthetic treated unit (see
Doudchenko and Imbens (2016) for the negative argument
and Abadie and Gardeazabal (2003) and Abadie, Diamond,
and Hainmueller (2015) for the affirmative). We construct the
synthetic control county in two ways. In one approach, we
only use pretreatment outcomes to construct the comparison
group. In the other approach, we consider both the pretreatment
outcomes and socio-demographic covariates deemed relevant in
the literature. We discuss each of these approaches in more detail
below.

SC Based Only on Pretreatment Data. In this approach, we
follow the methodology outlined in Doudchenko and Imbens
(2016) and consider different choices for numbers of counties
in the synthetic county, ranging from 3 to 8. These values are
obtained by varying the size of the donor pool of counties in
SC. One rationale for this approach is that by conditioning on
the pretreatment trends, the counterfactual estimation models
may effectively account for effects of covariates that contribute
to the pretreatment trends as long as the covariate effects do
not interact with the policy. For example, compared to control
counties, Saline has the lowest ratio of smokers and the heart dis-
ease mortality rate (see Tables 4, 5, and 6 in the supplementary
materials). While these covariates may impact infection rates,
there is no obvious reason to suspect that the effects of such
covariates on COVID susceptibility should dramatically change
before and after the implementation of JSAHO. We use SC
to denote the synthetic county comprised of counties selected
using this methodology.

SC Based on Both Pretreatment and Covariate Data. We
proceed as in Abadie and Gardeazabal (2003) and Abadie,
Diamond, and Hainmueller (2015) and incorporate a total of
82 socio-demographic covariates discussed in the literature in
addition to pretreatment log infections. Tables 4, 5 and 6 in
the supplementary materials list all of the variables we used in
our synthetic control county construction and show how Saline
compares vis-a-vis control counties along each covariate. We
denote the synthetic county constructed under this approach by
SCc.

In Tables 4, 5, and 6 in the supplementary materials, one can
observe that Saline ranks close to the median on most covariates
with a few exceptions. To mention a few, note that while Saline

has much lower poverty rate and the social vulnerability index
(SVI) than the control counties, the association between these
covariates and the infection rate is mixed with some studies
reporting that higher income levels and lower disability rates
are correlated with higher infection rates (Masetti et al. 2020)
while others observe the opposite (Brown and Ravallion 2020;
Siddique et al. 2020). Further, it was observed that counties
with very low poverty levels reported the highest number of
cases (Jung, Manley, and Shrestha 2021). Saline also has lower
smoker percentage and heart disease mortality rate, but these
covariates have been found to be associated with mortality rates
of the disease rather than infections (Abedi et al. 2020; Masetti
et al. 2020; Brown and Ravallion 2020). For a more complete
discussion of the covariates considered in our analyze, see the
supplementary materials.

As noted in Doudchenko and Imbens (2016), incorporating
covariates other than pretreatment data into counterfactual esti-
mation is not feasible in model specifications that allow either
nonzero systematic additive difference between the treated and
control (e.g., DID), or control weights to sum to a value other
than one (e.g., elastic-net-based methods). Hence, we consider
pretreatment outcomes only for SC.

2.3. Counterfactual Estimation

Broadly, there are two ways to estimate counterfactual out-
comes. One approach (“linear methods”) assumes that the coun-
terfactual outcome is a linear combination of the observed
outcomes of the control group, while the other (“nonlinear
methods”) relaxes this assumption. The former can be further
classified depending on particular modeling constraints. For
instance, in SC-DID, each control unit is given the same weight
that adds up to one and a permanent additive difference exists
between the treated and control groups. SC differs from SC-
DID in that weights are allowed to differ from each other as
long as they remain positive and there is no systematic additive
difference between the treated and control. For the classic SC
method that makes explicit the role of covariates, see Abadie
and Gardeazabal (2003), Abadie, Diamond, and Hainmueller
(2010), and Abadie, Diamond, and Hainmueller (2015). Lastly,
Doudchenko and Imbens (2016) proposed a method in which
the constraints in SC, namely, the positive weights and the zero
additive difference, are relaxed in exchange for the elastic-net
penalty term to narrow down the optimization search space. We
refer to this method as “SC-EN” which can be written as follows:

To
({1, ®) = arg min Z (Yii—p— Za)i - Yi) (2)
oy i#£1

l—«
+A(T||w||%+a||w||1).

Nonlinear methods relax the aforementioned constraints.
CIC relaxes a key assumption in DID that outcomes are linear in
time and group membership. Instead, it assumes that a general,
nonparameteric monotone function maps unobserved, time-
invariant but unit-dependent, characteristic to an outcome of
interest.



