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LSTM-Based Model Predictive Control of
Piezoelectric Motion Stages for High-speed
Autofocus
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Abstract—In this paper, we proposed a neural network-
based model predictive control of piezoelectric motion
stages for autofocus. Rather than using an internal
controller to account for the problematic hysteresis effects
of the piezoelectric motion stage, we use the long short-
term memory unit to integrate the hysteresis effects and the
focus measurement into a single learning-based model.
Subsequently, a model predictive control method is
developed based on this long short-term memory model
that successfully finds the optimal focus position using a
series of focus measurements derived from a sequence of
images. To further improve the speed of the long short-term
based model predictive control, an optimized
backpropagation algorithm is proposed that optimizes the
model predictive control cost function. Experiments
verified our proposed method reduces at minimum 30%
regarding autofocus time when compared to well-known
ruled-based autofocus methods and other learning-based
methods. Videos of the experiments are available at https://
youtu.be/AyvnMIq48Vc and https://youtu.be/SQN3ETbuf2g.

Index Terms—Autofocus, model predictive control,
neural network modeling, piezo actuator.

[. INTRODUCTION

IN-LINE inspection plays a critical role in the quality control of
the roll-to-roll (R2R) flexible electronics printing process [1].
Due to the vibrations of the moving substrates and the micro-
and nanoscale size of the printed patterns, real-time imaging of
the flexible electronics requires high-speed autofocus (AF). Our
preliminary study of AF has shown that a simple step motor-
based AF system cannot meet the high-speed requirements due
to the slow motor motion control where the step motor
movement consumes more than 77% of the overall AF time [2].
Therefore, upgraded hardware is necessary to achieve real-time
AF.

Thanks to the discovery of the piezoelectric effect in 1880 by
Pierre and Paul-Jacques Curie, the piezoelectric motion has
enabled a variety of high-precision positioning technologies.
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Fig. 1. Proposed high speed AF (b) compared with the classic AF (a).

Piezoelectric actuators (PEAs) can achieve high resolution and
precision at micro and nanometric scales with very fast
responses and bandwidth ranges in the order of kHz [3]. As a
result, they are an excellent option for AF applications [4]. In
fact, PEAs, or similarly piezoelectric motion stages (PEMSs),
are the key devices in micro-optical positioning systems such
as the scanning electron microscope, atomic force microscopy,
compact two-dimensional single-mirror laser scanner, and the
micro focusing mechanism [5].

Despite PEMS being at the forefront of precision, their
performance is burdened by nonlinearities which make their
applications in AF a challenge. One dominant nonlinear
characteristic in the dynamics of PEMSs is hysteresis. This
phenomenon is responsible for making the corresponding
displacement curves in the voltage lift and return intervals not
overlap [6]. The hysteresis seen in piezoelectric materials
significantly compromises the control accuracy of PEAs or
PEMSs, thus greatly limiting their applications in micro-
displacement technology [6]. Thus, traditional PEMS
applications for AF first employ an internal controller that
overcomes the hysteresis and achieves deterministic
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positioning control. Subsequently, the PEMS is applied with the
embedded controller for further AF applications as
conceptually illustrated in Fig. 1(a). The conventional way of
designing the internal controller is to automatically adjust the
input by utilizing some form of closed-loop control [7].
However, precise closed-loop positioning of a PEMS is far
slower than open-loop alternatives and comes with the
additional cost of fast and precise displacement sensors for
position feedback [8]. For these reasons, open-loop control
techniques are preferred.

To cope with the hysteresis effect when using an open-loop
control technique, a model is first selected to describe the
hysteresis, and then a feedforward controller is designed
accordingly to compensate for the hysteresis effect. Although
the open-loop feedforward control saves the cost of installing
displacement sensors, the design of the feedforward controller
requires the inverse of the hysteresis model which is
computationally non-trivial. Meanwhile, even though open-
loop feedforward control is highly sought after for PEMS
positioning control, the nonlinearity of the hysteresis makes it
difficult to obtain an accurate invertible physical PEMS model
[8], preventing the controller from providing accurate inputs to
the PEMS.

