
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

  
Abstract—In this paper, we proposed a neural network-

based model predictive control of piezoelectric motion 
stages for autofocus. Rather than using an internal 
controller to account for the problematic hysteresis effects 
of the piezoelectric motion stage, we use the long short-
term memory unit to integrate the hysteresis effects and the 
focus measurement into a single learning-based model.  
Subsequently, a model predictive control method is 
developed based on this long short-term memory model 
that successfully finds the optimal focus position using a 
series of focus measurements derived from a sequence of 
images. To further improve the speed of the long short-term 
based model predictive control, an optimized 
backpropagation algorithm is proposed that optimizes the 
model predictive control cost function. Experiments 
verified our proposed method reduces at minimum 30% 
regarding autofocus time when compared to well-known 
ruled-based autofocus methods and other learning-based 
methods. Videos of the experiments are available at https:// 
youtu.be/AyvnMIq48Vc and https://youtu.be/SQN3ETbuf2g.  

 
Index Terms—Autofocus, model predictive control, 

neural network modeling, piezo actuator. 

I. INTRODUCTION 

N-LINE inspection plays a critical role in the quality control of 

the roll-to-roll (R2R) flexible electronics printing process [1]. 

Due to the vibrations of the moving substrates and the micro-

and nanoscale size of the printed patterns, real-time imaging of 

the flexible electronics requires high-speed autofocus (AF). Our 

preliminary study of AF has shown that a simple step motor-

based AF system cannot meet the high-speed requirements due 

to the slow motor motion control where the step motor 

movement consumes more than 77% of the overall AF time [2]. 

Therefore, upgraded hardware is necessary to achieve real-time 

AF.  

Thanks to the discovery of the piezoelectric effect in 1880 by 

Pierre and Paul-Jacques Curie, the piezoelectric motion has 

enabled a variety of high-precision positioning technologies. 
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Piezoelectric actuators (PEAs) can achieve high resolution and 

precision at micro and nanometric scales with very fast 

responses and bandwidth ranges in the order of kHz [3]. As a 

result, they are an excellent option for AF applications [4]. In 

fact, PEAs, or similarly piezoelectric motion stages (PEMSs), 

are the key devices in micro-optical positioning systems such 

as the scanning electron microscope, atomic force microscopy, 

compact two-dimensional single-mirror laser scanner, and the 

micro focusing mechanism [5].  

 Despite PEMS being at the forefront of precision, their 

performance is burdened by nonlinearities which make their 

applications in AF a challenge. One dominant nonlinear 

characteristic in the dynamics of PEMSs is hysteresis. This 

phenomenon is responsible for making the corresponding 

displacement curves in the voltage lift and return intervals not 

overlap [6]. The hysteresis seen in piezoelectric materials 

significantly compromises the control accuracy of PEAs or 

PEMSs, thus greatly limiting their applications in micro-

displacement technology [6]. Thus, traditional PEMS 

applications for AF first employ an internal controller that 

overcomes the hysteresis and achieves deterministic 
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Fig. 1.  Proposed high speed AF (b) compared with the classic AF (a).  
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positioning control. Subsequently, the PEMS is applied with the 

embedded controller for further AF applications as 

conceptually illustrated in Fig. 1(a). The conventional way of 

designing the internal controller is to automatically adjust the 

input by utilizing some form of closed-loop control [7]. 

However, precise closed-loop positioning of a PEMS is far 

slower than open-loop alternatives and comes with the 

additional cost of fast and precise displacement sensors for 

position feedback [8]. For these reasons, open-loop control 

techniques are preferred.  

To cope with the hysteresis effect when using an open-loop 

control technique, a model is first selected to describe the 

hysteresis, and then a feedforward controller is designed 

accordingly to compensate for the hysteresis effect. Although 

the open-loop feedforward control saves the cost of installing 

displacement sensors, the design of the feedforward controller 

requires the inverse of the hysteresis model which is 

computationally non-trivial. Meanwhile, even though open-

loop feedforward control is highly sought after for PEMS 

positioning control, the nonlinearity of the hysteresis makes it 

difficult to obtain an accurate invertible physical PEMS model 

[8], preventing the controller from providing accurate inputs to 

the PEMS. 

 Recently, neural-network (NN)-based model predictive 

control (MPC) emerged with high performance in nonlinear 

precision motion control fields. This inspired us with the 

alternative PEMS AF control solution, which is to integrate the 

defocus measurements and the hysteresis effects of the PEMS 

accurately in a single learning-based model, as shown in Fig. 

1(b). This solution avoids the need for a slower internal position 

controller before AF control as shown in Fig. 1(a). Our solution 

is based on the hypothesis that the nonlinear dynamics 

information, including the hysteresis, is embedded in the 

sequence of focus/defocus images during the AF process. 

Therefore, we can learn or infer the dynamic non-linearities and 

the AF process using the image data from both offline and in 

situ measurements in an NN-based MPC architecture. The input 

data to the NN includes focus scores extracted from sequential 

focus/defocus images. We declare that from the sequential 

focus scores, we can infer the state of the focus or defocus and 

ascertain the motion direction and steps needed to bring the lens 

to the optimal focus position. For PEMS, since most of its non-

linearities result from the hysteresis, i.e., the dependence of the 

state of a system on its history, it is then appropriate to use long 

short-term memory (LSTM) to model PEMS. The LSTM 

architecture retains the state information from previous 

observations thus allowing it to infer the non-linear dynamics 

of the PEMS. To further improve the speed of the LSTM-based 

MPC control loop while maintaining sufficient accuracy, we 

propose an optimized LSTM backpropagation algorithm that 

reduces the number of redundant calculations during the AF 

process. Moreover, to cope with the vibrations from the rapid 

PEMS impulse inputs, a unique S-curve control input profile is 

designed to reduce the acceleration profile and promote a more 

stable transition in dynamics and ultimately improve the 

accuracy of our LSTM-based MPC AF control scheme. Finally, 

experiments are carried out to test the proposed AF method.  

