Correcting deletion errors in DNA data storage with
enzymatic synthesis

Yuanyuan Tang and Farzad Farnoud
Electrical & Computer Engineering, University of Virginia, U.S.A., {yt5tz, farzad}@virginia.edu

Abstract—DNA is considered a promising alternative to tra-
ditional storage media because of advantages such as high data
density, longevity, and ease of generating copies. One of the major
drawbacks of DNA data storage however is that DNA synthesis
is costly and resource intensive. A newly proposed enzymatic
method has the potential to decrease the cost of synthesis but
has the disadvantage that the number of times a base is repeated
cannot be precisely controlled. The method is also prone to
deletion of runs. Existing encoding approaches for this synthesis
method either have a low rate, specifically, < log, 3 per run,
or cannot protect against deletion errors. The current paper
proposes a new error-correcting code and a synchronization
algorithm that can combat deletions and achieve a code rate
higher than log, 3 bits per unit time.

I. INTRODUCTION

Due to its high density, longevity, energy-efficiency, and
ease of generating copies [1], [2], DNA is considered a
promising candidate for data storage. For example, the amount
of DNA in a single human cell can store as much as 6.4 Gbs
of information, and the DNA of species extinct for thousands
of years can still be successfully decoded [3]. Recent works
[3]-[8] have demonstrated the feasibility of DNA data storage.

However, due to high cost [4], [9] and chemistry limitations
[10], [11], DNA sequences produced by common synthesis
methods have limited quantity and quality [1]. Recently, the
authors in [1] proposed a new inexpensive enzymatic method
to synthesize DNA sequences. Compared to conventional
methods with single-base accuracy, in each synthesis round of
the enzymatic method, a number of nucleotides of the same
type are appended to the sequence. The number of nucleotides
added is a random number with a distribution that is affected
by multiple factors, including previous bases and the synthesis
duration of the current round [1]. After n synthesis rounds,
this process produces N sequences, each with at most n runs,
where the length of each run is noisy. While the synthesized
DNA sequences by the enzymatic method also suffer deletions,
insertions, and substitutions [1], the focus of this paper is on
combating errors arising from the noisiness of the run lengths.
To combat those errors, the authors in [1] encoded information
in transitions between adjacent non-identical bases. Since the
run lengths are not considered, the rate of the code is upper
bounded by log, 3 bits per run ' [1], [12].

This work was supported in part by NSF grants under grant nos. 1816409
and 1755773.

'We define the unit of time as the amount of time that it takes to produce
a run in this method, so the rate is equivalent to logy 3 bits per unit time.

To make full use of run length distributions of nucleotides,
the authors in [12] constructed codes using the precision-
resolution (PR) framework [13]. In this method, a limited set
of synthesis times are allowed and based on the observed run
lengths, it is determined which synthesis time was used for
each run. This approach can increase information density per
unit time compared to the method in [1], in which all runs are
synthesized with the same synthesis time. This work also takes
advantage of the fact that enzymatic synthesis can produce
N sequences in parallel (the run lengths may be different
among these sequences). It is shown that with this method
rates larger than log, 3 bits per unit time can be achieved. The
main limitation of this work is that it assumes runs cannot
be deleted, which contradicts the fact that deletions are the
dominant type of error in enzymatic synthesis.

The channel resulting from enzymatic synthesis with noisy
run lengths can also be viewed as an insertion-deletion channel
with multiple traces. Such a view would benefit from the
extensive literature on the topic, including [14]-[19]. However,
this approach would not be able to take advantage of the
specific structure of the deletions and insertions. Namely,
each deletion or insertion event modifies a single run and
follows specific distributions given the synthesis time for the
corresponding round. As each run may be altered by inserting
or deleting a large number of symbols, the resulting insertion-
deletion probability would be very large. Burst insertion-
deletion channels would be more appropriate, but these also
ignore the fact that each event is limited to a single run.

To correct errors arising from noisy run lengths, similar
to [12], the current paper also uses the PR framework but
also proposes error-correcting codes to fight against deletions
in the DNA sequences as well as achieve a code rate higher
than log, 3 bits per unit time. The code construction contains
two codes. Based on [20], we introduce the block-based
Tenegolts q-ary (BTq) code by concatenating Tenegolts g-ary
codes. This code is used to protect against deletions of runs.
Then, after synchronizing the runs in sequences synthesized in
parallel, the second substitution-correcting (SC) code decodes
the information stored in the run lengths [12]. Based on
numerical results, in some settings, the constructed code can
decode codewords with small error probability while achieving
a code rate higher than log, 3 bits per unit time.

