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Quantum many-particle systems in which the kinetic energy, strong correlations, and band topology are all-
important pose an interesting and topical challenge. Here we introduce and study particularly simple models
where all of these elements are present. We consider interacting quantum particles in two dimensions in a strong
magnetic field such that the Hilbert space is restricted to the lowest Landau level (LLL). This is the familiar
quantum Hall regime with rich physics determined by particle filling and statistics. A periodic potential with a
unit cell enclosing one flux quantum broadens the LLL into a Chern band with a finite bandwidth. The states
obtained in the quantum Hall regime evolve into conducting states in the limit of large bandwidth. We study this
evolution in detail for the specific case of bosons at filling factor ν = 1. In the quantum Hall regime, the ground
state at this filling is a gapped quantum hall state (the “bosonic Pfaffian”), which may be viewed as descending
from a (bosonic) composite Fermi liquid. At large bandwidth, the ground state is a bosonic superfluid. We show
how both phases and their evolution can be described within a single theoretical framework based on a LLL
composite fermion construction. Building on our previous work on the bosonic composite Fermi liquid, we
show that the evolution into the superfluid can be usefully described by a noncommutative quantum field theory
in a periodic potential.

DOI: 10.1103/PhysRevB.105.085301

I. INTRODUCTION

A contemporary challenge in quantum condensed matter
physics is to understand many body systems where interpar-
ticle interactions, the kinetic energy, and band topology all
play a crucial role. An important context where all three of
these elements are present [1–7] are moiré graphene structures
that have been studied intensely in the last few years (see,
e.g., Refs. [8–16]). There is an active experimental effort (see,
e.g., Ref. [17]) to identify and study other correlated materials
where the bands are topological and will typically have a
nonzero bandwidth which will compete with the interactions.

There is a long history of theoretical study of situations
where only two of these three ingredients are present. In the
absence of band topology, the competition between the kinetic
energy and the interparticle interaction in a crystalline solid is
often discussed in the framework of interacting lattice models
such as the celebrated Hubbard model. However if the bands
are topological, the passage to an interacting lattice model is
complicated by the absence of well-localized Wannier func-
tions that manifest the microscopic symmetries of the system,
and a different framework is needed. A different example
is the fractional quantum Hall effect and related phenomena
which happen when a single Landau level is partially filled.
Such a Landau level may be viewed as a particularly sim-
ple topological band, namely a Chern band with a constant
Berry curvature. quantum Hall phenomena are not usually
understood through lattice Hubbard-like models but through
other approaches, e.g., through wave functions or effective
field theories. Apart from the special band topology, a Landau
level has the further special feature of the absence of energy

dispersion. The kinetic energy is quenched in a Landau level
and thus the physics is determined solely by interactions (and
implicitly the special topology of the single-particle states
spanning the Landau level). Finally there is a well developed
literature dealing with the physics of weakly correlated topo-
logical materials where the interparticle interaction does not
play a major role.

In this paper, we focus on a class of simple models where
all three of the ingredients mentioned above are present. Con-
sider particles (either bosons or fermions) at a mean density ρ

in a strong magnetic field B in spatial dimensions d = 2. We
take the filling factor ν = 2πρ/B to be less than 1. We will
take the limit that the Landau level spacing is much bigger
than all other energy scales in the problem (see Fig. 1). For
ν < 1, we may then restrict the Hilbert space to be that of the
lowest Landau level. After projection to the lowest Landau
level, the Hamiltonian will be expressed in terms of a density
operator ρL

q that satisfies the well-known Girvin-MacDonald-
Platzman (GMP) algebra[

ρL
q , ρL

p

] = 2i sin
q × p
2

ρL
q+p. (1)

We have chosen units of length such that the magnetic length
l2B = 1

B = 1. The models we study have the Hamiltonian

H = H1 + H2 =
∫

d2q
(2π )2

Ṽ (q)ρL
−q + Ũ (q)ρL

q ρL
−q. (2)

The first term represents an one-body periodic potential: we
will consider the situation where the corresponding unit cell
encloses exactly one flux quantum. A concrete example is
a potential whose unit cell is a square of size a × a. The
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FIG. 1. Projection to LLL and the effect of a periodic potential. ωc is the cyclotron frequency. U denotes the interparticle interaction and
V the strength of a periodic potential whose unit cell encloses exactly one flux quantum φ0.

flux per unit cell is then Ba2 = a2 which is fixed to be 2π .
In momentum space correspondingly there will be reciprocal
lattice vectors G = 2π

a (mx,my) where mx,y are integers and
Ṽ (q) will be delta functions centered at the various G. The
second term is a two-body repulsive interaction. If in the full
Hilbert space (i.e. one involving all the Landau levels), there
is a one-body potentialV (q) and an interactionU (q), then the
corresponding projected potentials are

Ṽ (q) = V (q)e−q2/4 =
∑

G

VGδ2(q − G)e−G2/4, (3)

Ũ (q) = U (q)e−q2/2. (4)

We parametrize the strength of the Ũ (q) by U0 and that of Ṽ
by V0. What is the phase diagram as a function of V0/U0 at
some fixed ν?

For V0 = 0, Eq. (2) defines the familiar physics of the
quantum hall regime in the lowest Landau level. For example,
if the particles are fermions and ν = 1/3, we get the Laughlin
1/3 quantumHall state. Clearly such a fractional quantum hall
state is stable to turning on a small V0.

For U0 = 0, we get a free particle model. The one-body
potential splits the degeneracy of the Landau level and leads
to the formation of a Chern band with Chern number 1. This is
most simply understood by recognizing that though theV term
breaks the continuous magnetic translation symmetry of the
continuum Landau level, it preserves the symmetry of discrete
magnetic translations by a along the x or y axis. These discrete
translations commute with each other (as the flux per unit
cell is 2π ). Thus they may be simultaneously diagonalized,
and their common eigenstates form a complete basis for the
single-particle Hilbert space of the lowest Landau level. They
are also eigenstates of the projected periodic potential. These
states have a nonzero crystal momentum k and will have an
energy ε(k) that is proportional toV . Thus the periodic poten-
tial gives the Landau level a finite bandwidth. However, since
it merely changes the energy of the crystal momentum states
without changing their wave functions, the band topology will
stay the same as the Landau level. In particular, the Chern
number C = 1.

Thus, at U0 = 0, at a filling 0 < ν < 1, we get a free
Fermi sea for fermions, or a condensate for bosons. For small
U0, this will evolve into a weakly coupled Fermi liquid (for
fermions) or a superfluid (for bosons). Remarkably despite the
Hamiltonian H having no explicit kinetic energy, the purely
potential term produces a kinetic energy and enables a con-
ducting phase within the lowest Landau level.

The simple models in Eq. (2) thus describe the evolution
from the fractional quantum Hall regime to a weakly interact-
ing conducting phase. For some examples of the phases of the
model in the two extreme limits of V0/U0 see Fig. 2.

This kind of question can in principle be posed for any
Chern band. However the advantage of the present models
is that we know for sure that in the strong coupling limit
we reach the fractional quantum hall state. For V0/U0 small
enough that the fractional quantum Hall state is stabilized, we
can regard it as a reliable construction of a fractional Chern
insulator on which there is an extensive literature (for reviews,
see Refs. [18,19]).

It is interesting to also consider situations where in the
V0 = 0 the quantum Hall regime the ground state is a metallic
composite Fermi liquid (as famously happens for fermions
at ν = 1/2). The composite Fermi liquid will essentially be
stable to introducing a smallV0 but will eventually evolve into
the Fermi liquid (or superfluid if we were considering bosons)
in the large V0 limit.

Thus the models in Eq. (2) offer a concrete and simple
context to study the interplay between interactions, bandwidth
and band topology. We will describe methods that enable us
to address analytically the phase diagram and other properties
in an example. It should also be possible to study the ground
state of such models numerically, for instance using DMRG
methods, in the future. There exists some previous work [20]
studying the evolution between the ν = 1/3 fractional Chern
insulator and a Fermi liquid metal of spinless fermions in
the Haldane honeycomb lattice. The models we discuss are
simpler (for example, they have constant Berry curvature and
quantum metric, and do not involve the extra unoccupied band
with opposite Chern number present in the Haldane lattice),
and hence may be easier to study and to interpret.

FIG. 2. Some example phase diagrams.
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FIG. 3. The phase diagram before and after including gauge
fluctuation.

In what analytic theoretical framework can we study these
models? Here we have the difficulty that even in the classic
quantum Hall setting [i.e., Eq. (2) without the periodic poten-
tial] there exists very little microscopic analytic treatment of
the physics. Much has been understood by writing down vari-
ational ground state wave functions for diverse quantum Hall
states [21]. This is very powerful in thinking about gapped
topological phases of matter but less so in dealing with gapless
phases of matter, or in our goal of studying the evolution
with a periodic potential. Traditional methods in quantumHall
physics such as flux attachment mean-field theories (and the
resulting effective field theories) are usually not microscopi-
cally faithful to the lowest Landau level restriction, and hence
are not of direct value to us. A notable exception is a system
of bosons at filling fraction ν = 1. Here by using a represen-
tation [22] of the GMP algebra in terms of fermionic partons,
Read [23] discussed a possible composite fermion ground
state in a Hartree-Fock approximation, and studied fluctua-
tions in a diagrammatic approach. In our recent work [24], we
revisited this theory and obtained a coarse-grained effective
field theory for this composite Fermi liquid that is faithful
to the lowest Landau level restriction. This effective theory
is a noncommutative field theory of composite fermions at
finite density coupled to a fluctuating emergent U(1) gauge
field. We showed that an approximate mapping, valid in the
limit of long wavelength, low amplitude, gauge fluctuations
leads to the familiar Halperin-Lee-Read theory [25] but with
parameters determined correctly by the interaction strength,
and with calculable corrections.1

In the rest of this paper we will build on these results
and describe the physics of the model in Eq. (2) for bosons
at a filling fraction ν = 1. We will show how within the
framework of the fermionic parton description the effect of the
periodic potential is readily incorporated. In the limit of small
V0/U0 we obtain a composite Fermi liquid state2 deformed
by the presence of the periodic potential. As the density of
composite fermions is equal to the number of states in the
Brillouin zone, the deformed Fermi surface consists of particle

1A proposal for a noncommutative field theory for fermions at ν =
1/2 has recently appeared [26].