 The main contributions of this paper are as follows. 

1) Open-loop control of a PEMS using LSTM to identify 

the system dynamics. 

2) LSTM deep learning and MPC for AF using a sequence 

of focus scores to predict the optimal focus position. 

3) Optimized LSTM backpropagation algorithms. 

4) S-curve profile for PEMS input to reduce piezoelectric 

element jitters. 

5) Autofocus control loop rate of 40 Hz. 

The remainder of the article is organized as follows. In Section 

II, related work about PEMS control and AF is reviewed. In 

Section III, the proposed LSTM-based MPC of PEMS for AF 

is elaborated upon. In Section IV, the proposed method is 

evaluated by comparing its performance to that of other 

published AF methods. In Section V, the conclusion and future 

work are summarized. 

II. RELATED WORK 

A. Piezoelectric Motion Stage Control 

Like many ferromagnetic and ferroelectric devices, PEMSs 

exhibit hysteresis. Closed-loop controllers have been 

introduced to remove these issues by involving another loop 

that acquires position information, essentially bridging the gap 

between the input voltage and absolute position. For example, 

in [11], a robust 𝐻𝐻∞ controller was designed to control a large-

range nano-positioner actuated by PEAs. In [12], an adaptive 

fuzzy sliding mode control was developed for piezo-actuated 

flexure-based micro/nano manipulators. Recently, several NN-

based closed-loop control algorithms have also been developed 

for positioning control of PEAs [13], [14]. Overall, closed-loop 

control systems are necessary if nm or μm tolerances are 
required for high precision positioning.  

On the other hand, open-loop controllers offer faster rise 

times and sharper impulse responses for more rapid transitions 

in dynamics. The most popular approach of open-loop control 

design for PEMS is the inversion-based feedforward control. In 

literature, several physics-based models have been proposed to 

learn the hysteresis effect of PEAs, including the Preisach 

model [15], the Prandtl-Ishlinskii model [16], etc.  However, 

the calculation of the inverse hysteresis model is either time-

consuming or lacks accuracy.  

In general, traditional PEMS applications need to first solve 

the issue of hysteresis with some kind of controller and then 

apply the PEMS with the embedded controller for the specific 

application. For applications of PEMS in AF as examples, in 

[17], the authors proposed an AF method for automated 

microscopy using a piezoelectric transducer. The piezoelectric 

transducer used in this method is controlled by an amplifier 

with built-in servo feedback control for positioning control. The 

built-in feedback control is part of the hardware system. 

Meanwhile, the autofocus control algorithm is running on a 

computer. Therefore, there are two controllers in the system, 

including a built-in feedback controller for the positioning 

control of the piezoelectric actuator and a controller for 

autofocus; in [18], the authors developed a piezoelectric 

actuator driver integrated circuit (IC) for autofocus in camera 

module of mobile phone. An embedded self-positioning 

feedback control algorithm is running in this IC. However, 
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another controller is still needed to run the AF algorithm. In this 

paper, we propose an end-to-end control algorithm for PEMS 

which uses LSTM to directly link the open-loop PEMS input 

voltage to the response variable, and subsequently uses a single 

model-predictive controller for complete system control. Using 

an LSTM-based MPC scheme has the potential to reduce the 

complexity of the control system while still providing fast and 

accurate responses to the PEMS. 

Another difficulty in PEMS applications is the unwanted 

vibrations of the piezoelectric elements caused by the impulse 

inputs. In literature, several solutions have been proposed to 

eliminate the vibrations. In [19], the vibrations are modeled as 

a linear dynamical model and then a feedforward controller is 

designed accordingly to compensate for the vibrations. In [8], 

the vibrations are compensated by applying the Zero Vibration 

input shaping technique. In this paper, we introduce a simple S-

curve input profile capable of reducing the piezoelectric jitter 

that follows a step input (refer to Section IV.A for the detailed 

description). 

B. Autofocus 

Classic AF methods can be broadly divided into two 

categories, active and passive. Active AF methods use a sensor 

(e.g., laser) to measure the distance between the camera and 

target and subsequently adjust the optical system to correct the 

focus [20]. Active AF methods attempt to remove limitations 

surrounding focus accuracy that can arise with varying image 

content (e.g., low-contrast imaging or low-light conditions) 

[21]. Active AF methods offer superior performance in 

stationary imaging scenarios, such as microscopy, because the 

subject always resides in a position where its distance to the 

camera can be repeatedly measured. If the distance of the 

subject is unknown or unable to be measured, passive methods 

are employed. Rather than using additional sensors, the 

objective of the classic passive AF processes is to 

autonomously navigate from a defocused image to a focused 

one by employing various rule-based search algorithms to 

maximize the measured focus. Within the passive AF category, 

the phase-based and deep learning-based methods are regarded 

as state-of-the-art [2]. Phase-based methods are employed on 

specially designed camera sensors where each pixel consists of 

two independent photodiodes. Rule-based control methods or 

deep learning algorithms [22] are implemented to estimate 

subject depth from the difference in phase of the stereo images, 

thus enabling fast autofocus or even detailed depth maps for 

facial recognition [23]. Phase-based methods undoubtedly offer 

superior AF to traditional passive methods regarding speed; 

however, these methods can significantly increase the cost and 

complexity of the image acquisition system (IAS) and thus will 

not be explored in this paper.  