Recently, neural-network (NN)-based model predictive
control (MPC) emerged with high performance in nonlinear
precision motion control fields. This inspired us with the
alternative PEMS AF control solution, which is to integrate the
defocus measurements and the hysteresis effects of the PEMS
accurately in a single learning-based model, as shown in Fig.
1(b). This solution avoids the need for a slower internal position
controller before AF control as shown in Fig. 1(a). Our solution
is based on the hypothesis that the nonlinear dynamics
information, including the hysteresis, is embedded in the
sequence of focus/defocus images during the AF process.
Therefore, we can learn or infer the dynamic non-linearities and
the AF process using the image data from both offline and in
situ measurements in an NN-based MPC architecture. The input
data to the NN includes focus scores extracted from sequential
focus/defocus images. We declare that from the sequential
focus scores, we can infer the state of the focus or defocus and
ascertain the motion direction and steps needed to bring the lens
to the optimal focus position. For PEMS, since most of its non-
linearities result from the hysteresis, i.e., the dependence of the
state of a system on its history, it is then appropriate to use long
short-term memory (LSTM) to model PEMS. The LSTM
architecture retains the state information from previous
observations thus allowing it to infer the non-linear dynamics
of the PEMS. To further improve the speed of the LSTM-based
MPC control loop while maintaining sufficient accuracy, we
propose an optimized LSTM backpropagation algorithm that
reduces the number of redundant calculations during the AF
process. Moreover, to cope with the vibrations from the rapid
PEMS impulse inputs, a unique S-curve control input profile is
designed to reduce the acceleration profile and promote a more
stable transition in dynamics and ultimately improve the
accuracy of our LSTM-based MPC AF control scheme. Finally,
experiments are carried out to test the proposed AF method.

The main contributions of this paper are as follows.
1) Open-loop control of a PEMS using LSTM to identify
the system dynamics.
2) LSTM deep learning and MPC for AF using a sequence
of focus scores to predict the optimal focus position.
3) Optimized LSTM backpropagation algorithms.
4) S-curve profile for PEMS input to reduce piezoelectric
element jitters.
5) Autofocus control loop rate of 40 Hz.
The remainder of the article is organized as follows. In Section
I, related work about PEMS control and AF is reviewed. In
Section 111, the proposed LSTM-based MPC of PEMS for AF
is elaborated upon. In Section IV, the proposed method is
evaluated by comparing its performance to that of other
published AF methods. In Section V, the conclusion and future
work are summarized.

Il. RELATED WORK

A. Piezoelectric Motion Stage Control

Like many ferromagnetic and ferroelectric devices, PEMSs
exhibit hysteresis. Closed-loop controllers have been
introduced to remove these issues by involving another loop
that acquires position information, essentially bridging the gap
between the input voltage and absolute position. For example,
in [11], a robust H,, controller was designed to control a large-
range nano-positioner actuated by PEAs. In [12], an adaptive
fuzzy sliding mode control was developed for piezo-actuated
flexure-based micro/nano manipulators. Recently, several NN-
based closed-loop control algorithms have also been developed
for positioning control of PEAs [13], [14]. Overall, closed-loop
control systems are necessary if nm or um tolerances are
required for high precision positioning.

On the other hand, open-loop controllers offer faster rise
times and sharper impulse responses for more rapid transitions
in dynamics. The most popular approach of open-loop control
design for PEMS is the inversion-based feedforward control. In
literature, several physics-based models have been proposed to
learn the hysteresis effect of PEAs, including the Preisach
model [15], the Prandtl-Ishlinskii model [16], etc. However,
the calculation of the inverse hysteresis model is either time-
consuming or lacks accuracy.

In general, traditional PEMS applications need to first solve
the issue of hysteresis with some kind of controller and then
apply the PEMS with the embedded controller for the specific
application. For applications of PEMS in AF as examples, in
[17], the authors proposed an AF method for automated
microscopy using a piezoelectric transducer. The piezoelectric
transducer used in this method is controlled by an amplifier
with built-in servo feedback control for positioning control. The
built-in feedback control is part of the hardware system.
Meanwhile, the autofocus control algorithm is running on a
computer. Therefore, there are two controllers in the system,
including a built-in feedback controller for the positioning
control of the piezoelectric actuator and a controller for
autofocus; in [18], the authors developed a piezoelectric
actuator driver integrated circuit (IC) for autofocus in camera
module of mobile phone. An embedded self-positioning
feedback control algorithm is running in this IC. However,
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another controller is still needed to run the AF algorithm. In this
paper, we propose an end-to-end control algorithm for PEMS
which uses LSTM to directly link the open-loop PEMS input
voltage to the response variable, and subsequently uses a single
model-predictive controller for complete system control. Using
an LSTM-based MPC scheme has the potential to reduce the
complexity of the control system while still providing fast and
accurate responses to the PEMS.

Another difficulty in PEMS applications is the unwanted
vibrations of the piezoelectric elements caused by the impulse
inputs. In literature, several solutions have been proposed to
eliminate the vibrations. In [19], the vibrations are modeled as
a linear dynamical model and then a feedforward controller is
designed accordingly to compensate for the vibrations. In [8],
the vibrations are compensated by applying the Zero Vibration
input shaping technique. In this paper, we introduce a simple S-
curve input profile capable of reducing the piezoelectric jitter
that follows a step input (refer to Section IV.A for the detailed
description).