The rest of this paper is organized as follows. Section II
provides the notation and preliminaries. Section III introduces
the channel model. The code construction as well as its rate are
presented in Section IV, followed by decoding procedures in
Section V. Finally, Section VI presents the numerical results.

II. NOTATION AND PRELIMINARIES

Let X, denote the alphabet {0,1,...,¢ — 1}. In particular,
let ¥4 = {0,1,2,3} represent the alphabet corresponding to
{A,C,G, T} in DNA sequences. Let 37 denote the set of all

strings of length n over ¥, and X7 = :i% X represent the
set of all strings of finite length, including the empty string A.
Furthermore, ¥ = X7\ {A}. Let [n] denote the set {1,...,n}
and N and N, denote the sets of nonnegative and positive
integers, respectively.

We use bold symbols to denote strings over %, such as x
and y;. The elements of strings are shown with plain typeface,
e.g., T = T1x2- - Ty, Where z; € X, Given two strings
x,y € X, xy denotes their concatenation. For a string x €
3%, let |x| denote its length. Given four strings x, u,v, w €
Y5, v is called a substring of x if & can be written as « =
uvw. Let € = 2129 -+, € ZZL be an alternating string of
length n over ¥, if ; # ;11 for i € [n — 1]. Let Sy be the
set of alternating strings of length n. Therefore, S;' C 37

A run is a maximal substring consisting of a single symbol.
For a € X4, 7 € N, let a" = a---a represent a repeated r
times. For a € ¥" and r € N”, let x = a” = a}'a3® - - - al".
If r;, > 0 and a; is different from a,—; and a;11, then a;™ is
arun in x and r; is the run length of a;. Note that if a € S}
is alternating and r € N’} is positive, then & = a™ has n runs.

We define (2 as the set consisting of all strings with n runs.

Conversely, given a string € 7', we can decompose it
into its alternating string @ € S’ and run length sequence
r € N such that a” = x. Formally, we define a mapping
P Qp — S7 x NI as

Y(x) = (a,7) = (Y1(@), Pa()). ey

For example, given a string @ = 11144331 = 1342321, we
have a = 1 () = 1431 and r = ¥y (x) = 3221.

Based on [12], given a finite directed and labeled graph
G = (V, E, L) with the set of vertices V, a finite multiset of
edges (allowing parallel edges) £ C V' x V, and the labels on
the edges £ : E — X7, the length of an edge e € F is I(e) =
|L£(e)|. If all edges have length 1, the graph G is ordinary.
Furthermore, a single path s = ejes - - - €5, in G generates the
word L(s) = L(e1)L(ez) - L(em), where e; € E. Given
two vertices vy,v2 € V and a string x € ¥*, the graph G
is called lossless if we can find at most one path s such that
L(8) = x. Based on the graph G, we define a constrained
system consisting of all words generated by finite paths in G,
S(G) = {L(r)|r is a finite path in G}. If G is not ordinary, an
equivalent ordinary graph G’ can be constructed by converting
each edge v ——"% w into a path v —% v; —2 --- A,
Vi1 2o by inserting auxiliary vertices v1, ..., v;—1, where
w; € 2.

We next recall the construction of Tenegolts g-ary codes
[21] that are capable of correcting a single insertion or deletion
(indel) over 3.

Construction 1. Based on Tenegolts g-ary (Tq) code [21],
given integers m > 1,0 < a < (¢—1)and 0 < 8 < (m—1),

we construct the code Cpy(a, 8, m) over 3, as

m

Crq(a,p,m) = {z ey sz = amod g,
. = 2)
>0 D6(z) = 5 mod m
i=1

where the i-th symbol of ¢ : 37" — X5" is

1 if z; > z;_1, .
maz{d Bri=zicn 93

. 7m7
if z; < 2,1,

with (41(z) = 1.

III. CHANNEL MODEL FOR ENZYMATIC DNA SYNTHESIS

In this section, we describe the channel model for the
enzymatic DNA synthesis in the precision-resolution (PR)
framework with deletions of runs.