Inspired by the successful applications of deep learning in 

computer vision tasks, such as image classification, image 

segmentation, and image super-resolution, various training-

based AF methods have been proposed to outperform the phase-

based AF methods. In [24],  a convolution LSTM (ConvLSTM) 

framework with a feature detector, object detector, and focus-

step predictor was proposed that had the capability of focus 

tracking. In [25], a convolutional neural network (CNN)-based 

step estimator and focus discriminator was proposed that was 

capable of single-shot AF. In [26], a passive AF control system 

was developed using a trained self-organizing map (SOM) 

neural network to predict the optimal lens position using the 

focus score from three initial images.  

In this paper, we propose the use of LSTM to link the open-

loop PEMS input voltage to the level of focus. Rather than using 

a single image as input to the LSTM, we use a sequence of focus 

scores as the inputs. There are two advantages of designing the 

inputs in this way: the first being that the sequential inputs could 

capture the high-order and delayed-response modes of 

interaction, and the second using the focus scores as the inputs 

could remove any image-based dependencies. 

III. LSTM-BASED MODEL PREDICTIVE CONTROL OF 

PIEZOELECTRIC MOTION STAGES FOR AUTOFOCUS 

A. Problem Definition 

In this work, we aim to use a learning-based method to 

directly link the PEMS inputs to the output focus score. 

Specifically, the control input to the system is denoted as 𝑢𝑢(𝑡𝑡) 

which defines the input voltage applied to the PEMS at time 𝑡𝑡. 
The response variable of the system is a scalar, 𝑦𝑦(𝑡𝑡), which 

describes the focus measurement of the image. As we aim to 

achieve high-speed autofocus, the priority when selecting the 

focusing function is the computational complexity; the 

accuracy falls second. We tested 28 different focus measure 

functions and have selected the maximum absolute gradient 

(MAG) method that has the fastest calculation speed of 6 ms. 

The MAG method used to calculate the FM score 𝐹𝐹 is defined 

as  𝐹𝐹 =
1𝑁𝑁𝑁𝑁��max�|𝐼𝐼𝑥𝑥|, �𝐼𝐼𝑦𝑦�, |𝐼𝐼𝑑𝑑|� ,                   (1)

𝑁𝑁
𝑦𝑦=1

𝑀𝑀
𝑥𝑥=1  

where 𝐼𝐼(𝑥𝑥,𝑦𝑦) is the image gray value at the pixel coordinate 

(𝑥𝑥,𝑦𝑦) in an image of size 𝑁𝑁 × 𝑁𝑁, 𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, and 𝐼𝐼𝑑𝑑 are respectively 

the gradients in the 𝑥𝑥 , 𝑦𝑦 , and diagonal direction defined 

respectively by 𝐼𝐼𝑥𝑥 = 𝐼𝐼(𝑥𝑥,𝑦𝑦) − 𝐼𝐼(𝑥𝑥 + 1,𝑦𝑦),  𝐼𝐼𝑦𝑦 = 𝐼𝐼(𝑥𝑥,𝑦𝑦) −𝐼𝐼(𝑥𝑥,𝑦𝑦 + 1) , and 𝐼𝐼𝑑𝑑 = 𝐼𝐼(𝑥𝑥,𝑦𝑦) − 𝐼𝐼(𝑥𝑥 + 1,𝑦𝑦 + 1).  Although 

some functions based on image differentiation are faster than 

the MAG, MAG has a better performance in removing the 

inappropriate information in the image as it considers not only 

the horizontal and vertical gradients but also the diagonal 

gradient [27].  

The non-linearity introduces both position uncertainty and 

piezoelectric jitter, which leads to large errors in the AF 

actuator movements. To elaborate, the total stroke of a nano-

resolution PEMS (e.g., Piezosystem Jena Inc. nanoSX 400 S 

CAP) under open-loop control is 503.9 μm with maximum 

 
Fig. 2.  (a)The hysteresis effect. (b) The jitters.   
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hysteresis of 60.03 μm as shown in Fig. 2(a). This introduces a 
potential 12% position uncertainty to the medium which 

controls a high-mass IAS within a depth of field (DOF) range 

of 3.2 μm. Because the uncertainty is approximately 15-20 

times larger than the DOF, AF accuracy of industrial standards 

in vanilla open-loop control is virtually unattainable. Moreover, 

the residual vibrations of the piezoelectric elements lengthen 

the settling time of the open-loop response to greater than 40 

ms (Fig. 2(b)), thus removing any possibility of real-time 

optical metrology. As a result, there exists an unmet need for a 

solution to the hysteresis and vibration non-linearity of PEMSs 

to enable fast and accurate optical-positioning-based metrology 

techniques. 

B. Structure of LSTM 

There are various deep learning models with different 

structures to model an unknown non-linear system. To model 

the inputs to the PEMS and the output focus scores, as most of 

the non-linearities result from the hysteresis, i.e., the 

dependence of the state of a system on its history, it is then 

appropriate to use a recurrent neural network (RNN). However, 

the standard RNN models lack long-term dependencies of the 

state due to the gradient vanishing problem. Hence, we propose 

to use LSTM to model PEMS for AF.  

In an LSTM network, the past information is stored in a 

memory cell and four gates are used to control the flow of 

information into or out of the memory cell, namely, the input 

gate 𝐢𝐢, forget gate 𝐟𝐟, output gate 𝐨𝐨, and the candidate gate 𝐠𝐠. 