B. Autofocus

Classic AF methods can be broadly divided into two
categories, active and passive. Active AF methods use a sensor
(e.g., laser) to measure the distance between the camera and
target and subsequently adjust the optical system to correct the
focus [20]. Active AF methods attempt to remove limitations
surrounding focus accuracy that can arise with varying image
content (e.g., low-contrast imaging or low-light conditions)
[21]. Active AF methods offer superior performance in
stationary imaging scenarios, such as microscopy, because the
subject always resides in a position where its distance to the
camera can be repeatedly measured. If the distance of the
subject is unknown or unable to be measured, passive methods
are employed. Rather than using additional sensors, the
objective of the classic passive AF processes is to
autonomously navigate from a defocused image to a focused
one by employing various rule-based search algorithms to
maximize the measured focus. Within the passive AF category,
the phase-based and deep learning-based methods are regarded
as state-of-the-art [2]. Phase-based methods are employed on
specially designed camera sensors where each pixel consists of
two independent photodiodes. Rule-based control methods or
deep learning algorithms [22] are implemented to estimate
subject depth from the difference in phase of the stereo images,
thus enabling fast autofocus or even detailed depth maps for
facial recognition [23]. Phase-based methods undoubtedly offer
superior AF to traditional passive methods regarding speed;
however, these methods can significantly increase the cost and
complexity of the image acquisition system (IAS) and thus will
not be explored in this paper.

Inspired by the successful applications of deep learning in
computer vision tasks, such as image classification, image
segmentation, and image super-resolution, various training-
based AF methods have been proposed to outperform the phase-
based AF methods. In [24], a convolution LSTM (ConvLSTM)
framework with a feature detector, object detector, and focus-
step predictor was proposed that had the capability of focus
tracking. In [25], a convolutional neural network (CNN)-based
step estimator and focus discriminator was proposed that was
capable of single-shot AF. In [26], a passive AF control system
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Fig. 2. (a)The hysteresis effect. (b) The jitters.

was developed using a trained self-organizing map (SOM)
neural network to predict the optimal lens position using the
focus score from three initial images.

In this paper, we propose the use of LSTM to link the open-
loop PEMS input voltage to the level of focus. Rather than using
a single image as input to the LSTM, we use a sequence of focus
scores as the inputs. There are two advantages of designing the
inputs in this way: the first being that the sequential inputs could
capture the high-order and delayed-response modes of
interaction, and the second using the focus scores as the inputs
could remove any image-based dependencies.

lll. LSTM-BASED MODEL PREDICTIVE CONTROL OF
PIEZOELECTRIC MOTION STAGES FOR AUTOFOCUS

A. Problem Definition

In this work, we aim to use a learning-based method to
directly link the PEMS inputs to the output focus score.
Specifically, the control input to the system is denoted as u(t)
which defines the input voltage applied to the PEMS at time ¢t.
The response variable of the system is a scalar, y(t), which
describes the focus measurement of the image. As we aim to
achieve high-speed autofocus, the priority when selecting the
focusing function is the computational complexity; the
accuracy falls second. We tested 28 different focus measure
functions and have selected the maximum absolute gradient
(MAG) method that has the fastest calculation speed of 6 ms.
The MAG method used to calculate the FM score F is defined

as
M N
1
F zwzzmax(”xLVyLllal), (1)

x=1y=1

where I(x,y) is the image gray value at the pixel coordinate
(x,y) in an image of size M X N, I, I,,, and I are respectively
the gradients in the x, y, and diagonal direction defined
respectively by L =1(x,y) —I1(x+1,y), I, =I1(xy)—
I(x,y+1), and I; =1(x,y) —I(x+1,y+1). Although
some functions based on image differentiation are faster than
the MAG, MAG has a better performance in removing the
inappropriate information in the image as it considers not only
the horizontal and vertical gradients but also the diagonal
gradient [27].

The non-linearity introduces both position uncertainty and
piezoelectric jitter, which leads to large errors in the AF
actuator movements. To elaborate, the total stroke of a nano-
resolution PEMS (e.g., Piezosystem Jena Inc. nanoSX 400 S
CAP) under open-loop control is 503.9 pm with maximum
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hysteresis of 60.03 um as shown in Fig. 2(a). This introduces a
potential 12% position uncertainty to the medium which
controls a high-mass IAS within a depth of field (DOF) range
of 3.2 pm. Because the uncertainty is approximately 15-20
times larger than the DOF, AF accuracy of industrial standards
in vanilla open-loop control is virtually unattainable. Moreover,
the residual vibrations of the piezoelectric elements lengthen
the settling time of the open-loop response to greater than 40
ms (Fig. 2(b)), thus removing any possibility of real-time
optical metrology. As a result, there exists an unmet need for a
solution to the hysteresis and vibration non-linearity of PEMSs
to enable fast and accurate optical-positioning-based metrology
techniques.