In this article, we consider the following methods to estimate
the counterfactual outcomes of Saline and assess the implied
treatment effects:

1. SC-DID, SC, and SC-EN as laid out in Doudchenko and
Imbens (2016), with SC estimated based only on pretreat-
ment outcomes;

2. SC¢ estimated with both pretreatment outcomes and 82
covariates as presented in Abadie and Gardeazabal (2003)
and Abadie, Diamond, and Hainmueller (2010, 2015) and,

3. CIC with the comparison group constructed with SC-EN.

The empirical results corresponding to these methods are pre-
sented in Sections 3.2, 3.3, and 3.4, respectively.

Ashley

Clark Cleveland

Lawrence Miller
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2.4. Treatment Effect Estimation

In this article, we demonstrate evidence of the causal effect of
JSAHO in two ways. First, we show that pointwise (i.e., daily)
confidence intervals of the treatment effect with the synthetic
comparison county constructed based on the parallel-trends
assumption and subset selection using the squared differences
are significant using the conformal inference method in Cher-
nozhukov, Wiithrich, and Zhu (2021b). Second, we show that
the average treatment effect under more general assumptions
estimated with CIC (Athey and Imbens 2006) is significant. In
the supplementary materials, we also present alternative analy-
ses based on raw (versus log) infection rates and show that the
average treatment effect is significant.

Cross Desha

Craighead

Jefferson Johnson Lafayette

Lincoln St. Francis

Lal

Figure 1. Y-axis: log(infections in Saline per 100,000)—Ilog(infections in Control County per 100,000), X-axis: pretreatment period. Dotted line denotes JSAHO announce-

ment date (April 2) and solid line denotes the start date (April 6).
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Figure 2. Log infection rate gap between Saline and synthetic counties constructed using the SC-DID (left) and SC (right) methodologies. The labels denote the synthetic
control sizes, for example, “SC-8” denotes a synthetic control composed of eight counties shown in Table 1. Dotted line denotes JSAHO announcement date (April 2), solid
blue line denotes the start date (April 6), and solid black line denotes the end date of the JSAHO.
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2.4.1. Pointwise Treatment Effect with Linear Estimation
The counterfactual model in (Chernozhukov, Wiithrich, and
Zhu 2021b) expresses potential outcomes as YN = PN + u; and
Y{t = Pﬁ ~+ 0; where {Pﬁ} are mean-unbiased proxies for {Yﬁ }
and {u;} are intervention-invariant stochastic shock process
with E(u;) = 0. Estimates for the proxies are obtained using one
of the linear methods based on hypothesized values of {6;} under
a sharp null and data from pretreatment and treatment periods.
Then, residuals {17} are computed, from which the following test
statistic is obtained:

T
1
S(a)=sq(a)=(ﬁ > qiade) 3)
* t=To+1

Chernozhukov, Wiithrich, and Zhu (2021b) use moving block
permutations over time to compute p and pointwise confidence
intervals for {6;} based on their observation that with stable esti-
mators under mild regularity conditions, p has a uniform distri-
bution under the null hypothesis (see Chernozhukov, Wiithrich,
and Zhu (2021b) for a complete discussion). For computations
and implementation of this method, we used the open source
software in Chernozhukov, Wiithrich, and Zhu (2021b).

2.4.2. Average Treatment Effect with Nonlinear Estimation

Athey and Imbens (2006) generalize DID by postulating that
Yg h(Ug, t) and Yét = K (Ug, t) for the treated group,
where h(u, t) is a monotonically increasing function in # and
u represents unobservable characteristics of the group. A key
assumption in this model is that while the distribution of U,
can vary across groups, it is time-invariant within groups. In our
case, this implies that populations in each county did not change
during the time periods in question. Hence, all differences in
infection rates of a pair of counties can be attributed to the

differences in the distribution of U, in those counties. Under
these assumptions, the cumulative distribution of the counter-
factual, denoted F ¥ is identified in terms of the other observed

distributions as follows:

Fyx () = Fryo (Fyy (Fyo, ), 4)

where the subscript gt denotes group g € {0, 1} with 1 = treated
and time ¢ € {0, 1} with 1 indicating the treatment period. The
distribution of the counterfactual is empirically estimated as

Ngt

~ 1
Py =5 > Yy < b, (5)
i=1

where Y¢;; denotes the observed outcome of county i belong to
group g at time ¢. The average treatment effect is written as

¢ = E[Y{}] — E[Fy} (Fyo (Y10))]. 6)
This is empirically estimated as
L 1 Nu 1 Nio A
=N ; Yiii — Nig ;Fym (Fyoy(Y10,))  (7)

It is then shown that 7€C is consistent and that ~/N (fCIC —
rCIC) is asymptoticall normally distributed. See Athey and
Imbens (2006) for details.