2It is likely that this state is energetically less preferred over a
descendant paired state; we will however mostly ignore such paired
states. They can be incorporated within our theoretical formalism if
needed.

and hole pockets of equal area, i.e., it is a composite fermion
semimetal. With increasing V0/U0, the size of these pockets
shrink and eventually there is a phase transition to a composite
fermion band insulator. We will show that this state is in fact
the superfluid phase of the bosons expected at large V0/U0.
Thus both phases and their evolution into each other can be
described within a single theoretical framework. A pictorial
depiction of our description is in Fig. 3.

An effective field theory that captures both phases and
their evolution is a noncommutative field theory of composite
fermions in a periodic potential with the action

S[A] =
∫

d2xdτ c ∗ D0c + 1

2m∗ |Dic|2

− ia0ρ + c(x) ∗V (x − ẑ × A(x)) ∗ c(x). (5)

Here, c(x) is the composite fermion field, and aμ is a dynam-
ical (noncommutative) U(1) gauge field. Aμ is a background
(noncommutative) U(1) gauge field that couples to the global
U(1) currents of the system.V (x) is the periodic potential, and
takes the form

V (x) = V

(
cos

(
2πx

a

)
+ cos

(
2πy

a

))
, (6)

where a = √
2π is the lattice spacing. The star product that

captures the noncommutative structure is defined below, as are
the covariant derivatives. The “noncommutativity’ parameter

 = −1. It is understood that the composite fermions are at
a nonzero density ρ = 1/2π . In the vast literature on non-
commutative field theories, we have not found a discussion
of theories with this specific structure, and in particular the
crucial periodic potential term. Thus our analysis may also be
interesting for the insights it provides into noncommutative
quantum field theory.

II. REVIEW OF NONCOMMUTATIVE THEORY FOR
COMPOSITE FERMI LIQUIDS

We begin with a lightning review of the theory of the ν = 1
bosonic composite Fermi liquid. Consider the model in Eq. (2)
in the absence of any periodic potential, i.e., in the familiar
setting of the continuum lowest Landau level. Given a basis
set |m〉 (m = 1, . . . ,N) of one-particle states for the Landau
level, the many-particle Hilbert space of bosons at ν = 1 is
defined by the states

|ψ〉 = �{mi}am1,...,mN |m1, . . . ,mN 〉 (7)

with the am1,...,mN symmetric under permutations.
We use a representation of the GMP algebra in terms of

canonical fermion operators ck found by Pasquier and Hal-
dane [22] and developed by Read [23]. We write

ρL(q) =
∫

d2k
(2π )2

c†k−qcke
i k×q

2 . (8)

The fermion operators satisfy the usual anticommutation rela-
tions

{ck, c
†
k′ } = (2π )2δ(2)(k − k′). (9)
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This is a redundant description, and requires dealing with a
constraint

ρR(q) =
∫

d2k
(2π )2

c†k−qcke
−i k×q

2 = (2π )2ρδ(2)(q). (10)

Here, ρ = B
2π = 1

2π l2B
is the mean density. The ρR also satisfy

a GMP algebra but with sign opposite to Eq. (1). Further-
more ρR commutes with ρL at all momenta and hence with
the Hamiltonian itself. Note that the q → 0 limit of Eq. (8)
implies that the total number of composite fermions equals
the number of physical bosons.

Substituting Eq. (8) into Eq. (2) at V = 0 gives a four-
fermion Hamiltonian which must be solved together with the
constraint Eq. (10) imposed. A simple Hartree-Fock approx-
imation that respects translation symmetry seeks a solution
where

〈c†kck〉 �= 0. (11)

The resulting Hartree-Fock Hamiltonian takes the form

HHF =
∫

d2k
(2π )2

εkc
†
kck. (12)

The composite fermions then form a Fermi sea, and we get a
mean-field description of a composite Fermi liquid. To treat
fluctuations beyond Hartree-Fock, we note that the Hartree-
Fock “order parameter” c†kck does not commute with ρR(q)
except at q = 0. Thus the huge group of gauge transforma-
tions generated by ρR is broken spontaneously (higgsed). The
important fluctuations are those generated by q ≈ 0—these
can be thought of as a U(1) gauge field. Thus we should
expect to end up with an effective description in terms of a
Fermi surface of composite fermions coupled to an emergent
dynamical U(1) gauge field. The precise form of this effective
theory was obtained in Ref. [24] and takes the form of a
noncommutative field theory with the action

S =
∫

d3x c ∗ D0c + ia0ρ + 1

2m∗DicDic. (13)

Here the covariant derivatives are defined through

Dμc = ∂μc − ic ∗ aμ − iAμ ∗ c, (14)

where aμ (μ = 0, 1, 2) is a dynamical U(1) gauge field and Aμ

is an external background U(1) gauge field. The composite
fermion effective mass m∗ is determined by the interaction
strength. The composite fermions have a density ρ. The star
product that appears in the action is defined as follows: given
any two fields f (x) and g(x),

f (x) ∗ g(x) = lim
x′→x

e
i
2 
εi j∂i∂ j′ f (x)g(x′). (15)

Here 
 = −l2B is the “noncommutativity paramete.” Refer-
ence [24] showed, using a tool known as the Seiberg-Witten
map [27], that long wavelength low amplitude gauge fluc-
tuations in this noncommutative field theory can be approx-
imately mapped to a commutative one and yields the HLR
action with calculable corrections.

III. COMPOSITE FERMION REPRESENTATION IN A
PERIODIC POTENTIAL

With this background we take up the problem of studying
Eq. (2) for bosons at ν = 1. Compared to the pristine Landau
level we have the extra periodic potential which broadens the
Landau level into a Chern band. However, as the full Hamil-
tonian term is written in terms of the density operator ρL,
it may be readily re-expressed using the composite fermion
representation of Eq. (8). We will exploit this to analyze the
phase diagram.

As explained in our previous work [24], we rewrite the
interaction term as

H2 =
∫

d2q
(2π )2

Ũ (q)
(
ρL

q − ρR
q

)(
ρL

−q − ρR
q

)
, (16)

which yields physically sensible results. Similarly, for the
one-body potential term we will use

H1 =
∫

d2q
(2π )2

Ṽ (q)ρL
−q. (17)

In principle, we could add to this a one-body ‘right’ poten-
tial term, i.e., a term linear in ρR(−q) with an arbitrary q
dependent coefficient. Due to the constraint in Eq. (10) the
Hamiltonian remains the same within the physical Hilbert
space. However, we will also eventually introduce the (non-
commutative) gauge field aμ whose time component a0
couples linearly to ρR. Any ‘right’ potential can be absorbed
into a0, and hence we will not explicitly include any further
‘right’ potential.

The composite fermion Hamiltonian, together with the
constraint, can now be approximately treated in a Hartree-
Fock approximation. At V = 0, this was done in Ref. [24]
and yields the composite Fermi liquid (or the bosonic Pfaffian
if pairing is allowed). Here we will extend the treatment to
V �= 0.

We also specialize to a model where the periodic potential
only has harmonics at wave-vectors ±Gx = 2π

a (±1, 0) and
±Gy = 2π

a (0,±1). In other words, the periodic potential is

V (q) = V
∑
s=±1

δ(2)(q − sGx ) + δ2(q − sGy). (18)

Let us now discuss the two limits of large and smallU/V .
(1) U 
 V , weak interaction. In terms of the composite

fermion, the single-particle potential H1 becomes

H1 =
∑

G

∫
d2k
(2π )2

ṼGc
†
kck+Ge

i
2 k×G (19)

This periodic potential breaks continuous translational sym-
metry down to discrete translation symmetry by a lattice
vector. Eq. (19) can be interpreted as Bragg scattering with
a nontrivial pre-factor, which leads to the gap opening at the
Brillouin zone boundary for c-fermions.

(2) U � V , strong interaction. In the V = 0 limit, at
the Hartree-Fock level the interaction induces a compos-
ite fermion dispersion that dominates over Bragg scattering,
giving the composite fermion a metallic band structure. As
demonstrated in our previous work [24], if we allow com-
posite fermion pairing, then the ground state prefers to have
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a nonzero pair amplitude in the l = ±1 channels. Thus the
true Hartree-Fock ground state is a paired state of composite
fermion, in line with the result from exact diagonaliza-
tion [28]. We note further that for V = 0, the Hartree-Fock
degeneracy of the l = ±1 paired states is guaranteed by the
symmetry of the effective Hamiltonian under an antiunitary
operation on composite fermions that exchanges ρL and ρR

(note that this is not the physical time reversal since it does not
affect the gauge fields). This degeneracy between these two
p-wave pairing states will be lifted when gauge fluctuation is
taken into account, since the physical problem does not have
such a discrete anti-unitary symmetry.

IV. BAND STRUCTURE OF COMPOSITE FERMIONS

In this section, we will exactly solve the composite fermion
band structure close to the noninteracting limit. In particular,
we show that the band has a Chern number which is opposite
to that of the LLL that the bosons live in.

First, we note that in general in the presence of the periodic
potential right density fluctuations ρR

G will be induced where
G’s are reciprocal lattice vectors. So it is vital that we include
a set of Lagrangian multipliers −ia0GρR

G in the action to en-
force the gauge constraint.