B. Structure of LSTM

There are various deep learning models with different
structures to model an unknown non-linear system. To model
the inputs to the PEMS and the output focus scores, as most of
the non-linearities result from the hysteresis, i.e., the
dependence of the state of a system on its history, it is then
appropriate to use a recurrent neural network (RNN). However,
the standard RNN models lack long-term dependencies of the
state due to the gradient vanishing problem. Hence, we propose
to use LSTM to model PEMS for AF.

In an LSTM network, the past information is stored in a
memory cell and four gates are used to control the flow of
information into or out of the memory cell, namely, the input
gate i, forget gate f, output gate 0, and the candidate gate g.
Mathematically, the calculations in the LSTM model at time
step t are described as follows,

i(t) = o(Wyx(t) + Wysh(t— 1) +b),  (2.a)
f(t) = o(Wyx(t) + Wych(t — 1) +bg),  (2.b)
o(t) = a(Wyx(t) + Wyoh(t —1) +b,), (2.0
g(0) = tanh(W,,x(t) + Wy sh(t — 1) +by), (2.d)
c(®) =f() Oc(t—1) +i(t) O gt), (2.¢)
h(t) = o(t) © a(c®)), (2.9

¥p(©) = Wh(t) + b, 2.8

where x € R™*! is the input vector, y,, € R*** is the predicted
focus measurement, h € R™*! is the hidden state, ¢ € R™*?
is the cell state, W,; € R™ " | W, € R"™ " | W,, €
R™*"x and W,, € R™*"x are the weights from the inputs.
Similarly, Wy,; € R™*™», W), - € R™*"», W, € R™*™, and
W,,, € R"™ ™ are the weights from the hidden states. b; €
R"*1 b, € R"*!, b, € R"™*!, and b, € R"?*" are biases
for different gate states. W € R™™ and b € R™! are the
weight and the bias for the output layer, respectively. O, o, and
tanh are respectively the element-wise multiplication operator,
logistic sigmoid function, and hyperbolic tangent function. For
the input features to the LSTM, we concatenate both inputs and
outputs from the plant to capture the short-term input-output
responses. Rather than considering only one single timestep, a
sequence of input-output pairs, like x(t) = [u(t), u(t —
1),..u(t—ny,),yt—1),y(t - 2),. ..y(t - ny)] will be
used as the input feature vector to capture the delayed-response

modes of interaction, where n, and n, are respectively the
exogenously designated timestep delays of the input and output.
The output of the LSTM network is the predicted focus score
¥p(t) based on the current input voltage, previous input-output
pairs, and the recurrent latent states. In the training process, the
LSTM network can be trained by the same algorithm as the
vanilla recurrent neural network called backpropagation
through time (BPTT) [28].

C. LSTM-Based MPC

MPC calculates control commands by minimizing a cost
function over a finite prediction horizon. The cost function is
usually formulated by minimizing not only the squared error
between the reference signal and the plant’s output but also the
weighted squared change of the control input. Given the LSTM
architecture for the dynamic plant model, the MPC cost
function can be formulated by

P
Jupe = Y e+ =y + DI

j=1
£ APl + HIP, 3)
j=1

where P is the prediction horizon, M is the control horizon, y,
is the reference signal, ¥, (t + j) is the predicted output of the
LSTM at the (t+j )" period based on the available
measurements at the #" sampling period, A(j) is the regulating
factor for the control input that maintains the smoothness of the
control signal and is typically chosen to be constant or
exponential, and Au(t + j) = u(t +j) — u(t +j — 1) denotes
the change in u.

The objective of the cost function minimization algorithm is
to minimize Jypc in (3) with respect to [u(t + 1), u(t +
2), ...,u(t + M)], denoted by U. Since the plant model is an
LSTM structure, a gradient descent method can be used to
minimize the cost function iteratively. During each iteration,
the intermediate value for Jypc is denoted by Jypc(k) .
Meanwhile, the generated intermediate control input is denoted
by U(k) allowing the control input to be updated according to,

U(k + 1) = U(k) + AU(k), 4)
9]mpc(k)
AU(K) = (=5, 5)

where n > 0 is the update rate for the control input. The
Jacobian matrix is then denoted as

d]/mpC
aJ Ju(t+1)
2Impe gy = (6)
ou dJmpc
ou(t+M)

and the A" element of the Jacobian matrix in (6) is stated as

0Jupc e
Fat ) - —ZZ[yr(t 1)=&+ )] aupa h)
0A
j=1
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Algorithm 1: Standard BPTT

Algorithm 2: The improved BPTT

Input: prediction horizon P, control horizon M, input feature x(¢ + 1),
control input sequence U