Mathematically, the calculations in the LSTM model at time 

step 𝑡𝑡 are described as follows, 𝐢𝐢(𝑡𝑡) = 𝜎𝜎(𝐖𝐖𝑥𝑥𝑥𝑥𝐱𝐱(𝑡𝑡) + 𝐖𝐖ℎ𝑥𝑥𝐡𝐡(𝑡𝑡 − 1) + 𝐛𝐛𝑥𝑥),         (2.a) 𝐟𝐟(𝑡𝑡) = 𝜎𝜎�𝐖𝐖𝑥𝑥𝑥𝑥𝐱𝐱(𝑡𝑡) +𝐖𝐖ℎ𝑥𝑥𝐡𝐡(𝑡𝑡 − 1) + 𝐛𝐛𝑥𝑥�,       (2.b) 𝐨𝐨(𝑡𝑡) = 𝜎𝜎(𝐖𝐖𝑥𝑥𝑥𝑥𝐱𝐱(𝑡𝑡) + 𝐖𝐖ℎ𝑥𝑥𝐡𝐡(𝑡𝑡 − 1) + 𝐛𝐛𝑥𝑥),       (2.c) 𝐠𝐠(𝑡𝑡) = tanh�𝐖𝐖𝑥𝑥𝑥𝑥𝐱𝐱(𝑡𝑡) + 𝐖𝐖ℎ𝑥𝑥𝐡𝐡(𝑡𝑡 − 1) + 𝐛𝐛𝑥𝑥�,     (2.d) 𝐜𝐜(𝑡𝑡) = 𝐟𝐟(𝑡𝑡) ⊙𝐜𝐜(𝑡𝑡 − 1) + 𝐢𝐢(𝑡𝑡) ⊙𝐠𝐠(𝑡𝑡),            (2.e) 𝐡𝐡(𝑡𝑡) = 𝐨𝐨(𝑡𝑡) ⊙𝜎𝜎�𝒄𝒄(𝑡𝑡)�,                    (2.f) 𝑦𝑦𝑝𝑝(𝑡𝑡) = 𝐖𝐖𝐡𝐡(t) + 𝑏𝑏,                          (2.g) 

where 𝐱𝐱 ∈ ℝ𝑛𝑛𝑥𝑥×1 is the input vector, 𝑦𝑦𝑝𝑝 ∈ ℝ1×1 is the predicted 

focus measurement, 𝐡𝐡 ∈ ℝ𝑛𝑛𝑝𝑝×1 is the hidden state, 𝐜𝐜 ∈ ℝ𝑛𝑛𝑝𝑝×1 

is the cell state, 𝐖𝐖𝑥𝑥𝑥𝑥 ∈ ℝ𝑛𝑛𝑝𝑝×𝑛𝑛𝑥𝑥 , 𝐖𝐖𝑥𝑥𝑥𝑥 ∈ ℝ𝑛𝑛𝑝𝑝×𝑛𝑛𝑥𝑥 , 𝐖𝐖𝑥𝑥𝑥𝑥 ∈ℝ𝑛𝑛𝑝𝑝×𝑛𝑛𝑥𝑥, and  𝐖𝐖𝑥𝑥𝑥𝑥 ∈ ℝ𝑛𝑛𝑝𝑝×𝑛𝑛𝑥𝑥 are the weights from the inputs. 

Similarly, 𝐖𝐖ℎ𝑥𝑥 ∈ ℝ𝑛𝑛𝑝𝑝×𝑛𝑛𝑝𝑝, 𝐖𝐖ℎ𝑥𝑥 ∈ ℝ𝑛𝑛𝑝𝑝×𝑛𝑛𝑝𝑝, 𝐖𝐖ℎ𝑥𝑥 ∈ ℝ𝑛𝑛𝑝𝑝×𝑛𝑛𝑝𝑝, and 𝐖𝐖ℎ𝑥𝑥 ∈ ℝ𝑛𝑛𝑝𝑝×𝑛𝑛𝑝𝑝  are the weights from the hidden states. 𝐛𝐛𝑥𝑥 ∈ℝ𝑛𝑛𝑝𝑝×1 , 𝐛𝐛𝑥𝑥 ∈ ℝ𝑛𝑛𝑝𝑝×1 , 𝐛𝐛𝑥𝑥 ∈ ℝ𝑛𝑛𝑝𝑝×1 , and 𝐛𝐛𝑥𝑥 ∈ ℝ𝑛𝑛𝑝𝑝×1  are biases 

for different gate states. 𝐖𝐖 ∈ ℝ1×𝑛𝑛𝑝𝑝  and 𝑏𝑏 ∈ ℝ1×1  are the 

weight and the bias for the output layer, respectively. ⊙, σ, and 
tanh are respectively the element-wise multiplication operator, 

logistic sigmoid function, and hyperbolic tangent function. For 

the input features to the LSTM, we concatenate both inputs and 

outputs from the plant to capture the short-term input-output 

responses. Rather than considering only one single timestep, a 

sequence of input-output pairs, like 𝐱𝐱(𝑡𝑡) = [𝑢𝑢(𝑡𝑡),𝑢𝑢(𝑡𝑡 −
1), . . .𝑢𝑢(𝑡𝑡 − 𝑛𝑛𝑢𝑢),𝑦𝑦(𝑡𝑡 − 1),𝑦𝑦(𝑡𝑡 − 2), . . .𝑦𝑦�𝑡𝑡 − 𝑛𝑛𝑦𝑦�]  will be 

used as the input feature vector to capture the delayed-response 

modes of interaction, where 𝑛𝑛𝑢𝑢  and 𝑛𝑛𝑦𝑦  are respectively the 

exogenously designated timestep delays of the input and output. 

The output of the LSTM network is the predicted focus score 𝑦𝑦𝑝𝑝(𝑡𝑡) based on the current input voltage, previous input-output 

pairs, and the recurrent latent states. In the training process, the 

LSTM network can be trained by the same algorithm as the 

vanilla recurrent neural network called backpropagation 

through time (BPTT) [28]. 