We apply SC-EN from Doudchenko and Imbens (2016) to
select control counties and compute their weights. We have
directly implemented the main algorithm and accompanying
procedures needed for CIC in the R programming language,
and provide the full code as a reference in the supplementary
materials.

Table 1. Synthetic control counties (SC) and weights using only pretreatment outcomes.

size! Counties and weights
8 H.Spring Arkansas Craighead Desha Miller Lafayette Pike Polk
0.23 0.22 0.16 0.13 0.11 0.08 0.07 0.01
7 H.Spring Arkansas Craighead Desha Miller Lafayette Pike
0.30 0.22 0.15 0.12 0.09 0.08 0.05
6 H.Spring Arkansas Craighead Desha Miller Lafayette
0.32 0.21 0.18 0.13 0.10 0.06
5 H.Spring Craighead Miller Desha Lonoke
0.44 0.36 0.14 0.05 0.003
4 H.Spring Craighead Miller Desha
0.45 0.36 0.14 0.05
3 Craighead Desha Lonoke
0.81 0.18 0.01
NOTE: (1) Size denotes the number of counties comprising the synthetic control unit.
Table 2. Synthetic counties (SC¢) and weights using both pretreatment and covariate data.
Weights' Weights'
County SCcs SCcio SCc1s County SCcs SCcio SCcrs
Benton 0.001 0.001 0.424
Boone 0.512 Grant 0.369 0.003
Carroll 0.091 Greene 0.001
Cleburne 0.001 0.010 Hot Spring 0.302
Crawford 0.139 Lonoke 0.406 0.508
Desha 0.001 Pulaski 0.132 0.047
Garland 0.049 Sevier 0.001

NOTE: Only those counties with positive weights are shown. (1) Numbers in the column headers represent the numbers of pretreatment days preceding the JSAHO starting

date (April 6) included in synthetic control matching algorithm.



3. Empirical Results

Daily case counts for the counties in Arkansas were accessed on
September 5, 2020, at The New York Times Covid-19 data repos-
itory (Github 2020). The dates covered pretreatment period
preceding the JSAHO start date of April 6, the policy effective
dates from April 6 through May 6, and a month of posttreatment
period. In our visualizations, we include 31 extra days after the
end of the treatment period keeping in mind the incubation
period of the virus (Dave et al. 2021; Guan et al. 2020; Lauer
et al. 2020) and the delays in policy effectiveness (Abouk and
Heydari 2021).

3.1. Selection of Control Counties

Confirming the parallel-trends assumption, Figure 1 displays
plots of the 18 counties selected from the donor pool of 74 with
relatively flatter trends in the differences of logs of infection
rates for the last few days in the pretreatment period. Visual
inspection of it confirms that the differences are approximately
flat leading up to April 6. For robustness over control selection,
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we also consider comparison groups comprised of different
numbers of counties. In the supplementary materials we include
as a reference such plots for all counties. To construct the
synthetic county, we first consider only pretreatment outcomes
(i.e., the SC methodology discussed in Section 2.2.2). Using the
18 counties from SC-DID as the donor pool results in three
counties that comprise the synthetic control while considering
a larger pool of 36 with more variable pretreatment trends yield
eight counties in the comparison group. Table 1 shows counties
and weights for synthetic control computed using best-fitting
least squares of pretreatment outcomes of varying numbers of
counties.

Next, we consider both the pretreatment outcomes and
socio-demographic covariates using the SCc methodology fol-
lowing Abadie and Gardeazabal (2003) and Abadie, Diamond,
and Hainmueller (2015) discussed in Section 2.2.2. Unlike in
the previous SC approach based on the DID specification, the
SCc here allows the length of the pretreatment period to vary.
Figure 2 shows the counties that comprise various synthetic
control groups, each defined by the length of the pretreament
period in days preceding the treatment period.
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Figure 3. Log infection rate gaps in Saline and placebo gaps in other counties. Subscripts denote the sizes of control counties in the case of SC. Dotted line denotes JSSAHO
announcement date (April 2), solid blue line denotes the start date (April 6), and solid black line denotes the end date of the JSAHO.



80 N. HWANG ET AL.

From Table 2, we can readily see that county selections and
weights are heavily dependent on the size of the pretreatment
window, although it is much smaller than the covariates.