Remarkably, in the weak interacting limit U/V = 0, the
band structure can be solved analytically. We begin by writing
down the general form of Hamiltonian

H =
∑
G,k

Ṽ L
Gc†kck+Ge

+ i
2 k×G + Ṽ R

G c†kck+Ge
− i

2 k×G, (20)

where k is not necessarily within the first Brillouin zone.
Here, Ṽ L

G = Ve−G2/2 is the strength of periodic potential, while
Ṽ R

G = 〈a0G〉e−G2/2 is a variational parameter to be determined
so that the composite fermion ground state satisfies the gauge
constraint at mean-field level, 〈ρR

G〉 = 0, for ∀G �= 0.
The periodic potential, viewed in the momentum basis, is

a scattering between plane wave states |k〉 and |k + Gx,y〉,
or alternatively, a hopping on the momentum space lattice
formed by k-points related through reciprocal lattice vectors
G = nGx + mGy. Indeed, we have a momentum space tight-
binding model for each k in the first Brillouin zone, which
will be denoted as BZ1 in the following:

Hk =
∑
G,G′

c†k+G′ck+G+G′
(
Ṽ L

Ge
+ i

2 (k+G′ )×G j + Ṽ R
G e− i

2 (k+G′ )×G j
)
,

(21)
where k ∈ BZ1 is the reduced wave vector. On a side note,
in presence of interaction or other terms that lead to single
fermion dispersion, there should be an additional trapping
potential in the momentum space. But here we first deal with
the noninteracting limit.

At first glance, this momentum space tight binding model
is hard to solve since the hopping varies in momentum space.
However, we have

e± i
2 (k+Gi )×G j = e± i

2 k×G j (−1)(δi j+1). (22)

(Note that as we are taking lB = 1, a = √
2π and therefore

Gx = Gy = √
2π .) We emphasis that the additional sign on

the right hand side is the same for the form factor of “left”
and “right” density. Consequently, for the momentum space

FIG. 4. Hopping phases of momentum space tight binding model
after gauge transform of Eq. (25). Red and blue lines represent bonds
with 0 and π hopping phases, respectively. Each site of this k-space
lattice corresponds to a momentum k + G. The blue dots indicate
the sites where a further gauge transform is performed to remove all
nonzero hopping phases.

tight-binding model at each k in the first Brillouin zone, the
hopping along x has a staggered sign along y direction, and the
hopping along y has a staggered sign when translated along
x. This pattern is shown in Fig. 4. The amplitude of hopping
is, however, uniform throughout the momentum space. More-
over, note that such a sign pattern can be gauged away and the
model becomes symmetric under translation by Gx and Gy.
Therefore the spectrum for each k ∈ BZ1 can be worked out
in a straightforward manner.

Here we pause for a bit and count the degrees of freedom.
Consider a finite size system of size

√
2πMlB × √

2πMlB,
where the Landau level degeneracy is N = M2, and the set
of crystal momenta (kx, ky) take values kx = √

2π mx
M , kx =√

2π my

M where mx,my ∈ {0, 1, 2, . . . ,M − 1}. The dimension
of the single-particle Hilbert space for composite fermion is
then N2, since the composite fermion c can be labeled by
two indices m, n, associated with the LLL degenerate orbitals
for boson and vortex, respectively [23,24]. This suggests that
there should be N2 k points. It means the number of Brillouin
zones in this problem is N , since we have N k points in the
first Brillouin zone. This is also evident from the definition of
Fourier transform for a system on the torus

ck =
∑
mn

〈n| τ−k |m〉 cmn. (23)

There is an upper bound for the value of k, beyond which the
magnetic translation operator τ−k translates |m〉 around the
torus by a full cycle, and therefore does not give rise to a new
orthogonal basis state. For example, if the system has equal
length

√
2πM in x and y directions, then Eq. (23) defines

a complete set of plane wave basis |k〉 = c†k |0〉 for kx, ky ∈
[ − √

2πM/2,
√
2πM/2].

Now, we have decoupled the full problem into N momen-
tum space tight-binding models, each having N “lattice sites.”
The resulting spectrum has N bands each accommodating N
states, and altogether filled by N composite fermions.
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In addition, we have a set of variables 〈a0G〉 that may ac-
quire a finite value to enforce the gauge constraint on right
density.

Consider the case with 〈a0G〉 = 0 for all nonzero reciprocal
lattice vector G. Then the Hamiltonian becomes

H =
∑

G=±Gx,±Gy

Ṽ L
GρL

G= Ve− G2

2

∑
G=±Gx,±Gy

ρL
G, (24)

where Gx = (G, 0), Gy = (0,G). In this case, remarkably,
the momentum space tight binding models for different k
points in the first Brillouin zone are related through a gauge
transform,

ck̃+G → c̃k̃,Ge
− i

2 k̃×G, (25)

so the spectrum for different k̃ ∈ BZ1 are exactly the same.
In other words, the full spectrum of composite fermion is
N perfectly flat bands. With N composite fermions, only the
bottom band is completely filled.

The band gap is � ∼ o(V/N ), and hence vanishes forU =
0 when N → ∞. If we turn on a weak interactionU 
 V , at a
Hartree-Fock level, this gives a dispersion term for composite
fermion HU = ∑

k εkc
†
kck. The εk can be approximated by

a quadratic dispersion with an effective mass εk ∼ k2

2m∗ with
m∗ ∝ U−1 [23,24]. In this case, for the momentum space
tight-binding model, this dispersion term becomes a harmonic
trap potential. So at each k, the continuous spectrum present
at U = 0 acquires a gap � for U �= 0. Using the harmonic
oscillator representation we get � ∼ (VU )1/2 � U . Thus, for
nonzeroU , we have a nearly flat lowest band that is separated
from higher energy bands by this band gap �. The composite
fermions completely fill the lowest band and (at this mean-
field level) we get a composite fermion insulator.

Returning temporarily to U = 0, note that the occupied
single-particle state for each k ∈ BZ1 is the ground state of
the corresponding momentum space tight binding model. It
follows that (using the Hk defined in Eq. (20) with V R = 0)

Hk,Gx,y |ψ〉 ∼
∑
G′

c†k+G′ck+G′+Gx,y e
i
2 k×Gx,y e

i
2 G′×Gx,y |ψ〉

= − |ψ〉 , for ∀k̃ ∈ BZ1. (26)

Therefore

ρR
Gx,y

|ψ〉 =
∑

k

c†kck+Gx,y e
− i

2 k×Gx,y |ψ〉

=
∑

k∈BZ1,G′
c†k+G′ck+G′+Gx,y e

− i
2 k×Gx,y e− i

2 G′×Gx,y |ψ〉 .

(27)

Compare this with Eq. (26), note that eiG×G′ = 1 for ∀G, G′.
Therefore

ρR
Gx,y

|ψ〉 =
∑

k∈BZ1

e−ik×Gx,yHk,Gx,y |ψ〉

=
( ∑

k∈BZ1

−e−ik×Gx,y

)
|ψ〉 = 0. (28)

So this insulating state of composite fermion satisfies the
gauge constraint, and is therefore the ground state we are
looking for.

Finally we show that the filled flat band is topologically
nontrivial with a Chern numberC = −1. To demonstrate this,
we define a single-particle momentum shift operator which
has the same form factor as the right density,

ρ̃R
q =

∑
k

|k〉 〈k + q| e− i
2 k×q

=
∑

k∈BZ1,G

|k + G〉 〈k + G + q| e− i
2 (k+G)×q, (29)

where |k〉 = c†k |0〉 are plane wave single-particle states of
composite fermions. Note that we have

ρ̃R
q ρ̃R

q′ ρ̃
R
−qρ̃

R
−q′

=
∑

k

|k〉 〈k| e− i
2 k×qe− i

2 (k+q)×q′
e

i
2 (k+q+q′ )×qe

i
2 (k+q′ )×q′

= e−iq×q′
. (30)

Moreover, this operator transforms the single-particle Hamil-
tonian as

ρ̃R
−qH

c
k,Gρ̃R

q

=
∑
k′,G1

|k′ + G1〉 〈k′ + G1 − q| e i
2 (k

′+G1 )×q

·
∑
G,G′

VG |k + G′〉 〈k + G′ + G| e i
2 (k+G′ )×G

·
∑

k′′,G2

|k′′ + G2〉 〈k′′ + G2 + q| e− i
2 (k

′′+G2 )×q

=
∑
G,G′

VG |k + G′ + q〉 〈k + G′ + q + G| e i
2 (k+q+G′ )×G

= Hc
k+q,G. (31)

This suggests that the right density is the “momentum space
magnetic translation” operator for composite fermions. To be
more specific, we can compare these results with real space
magnetic translation for bosons, which is defined as

ρq = P̂LLLe
iq·rP̂LLLeq

2/4 = eiq·R = τ

(
z × q

l2B
2π

)
, (32)

where R = P̂LLLrP̂LLL is the guiding center coordinate opera-
tor, which satisfies

[Ri,Rj] = −iεi j lB
2. (33)

Utilizing this, we find

ρqρq′ρ−qρ−q′ = ρq+q′e− 1
2 [q·R,q′ ·R]ρ−q−q′e− 1

2 [q·R,q′ ·R]

= eiq×q′
. (34)
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Under this magnetic translation, the Hamiltonian (projected to
LLL) transforms as

ρ−qH
b(R)ρq = τ

(
−z × q

l2B
2π

)
Hb(R)τ

(
z × q

l2B
2π

)

= Hb

(
R − z × q

l2B
2π

)
. (35)

Since the phase showing up in Eqs. (30) and 34 are opposite
in signs, the Berry flux in the first Brillouin zone of the
composite fermion should also be opposite of the flux through
a magnetic unit cell of the boson, which suggests the Chern
number for the composite fermion band to be −1.