Qutput: Jacobian matrix %yp((::;)) c[1,Pl,7 (1,4

1 Initialization: concatenated input vector to the LSTM
input =[,p=1,

2 while p < P do

input = [input;x(t + p)J;

calculate v, (t + p) through p steps forward propagation;

calculate Bg{rffjtf) using BPTT,

y(t+p) = 1 (t+p);

if p > M then

‘ u(t+p) = ult+ M);
end

10 xEt+p+1)=[ulE+p+1)u
p—1),.,ylt+p—ny)l;

11 | p=p+1

© % e N ok ®

(4 D), sult +p—na),y(E + p), y(t +

12 end

The % term can be expanded and calculated in terms of

the Kronecker Delta function
e

where 6(h,j) = {(1) :?Z z; For the % term, as it is

modeled by the LSTM, it is then feasible to calculate the
derivatives through the backpropagation algorithm. The
convergence of the backpropagation algorithm is highly
dependent upon the iteration number and the updating rate.
Generally, a fast backpropagation algorithm often provides
flexibility in tuning the iteration number and the updating rate.
The BPTT algorithm has been widely implemented by
researchers to solve the Jacobian matrix in the training of
LSTM networks. However, the vanilla BPTT algorithm is not
suitable for the calculation of (6). If a vanilla BPTT algorithm
is used to calculate the gradient following Algorithm 1, we can
find that in the forward pass of the ‘while’ loops, the hidden
states and the cell states are calculated multiple times, which
affects the computation time in two aspects. First, the size of
the hidden and cell states is incrementally increased adversely
affecting performance and memory use as repeatedly changing
sizes requires the system to allocate more time for seeking
larger contiguous blocks of memory. Second, some elements in
the hidden and cell states are calculated multiple times.
Specifically, the elements in the i row of the hidden states and
the cell states will be calculated P —i+ 1 times. These
redundant operations slow down the gradient calculation. To
expedite the gradient calculation, we have improved the vanilla
BPTT method based on pre-allocation as shown in Algorithm 2
in pseudo-code of MATLAB-style. The improved BPTT
algorithm is shown to save 20% of the computation time as

detailed in Section I'V.

0yp(t+i)
ax(t+)) ’
[1,P],j € [1,i] are stored in system memory and the next step

After applying Algorithm 2, the derivatives of ———,i €

. R 0 .
is to calculate the derivatives of %. The algorithm for

calculating aailf is accomplished by applying the chain rule

through time as shown in Algorithm 3. Note that as the stability
analysis of the NN-based MPC scheme is well established in

Input: prediction horizon P, control horizon M, input feature x(¢ + 1),
control input sequence U, inpui vector length n,, number of

hidden units n,

Byp(t+i) -
31:(@4,‘7) [1 P] [ Z]

1 Initialization: input = zeros(P, n,), c_.cache = zeros(P,ny),
h_cache = zeros(P,n,), i_cache = zeros(P,n,),
f_cache = zeros(P,ny), o_cache = zeros(P,ny),
g-cache = zeros(P, n,);
2 while p < P do
input(p,:) = x(¢ + p);
i(t 4+ p) = 6(Wygx(t + p) + Wrih(t + p — 1)+ by);
£t +p) = 8(Wopx(t +p) + Wysh(t+p— 1)) + by);
o(t+p) = 6(Wyox(t + p) + Whoh(t +p— 1)) + bo);
g(t+ p) = tanh(Wogx (¢ + p) + Wigh(t + p— 1)) + bg);
ct+p)=8{flt+p)@clt+p—1)+ill+p) © glt+p));
h(t +2) = oft + ) © S(elt + p));
10 c_cache(p,:) =c(t + p);
11 h_cache(p,:) = h(t + p);
12 i_cache(p,:) =i(t + p);
13 f_cache(p,:) =f(t +p);
14 o_cache(p,:) = gt + p);
15 g cache(p,:) = o(t + p);

16 calculate v, (2 + p) 5
By, (t1p)
dinput(l:p,:}
icache(l : p,:), f_cache(l : p,:), o_cache(l: p,:),

g cache(l: p,:);

18 | y(t+p)=y({+p);

19 if p > M then

20 | u(t+p) =ult+ M)

21 end

22 x(E+p+1)=[uEt+p+1),ult+7),...,
p—1),.nylt+p—nyl;

23 | p=p+1;

24 end

Output: Jacobian matrix

(=R I A

17 calculate regarding c_cache(l : p,:), h_cache(l: p,:),

w(t+p—ny),y(t +p),y(t+

. . . By
Algorithm 3: Calculation of %

Input: prediction horizon P, control horizon M, Jacobian matrix

Ay . )
el < [1,P),5 < [1,1)