3.2. Treatment Effect Estimation with SC-DID and SC

With synthetic counties constructed using SC-DID and SC, we
examine the estimated impact of JSAHO on log infection rates in
Saline. Similar to the Proposition 99 study in Abadie, Diamond,
and Hainmueller (2010), our estimate for this treatment effect
is the gap between log infection rates in Saline and those in
the control unit, as expressed in Equation (1). As shown in
Figure 2 for SC-DID, soon after JSAHO was implemented, the
gap between Saline and the mean of the 18 control counties
widens drastically. A similar pattern emerges in the SC case,
although the effect is more pronounced for the smaller control
group sizes described in Table 1.

To assess the robustness of our results, we perform a series of
placebo analyses using the methodology discussed in Abadie,
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Diamond, and Hainmueller (2010). We compare the treatment
effect in Saline to placebo treated units by iteratively applying
SC-DID and SC to each of the other counties in the donor pool.
These placebo studies generate a distribution of estimated treat-
ment effects when no JSAHO was implemented at the county-
level.

Figure 3 shows our robustness test results. The gray dots
represent the gaps defined in Equation (1) for various placebo
treated counties while the black dots represent the gaps for
Saline. From the plots for SC-DID and SCs, one can readily
see that the estimated gaps for Saline are wider than those for
placebo counties, while it is less apparent in SCg. It is also
apparent that the 18-county control group provides a confir-
mation of the parallel-trends assumption, while SC methods
provide a good fit for Saline’s pretreatment trends. As dis-
cussed in Section 2.2, this is due to the fact that SC-DID
allows for a permanent additive difference between the treat-
ment and control groups, while SC forces this difference to be
zero.

SCqs
4
A
e B
=
@
© 2-
@
g
©
2
%—, [T
8 o——meman - R e e e -
£ A I T oo rene
o had o
@ oee
0]
| : ' .
K 3 o &
"5 '*f“ V§ ;‘\?A
Date
SCcis
44
-
@,
5 o
i
=
g
g ePasssse,pene® tentee  gentetete
c Seee o0
T 0— -pasigtine AL i b LA s ST T 4
Q .a
- ®onse L]
£ Seee
g
0]
\ : ] v
-2 S 2 &
& & & »®
Date

Figure 4. Log infection rate gap between Saline and “SC¢” Counties. The labels denote the length of pretreatment windows preceding the treatment period, for example,
“SCcs" denotes a synthetic control fit with 5 pretreatment days and covariates. Dotted line denotes JSAHO announcement date (April 2), solid blue line denotes the start
date (April 6), and solid black line denotes the end date of the JSAHO.
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Figure 5. Y-axis: log(infections in Saline per 100,000)—Ilog(infections in Control County per 100,000), X-axis: pretreatment (first reported date ~ April 5) and treatment
(April 6-May 6) periods, plus additional month (May 7-May 31). Dotted line denotes JSAHO announcement date (April 2), solid blue line denotes the start date (April 6),
and solid black line denotes the end date of the JSAHO.
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Figure 6. Pointwise confidence intervals at 10% significance level. Synthetic counties constructed using only pretreatment outcomes. Software credits: Chernozhukov,
Wiithrich, and Zhu (2021b).

Next, as discussed in Section 2.2, we estimate the SC Hainmueller 2010), and study the magnitude of Saline’s treat-
counterfactual using both the pretreatment data and covari- ment effect. The upper-left plot in Figure 4 displays log infec-
ates (Abadie and Gardeazabal 2003; Abadie, Diamond, and tion rate gap between Saline and various comparison groups
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Table 3. Placebo specification tests based on moving block permutations (Cher-
nozhukov, Wiithrich, and Zhu 2021b).

T DID SC3 SCy SCs SCq SCg
1 1.00 0.32 0.18 0.18 0.18 0.32
2 0.36 0.09 0.09 0.09 0.09 0.14
3 0.36 0.14 0.14 0.14 0.14 0.09
NOTE: It displays p-values from testing Hp : 07y —¢4+1 = - - = 67, = 0, To = April

5,2021 and t € {1, 2,3} days. The subscripts in the column headers denote the
control group sizes. Software credits: Chernozhukov, Wiithrich, and Zhu (2021b).

constructed using different windows of pretreatment period.
One can observe similar patterns as in synthetic controls fit-
ted with pretreatment data only in Figure 2, reaftfirming simi-
lar observations made in Abadie, Diamond, and Hainmueller
(2010) and explanation in Doudchenko and Imbens (2016). For
instance, one can see that immediately after JSAHO was put into
effect, the gap widened in Saline relative to controls. Synthetic
controls constructed with shorter pretreatment windows seem
to exhibit stronger treatment effects. This can be explained by
the higher relevance of more recent pretreatment outcomes
closer to the policy intervention date. The other three remaining
scatterplots in Figure 4 show the log infection rate gaps in Saline
and placebo treatment counties for the synthetic counties con-
structed with each respective pretreatment windows. For SC¢s,
it is clear that the gaps in Saline are larger than those of placebo
units.