In Appendix A, we show an explicit calculation for the
Chern number. We will now describe the physical origin
of this nontrivial band topology. As we have mentioned in
Sec. IV, the composite fermion is formed by a boson and
a vortex living in opposite LLLs, with the relative position
between the two determined by the momentum carried by
the composite fermion. Now consider a momentum-space
translation of the composite fermion within the lowest band,
which is flat in the noninteracting limit. This projection to
the lowest band means that the guiding center coordinate of
the microscopic boson is pinned by the periodic potential
(so that the energy remains untouched during the translation)
and is only allowed to change through a discrete jump by a
lattice vector, while the vortex coordinates are free to move
around continuously. As a consequence, by varying the G
index of a composite fermion ck+G, we are really shifting
the coordinate of its constituting microscopic boson on a
lattice. (Indeed, the fact that the Hamiltonian in noninteracting
limit becomes invariant under momentum space lattice trans-
lation k → k + G mirrors the discrete translational symmetry
R → R + a of the microscopic boson problem, where a is
an arbitrary lattice vector.) However, as k travels continu-
ously around the Brillouin zone, the boson is not allowed
to move, whereas the vortex goes around the magnetic unit
cell in the opposite magnetic field. Therefore the Chern
number C = −1 of the composite fermion band is directly
inherited from the opposite Landau level accommodating the
vortices.

A. Hartree-Fock mean-field calculation

The picture described in Sec. III is verified by a self-
consistent Hartree-Fock mean-field calculation. In the V = 0
limit, with the single-particle potential turned off, we have
shown in our earlier work [24] that the repulsive interac-
tion leads to attractive pairing in l = ±1 channel, and the
pairing appears as a weak instability of the metallic com-
posite Fermi liquid. As a consequence, the U � V side
falls in a p± ip3 wave superconducting phase for the c-

3At the level of mean field, the p± ip are degenerate atV = 0. This
degeneracy is lifted by gauge fluctuation or a finite V . In the latter
case, it will require a Hartree-Fock calculation with both pairing and
density channels to see which one is favored at mean-field level,
which is not covered in this paper.

FIG. 5. Hartree-Fock mean-field calculation: the evolution of
(from top to bottom) band structure, Fermi surface, and Berry
curvature distribution for composite fermion throughout the phase
diagram. From left to right, we plot the results for V/U =
0.1, 0.3, 0.5, and 5.0. Color scales are shared by plots on the
same column. Here, thanks to the intact four fold rotation symmetry,
we reduce the plotted region to a quarter of the first Brillouin zone
(kx, ky ∈ [0, π ]). We show in the first line the spectrum on the high
symmetry lines, which is indicated by the black lines in the bottom-
left panel. In the second row, we plot the momentum distribution
of particle number Nk = 〈γ †

k γk〉, from which the Fermi surfaces are
extracted (blue and red lines for particle and hole pockets, respec-
tively). The metal-insulator transition of composite fermion happens
around V/U = 0.45. For nonzero V , no band touching happens. So
the band topology is the same for two phases, as is confirmed by a
direct computation of Berry curvature.

fermion, which is a Pfaffian state in the language of physical
bosons.

To study the evolution with increasing periodic potential,
we turn off the Cooper pairing channel in the mean-field
and turn up the single-particle potential. The numerical re-
sults are presented in Fig. 5. In this calculation, 〈a0G〉 is
varied to reach the saddle point of the action. We find
the renormalized right density term to be rather weak in
the large V/U phase, namely V R/V L = 〈a0G〉/V < 1, which
means the topology of composite fermion always stays the
same. In this case, in terms of composite fermions, a phase
transition from Chern insulator to Fermi liquid is observed
around V/U = 0.45.

In the following, we detail the set up for our Hartree-Fock
calculation. We begin with the Hamiltonian

H = H1 + H2

= Ũq
(
ρL

q − ρR
q

)(
ρL

−q − ρR
q

)
+

∑
G

∫
d2k
(2π )2

ṼGc
†
kck+Ge

i
2 k×G + Ṽ R

G c†kck+Ge
− i

2 k×G,

(36)

where Ũq = Ue− q2

2 and Ṽq = Ve− q2

2 , while V R
G is a set of

parameters to be determined so as to enforce the gauge
constraint at mean-field level. Now we do the mean-field
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decoupling for the interaction term. For our purpose, we only include the density channel

〈c†kck′ 〉 =
∫
BZ

d2k̃
2π

∑
G,G′

δ(k − k̃ − G)δ(k′ − k̃ − G′)ρ(k̃, G, G′). (37)

We emphasise that we have 〈c†kck+G〉 �= 0. The mean-field Hamiltonian then becomes

Hmf =
∑

k,G,G′
c†k+GH (k)G,G′ck+G′

=
∫
BZ

d2k
2π

∑
G

(
U (1 − e− (k+G)2

2 ) − μ

)
c†k+Gck+G +

∫
BZ

d2k
2π

∑
G,G′

e− (G−G′ )2
2 c†k+Gck+G′

× [
VG−G′e

i
2 (k+G)×(k+G′ ) +V R

G−G′e− i
2 (k+G)×(k+G′ )]

+
∫
BZ

d2k
2π

d2k′

2π

∑
G,G′,g

[2ŨG′−Gλ(k + G, k + G′)λ(k′ + G′ + g, k′ + G + g)

+ 2Ũk′−k+gλ(k + G, k′ + G + g)λ(k′ + G′ + g, k + G′)]ρ(k′, G′ + g, G + g)c†k+Gck+G′ , (38)

where λ(k, k + q) = 2i sin ( k×q
2 ) is the form factor in our

modified density operator ρL
q − ρR

q .
To solve the mean-field problem self-consistently, we start

with some random set of mean fields ρ(k, G, G′), diagonalize
H (k) to find the eigenmode

γk,n =
∑

G

u(k)n,Gck+G (39)

and the spectrum εk,n. Then we always tune the chemical
potential to keep

∑
k,n γ

†
k,nγk,n = N . In the meantime, the

〈a0G〉’s, or equivalentlyV R
G ’s, are also tuned to suppress 〈ρR

G〉 =∑
k〈c†k+Gck+G′ 〉e− i

2 (k+G)×(k+G′ ). Once these conditions are
met, the mean field gets updated to

ρ(k, G, G′) = 〈c†k+Gck+G′ 〉 =
∑
nn′

u(k)n,G〈γ †
k,nγk,n′ 〉u(k)∗n′,G′

(40)
This closes the loop and we can iteratively find the self-
consistent mean-field solution.

Note that we do not include the pairing channel in this
calculation. In practice, it is possible that the exact phase
diagram may have a unpaired composite Fermi-liquid region
sitting in between the bosonic Pfaffian and superfluid phases.
In this case, the Bragg scattering VG may be just enough to
make the pairing interaction no longer attractive in l = ±1
channel while only partially gapping out the composite Fermi
sea.

V. FLUCTUATIONS BEYOND THE MEAN FIELD

For V = 0, the fluctuations beyond the mean field are con-
veniently described through a noncommutative field theory
as discussed in our previous work. There we also showed
that for long wavelength low amplitude gauge fluctuations
the noncommutative theory can be approximately mapped to
a commutative field theory, which takes the same form as
the HLR action with some calculable corrections. To handle

nonzeroV we directly add a periodic potential to the noncom-
mutative field theory. At the mean-field level, the action for
this noncommutative field theory takes the form

Sm f =
∫

dτd2x c̄(x, τ ) ∗ ∂0c(x, τ ) + 1

2m∗ ∂ic̄(x, τ )∂ic(x, τ )

+ c̄(x, τ ) ∗V (x) ∗ c(x, τ ). (41)

It is understood that the composite fermions are at a nonzero
density ρ. Here, V is the periodic potential

V (x) = V

(
cos

(
2πx

a

)
+ cos

(
2πy

a

))
(42)

with a2 = 2π |
|. (In the conventions of the previous sections,
the noncommutative parameter 
 = −1/B ≡ −1.) We have
simplified the mean-field theory by only keeping the external
potential that couples to the ‘left’ density. In particular we
ignore the one-body terms that mix the left and right densities
discussed in the previous section. They do not affect our
discussion of universal aspects of the physics (and further are
small in the two extreme limitsU/V � 1 andU/V 
 1).

To go beyond the mean field we need to include gauge
fluctuations aμ that couple to the ‘right’ density and cur-
rents. To that end we replace derivatives ∂μ by covariant
derivatives Dμ :

Dμc = ∂μc − ic ∗ aμ. (43)

For now we have only included the internal (i.e., dynamical)
gauge field aμ. Later we discuss how to properly couple ex-
ternal probe gauge fields that couple to the ‘left’ densities and
currents.
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The effective action4 that captures fluctuations beyond the
mean field then becomes

S =
∫

dτd2x c̄(x, τ ) ∗ D0c(x, τ ) + ia0ρ + 1

2m∗DicDic

+ c̄(x, τ ) ∗V (x) ∗ c(x, τ ). (44)

This action is manifestly invariant under noncommutative
“right” U(1) gauge transformations. Under renormalization
we therefore will only generate terms that preserve this gauge
invariance. Let us consider the phase diagram as the strength
of the periodic potential is varied. At zero periodic poten-
tial this action describes the composite Fermi liquid state
in the continuum Landau level. For long wavelength gauge
fluctuations we can use the Seiberg-Witten map to obtain an
approximate commutative field theory (the HLR theory). A
weak periodic potential will provide very little modification of
this state (except to reconstruct the composite Fermi surface
where it intersects the Brillouin zone boundary).