In enzymatic synthesis N DNA sequences are synthesized
in parallel. The synthesis process consists of n rounds, and
in each round, a number of nucleotides of the same type,
e.g., A, are added to the sequences. Nucleotides added in
rounds ¢ and ¢ + 1 are of different types, so each round
adds a run to each sequence. The lengths of the runs are
controlled by the duration of the round. We assume that the
number of bases synthesized is a random variable r with
distribution? D(t), independent of all other events, where
t is the associated time spent on the synthesis of the run.
Given the noisiness of the run lengths, following the precision-
resolution framework of [12], we choose ¢ from a set of
discrete times Tsyn = {to,%1,...,tr—1}. In this method, N
sequences are synthesized simultaneously, all of whom have
the same alternating sequence (unless a run is deleted due to
no bases being added to the sequence) but the run lengths may
differ due to synthesis noise.

We thus model the enzymatic channel in the PR framework
as follows: Given two sequences a € S;L, b € X%, and the set
T'syn, enzymatic DNA synthesis creates N traces ; = a'”,
where the run length r;; for the ith run in the jth trace is
determined as rj; ~ D(tp,) with t, € Toy.

At the decoder, we determine a and b from (wj)é-vzl, by
first finding a; = 11 (x;) and 7; = o (x;).

There are two sources of error in this channel. For the
moment, assume that we are given (r;;)~ ;, from which we
must find the value of ¢, and thus b;. Given that rj;; are
random quantities, we may decode b; incorrectly, leading to
substitution errors in the codewords b. This is the first source
of error. The larger the gap between t; and tj1, the smaller
the probability of this type of error. The second source of
error arises from the fact that if » = 0, the corresponding
run disappears from the trace (this occurs if during synthesis,
no base is added to the sequence), leading to deletions of
runs. This causes synchronization issues, which may prevent
us from determining all of the values (r;;)}_,. The following
example demonstrates the two possible ways deletion of runs
can affect the alternating and run length sequences.

’In general this distribution may depend on the previous symbol but for
simplicity we assume the same distribution regardless of the previous base.

Example 1. Suppose N = 2 and let a = CGAGT. Suppose
r1 =(3,0,3,2,2) and r» = (3,1,0,3,2). We thus have:

)z = C3GYA3G?T? C3A3G?*T?. Then a; =
CAGT and 7, = (3,3,2,2). Therefore, r; 5 = 0 leads
to a deletion in @; compared to a and a deletion in the
run lengths 7y compared to 7.

2) Ty = C3GTAYG3T? = C3G*T?. Then ay = CGT
and 7o = (3,4,2). Therefore, 23 = 0 leads to two
deletions in as compared to a and two deletions and a
substitution in 73 compared to re. This occurs because
the two runs of G are merged. A

IV. ENCODING AND CODE RATE

Our overall error-correction strategy is to protect a against
deletions through coded trace reconstruction. After decoding
a from the traces (a@;)_,, we align the traces with a with
the goal to identify (r;;)}, for each 4. From (r;;).;, we
estimate b;. We use a substitution-correcting code over b to
protect against errors that may arise in this phase.

A. Code for correcting deletions in the alternating sequence

To correct deletions in the alternating sequence a, we use a
trace reconstruction method based on the binary construction
proposed in [20]. In this construction, each codeword is
divided into blocks, each of which can correct a single deletion
via the VT code. The construction can be easily extended to
the g-ary alphabet by using Tenegolts g-ary single-deletion-
correcting code, described in Construction 1. An additional
constraint to ensure the codewords are alternating sequences
is also needed.

Construction 2. Given the alphabet >, code length n, and
block length m that divides n, the Block-based Tenegolts g-ary
code (BTq code) is

a = z1Z3 """ Zp,

OBTq(a7137n) = {a € S(?

3)
z; € OTq(aiaﬂivm) N S;n;Z € [b]}a
where b = n/m, a = (a1,az,--+,a3) € Xb, and B =
(B17527 e 7ﬁb) € Elr)n
Lemma 1. There exist choices for o and (3 such that
‘CBTq(aa/an” 2 (q - l)n/(qub)‘ (4)

Given n, m, to protect an alternating sequence with length &
over X, there is a BTq code with an encoder Eprg : S¥ — S7
such that n = k/C,,, asymptotically, where

1
Cpn=1- - log,_1(gm). %)

B. Code for correcting substitutions

As discussed earlier, the length of each run is controlled by
the duration of each synthesis round. Following the precision-
resolution framework [12], the synthesis time in each round is
an element of the set Ty, = {t0,%1,...,tr—1}, with ¢, € Ny
and b € X, where 1 < tg < t1 < ... < tr_1 < M.