3.3. Pointwise Treatment Effect

Figure 5 shows the differences in the log of daily reported infec-
tion rates over pretreatment and treatment periods in Saline
and the 18 control counties. One can readily see that in all
18 counties, the differences are predominantly negative in the
treatment period.

Figure 6 shows pointwise confidence intervals for the JSAHO
treatment effect at the 10% significance level based on the test
inversion method discussed in Chernozhukov, Wiithrich, and
Zhu (2021b). Except for the first few days and SC with 8 control
counties (denoted SC-8), the treatment effects under SC-DID
and SC all appear to be significant at the 10% level.

Table 3 summarizes the results of placebo tests of Hy
Ory—r41 = -+ = 61, = 0 where Ty = April 5, 2021 and
T € {1,2,3} days. One can easily confirm that we are not able
to reject the null hypothesis at 10% level that treatment effect
in the pretreatment period is zero, rendering support to the
appropriateness of the underlying assumptions of the conformal
model in Chernozhukov, Wiithrich, and Zhu (2021b) for our
data setting.

To demonstrate that our results do not depend on any one
particular dominant county in the synthetic controls, we per-
form a leave-one-out robustness test, following the methodol-
ogy in Chernozhukov, Wiithrich, and Zhu (2021b). Figure 7
displays the p-values obtained from testing Hy : 1)1 = - - - =
0r, = 0 where Ty = April 5, 2020, and T; = May 6, 2020,
with each county in the synthetic control iteratively left out.
Opverall, it provides strong support for the claim that the results
are not overly dependent on one specific county in comprising
the comparison group. The small sizes of the synthetic controls

Leave—one-out Robustness Test
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Figure 7. p-Values obtained with block permutations with one control county left
out at a time. The x-axis labels denote the synthetic counties constructed with
the given number of constituent counties, for example, “SC-3" denotes a synthetic
control composed of three counties as shown in Table 1.
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Figure 8. Differences in log infection rates of saline and EN-synthetic county.

in SC3 and SCcs explain the proportionally higher values of p-

values.

3.4. Average Treatment Effect

We first applied the 5-fold cross-validation to find the optimal
values for the hyper-parameters o and A in Equation (2). Solving
Model 2 yielded the control group composed of 15 counties,
which we denote “SC-EN? Figure 8 displays the log difference of
infection rates of Saline and synthetic county constructed using
SC-EN.

With the empirical distribution computed in (5) and the
point estimate for the average treatment effect in (7), we
obtained that 7¢/C = —13.8 with the p-value of 0.0454. See
accompanying code for the full implementation details.



4. Conclusion

There has been active multi-disciplinary research on Covid-19.
However, to date little has been said about the causal impact of
SAHO with limited scopes, such as JSAHO in Saline County.
This article presents evidence of the effectiveness of county-level
JSAHO on reducing the growth rate of infection spreads. The
methods used here can be applied to assess situations in other
counties or local jurisdictions, and in the process strengthen
the external validity of the findings by addressing the issues of
limited duration and geographic specificity of the present study.
There are other states that had not adopted statewide SIPO
or SAHO while some of their local governments went ahead
with their own orders at some point in the past, such as Utah,
Wyoming, and Oklahoma (Mervosh, Lu, and Swales 2020). In
addition, the analyses conducted in this article can be applied to
study the effectiveness of other policy measures.

While it is possible that one or more of socio-demographic
covariates, including those we did not consider here, for which
Saline is an outlier could have been confounders, our results
lend unequivocable credence to the association of JSAHO to
lower increase in infection rate of Covid-19 in Saline.

The effect of JSAHO should be interpreted broadly: for exam-
ple, it is not possible to tell whether the reduced rate of increase
in cases is due to the direct effect of increased social distancing,
or it is mediated by the effect of changes in residents’ behaviors,
such as better hand-washing.

Supplementary Materials

The supplementary materials contain two sections: (1) Estimation of treat-
ment effect using raw infection count data, and (2) Supplemental Tables.
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