We therefore turn to the opposite limit of weak interaction
V � U , where the composite fermions acquire an insulat-
ing band structure. We will see below that upon including
the gauge fluctuations, the composite fermion band insulator
correctly describes the expected superfluid of the microscopic
bosons. However as the periodic potential varies on the scale
of the magnetic length we need to treat it more accurately.
Accordingly to discuss the fate of the large-V limit (when the
composite fermions form a band insulator) we will not use the
Seiberg-Witten map.

In the presence of a strong periodic potential, the compos-
ite fermion is gapped and can be integrated out. The effective
action for the aμ fields that results is severely constrained
by the noncommutative gauge invariance of the theory. To
leading order in a derivative expansion this action must take
the form

S[aμ] = SCS[aμ] + SMax[aμ]. (45)

The first term is the noncommutative Chern-Simons action:

SCS =
∫

d2xdτ
k

4π
εμνλ

(
aμ ∗ ∂νaλ + 2i

3
aμ ∗ aν ∗ aλ

)
.

(46)

The level k is necessarily quantized to be an integer. The
second term in Eq. (45) is the noncommutative Maxwell

4Recall that the Hartree-Fock calculation generates other one body
potentials of the structure c̄ ∗V1 ∗ c ∗V2. Indeed such a term is al-
lowed by the symmetries of the model. Nevertheless, we have not
included it in Eq. (44) so as to obtain a minimal field theory that
captures universal aspects of the phase diagram. Quantitatively this
extra term will have small effects: it will clearly be small for small
V0. For large V0, as we argued in Sec. IV, the composite fermion
band gap is � ∼ O(

√
UV ), while this extra potential leads to a

renormalization of the dispersion with V1,V2 ∼ O(U ) 
 �.

action5

SMax = K

2

∫
d2xdτ fμν ∗ fμν (47)

with the noncommutative field strength fμν = ∂μaν − ∂νaμ +
i(aμ ∗ aν − aν ∗ aμ). K is a positive constant that will be
determined by microscopic parameters.

The quantized coefficient k can be found through explicit
calculation by integrating out the fermions. Interestingly we
find that k = 0 so that the long wavelength effective action
is described purely by the Maxwell theory. Details of the
computation are in Appendix C. The result k = 0 is at first
sight surprising as we have shown that the filled band of the
composite fermions has a nonzero Chern number. However
the coupling to the internal gauge field aμ when written out
in k space has a structure that distinguishes it from an ordi-
nary gauge field that shifts all momenta from k to k + a. In
particular though the periodic potential term has momentum
dependence it does not couple to the internal gauge field.

To understand the physics described by the Maxwell ac-
tion, let us now ask how an external background gauge field
A couples to the action in Eq. (44). The naive procedure
is to couple A minimally so as to have invariance under
noncommutative “left” U(1) gauge transformations. For the
derivative terms such gauge invariance is readily achieved by
generalizing the covariant derivative defined in Eq. (43) to

Dμc = ∂μc − ic ∗ aμ − iAμ ∗ c. (48)

However, the periodic potential term is not invariant under
“left” U(1) gauge transformations, and hence will need to also
be modified. Below we will focus on a long wavelength gauge
field A and obtain the correct modification of the periodic
potential term to leading order in q2|
| (where q is the mo-
mentum of A). Recall that the effect of a left gauge transform

c → eiθ ∗ c, Aμ → Aμ + ∂μθ + i[θ,Aμ]∗ (49)

with θ = k · x is nothing but a translation of the noncommuta-
tive coordinate of the fermion by z × k, combined with, in the
long-wavelength limit of gauge fluctuation, a constant shift
to the A by k. Inspired by this observation, we can modify
the potential term to make the full action invariant under
long-wavelength ‘left’ gauge transformations. The resulting
action takes the form

S[A] =
∫

d2xdτ c ∗ D0c + 1

2m∗ |Dic|2+ia0ρ + c(x)

∗V (x + ẑ × A(x)) ∗ c(x). (50)

In Appendix C, we explicitly integrate out the fermions
and obtain the induced effective action in the presence of
the background gauge field A. Strictly speaking we should
obtain an effective action that is invariant under arbitrary
noncommutative gauge transformations of both aμ and Aμ.
We will however be satisfied with an expansion of the action

5Strictly speaking as we are dealing with a nonrelativistic system,
we should have different coefficients for the electric and magnetic
field terms in the Maxwell action. For notational convenience, we
will not write this explicitly.
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in powers of A, a and their gradients, as all we need is the
leading order response of the system to a long wavelength
background gauge field. To leading order in this expansion,
we find

S = S0[a,A] + SMax[a], (51)

S0[a,A] =
∫

d2xdτ − iA0(x)ρ̄ − 1

2π
εμνρAμ∂νAρ

− 1

2π
εμνρAμ∂νaρ. (52)

Note that the action in Eq. (51) is gauge invariant un-
der long-wavelength gauge transformations. It is however
not gauge invariant under arbitrary noncommutative gauge
transformations. This is due to us not retaining higher pow-
ers of A, a and momentum q. Based on this truncated long
wavelength action, can we guess the form of a more general
action that is invariant under noncommutative gauge transfor-
mations? The self Chern-Simons term involving A can clearly
be the remnant of the fully gauge invariant noncommutative
Chern-Simons term in the long-wavelength limit. However the
effective action above also involves a mutual Chern-Simons
term between a and A. We have not been able to guess the
form of a noncommutative mutual Chern-Simons action for
a,A that reduces to the usual form above in the long wave-
length limit, and leave this as an interesting exercise for the
future.

Note that since A only has low momentum fluctuations,
in the mixed Chern-Simons term only the long wavelength
fluctuations of a contribute. To expose the physics of this
effective action, we now use the Seiberg-Witten map to obtain
a commutative effective field theory for long wavelength fluc-
tuations of both gauge fields. After the Seiberg-Witten map,
the first term contributes another commutative Chern-Simons
term for A:

S1[Â, â] =
∫

d2xdτ
1

4π
εμνρ Âμ∂ν Âρ. (53)

Eventually, combining Eqs. (53) and (51), we find the full
commutative long-wavelength action

S[Â, â] =
∫

d2xdτ − 1

4π
εμνρ Âμ∂ν Âρ − 1

2π
εμνρ Âμ∂ν âρ

+ K

2
(εμνλ∂ν âλ)

2. (54)

Integrating over dynamical gauge field â, we find dÂ ≈ 0
at long wavelengths, which correctly describes a superfluid
phase of the microscopic bosons.

The Meissner effect at long wavelength is what is needed
to establish the superfluidity. While the density correlation at
general momentum k can be done within the mean field, we
are not sure that it has all that much value, since the mean
field misses the Goldstone mode—the usual sound model of
the superfluid—which will dominate the density correlator
at small k. We could calculate it within a “mean field with
fluctuation” approach in the future if it becomes important to
do so.

VI. SPINFUL BOSONS AT νT = 1

In this section, we briefly discuss the fate of spin-1/2
bosons at a total filling νT = 1 in the LLL, and in the presence
of a periodic potential. For strong interaction (U � V ), we
expect to get a composite Fermi liquid of spin-1/2 composite
fermions, with a possible instability toward a paired quantum
Hall state. In the opposite limit of U 
 V , the periodic po-
tential will give the bosons a dispersion, and the bosons will
condense. The resulting state is a ferromagnetic superfluid.

Both limits can be understood within the LLL composite
fermion description introduced in our earlier work (Ref. [24]).
For U � V , we showed there that the mean-field ground
state is indeed a spinful composite Fermi liquid. Note now
that, when the periodic potential is turned on, the composite
fermion Fermi surface sits entirely within the first Brillouin
zone and does not intersect the zone boundary. Consequently
it is only mildly distorted by the periodic potential. In particu-
lar, unlike the spinless case discussed in the bulk of the paper,
it does not transform into a composite fermion semimetal. A
further difference with the spinless case is that the pairing in
l = 1 channel is no longer attractive. Instead, at mean-field
level there is an instability toward s-wave pairing [24].

In the opposite limit (U 
 V ), in the composite
fermion picture, everything exactly follows our discussion in
Sec. IV—the spinful composite fermions fill a nearly flat band
with Chern number C = −1. Interactions will then produce
a ferromagnetic Chern insulator where only spin species of
composite fermion is present and fully fills the band. The
effect of gauge fluctuation for this case is then exactly the
same as that of the spinless version, namely as Eq. (54), and
this state is a ferromagnetic superfluid of the bosons.

In contrast to the spinless case, the evolution between
these two limits is not straightforward to determine. A simple
guess is that with increasing V/U , the spin singlet composite
Fermi liquid first undergoes a Stoner transition to partial spin
polarization, which eventually gives way through a second
transition to a fully polarized ferromagnetic composite Fermi
liquid. From that point on, the system essentially evolves in
the same manner as the spinless composite fermions discussed
in previous sections.

VII. DISCUSSION

In this paper, we introduced and studied simple models
of strongly correlated quantum particles in a partially filled
topological band. We made analytic progress for one specific
case (bosons at ν = 1 in the LLL, and in the presence of a
periodic potential that gives a finite bandwidth to the LLL).
The models defined in Eq. (2) are well suited to studying the
evolution between quantum Hall physics and that of weakly
interacting conducting phases for particles at any filling. To
analytically attack cases other than the ones studied here, it
will first be necessary to develop a LLL theory of the basic
quantum Hall regime (i.e., even without a periodic potential).
Given such a theory it will be straightforward to include the
effects of the periodic potential. We emphasize that it is not
sufficient to just know the long wavelength topological field
theory (for a gapped quantum hall state) for this purpose.
Rather we need a theory that knows about the density operator
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at scales of order the magnetic length. Even then it will not
necessarily be the case that the weak and strong coupling
limits can be accessed within the same framework.