C. LSTM-Based MPC  

MPC calculates control commands by minimizing a cost 

function over a finite prediction horizon. The cost function is 

usually formulated by minimizing not only the squared error 

between the reference signal and the plant’s output but also the 

weighted squared change of the control input. Given the LSTM 

architecture for the dynamic plant model, the MPC cost 

function can be formulated by  

𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀 = ��𝑦𝑦𝑟𝑟(𝑡𝑡 + 𝑗𝑗) − 𝑦𝑦𝑝𝑝(𝑡𝑡 + 𝑗𝑗)�2𝑀𝑀
𝑗𝑗=1

+ �𝜆𝜆(𝑗𝑗)‖Δ𝑢𝑢(𝑡𝑡 + 𝑗𝑗)‖2,

𝑀𝑀
𝑗𝑗=1                         (3) 

where 𝑃𝑃 is the prediction horizon, 𝑁𝑁 is the control horizon, y𝑟𝑟 

is the reference signal, 𝑦𝑦𝑝𝑝(𝑡𝑡 + 𝑗𝑗) is the predicted output of the 

LSTM at the (𝑡𝑡 + 𝑗𝑗 )th period based on the available 

measurements at the tth sampling period, 𝜆𝜆(𝑗𝑗) is the regulating 

factor for the control input that maintains the smoothness of the 

control signal and is typically chosen to be constant or 

exponential, and ∆𝑢𝑢(𝑡𝑡 + 𝑗𝑗) = 𝑢𝑢(𝑡𝑡 + 𝑗𝑗) − 𝑢𝑢(𝑡𝑡 + 𝑗𝑗 − 1) denotes 

the change in 𝑢𝑢.  

The objective of the cost function minimization algorithm is 

to minimize 𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀  in (3) with respect to [𝑢𝑢(𝑡𝑡 + 1),𝑢𝑢(𝑡𝑡 +

2), … ,𝑢𝑢(𝑡𝑡 + 𝑁𝑁)], denoted by U. Since the plant model is an 

LSTM structure, a gradient descent method can be used to 

minimize the cost function iteratively. During each iteration, 

the intermediate value for 𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀  is denoted by 𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘) . 

Meanwhile, the generated intermediate control input is denoted 

by 𝐔𝐔(𝑘𝑘) allowing the control input to be updated according to, 

                       𝐔𝐔(𝑘𝑘 + 1) = 𝐔𝐔(𝑘𝑘) + Δ𝐔𝐔(𝑘𝑘),                          (4) 

                             Δ𝐔𝐔(𝑘𝑘) = 𝜂𝜂(− 𝜕𝜕𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀(𝑘𝑘)𝜕𝜕𝐔𝐔(𝑘𝑘)
),                            (5) 

where 𝜂𝜂 > 0  is the update rate for the control input. The 

Jacobian matrix is then denoted as  

𝜕𝜕𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀𝜕𝜕𝐔𝐔 (𝑘𝑘) = � 𝜕𝜕𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀𝜕𝜕𝑢𝑢(𝑡𝑡+1)
…𝜕𝜕𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀𝜕𝜕𝑢𝑢(𝑡𝑡+𝑀𝑀)

�                                 (6) 

and the hth element of the Jacobian matrix in (6) is stated as 𝜕𝜕𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀𝜕𝜕𝑢𝑢(𝑡𝑡 + ℎ)
= −2��𝑦𝑦𝑟𝑟(𝑡𝑡 + 𝑗𝑗) − 𝑦𝑦𝑝𝑝(𝑡𝑡 + 𝑗𝑗)� 𝜕𝜕𝑦𝑦𝑝𝑝(𝑡𝑡 + 𝑗𝑗)𝜕𝜕𝑢𝑢(𝑡𝑡 + ℎ)

𝑀𝑀
𝑗𝑗=1
+ 2�𝜆𝜆(𝑗𝑗)[∆𝑢𝑢(𝑡𝑡 + 𝑗𝑗)]

𝜕𝜕∆𝑢𝑢(𝑡𝑡 + 𝑗𝑗)𝜕𝜕𝑢𝑢(𝑡𝑡 + ℎ)
         (7)

𝑀𝑀
𝑗𝑗=1  
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The 
𝜕𝜕∆𝑢𝑢(𝑡𝑡+𝑗𝑗)𝜕𝜕𝑢𝑢(𝑡𝑡+ℎ)

 term can be expanded and calculated in terms of 

the Kronecker Delta function  𝜕𝜕∆𝑢𝑢(𝑡𝑡 + 𝑗𝑗)𝜕𝜕𝑢𝑢(𝑡𝑡 + ℎ)
=
𝜕𝜕𝑢𝑢(𝑡𝑡 + 𝑗𝑗)𝜕𝜕𝑢𝑢(𝑡𝑡 + ℎ)

− 𝜕𝜕𝑢𝑢(𝑡𝑡 + 𝑗𝑗 − 1)𝜕𝜕𝑢𝑢(𝑡𝑡 + ℎ)
= 𝛿𝛿(ℎ, 𝑗𝑗)− 𝛿𝛿(ℎ, 𝑗𝑗 − 1) 

where 𝛿𝛿(ℎ, 𝑗𝑗) = �1 if ℎ = 𝑗𝑗
0 if ℎ ≠ 𝑗𝑗 . For the 

𝜕𝜕𝑦𝑦𝑝𝑝(𝑡𝑡+𝑗𝑗)𝜕𝜕𝑢𝑢(𝑡𝑡+ℎ)
 term, as it is 

modeled by the LSTM, it is then feasible to calculate the 

derivatives through the backpropagation algorithm. The 

convergence of the backpropagation algorithm is highly 

dependent upon the iteration number and the updating rate. 

Generally, a fast backpropagation algorithm often provides 

flexibility in tuning the iteration number and the updating rate. 