Output: Jacobian matrix 83%“((:7)) ie[l,P],5e(l,M]
1 while m < M do
2 while p < P do

3 if p < M then

Byp(t4p) _
Qu(t+m)

L. 8y, (e4p) 2y, (¢+P) By (k1)
kg( Ferhy @) T E By (et LD S

4

5 else

if m # M then

By (tH4p) _
au(t+m)

M
e Duy(tr) Bup(e+e—0)
Z ey () + E aetrh) (h+ 10D X SRR

8 else
M p—M Ty
& & 3
P = LOL S e - L SR

1+0) % Byp(t-%—k l))

Bu(t+m)
10 end
11 end
12 p=p+1;
13 end
14 m=m-+1;
15 end

published literature, we will not include the stability analysis in
this paper. Readers may refer to [29]-[32] for detailed stability
analysis for interest.
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Fig. 4. Experimental schematic of the proposed AF method.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

Our experimental setup is displayed in Fig. 3 which includes
the PEMS (piezosystem jena Inc. nanoSX 400 S CAP), AF
target, controller, optical table, and stationary 10x lens IAS. The
IAS consisted of a high-speed CMOS area-scan camera, a 3D
printed adaptor, a lighting source, a coaxial in-line illuminator
unit, and a high magnification factor objective lens. Fig. 4
displays the experimental control schematic which includes the
high-speed camera (Basler acA1300-200um) connected to a
real-time controller (CompactRIO-9049, National Instruments)
via USB 3.0. This camera has a maximum resolution of
1280%1024 pixel? and a maximum frame rate of 200 fps for the
full frame. The LSTM-based MPC algorithm is run in the real-
time processor of the controller then the output command is sent
to the PEMS via Field Programmable Gate Arrays (FPGA) with
a communication speed of 10 MHz.

The PEMS used in our experiment has two operation modes,
e.g., the closed-loop mode and the open-loop mode. When
operating the PEMS using the closed-loop control mode, the
rise time of a full stroke takes 50 ms compared to the open-loop
control mode which takes 3 ms. Therefore, for a fast operation
speed, the open-loop control mode is preferred. However, in the
vanilla open-loop control mode, the S-curve acceleration
profile is not followed and motor jerk is accentuated as shown
in Fig. 5. To reduce the motor jerk, we introduce a method of
generating S-curve motion profiles that abide by the following
equation,

y=pi+ @2 = p) (0.5 +05 (ﬁ)) ®)

Vi Vr

b1 = 0.833 4.3(_)2’ (8a)
P2 = 5833 ™ 2002’ (8b)
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Fig. 5. (a) open-loop step input and the S-curve step input. (b) open-
loop step input response and the S-curve step input response.
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Fig. 7. (a) Actual focus scores and predicted focus scores of the testing
dataset. (b) The corresponding error.

TABLE |
HYPERPARAMETERS FOR TRAINING LSTM
Optimizer Learning rate Epoch Batch size
Adam 0.01 1500 64

where V; is the starting voltage, V. is the reference voltage, t is
the time window of the S-curve profile, and y is the interpolated
voltage. In experiments, the time window is selected to be 10
ms. The 10 ms S-curve acceleration profile will be divided into
1000 steps at a resolution of 0.3 mV. The comparison between
the open-loop mode step input response versus the S-curve step
input response is shown in Fig. 5. Using the S-curve profile the
settling time was reduced to 9.6 ms, which is 15 ms less than
the vanilla open-loop mode regarding the traditional 5% error
band.

B. Training of LSTM

The state-of-the-art literature uses images as the input to the
NN [24], [25]; however, the features in each image can vary
drastically by scene. For the method to be robust enough to
generalize to new scenes, large datasets are needed to train the
NN. With the aim of removing any image-based dependencies,
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Fig. 9. Performance of the nonlinear observer-based feedback control.

we generalize the proposed method by opting to use a scalar
focus score as the input to the LSTM.

To capture the dynamics between the input to the PEMS and
the output focus score, we used a pulse-train method to generate
the training dataset on the US Air Force Hi-Resolution target as
shown in Fig. 3(b). The pulse-train method applies a series of
random step inputs to the PEMS, and the resultant focus scores
of the captured images are recorded. Fig. 6 shows the series of
pulses with random amplitudes and the resultant focus scores
from these pulses. Each pulse lasts 15 ms, equal to the same
time as the PEMS movement in the control loop. To sufficiently
span the working space of the PEMS, 10,000 input-output pairs
are generated continuously with the input voltages to the PEMS
uniformly randomly selected in the range of [1 V, 9 V1. In this
experiment, we use 80% of the data for training and 20% for
testing.