A useful analogy is with the familiar lattice Hubbard
model: though the weak and strong coupling limits are of-
ten understood, the evolution between them is a challenging
problem in condensed matter physics. Despite lack of analytic
progress the Hubbard model provides a guide for the basic
lattice strong correlation problem, and, in some cases, can be
studied numerically. We hope that the models defined here
play a similar role for strong correlations in a topological
band.

On the numerical front, these models can be studied with
DMRG methods. Variational wave functions that have been
so successful in the quantum hall regime may also lend them-
selves to incorporating the effect of the periodic potential, and
may provide useful insight.

Finally, our results on the noncommutative field theory
suggest that there is much interesting physics in the presence
of a periodic potentail in such theories which may be valuable
to pursue.
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APPENDIX A: CHERN NUMBER OF COMPOSITE
FERMION BAND

Here we explicitly calculate the Chern number composite
fermion band. To do this, we first obtain the Bloch vector
|u(k)〉 for k ∈ BZ1, whose entries are uG(k), where G′s are
Bragg vectors. In particular, according to Bloch’s theorem,

|ψn,k〉 =
∑

G

un,G(k) |k + G〉, (A1)

where |ψn,k〉 is the wave function that diagonalizes the Hamil-
tonian, and |k〉 is the plain wave state. Throughout this
Appendix we will leave out the band index n for the sake of
notational simplicity, since the only band of our interest is the
lowest band (n = 0), which is fully occupied. The Bloch states
are defined as

|uk〉 =
∑

G

un,G(k) |G〉 (A2)

In Sec. IV, we discussed the “magnetic translation” in mo-
mentum space. Particularly, using Eq. (31), we generate the
Bloch state at k + δq from the solution at k using the mo-
mentum space magnetic translation operator ρ̃R

−δq

|uk+δq〉 = ρ̃R
−δq |uk〉. (A3)

So the components of the two Bloch state vectors are related
through

uk+δq,G = e
i
2 (k+G)×δquk,G. (A4)

As a gauge choice for Bloch vector at every momentum in
Brillouin zone, we generate all uG(k)’s from uG(0), namely,

uG(k) = e
i
2 G×kuG(0) = e

i
2 G×ku0G. (A5)

The Berry connection

Aj (k) = −i 〈uk| ∂k j |uk〉 = 1

2

∑
G

|u0G|2Giεi j . (A6)

At a glance, this is a constant, which seems to suggest the
Berry’s curvature b(k) = ∇ × A(k) = 0. But this should not
be the case, because even from Eq. (A6), we can smell the
nontrivial band topology by rewriting the right-hand side as
1
2 〈z × G〉, and further noting that A(k) is identified as the
polarization of composite fermion modulo the lattice. There-
fore this equation already suggests an equivalence between
polarization and the momentum rotated by 90◦—just like what
we would expect in a Landau level.

To reveal the topology, first note that the summation in
Eq. (A6) is not convergent. Therefore the result is ambiguous
in the sense that it depends on the UV cutoff. Meanwhile, in
the physical problem we are interested in, there is a natural
UV cutoff. In particular, recall that technically the Chern
number is not well-defined at U = 0, where the band gap
vanishes. This is remedied by introducing a small U , as we
have discussed in Sec. IV. By doing so, the Bloch function
uG, instead of being a plane wave on the lattice spanned by G,
now gets trapped by theU term and becomes localized around
G = 0.

In this case, the Bloch function is k dependent. Equa-
tion (A6) becomes

Aj (k) = −i 〈uk| ∂k j |uk〉 = 1

2

∑
G

∣∣u0G(k)∣∣2Giεi j . (A7)

To be more concrete, we treat theU term within the effec-
tive mass approximation HU ∼ k2

2m∗ c
†
kck ∼ Uk2

(2π )2 c
†
kck . In this

case, we can approximate the Bloch function as

uG(k)|U ∼ e− (k+G)2

2σ2 uG(k)|U=0, (A8)

where σ ∼ 2πV
U is the size of the Gaussian wave function that

solves the harmonic oscillator problem. This approximation
works because for U 
 V , we have σ � 2π , which means
the discreteness of lattice {G} does not show up at the length
scale of σ .

Combine Eqs. (A8) and (A5), we find at smallU , the Bloch
vector is approximated by

uG(k) ∼ u0Ge
− (k+G)2

2σ2 e
i
2 G×k. (A9)

Note that since σ � 2π , the phase factor e
i
2 G×k varies much

faster than the Gaussian profile e− (k+G)2

2σ2 , and that this is always
true as long asU is small. The detailed form of theU term is
not relevant. Therefore the leading contribution to the Berry
curvature comes from the term with derivatives acting on the
phase factor, which gives

Aj (k) = −i 〈uk| ∂k j |uk〉 = 1

2

∑
G

|uG(k)|2Giεi j, (A10)
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which can be rewritten as

Aj (k) = 1

2

∑
G

|uG(k)|2(ki + Gi )εi j − 1

2
kiεi j, (A11)

where we have used the normalization condition∑
G |uG(k)|2 = 1. The first term is periodic in the Brillouin

zone. We will denote 1
2

∑
G |uG(k)|2(ki + Gi ) = α(k)i.

Therefore the Berry flux through Brillouin zone is

�B =
∫

d2kb(k) =
∫

d2kεi j∂kiA j (k)

=
∫

d2kεi jεl j∂iαl (k) − εi jεl j

2
∂ikl

= −εi jεi j

2

∫
d2k = −2π. (A12)

APPENDIX B: NUMERICAL CALCULATION OF CHERN
NUMBER

In this section, we detail the numerical method to extract
Berry curvature. In our self-consistent mean-field calculation,
we keep up to 21 Brillouin zones. Using the converged mean
fields, we sample 30 by 30 k points in the first Brillouin zone
and diagonalize the mean-field Hamiltonian Hk for each k
sampled. As a result we obtain the Bloch vector of bottom
band uG(k) defined in Eq. (A1). To obtain Berry curvature,
we use

B(k) = ∇ × A(k)

= −iεi j 〈∂iψk|∂ jψk〉 =
∑
G

−iεi j∂iuG(k)∗∂ juG(k),

(B1)

which is approximately computed by

2

δkxδky
Im

∑
G

(uG(k + δkx )
∗ − uG(k)∗)(uG(k + δky)

− uG(k)), (B2)

where δkx,y is the momentum increment of our sampling, in
our case it is set to be 2π/30. The total Berry flux through the
first Brillouin zone is however found not to be a quantized
number. This is due to the cutoff for large k. In fact, the
truncated wave function |ψk〉 is not even periodic across the
edges of Brillouin zone. But note that the error caused by
cutoff becomes weaker as we reduce V/U , since the wave
function uG(k) gets more localized in momentum space at
small G’s.

Here we show in Fig. 6 the total Berry flux we get using
the method and accuracy parameters described above, as a
function of V/U . Note that even though we need a finite V/U
to gap out the composite Fermi sea, the direct band gap is
opened as long as an infinitesimal V is turned on so that
the Chern number for lowest fermion band can be computed
even within the composite Fermi liquid phase. Indeed, we find
the total Berry flux approaches φB

2π = −1 as V/U → 0. Here
one may notice a small deviation from quantization at small
V/U . We argue that this is caused by the finite sampling of
k points within the Brillouin zone, since for small V/U , the
Berry curvature is strongly peaked around the edge of BZ,

FIG. 6. The evolution of measured Chern number as a function
ofU/V .C → −1 asU/V → 0.

where band gap is opened. In this case, a discrete summa-
tion no longer approximates the momentum space integral
well.

APPENDIX C: CHERN-SIMONS TERMS FROM FERMION
PATH INTEGRAL

Here we explicitly determine the coefficient of Chern Si-
mons terms of the CF band insulator by integrating out the
composite fermions. We start with the noncommutative gauge
theory

S[c, c̄, a,A] =
∫

d3x c̄D0c + ia0ρ̄ + 1

2m∗ |Dic|2

+ c(x) ∗V (x + ẑ × A(x)) ∗ c(x), (C1)

where covariant derivatives are defined as

Dμc = ∂μc − ic ∗ aμ − iAμ ∗ c. (C2)

Eventually we want to get an effective action Sind by integrat-
ing out the fermions:

e−Sind[a,A] =
∫

Dc̄Dc e−S[c,c̄,a,A]. (C3)

1. Self Chern-Simons term for internal gauge field

To begin with, for now we restrict ourselves to A = 0 and
examine the internal gauge field response arising from the
path integral. As we will show later, terms involving A can be
obtained in a similar way. Due to gauge invariance, we expect
the following result at long wavelength and to leading order
in powers of a

Sind[a] = SCS[a] + SMaxwell, (C4)

where the noncommutative Chern Simons term is

SCS = k

4π

∫
d3xεμνρaμ∂νaρ + 2

3
a ∗ a ∗ a. (C5)

For our purpose to get the Chern Simons level k, we only need
to consider (in Fourier space) the term εμνρqμaν (q)aρ (−q),
where qμ = (ω, q) is the 3-momentum. In particular, we will
look for the coefficient of ωax(ω, 0)ay(−ω, 0).
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FIG. 7. The bubble diagram.