Note that a larger L can increase the information per run,
but also increases the probability that the synthesis time is
not decoded correctly. Given the set of run lengths associated
with synthesis round ¢, a quantizer function, discussed later,
will be used to determine the index b; of the synthesis time
tp, in round ¢ in the set Ty, = {to,...,tr—1}. Given the
noisinsess of the run lengths, substitution errors are possible
in b. We assume the substitution probability is bounded by
d/2. Given 0, a systematic substitution-correcting code (SC
code) over X, exists for large n with asymptotic redundancy
n(l — Cs 1), where

5
CJ,L:1+510ng+(1*5)10gL(1*5), (6)

that can correct nd /2 substitution errors [22]. We refer to this
code as C,. and to its systematic encoder as &, : X7 — X7,
where n = s/Cj, 1, asymptotically.

C. Combined codes

Given the codes discussed in the previous two subsections,
we introduce the overall code for correcting both deletions and
errors arising in the PR framework.

Construction 3. The BTq-SC code is defined as
C ={(a,b) :aGCBTq,bECSC}. @)
Observe that a € S;' and b € X7

Let G, = (V, E, L) be the graph with V = X,. For every
two distinct vertices u,v € V, L directed parallel edges with
labels v',b € ¥} are added from u to v, where t, € Toyn-
Based on [12, Lemma 1], the graph G, is lossless and the
capacity of S(G,) is

Cap(5(G,)) = log, A(Ag,), ®)

where G, is the equivalent ordinary graph of G, Ag; is the
adjacency matrix of G, and A(Ag,) is the largest eigenvalue
of Ag;. The code rate is given in the next theorem, which in
contrast to [12], also takes into account the deletion-correcting
code.

Theorem 1. Given 0 < § < 1—1/L, Tsy,, m, and M, the
asymptotic rate of the code C of Construction 3 per unit time
satisfies

R(C) = Cap(5(9,))/(1 + Ma(1/Cp = 1)), (9)

where « is the sum of the probabilities of non-auxiliary ver-
tices in the stationary distribution of the max-entropic Markov
chain (MEMC) over G, [23] and Cy, = min(Cs 1, Cpn).

Proof: Based on Construction 3, given the alternating
sequence a € S and the synthesis times in n rounds
(toy, - ,tp,) € Ty, every string aibl apn generated
from a codeword (a, b) can be represented by a path in G,
belonging to the constrained system S(G,). Furthermore, the
capacity of the constrained system S(G,) is Cap(S(G,)).

By the state-splitting algorithm, we can build an encoder £
for S(G,) with the code rate approaching Cap(S(G,)) [12].

Given k£ message bits, the encoder £ generates a sequence in

S(gq) Wlth m SyntheSIS time units and ma
runs asymptotically [12, Theorem 3]. Then the encoded infor-
mation contains an alternating sequence and a synthesis time

sequence both with length Wa. By using the encoders

Eprq and &, the sequence with Wa runs, generated
a 4 -
by the encoder &£, can be encoded as a codeword with at
k1 _ i
most wrrsgyy Y, Tuns. Then the error-correcting code C

introduces at most ma(é& —1)M time units for parit.y
symbols. Since Cg. is a systematic code, the total synthesis
time is at most % -~ (1 4+ Ma(A- — 1)) time units.
Cap(S(Gq)) Ciy
Therefore, the code rate satisfies R(C) > Cap(S(G,))/(1 +
Ma(c%b — 1)) bits per unit time. [|
Figure 1 shows the lower bound of R(C) given in Theo-
rem 1. The parameters are discussed in detail in Section VI-A.
It can be observed that rates larger than log,(3) bits per unit
time are achievable.

V. DECODING

In this section, we describe the decoding procedure. Our
goal is to decode (a,b) from {a;}{ and {r;}{'. First, a will
be decoded and used to identify (r;;)}_, for each i through
alignment. As we will see, there is no guarantee that (r;;) ;_V:l
can be fully determined. A quantizer is used to determine b;
based on the available values of (rji)j-vzl.

A. Decoding the alternating sequence a

We now describe the decoding procedure for the alternating
sequence a from {a;} ;. Given that the code Cpp, is an
extension of the binary coded trace reconstruction method
from [20], the decoding method is similar, and is described
briefly here. Recall that each codeword consists of blocks
capable of correcting a single deletion. In the first phase,
the aim is to identify blocks that are deletion-free in at least
one trace and to correct these blocks in all traces using their
error-free copies. Assuming the first phase has succeeded, the
remaining blocks have errors in all their copies. In the second
phase, a decoder for Tenegolts code is used to correct deletion
errors in these blocks to the extent possible.