The BPTT algorithm has been widely implemented by 
researchers to solve the Jacobian matrix in the training of 

LSTM networks. However, the vanilla BPTT algorithm is not 
suitable for the calculation of (6). If a vanilla BPTT algorithm 
is used to calculate the gradient following Algorithm 1, we can 

find that in the forward pass of the ‘while’ loops, the hidden 

states and the cell states are calculated multiple times, which 

affects the computation time in two aspects. First, the size of 

the hidden and cell states is incrementally increased adversely 

affecting performance and memory use as repeatedly changing 

sizes requires the system to allocate more time for seeking 

larger contiguous blocks of memory. Second, some elements in 

the hidden and cell states are calculated multiple times. 

Specifically, the elements in the ith row of the hidden states and 

the cell states will be calculated 𝑃𝑃 − 𝑖𝑖 + 1  times. These 

redundant operations slow down the gradient calculation. To 

expedite the gradient calculation, we have improved the vanilla 

BPTT method based on pre-allocation as shown in Algorithm 2 

in pseudo-code of MATLAB-style. The improved BPTT 
algorithm is shown to save 20% of the computation time as 

detailed in Section IV. 

After applying Algorithm 2, the derivatives of 
𝜕𝜕𝑦𝑦𝑝𝑝(𝑡𝑡+𝑥𝑥)𝜕𝜕𝐱𝐱(𝑡𝑡+𝑗𝑗)

, 𝑖𝑖 ∈
[1,𝑃𝑃], 𝑗𝑗 ∈ [1, 𝑖𝑖] are stored in system memory and the next step 

is to calculate the derivatives of 
𝜕𝜕𝑦𝑦𝑝𝑝𝜕𝜕𝐔𝐔 . The algorithm for 

calculating 
𝜕𝜕𝑦𝑦𝑝𝑝𝜕𝜕𝐔𝐔  is accomplished by applying the chain rule 

through time as shown in Algorithm 3. Note that as the stability 

analysis of the NN-based MPC scheme is well established in 

published literature, we will not include the stability analysis in 

this paper. Readers may refer to [29]–[32] for detailed stability 

analysis for interest.   
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IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Experimental Setup 

Our experimental setup is displayed in Fig. 3 which includes 

the PEMS (piezosystem jena Inc. nanoSX 400 S CAP), AF 

target, controller, optical table, and stationary 10x lens IAS. The 

IAS consisted of a high-speed CMOS area-scan camera, a 3D 

printed adaptor, a lighting source, a coaxial in-line illuminator 

unit, and a high magnification factor objective lens. Fig. 4 

displays the experimental control schematic which includes the 

high-speed camera (Basler acA1300-200um) connected to a 

real-time controller (CompactRIO-9049, National Instruments) 

via USB 3.0. This camera has a maximum resolution of 
1280×1024 pixel2 and a maximum frame rate of 200 fps for the 

full frame. The LSTM-based MPC algorithm is run in the real-

time processor of the controller then the output command is sent 

to the PEMS via Field Programmable Gate Arrays (FPGA) with 

a communication speed of 10 MHz.  

The PEMS used in our experiment has two operation modes, 

e.g., the closed-loop mode and the open-loop mode. When 

operating the PEMS using the closed-loop control mode, the 

rise time of a full stroke takes 50 ms compared to the open-loop 

control mode which takes 3 ms. Therefore, for a fast operation 

speed, the open-loop control mode is preferred. However, in the 

vanilla open-loop control mode, the S-curve acceleration 

profile is not followed and motor jerk is accentuated as shown 

in Fig. 5. To reduce the motor jerk, we introduce a method of 

generating S-curve motion profiles that abide by the following 

equation, 𝑦𝑦 = 𝑝𝑝1 + (𝑝𝑝2 − 𝑝𝑝1)�0.5 + 0.5 � 𝑡𝑡�(1.5+𝑡𝑡2)
��,           (8) 𝑝𝑝1 =

𝑉𝑉𝑖𝑖0.833− 𝑉𝑉𝑟𝑟4.992,                              (8a) 𝑝𝑝2 =
𝑉𝑉𝑟𝑟0.833− 𝑉𝑉𝑖𝑖4.992,                              (8b) 

where 𝑉𝑉𝑥𝑥 is the starting voltage, 𝑉𝑉𝑟𝑟 is the reference voltage, 𝑡𝑡 is 

the time window of the S-curve profile, and 𝑦𝑦 is the interpolated 

voltage. In experiments, the time window is selected to be 10 

ms. The 10 ms S-curve acceleration profile will be divided into 

1000 steps at a resolution of 0.3 mV. The comparison between 

the open-loop mode step input response versus the S-curve step 

input response is shown in Fig. 5. Using the S-curve profile the 

settling time was reduced to 9.6 ms, which is 15 ms less than 

the vanilla open-loop mode regarding the traditional 5% error 

band.  

B. Training of LSTM  

The state-of-the-art literature uses images as the input to the 

NN [24], [25]; however, the features in each image can vary 

drastically by scene. For the method to be robust enough to 

generalize to new scenes, large datasets are needed to train the 

NN. With the aim of removing any image-based dependencies, 

 
 
Fig. 4.  Experimental schematic of the proposed AF method.    

Fig. 6.  (a) Rectangular pulse train examples used as the input to the 
PEMS. (b) Response of the PEMS due to the pulse train inputs.                 

 

 
Fig. 5.  (a) open-loop step input and the S-curve step input. (b) open-
loop step input response and the S-curve step input response.    

 

 
Fig. 7.  (a) Actual focus scores and predicted focus scores of the testing 
dataset. (b) The corresponding error.    

 
Fig. 3.  (a) The image acquisition system in the experimental setup. (b) 
The US Air Force Hi-Resolution target. (c) The circuit target.  