The mean-field Hamiltonian is

H (0)
MF = H0 + HV

=
∑
k,G

ε0k+Gc
†
k+Gck+G

+
∑

k,G,Q

VQc
†
k+G+Qck+Ge

i
2 (k+G)×Q, (C6)

where ε0k = k2

2m∗ . The gauge fields ax, ay are coupled through

H (1)
MF + H (2)

MF =
∑

q,k,G

ki + Gi + qi/2

m∗ aiqe
i
2 (k+G)×qc†k+G+qck+G

+ 1

2m∗ a
i
qa

i
−qc

†
kck. (C7)

To extract the coefficient of axay, we can ignore the second
term in Eq. (C7), which is diagonal. The axay term can thus
be obtained from the bubble diagram in Fig. 7. This gives

δLaa = 1

2

∫
d2qdω

(2π )3
kaai j (q, ω)ai(q, ω)a j (−q,−ω), (C8)

where

kaai j (q, ω) =
∫

d2kd�

(2π )3
Tr[G(k,�) ji(k, k + q)

× G(k + q,� + ω) j j (k + q, k)]. (C9)

Here the Green’s function is

G(k,�) =
∑
n

|un,k〉 〈un,k|
i� − Enk

, (C10)

where n is the band index, and the “right” current operator is
given by

ji(k, k + q)

=
∑

G

ki + Gi + qi/2

m∗ e
i
2 (k+G)×q |k + G + q〉 〈k + G| .

(C11)

We are interested in kaai j (ω, q = 0) ≡ kaai j (ω). Then Eq. (C9)
becomes

kaai j (ω) =
∫

d2kd�

(2π )3
Tr[G(k,�) ji(k)G(k,� + ω) j j (k)]

(C12)
and the current

ji(k) ≡ ji(k, k) = ∂ε0k+G

∂ki
|k + G〉 〈k + G| = ∂H0

∂ki

=
∑

G

ki + Gi

m∗ |k + G〉 〈k + G| . (C13)

In the following, we will work in the Bloch basis. Let |ψn,k〉
be the eigenstate of the HamiltonianH (k), where n is the band
index. (In Appendixes A and B, nwas set to 0 representing the
lowest band and dropped for simplicity.) Namely, we have

|ψn,k〉 =
∑

G

un,G(k) |k + G〉, (C14)

where |k + G〉 is the plane wave state. Denote by r the gener-
ator of momentum space translation,

r =
∫

d2k
∑

G

|k + G〉 (i∂k ) 〈k + G| (C15)

so that

e−iqr =
∫

d2k
∑

G

|k − q + G〉 〈k + G| . (C16)

The corresponding Bloch function |un,k〉 is
|unk〉 = e−ikr |ψn,k〉 =

∑
G

un,G(k) |G〉. (C17)

Using Eq. (C10), we obtain the Bloch basis Green’s function
as

G̃(k,�) = e−ikrG(k,�)eikr

=
∑
n

e−ikr |ψnk〉 〈ψnk|
i� − Enk

eikr =
∑
n

|unk〉 〈unk|
i� − Enk

,

(C18)

where |unk〉 is the Bloch vector that diagonalizes the Hamilto-
nian in the Bloch basis

H̃ (k) = e−ikrH (k)eikr

=
∑
G,G′

e−ikr |k + G〉 〈k + G|H |k + G′〉 〈k + G′| eikr

=
∑
G,G′

|G〉 〈k + G|H |k + G′〉 〈G′| . (C19)

The current operator in the Bloch basis is

j̃i(k, k + q) = e−i(k+q)rvi(k, k + q)eikr

=
∑

G

ki + Gi + qi/2

m∗ e
i
2 (k+G)×q |G〉 〈G| .

(C20)

Using Eq. (C18) and (C20), we rewrite the response from the
bubble diagram in Eq. (C9) as

kaai j (q, ω) =
∫

d2kd�

(2π )3
Tr[G̃(k,�) j̃i(k, k + q)

× G̃(k + q,� + ω) j̃ j (k + q, k)]. (C21)

Taking q = 0 and expanding to leading order in ω, this
becomes

kaai j (ω) = ω

∫
d2kd�

(2π )3
Tr[G̃(k,�) j̃x(k)∂�G̃(k,�) j̃y(k)],

(C22)
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where

j̃i(k) ≡ j̃i(k, k) =
∑

G

ki + Gi

m∗ |G〉 〈G| = ∂H̃0(k)
∂ki

(C23)

and

H̃0(k) = e−ikrH0(k)eikr

= e−ikr
∑

G

ε0k+G |k + G〉 〈k + G| eikr

=
∑

G

ε0k+G |G〉 〈G| . (C24)

Now the “right” density operator in the Bloch basis is

˜̃ρR
q (k) = ˜̃ρR(k − q, k)

= e−i(k−q)rρ̃R
k−q,ke

ikr

= e−i(k−q)r
∑

G

|k − q + G〉 e− i
2 (k+G)×q 〈k + G| eikr

=
∑

G

|G〉 e− i
2 (k+G)×q 〈G| , (C25)

which is diagonal with the property ˜̃ρR(k′, k) = ˜̃ρR(k, k′)†.
One can show that

˜̃ρR(k − q, k)H̃V (k) ˜̃ρR(k, k − q) = H̃V (k − q). (C26)

Next we expand ˜̃ρR
q (k) around q = 0, and introduce the polar-

ization operator P̃i

˜̃ρR
q (k) = ˜̃ρR(k − q, k) = 1 + iqiP̃i(k) + O(q2). (C27)

Therefore the polarization is

P̃i(k) =
∑

G

1

2
εi j (k + G) j |G〉 〈G| , (C28)

which is a diagonal and hermitian operator. Using Eq. (C27),
we can expand Eq. (C26) as

H̃V (k) + iqi[P̃i(k), H̃V (k)] = H̃V (k) − qi
∂H̃V (k)

∂ki
. (C29)

Thus we have

∂H̃V (k)
∂ki

= −i[P̃i(k), H̃V (k)] = −i[P̃i(k), H̃ (k)], (C30)

where in the last identity we utilized the fact that
[Pi(k), H̃0(k)] = 0, since both of them are diagonal in the
Bloch basis. Then Eq. (C23) is rewritten as

j̃i(k) = ∂H̃0(k)
∂ki

= ∂H̃ (k)
∂ki

− ∂H̃V (k)
∂ki

= ∂H̃ (k)
∂ki

+ i[P̃i(k), H̃ (k)]

= [∂i + iP̃i(k), H̃ (k)]. (C31)

Finally we are in position to compute the bubble diagram
contribution Eq. (C21). Plugging Eqs. (C10) and (C31) into
Eq. (C21) and evaluating the frequency integral, we find

kaai j (ω) = iω
∫

d2k
(2π )2

∑
n,m

θ (−Enk ) − θ (−Emk )

(Enk − Emk )2

× 〈unk| [H̃ (k), (∂i + iP̃i(k))] |umk〉 〈umk| [H̃ (k),

× (∂ j + iP̃j (k))] |unk〉. (C32)

Obviously, this object is antisymmetric, namely, kaai j (ω) =
−kaaji (ω), which is exactly what we expect. Therefore

kaaxy (ω) = kA,aa
xy (ω) = 1

2εi jk
aa
i j (ω). (C33)

With this we can further simply Eq. (C32). First, for the
θ (−Emk ) term, we replacem ↔ n, interchange i, j, and utilize
H̃ (k) |unk〉 = Enk |unk〉,

kaaxy (ω) = iωεi j

∫
d2k
(2π )2

∑
n

∑
m �=n

θ (−Enk ) 〈unk| (∂i + iP̃i(k))

× |umk〉 〈umk| (∂ j + iP̃j (k)) |unk〉. (C34)

We can extend the summation over m in Eq. (C34) to include
m = n, since the added term is zero under exchange of i, j
indices. Therefore write

kaaxy (ω) = iωεi j

∫
d2k
(2π )2

∑
n,m

θ (−Enk ) 〈unk| (∂i + iP̃i(k))

× |umk〉 〈umk| (∂ j + iP̃j (k)) |unk〉. (C35)

Equation (C35) expands into four terms. We evaluate them
one by one, starting with the derivative term

iωεi j

∫
d2k
(2π )2

∑
m

〈u0k| ∂i |umk〉 〈umk| ∂ j |u0k〉

= −iωεi j

∫
d2k
(2π )2

∑
m

〈∂iu0k|umk〉 〈umk|∂ ju0k〉

= −iωεi j

∫
d2k
(2π )2

〈∂iu0k| ∂ j |u0k〉

= ω

∫
d2k
(2π )2

∇ × A(k) = ωC

2π
= − ω

2π
, (C36)

where in the last line we used the Berry curvature A(k) =
−i 〈uk| ∇ |uk〉. The polarization term is

iωεi j

∫
d2k
(2π )2

∑
m

〈u0k| iP̃i(k) |umk〉 〈umk| iP̃j (k) |u0k〉

= −iωεi j

∫
d2k
(2π )2

〈u0k| P̃i(k)P̃j (k) |u0k〉 = 0, (C37)
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since P̃i(k) and P̃j (k) commute. The two mixed terms

iωεi j

∫
d2k
(2π )2

∑
m

〈u0k| ∂i |umk〉 〈umk| iP̃j (k) |u0k〉 + 〈u0k| iP̃i(k) |umk〉 〈umk| ∂ j |u0k〉

= iωεi j

∫
d2k
(2π )2

∑
m

−〈∂iu0k|umk〉 〈umk| iP̃j (k) |u0k〉 + 〈u0k| iP̃i(k) |umk〉 〈umk| ∂ j |u0k〉

= iωεi j

∫
d2k
(2π )2

− 〈∂iu0k| iP̃j (k) |u0k〉 − 〈u0k| iP̃j (k) |∂iu0k〉

= ωεi j

∫
d2k
(2π )2

∂i(〈u0k| P̃j (k) |u0k〉) − 〈u0k| ∂i(P̃j (k)) |u0k〉. (C38)

The first term of Eq. (C38) is

ωεi j

∫
d2k
(2π )2

∂i(〈u0k| P̃j (k) |u0k〉)

= ω

2
εi jε jl

∫
d2k∂i

(∑
G

(k + G)l 〈u0k|G〉 〈G|u0k〉
)

= −ω

2

∫
d2k
(2π )2

∂i

(∑
G

(k + G)i|u0k(G)|2
)

= −ω

2

∫
d2k
(2π )2

∇ · K(k) = 0. (C39)

In the last step, we utilize the fact that Kj (k) = ∑
G(k +

G) j |umG(k)|2 is periodic in the Brillouin zone, so the bound-
ary term vanishes. The second term in Eq. (C38) is

− ωεi j

∫
d2k
(2π )2

〈u0k| (∂iP̃j (k)) |u0k〉

= −ω

2
εi jε jl

∫
d2k

∑
G

(∂i(k + G)l ) 〈u0k|G〉 〈G|u0k〉

= −ω

2
εi jε ji

∫
d2k
(2π )2

∑
G

|u0k(G)|2

= ω

2π
. (C40)

Combining Eqs. (C36), (C37), (C39), and (C40), we find that

lim
ω→0

kaaxy (ω)

ω
= 0. (C41)

It follows then that the Chern-Simons level k = 0 for the
internal gauge field.