B. Decoding the run length sequence b

In this subsection, we assume that a has been decoded
correctly. If this is not the case, a decoding failure (possibly
undetected) has occurred.

For each synthesis round ¢, if (rq;,...,7n;) were known,
we could decode b; using the fact that rj; ~ D(t;,). However,
our decoding is based on a@; and 7; and as Example 1 shows
due to merging some values in r; are summed and appear as
a single value in 7;. So to decode b;, we first find a subset R;
of the samples {r1;,...,7n;} that are known to be generated
in the ¢th round (are not the sum of two or more elements
of 7;). Given this set, then a maximum-likelihood (ML) or
Maximum a posteriori (MAP) quantizer can be used to decode
b;. In the following, we first show how to find R;, then discuss
the quantizer in detail.

The elements of the set R; are determined by aligning
a; with a. We consider two specific alignments, the for-
ward alignment and the backward alignment. In the forward

alignment, starting from the left, each element « of a; is
aligned with the leftmost non-aligned instance of « in a. The
backward alignment is similar but it starts from the right side
and each symbol « in a; is mapped with the rightmost non-
aligned instance of « in a. Let fj; be the position in a to
which the kth element 7;; of 7; is aligned to in the forward
alignment, and let g;; represent the corresponding position in
the backward alignment.

Example2. Continuing Example 1, the forward and backward
alignments of a; = CGT with a = CGAGT are given as

a = CGAGT a = CGAGT
a; = CG T~ a; = C GT

We have fa; = go1 = 1, foo = 2 but go = 4, and fo3 =
goz = b. For a; = CAGT, both alignment methods lead to
the same alignment,

a = CGAGT
a = C AGT -

In this case, we have fi1 = gi1 =1, fio = g12 = 3, fiz3 =
g13 =4, and f14 = g14 = 5. A

The following lemma, whose proof is omitted due to space
limitation, describes the relationship between r and ;.

Lemma2. Suppose the kth element of a; is o. Then 7y, is the
sum of the elements of the set {rj; : fi <1i < gjk,a; = a}.

When considering x;, it follows from the lemma that if the
fik = gjk. then 7, = 1z, . For the sake of simplicity, we
only use these values for the purpose of decoding. Specifically,
let R; be the multiset of values 7;; for which f;r = gjr = 1.

Example 3. Continuing Example 1, we have R; =
{373}7 Ry = {}7 R3 = {3}7 Ry = {2}7 Rs = {272}' A

Quantizer function Q(R;): As stated above, each b; is
decoded based on R;, which consists of run lengths r ~
D(ty,). Let N; denote the number of elements in R;. For
simplicity of notation and without loss of generality, we
assume Ri = {Tl,i; T2y - 7rNi,i}‘

We assume that D is a Poisson distribution with parameter
At, where X\ determines the expected number of nucleotides
added per unit time and ¢ is the duration of the synthesis round.
Hence, for all 4, j, we have rj; ~ Poi(At,). By rescaling the
unit of time and A\, we assume ¢, the smallest synthesis time,
is equal to 1. This allows us to represent the rate in a simple
way, and compare with the conventional system that uses only
a single synthesis time, whose rate is upper bounded by log, 3
bits. We note however that the approach is also applicable to
other distributions.

The quantizer Q produces an estimate b; of b; as follows.
Let Ry =Y, . g, I denote the sum of the elements of R;. We
define lA)l as’

b; = arg max Poi(R;| AN;ty) 7 (ts),

3We note that this estimator is not exactly the MAP estimator since the
precise joint distribution P(b;, R;) is more complex due to the fact that the
size N; of R; is also random and not independent of its elements.

—H—l0g2(3)

o
3

Code rate [bits/unit time]
o g
S8

Probability of symbol error

1551

154 L 10

—$— Theoretical Pe(N) of Quantizer
—b— Empirical Pe of Quantizer

—&— Decoding BTq
—b—Decoding BTq-SC

Error probability

0.016 0.017 0.018 0.019 0.02 0.021 0.022 15 20

J Number of traces [N]

Figure 1. The lower bound of the code rate
R(C) of BTq-SC codes with respect to & €
{0.016,0.018, 0.020,0.022}.

where Poi(k|)\) is the value of the Poisson pmf with parameter
A at k and 7(tp) is the prior probability of ¢, € Ty, It then
follows that we can find b; by comparing it with thresholds

_ N (t —ti—1) + In (7(ti—1) /7 (1))
In (tl/tl71) ’

po =0, pr, = oo. Specifically, if p; < R; < pi11, then b; = 1.
If dy;(b,b) < 6n/2, then b can be identified correctly.