The LSTM is trained using the Adam algorithm in the
MATLAB R2021a environment. The detailed hyperparameters
of the training process are listed in Table I. Considering the
tradeoff between the accuracy and computational performance,
we found that the delay of time steps for the input and output
n, = n, = 2, and the number of the hidden states in the LSTM
structure n,, = 10 gave an acceptable performance. Fig. 7(a)
shows the focus score prediction performance of the trained
LSTM network and Fig. 7(b) is the corresponding prediction
error. We conclude that the trained LSTM network adequately
learns the nonlinear dynamics of the PEMS and has a high
prediction RMSE of 0.19. As the physical system of the PEMS
remains the same during the training process and the application

TABLE Il
AF METHOD PERFORMANCE AND EVALUATION METRICS FOR THE AIR
FORCE TARGET

Method Mean No. Images  Std. No. Images  Time (ms)
Random CL 20.30 18.84 1015
Fibonacci CL 4.56 1.39 228.1
G. Binning CL 6.61 3.11 330.3
CNN CL 5.84 5.82 777.6
ConvLSTM CL 5.01 5.04 275.6
LSTM-MPC CL 5.18 1.59 259.0
Random OL 15.08 12.14 316.7
Fibonacci OL - - -
G. Binning OL - - -
CNN OL - - -
ConvLSTM OL - - -
LSTM-MPC OL 6.28 6.25 157.1
*QOL = open-loop *CL = closed-loop
TABLE IlI

RUNTIME FOR KEY ROUTINES IN THE PROPOSED AF METHOD

Routine Time consumption (ms)
Image acquisition <1
Image processing 6
Optimization 3.7
Motor movement 15
Total time 25

process, the learned LSTM can infer the nonlinear dynamics of
the PEMS online. The LSTM can be also trained online
periodically if unforeseen system condition changes [33].
Finally, the overall structural block diagram of the proposed
LSTM-based MPC controller for AF is shown in Fig. 8. The
detailed deployment of the LSTM-based MPC controller into
the real-time controller can be found in Appendix A.

C. Autofocus Testing

Proper evaluation of the proposed LSTM-based MPC AF
algorithm involves comparison against the commonly used
rule-based approaches and state-of-the-art deep learning
methods previously mentioned in Section II. Although all
methods will be directly compared against one another, the
rule-based approaches are included to serve as different
baseline comparisons for the performance of the deep learning
methods. The random search algorithm is included to
demonstrate the absolute lower limit of rule-based approaches.

Experimental evaluation of each method consists of
approximately 100 individual AF experiments on the air force
target. For each experiment, the IAS was manually moved to a
different location such that a wide variety of optimal focus
target positions are included in the IAS working distance. An
experiment begins with an initial random position of the target
before the working distance is searched according to the rule-
based and deep learning-based algorithms. For the proposed
method, two sequential random positions are selected first as
the delay of time steps n,, = n,, = 2. The position information
and the focus scores of these two images are then used to form
the initial input vector X to the LSTM to predict the focus
position. Based on the LSTM-based MPC scheme, a control law
is designed based on the case where P =7, M = 2, A = 0.01,
and n = 0.005. The experiment ends when the focus score
presented to the computer is equal to or greater than the
minimum considered to reside in the DOF. For our experiments,
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MAG focus score of 6.1 or greater corresponded to focused
positions in the 3.2 um DOF of the experimental 10x lens.

As shown in Table II, the performance of the AF methods
was comparatively evaluated using the three metrics, the mean
and standard deviation of the number of images taken, as well
as the mean time to completion. Regarding the control of each
method, only the proposed and random search methods are
capable of running in open-loop (OL) due to the black-box
learning of the non-linear dynamics and irrelevant absolute
position required for a random search. All the other methods
require absolute position information, i.e., closed-loop (CL)
control, to guarantee a successful convergence. The CL mode
is an embedded electronic closed-loop system that compensates
for the hysteresis of the piezo actuator with a settling time of 50
ms. From Table II, we can see that in CL mode, learning-based
methods have no advantage over rule-based methods, as the
positioning control is well managed by the embedded
controller. Regarding the mean and standard deviation of
images in CL mode, the Fibonacci method shows slightly better
performance than the proposed method. For the OL mode, our
proposed method has the fastest AF speed. Compared with the
proposed method in CL mode, the existence of hysteresis
effects adds difficulties in modeling the PEMS which leads to
an increase in both the average number and standard deviation
of the images needed for AF. However, the searching speed in
OL mode (25 ms) is 2.4 times faster than the searching speed
in CL mode (60 ms) which compensates for the increase in
searching attempts caused by the hysteresis effects.
Additionally, instead of using the embedded closed-loop
controller, a different model-based closed-loop controller has
been implemented to the PEMS for positioning control. The
customized controller is a nonlinear observer-based feedback
controller based on the classical Bouc-Wen model [34], [35].
Fig. 9 shows the step setpoint response of the customized
controller. The response time for the feedback control is more
than 100 ms which is more than 7 times longer than the open-
loop control of the PEMS and 2 times longer than the embedded
closed-loop controller. Because both the model-based feedback
controller and the embedded closed-loop controllers eventually
converge to the ground truth position they can be considered to
have the same accuracy for positioning control. If the model-
based feedback controller were implemented on the method that
uses the least number of images (Fibonacci CL in Table II), it
would take an average of 227.9 ms longer for AF than the
previous Fibonacci CL. As a result, although it may take fewer
images to find the focused position when closed-loop control of
PEMS is applied, the overall AF time is slower than the
proposed method.