2. Chern-Simons terms involving external gauge field

The mean-field Hamiltonian is

H (0)
MF = H0 + HV

=
∑
k,G

ε0k+Gc
†
k+Gck+G+

∑
k,G,Q

VQc
†
k+G+Qck+Ge

− i
2 (k+G)×Q,

(C42)

where ε0k = k2

2m∗ . The external gauge field couples through
both terms. Through the kinetic term we have

H (1)
0 =

∑
q,k,G

ki + Gi + qi/2

m∗ Ai
qe

− i
2 (k+G)×qc†k+G+qck+G.

(C43)

The coupling through the potential term is

H (0)
V + H (1)

V =
∫

d2x c̄(x) ∗V (x − z × A(x)) ∗ c(x).

(C44)

In momentum space, when expanded to first order in A this
becomes

H (0)
V =

∫
d2k

∑
G,Q

VQe
− i

2 (k+G)×Qc†k+G+Qck+G,

H (1)
V = iεi j

∫
d2kd2qAj,q

×
∑
G,Q

QiVQe
− i

2 (k+G)×Qc†k+q+G+Qck+G. (C45)

The current contributed by this coupling is

JVj,q = ∂H (1)
V

∂Aj,q

= iεi j

∫
d2k

∑
G,Q

QiVQe
− i

2 (k+G)×Qc†k+q+G+Qck+G.

(C46)

Now we take the limit q = 0 and transform to Bloch basis.
This then becomes (in first quantization)

J̃Vj (k) = e−ikrJVj,q=0(k)e
ikr

= iεi j
∑
G,Q

QiVQe
− i

2 (k+G)×Q |G + Q〉 〈G| . (C47)

Meanwhile, we have

H̃V (k) = e−ikrHV (k)eikr =
∑
G,Q

VQe
− i

2 (k+G)×Q |G+ Q〉 〈G| .

(C48)
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Therefore the current is related to the Hamiltonian through
[using Eq. (C30)]

J̃Vj (k) = 2
∂H̃V (k)

∂k j
= ∂H̃V (k)

∂k j
− i[P̃i(k), H̃ (k)]. (C49)

Combining this with the current contributed by the gauge
coupling through kinetic term J̃0j (k) = ∂H̃0(k)

∂k j
, we get the total

“left” current

J̃ j (k) = J̃0j (k) + J̃Vj (k)

= ∂H̃ (k)
∂k j

− i[P̃i(k), H̃ (k)] = [∂i − iP̃i(k), H̃ (k)].

(C50)

Now we are ready to calculate the Chern-Simons term from
the same bubble diagram as in Fig. 7 but including both
internal and external gauge fields. This gives

S[A, a] = 1

2

∫
d2qdω

(2π )3
d2kd�

(2π )3
Tr[G(k,�)(Ai(q, ω)Ji(k, k + q) + ai(q, ω) ji(k, k + q))

× G(k + q,� + ω)(Aj (−q,−ω)Jj (k + q, k) + a j (−q,−ω) j j (k + q, k))]

= 1

2

∫
d2qdω

(2π )3
kAai j (q, ω)Ai(q, ω)a j (−q,−ω) + kAAi j (q, ω)Ai(q, ω)Aj (−q,−ω) + kaai j (q, ω)ai(q, ω)a j (−q,−ω).

(C51)

We begin by considering the cross-term involving both A and a. The contribution at q = 0 to this term is

kAai j (ω)Ai(ω)a j (−ω) =
∫

d2kd�

(2π )3
Tr[G̃(k,�)J̃i(k)G̃(k,� + ω) j̃ j (k)]Ai(ω)a j (−ω)

+ Tr[G̃(k,�) j̃ j (k)G̃(k,� − ω)J̃i(k)]a j (−ω)Ai(ω)

=
∫

d2kd�

(2π )3
Tr[G̃(k,�)J̃i(k)∂�G̃(k,�) j̃ j (k) − G̃(k,�) j̃ j (k)∂�G̃(k,�)J̃i(k)]ωAi(ω)a j (−ω)

= 2
∫

d2kd�

(2π )3
Tr[G̃(k,�)J̃i(k)∂�G̃(k,�) j̃ j (k)]ωAi(ω)a j (−ω), (C52)

where we have expanded kAai j (ω) to linear order in ω. Carrying out the frequency integral, we find

kAai j (ω) = 2iω
∫

d2k
(2π )2

∑
n �=m

θ (−Enk ) − θ (−Emk )

(Enk − Emk )2
〈unk| J̃i(k) |umk〉 〈umk| j̃ j (k) |unk〉

= 2iω
∫

d2k
(2π )2

∑
n �=m

θ (−Enk )

(Enk − Emk )2
(〈unk| J̃i(k) |umk〉 〈umk| j̃ j (k) |unk〉 − 〈unk| j̃ j (k) |umk〉 〈umk| J̃i(k) |unk〉)

= 2iω
∫

d2k
(2π )2

∑
m

(〈u0k| (∂i − iP̃i(k)) |umk〉 〈umk| (∂ j + iP̃j (k)) |u0k〉

− 〈u0k| (∂ j + iP̃j (k)) |umk〉 〈umk| (∂i − iP̃i(k)) |u0k〉). (C53)

Again we expand this into three parts and simplify them one by one. The pure derivative term in Eq. (C53) is

2iω
∫

d2k
(2π )2

(−〈∂iu0k|∂ ju0k〉 + 〈∂ ju0k|∂iu0k〉) = 2ω
∫

d2k
(2π )2

(∂iA j (k) − ∂ jAi(k)) = −2εi j
ω

2π
. (C54)

The polarization term vanishes since Pi(k),Pj (k) = 0. The other terms get simplified to

2ω
∫

d2k
(2π )2

∑
m

〈u0k| P̃i(k) |umk〉 〈umk| ∂ j |u0k〉 − 〈u0k| ∂i |umk〉 〈umk| P̃j (k) |u0k〉

+ 〈u0k| P̃j (k) |umk〉 〈umk| ∂i |u0k〉 − 〈u0k| ∂ j |umk〉 〈umk| P̃i(k) |u0k〉

= 2ω
∫

d2k
(2π )2

〈u0k| P̃i(k)∂ j |u0k〉 + 〈∂iu0k| P̃j (k) |u0k〉 + 〈u0k| P̃j (k)∂i |u0k〉 + 〈∂ ju0k| P̃i(k) |u0k〉

= 2ω
∫

d2k
(2π )2

∂ j (〈u0k| P̃i(k) |u0k〉) − 〈u0k| (∂ j P̃i(k)) |u0k〉 + ∂i(〈u0k| P̃j (k) |u0k〉) − 〈u0k| (∂iP̃j (k)) |u0k〉

= −2ω
∫

d2k
(2π )2

〈u0k| (∂ j P̃i(k) + ∂iP̃j (k)) |u0k〉 = 0. (C55)
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Therefore we find a nonvanishing coefficient for the mutual Chern-Simons term

LAa = − 1

2π
εμνρAμ∂νaρ. (C56)

In the long-wavelength limit and to quadratic order in a,A, this term is gauge invariant under the usual (commutative) gauge
transformations of a,A. Strictly speaking, as the model has full noncommutative gauge invariance under both “left” and ‘right”
gauge transformations we should require that this mutual Chern-Simons term be completed by a more elaborate expression,
involving higher derivatives and powers of the gauge fields, that correctly captures these invariances. We have not been able to
determine the structure of such an expression. For our purposes of characterizing the long wavelength response of the system to
the external gauge field, it is however sufficient to restrict to this leading order form.

In a very similar fashion, we obtain the self Chern-Simons term for external gauge field. The contribution from the bubble
diagram is

kAAxy (ω) = iωεi j

2

∫
d2k
(2π )2

∑
n �=m

θ (−Enk ) − θ (−Emk )

(Enk − Emk )2
〈unk| J̃i(k) |umk〉 〈umk| J̃ j (k) |unk〉

= iωεi j

∫
d2k
(2π )2

∑
n �=m

θ (−Enk )

(Enk − Emk )2
〈unk| J̃i(k) |umk〉 〈umk| J̃ j (k) |unk〉

= iωεi j

∫
d2k
(2π )2

∑
m

〈u0k| (∂i − iP̃i(k)) |umk〉 〈umk| ∂ j − iP̃j (k)) |u0k〉. (C57)

Note that this differs from Eq. (C35) only by a negative sign for the mixed terms ∼ 〈∂i〉 〈P̃j〉. Therefore in this case both the pure
derivative term and the mixed term contribute −1 to the Chern-Simons level. Consequently, path integral contribution to the self
Chern-Simons term for external gauge field is

LAA = − 1

2π
εμνρAμ∂νAρ. (C58)
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