TABLE I  
HYPERPARAMETERS FOR TRAINING LSTM 

Optimizer Learning rate Epoch Batch size 

Adam 0.01 1500 64 
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we generalize the proposed method by opting to use a scalar 

focus score as the input to the LSTM.  

To capture the dynamics between the input to the PEMS and 

the output focus score, we used a pulse-train method to generate 

the training dataset on the US Air Force Hi-Resolution target as 

shown in Fig. 3(b). The pulse-train method applies a series of 

random step inputs to the PEMS, and the resultant focus scores 

of the captured images are recorded. Fig. 6 shows the series of 

pulses with random amplitudes and the resultant focus scores 

from these pulses. Each pulse lasts 15 ms, equal to the same 

time as the PEMS movement in the control loop. To sufficiently 

span the working space of the PEMS, 10,000 input-output pairs 

are generated continuously with the input voltages to the PEMS 

uniformly randomly selected in the range of [1 V, 9 V]. In this 

experiment, we use 80% of the data for training and 20% for 

testing.  

The LSTM is trained using the Adam algorithm in the 

MATLAB R2021a environment. The detailed hyperparameters 

of the training process are listed in Table I. Considering the 

tradeoff between the accuracy and computational performance, 

we found that the delay of time steps for the input and output 𝑛𝑛𝑢𝑢 = 𝑛𝑛𝑦𝑦 = 2, and the number of the hidden states in the LSTM 

structure 𝑛𝑛𝑝𝑝 = 10 gave an acceptable performance. Fig. 7(a) 

shows the focus score prediction performance of the trained 

LSTM network and Fig. 7(b) is the corresponding prediction 

error. We conclude that the trained LSTM network adequately 

learns the nonlinear dynamics of the PEMS and has a high 

prediction RMSE of 0.19. As the physical system of the PEMS 

remains the same during the training process and the application 

process, the learned LSTM can infer the nonlinear dynamics of 

the PEMS online. The LSTM can be also trained online 

periodically if unforeseen system condition changes [33]. 

Finally, the overall structural block diagram of the proposed 

LSTM-based MPC controller for AF is shown in Fig. 8. The 

detailed deployment of the LSTM-based MPC controller into 

the real-time controller can be found in Appendix A.  

C. Autofocus Testing 

 Proper evaluation of the proposed LSTM-based MPC AF 

algorithm involves comparison against the commonly used 

rule-based approaches and state-of-the-art deep learning 

methods previously mentioned in Section II. Although all 

methods will be directly compared against one another, the 

rule-based approaches are included to serve as different 

baseline comparisons for the performance of the deep learning 

methods. The random search algorithm is included to 

demonstrate the absolute lower limit of rule-based approaches.  

Experimental evaluation of each method consists of 

approximately 100 individual AF experiments on the air force 

target. For each experiment, the IAS was manually moved to a 

different location such that a wide variety of optimal focus 

target positions are included in the IAS working distance. An 

experiment begins with an initial random position of the target 

before the working distance is searched according to the rule-

based and deep learning-based algorithms. For the proposed 

method, two sequential random positions are selected first as 

the delay of time steps 𝑛𝑛𝑢𝑢 = 𝑛𝑛𝑦𝑦 = 2. The position information 

and the focus scores of these two images are then used to form 

the initial input vector 𝐱𝐱  to the LSTM to predict the focus 

position. Based on the LSTM-based MPC scheme, a control law 

is designed based on the case where 𝑃𝑃 = 7, 𝑁𝑁 = 2, 𝜆𝜆 = 0.01, 

and 𝜂𝜂 = 0.005 . The experiment ends when the focus score 

presented to the computer is equal to or greater than the 

minimum considered to reside in the DOF. For our experiments, 

TABLE II 
AF METHOD PERFORMANCE AND EVALUATION METRICS FOR THE AIR 

FORCE TARGET 

Method Mean No. Images Std. No. Images Time (ms) 

Random CL 20.30 18.84 1015 

Fibonacci CL 4.56 1.39 228.1 

G. Binning CL 6.61 3.11 330.3 

CNN CL 5.84 5.82 777.6 

ConvLSTM CL 5.01 5.04 275.6 

LSTM-MPC CL 5.18 1.59 259.0 

Random OL 15.08 12.14 316.7 

Fibonacci OL - - - 

G. Binning OL - - - 

CNN OL - - - 

ConvLSTM OL - - - 

LSTM-MPC OL 6.28 6.25 157.1 

*OL = open-loop *CL = closed-loop       

     
TABLE III 

RUNTIME FOR KEY ROUTINES IN THE PROPOSED AF METHOD 

Routine Time consumption (ms) 

Image acquisition < 1 

Image processing 6 

Optimization 3.7 

Motor movement 15 

Total time 25 

            

 
Fig. 8.  Structural block diagram of the proposed LSTM-based MPC for 
AF.    

 

Fig. 9.  Performance of the nonlinear observer-based feedback control. 
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MAG focus score of 6.1 or greater corresponded to focused 

positions in the 3.2 μm DOF of the experimental 10× lens.  
As shown in Table II, the performance of the AF methods 

was comparatively evaluated using the three metrics, the mean 

and standard deviation of the number of images taken, as well 

as the mean time to completion. Regarding the control of each 

method, only the proposed and random search methods are 

capable of running in open-loop (OL) due to the black-box 

learning of the non-linear dynamics and irrelevant absolute 

position required for a random search. All the other methods 

require absolute position information, i.e., closed-loop (CL) 

control, to guarantee a successful convergence. The CL mode 

is an embedded electronic closed-loop system that compensates 

for the hysteresis of the piezo actuator with a settling time of 50 

ms. From Table II, we can see that in CL mode, learning-based 

methods have no advantage over rule-based methods, as the 

positioning control is well managed by the embedded 

controller. Regarding the mean and standard deviation of 

images in CL mode, the Fibonacci method shows slightly better 

performance than the proposed method. For the OL mode, our 

proposed method has the fastest AF speed. Compared with the 

proposed method in CL mode, the existence of hysteresis 

effects adds difficulties in modeling the PEMS which leads to 

an increase in both the average number and standard deviation 

of the images needed for AF. However, the searching speed in 

OL mode (25 ms) is 2.4 times faster than the searching speed 

in CL mode (60 ms) which compensates for the increase in 

searching attempts caused by the hysteresis effects. 