While it is difficult to determine the probability of in-
correctly decoding b;, an approximate lower bound may be
obtained by considering the probability of incorrect decoding
based on (r14,...,7n;). Assuming a prior probability vector
7 = (m(to),...,m(tr—1)), this probability is given as

ol lel[lL-1],

)
L-1

P.(N,w) = W(tl)POi(Ri <p U Ri > pir1|NAL),

where Rl = Z;V:1 Tj,i

For information symbols of the codewords b € Cg., the
prior distributions 7v can be obtained from the MEMC over
g;, which we denote by ;. To approximate the average
probability of error for all symbols of the codeword, we
assume that the parity symbols have a uniform distribution
7y. Then the lower bound on the probability of symbol error
can be approximated as

Pe(N) = Cs . Po(N,) + (1 = Cs,) Po(N, 7). (10)

VI. CODE PARAMETERS AND SIMULATION RESULTS

In this section, we will first briefly discuss some of the code
parameters and then present the numerical results.

A. Parameters

If the number of deletions in each block of length m is too
large, the error-correcting capabilities of the BTq code will
become ineffective. Based on Poisson distribution, the deletion
probability of a given run is at most e~ when ¢; = 1. Hence
the expected number of deleted runs is at least £ = me ™ (note
that more runs can be deleted due to merging). Choosing an
appropriately small target value for &, we can set m = Ee?.
In the results below, we use £ = 1.7.

In the simulation, we let L = 3, a € S/, b €
Toyn = {to,t1,t2} = {1,2,3}, M =t = 3, A =

7,
3.5.

Figure 2. The comparison of empirical and theo-
retical error probabilities of estimating a synthesis
time ¢;. Here § = 0.018.

25 30 10°
15 20 25 30

Number of traces [N]

Figure 3. The error probability of decoding BTq
and BTq-SC codewords. Here, § = 0.018.

Then the lengths of each block in the BTq code is m = 57,
and we set the codeword length at n = 4m = 228. Further-
more, the expected number of deletions is about 46 = 6.8
for each trace. Based on the MEMC over g;, the prior
probabilities for elements in Ty, = {1,2,3} are wp =
(m(to), m(t1), m(t2)) = (0.759,0.192,0.049). The number of
traces IV is in the range {15, 20, 25, 30}. Furthermore, we set
d in the range {0.016,0.018,0.020,0.022}.

B. Simulation Results

In this subsection, we present the simulation results. We
note that given some aspects of our code construction are
not explicit, they are not fully implemented in the simulation
but rather the results are obtained based on their properties.
In particular, the code C,. is not explicit. We generate a
set of strings b to simulate codewords from Cs. with the
code rate Cs . For each string b € X7, the first [nCs 1]
message symbols satisfy the distribution 7y, and the other
[n(1 — Cs,)] parity symbols satisfy the uniform distribu-
tion my. For a, a random codeword from the code Cprq
with a = (0,0,0,0),3 = (1,2,3,4) is chosen. Traces are
generated based on codewords (a,b) and then decoded to
produce (a,b). If @ = a and dg(b,b) < |nd/2], decoding
has succeeded.

Figure 2 compares the analytical and empirical probabilities
of symbol error. The analytical error is based on P.(N) given
in (10), which assumes all run lengths are available. It can
be seen that the empirical error rate is close to this, implying
that the synchronization method for identifying the run lengths
(Subsection V-B) is effective. Furthermore, we can observe
that the error rate falls nearly exponentially as N increases.

Figure 3 shows the error probability of decoding BTq
codewords and BTq-SC codewords. Based on the simulation
results, with IV increasing, the error rate for BTq-SC gets close
to that of BTq. Furthermore, as N increases, the error proba-
bility of decoding BTq-SC codewords quickly diminishes.

Based on the numerical results, given § = 0.018 and N =
30, the error-correcting code in Construction 3 can achieve a
code rate higher than log, 3 bits per unit time and a decoding
error probability lower than 10~5 simultaneously.