To test the generalization ability of the proposed LSTM-
based MPC AF method, a micro-scale circuit was used as the
new AF target as shown in Fig. 3(c). As the circuit target was
neven seen in the training data, the CNN and the ConvLSTM
method cannot find the optimal focus position. However, since
the input to the proposed LSTM network is the focus score and
is irrelevant to the contents in the target, it can still predict the
focus position with a mean number of images of 6.79 and a
standard deviation of 5.25. Furthermore, we have tested 5
different static targets and one moving target (videos attached).
The detailed implementation of the moving target AF is

Fig. 10. Experimental setup fr moving target AF.

described in Appendix B. As a result, the proposed method
shows superiority in the generalization ability over other image-
based AF methods.

Lastly, the specific time cost of each routine in the proposed
method is shown in Table III. The cost of the proposed LSTM-
based MPC AF method can be broken down into 4 separate
steps: image acquisition, image processing to get the focus
score, optimization of the MPC cost function, and motor
movement. The focus score is extracted using the MAG method
from the obtained image. The time complexity of this method
is O(n) in the big-O notation where n is the number of image
pixels, which means mathematically the image processing time
is only related to the size of the obtained image and it is not
related to the surface appearance. For the camera used in our
project, the ROI is 1280%x1024 pixel? so the processing time is
6 ms for any images captured by this camera. Inside the
optimization of the MPC cost function, the convergence of the
U in (4) needs 50 iterations. Since the improved BPTT method
was applied in the optimization of the MPC cost function, the
optimization process only takes 14.8% of the overall AF time.

V. CONCLUSION

In this paper, we proposed a new control concept of PEMS
in AF applications. Compared with traditional applications of
PEMS which require an internal controller to account for the
hysteresis effects, we integrate the focus measurement and the
hysteresis effects in a single learning-based model. We then
infer the optimal focus position using the focus scores from a
sequence of images in an NN-based MPC architecture. To learn
the hysteresis effect, the NN architecture is chosen to be LSTM
due to its superior ability to draw inferences from learned time
sequence data. To improve the speed of the LSTM-based MPC
control, we also propose an optimized LSTM backpropagation
algorithm. Additionally, to reduce the vibrations from the rapid
PEMS impulse inputs, a unique S-curve control input profile is
designed to reduce the acceleration profile. This promotes a
more stable transition in dynamics and ultimately improves the
accuracy of the proposed LSTM-based MPC AF control
scheme. Compared with baseline ruled-based AF methods and
other deep learning-based methods, our proposed method
demonstrates significant advantages regarding the AF time.
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Finally, it should be noted that the proposed control concept of
PEMS is not limited to the sole application of AF. As long as
sufficient pairs of PEMS and response variable training inputs
can be acquired, the same control concept can be applied to
other PEMS or PEA applications to save the efforts in designing
the internal controller.

APPENDIX A

To ensure the real-time performance of the algorithm in
LabVIEW, we have converted the LSTM-based MPC
controller from the MATLAB code into an executable in
LabVIEW. The conversion includes four steps. First, the LSTM
network is trained with the Deep Learning toolbox in
MATLAB. Second, we code and debug the LSTM-based MPC
controller in the MATLAB environment. Third, the LSTM-
based MPC controller is converted to C code with the help of
the MATLAB Coder. Finally, an executable that can be run in
the LabVIEW environment is built from the C project using
C&C++ Development Tools for NI Linux Real-Time. By the
above four steps, the LSTM-based MPC controller can be run
in the LabVIEW environment independently.

APPENDIX B

Fig. 10 shows the experimental setup of the AF system for
moving targets. The PEMS-based AF system is assembled on a
roll-to-roll system. The moving target is a preprinted dot array
on flexible substrates as shown in Fig. 10. The target is moving
at 1 mm/s which is a common printing speed for roll-to-roll
microcontact printing of micro- and nano-scale patterns [36]. In
the uploaded video, it can be found that it takes 6 images for the
AF process to get the focused image of the moving objects
which is about 150 ms.
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