Additionally, instead of using the embedded closed-loop 

controller, a different model-based closed-loop controller has 

been implemented to the PEMS for positioning control. The 

customized controller is a nonlinear observer-based feedback 

controller based on the classical Bouc-Wen model [34], [35]. 

Fig. 9 shows the step setpoint response of the customized 

controller. The response time for the feedback control is more 

than 100 ms which is more than 7 times longer than the open-

loop control of the PEMS and 2 times longer than the embedded 

closed-loop controller. Because both the model-based feedback 

controller and the embedded closed-loop controllers eventually 

converge to the ground truth position they can be considered to 

have the same accuracy for positioning control. If the model-

based feedback controller were implemented on the method that 

uses the least number of images (Fibonacci CL in Table II), it 

would take an average of 227.9 ms longer for AF than the 

previous Fibonacci CL. As a result, although it may take fewer 

images to find the focused position when closed-loop control of 

PEMS is applied, the overall AF time is slower than the 

proposed method. 

To test the generalization ability of the proposed LSTM-

based MPC AF method, a micro-scale circuit was used as the 

new AF target as shown in Fig. 3(c). As the circuit target was 

neven seen in the training data, the CNN and the ConvLSTM 

method cannot find the optimal focus position. However, since 

the input to the proposed LSTM network is the focus score and 

is irrelevant to the contents in the target, it can still predict the 

focus position with a mean number of images of 6.79 and a 

standard deviation of 5.25. Furthermore, we have tested 5 

different static targets and one moving target (videos attached). 

The detailed implementation of the moving target AF is 

described in Appendix B. As a result, the proposed method 

shows superiority in the generalization ability over other image-

based AF methods.   

Lastly, the specific time cost of each routine in the proposed 

method is shown in Table III. The cost of the proposed LSTM-

based MPC AF method can be broken down into 4 separate 

steps: image acquisition, image processing to get the focus 

score, optimization of the MPC cost function, and motor 

movement. The focus score is extracted using the MAG method 

from the obtained image. The time complexity of this method 

is O(n) in the big-O notation where n is the number of image 

pixels, which means mathematically the image processing time 

is only related to the size of the obtained image and it is not 

related to the surface appearance. For the camera used in our 

project, the ROI is 1280×1024 pixel2 so the processing time is 

6 ms for any images captured by this camera. Inside the 

optimization of the MPC cost function, the convergence of the 

U in (4) needs 50 iterations. Since the improved BPTT method 

was applied in the optimization of the MPC cost function, the 

optimization process only takes 14.8% of the overall AF time.  

V. CONCLUSION 

In this paper, we proposed a new control concept of PEMS 

in AF applications. Compared with traditional applications of 

PEMS which require an internal controller to account for the 

hysteresis effects, we integrate the focus measurement and the 

hysteresis effects in a single learning-based model. We then 

infer the optimal focus position using the focus scores from a 

sequence of images in an NN-based MPC architecture. To learn 

the hysteresis effect, the NN architecture is chosen to be LSTM 

due to its superior ability to draw inferences from learned time 

sequence data. To improve the speed of the LSTM-based MPC 

control, we also propose an optimized LSTM backpropagation 

algorithm. Additionally, to reduce the vibrations from the rapid 

PEMS impulse inputs, a unique S-curve control input profile is 

designed to reduce the acceleration profile. This promotes a 

more stable transition in dynamics and ultimately improves the 

accuracy of the proposed LSTM-based MPC AF control 

scheme. Compared with baseline ruled-based AF methods and 

other deep learning-based methods, our proposed method 

demonstrates significant advantages regarding the AF time. 

 

Fig. 10.  Experimental setup for moving target AF.   
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Finally, it should be noted that the proposed control concept of 

PEMS is not limited to the sole application of AF. As long as 

sufficient pairs of PEMS and response variable training inputs 

can be acquired, the same control concept can be applied to 

other PEMS or PEA applications to save the efforts in designing 

the internal controller.  

APPENDIX A 

To ensure the real-time performance of the algorithm in 

LabVIEW, we have converted the LSTM-based MPC 

controller from the MATLAB code into an executable in 
LabVIEW. The conversion includes four steps. First, the LSTM 

network is trained with the Deep Learning toolbox in 

MATLAB. Second, we code and debug the LSTM-based MPC 

controller in the MATLAB environment. Third, the LSTM-

based MPC controller is converted to C code with the help of 

the MATLAB Coder. Finally, an executable that can be run in 
the LabVIEW environment is built from the C project using 

C&C++ Development Tools for NI Linux Real-Time. By the 
above four steps, the LSTM-based MPC controller can be run 

in the LabVIEW environment independently. 

APPENDIX B 

Fig. 10 shows the experimental setup of the AF system for 

moving targets. The PEMS-based AF system is assembled on a 

roll-to-roll system. The moving target is a preprinted dot array 

on flexible substrates as shown in Fig. 10. The target is moving 

at 1 mm/s which is a common printing speed for roll-to-roll 

microcontact printing of micro- and nano-scale patterns [36]. In 

the uploaded video, it can be found that it takes 6 images for the 

AF process to get the focused image of the moving objects 

which is about 150 ms. 
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