Acknowledgement: The authors thank Dr. Mete Civelek
for helpful discussions and insightful comments.

[1]

[2

—

[3]

[4]

[5]

[6]

[7]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

H. H. Lee, R. Kalhor, N. Goela, J. Bolot, and G. M. Church,
“Terminator-free template-independent enzymatic DNA synthesis for
digital information storage,” Nature communications, vol. 10, no. 1, pp.
1-12, 2019.

S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting
codes for data storage in the DNA of living organisms,” IEEE Transac-
tions on Information Theory, vol. 63, no. 8, pp. 4996-5010, 2017.

S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and
0. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans-
actions on Molecular, Biological and Multi-Scale Communications,
vol. 1, no. 3, pp. 230-248, 2015.

N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,” Nature, vol. 494,
no. 7435, pp. 77-80, 2013.

S. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Scientific re-
ports, vol. 5, p. 14138, 2015.

R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie International Edition, vol. 54,
no. 8, pp. 2552-2555, 2015.

L. Organick, S. D. Ang, Y.-J. Chen, R. Lopez, S. Yekhanin,
K. Makarychev, M. Z. Racz, G. Kamath, P. Gopalan, B. Nguyen et al.,
“Random access in large-scale DNA data storage,” Nature biotechnol-
0gy, vol. 36, no. 3, p. 242, 2018.

L. C. Meiser, P. L. Antkowiak, J. Koch, W. D. Chen, A. X. Kohll, W. J.
Stark, R. Heckel, and R. N. Grass, “Reading and writing digital data in
DNA,” Nature Protocols, vol. 15, no. 1, pp. 86-101, 2020.

G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital infor-
mation storage in DNA,” Science, vol. 337, no. 6102, pp. 1628-1628,
2012.

P. Gaytan, “Chemical synthesis of oligonucleotides using acetone as a
washing solvent,” Biotechniques, vol. 47, no. 2, pp. 701-702, 2009.

E. M. LeProust, B. J. Peck, K. Spirin, H. B. McCuen, B. Moore,
E. Namsaraev, and M. H. Caruthers, “Synthesis of high-quality libraries
of long (150mer) oligonucleotides by a novel depurination controlled
process,” Nucleic acids research, vol. 38, no. 8, pp. 2522-2540, 2010.
S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Coding for optimized
writing rate in DNA storage,” 15172020, vol. 1, pp. 1-6, 2020.

M. Schwartz and J. Bruck, “On the capacity of the precision-resolution
system,” IEEE transactions on information theory, vol. 56, no. 3, pp.
1028-1037, 2010.

T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace
reconstruction with constant deletion probability and related results.” in
SODA, vol. 8, 2008, pp. 389-398.

F. Nazarov and Y. Peres, “Trace reconstruction with exp(o(nl/ 3))
samples,” in Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, 2017, pp. 1042-1046.

M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded
trace reconstruction,” IEEE Transactions on Information Theory, vol. 66,
no. 10, pp. 6084-6103, 2020.

J. Brakensiek, R. Li, and B. Spang, “Coded trace reconstruction in a
constant number of traces,” in 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). 1EEE, 2020, pp. 482—493.
S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister, and S. Yekhanin, “Trellis
BMA: Coded trace reconstruction on IDS channels for DNA storage,”
in 2021 IEEE International Symposium on Information Theory (ISIT).
IEEE, 2021, pp. 2453-2458.

A. Lenz, 1. Maarouf, L. Welter, A. Wachter-Zeh, E. Rosnes, and A. G.
i Amat, “Concatenated codes for recovery from multiple reads of DNA
sequences,” in 2020 IEEE Information Theory Workshop (ITW). 1EEE,
2021, pp. 1-5.

M. Abroshan, R. Venkataramanan, L. Dolecek, and A. G. i Fabregas,
“Coding for deletion channels with multiple traces,” in 2019 IEEE
International Symposium on Information Theory (ISIT). 1EEE, 2019,
pp. 1372-1376.

G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion
(corresp.),” IEEE Transactions on Information Theory, vol. 30, no. 5,
pp. 766-769, 1984.

R. M. Roth, “Introduction to coding theory,” IET Communications,
vol. 47, 2006.

M. George, S. Jafarpour, and F. Bullo, “Markov chains with maximum
entropy for robotic surveillance,” IEEE Transactions on Automatic
Control, vol. 64, no. 4, pp. 1566-1580, 2018.

