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Neural-Network-Based Adaptive Model
Predictive Control for a Flexure-Based
Roll-to-Roll Contact Printing System

Jingyang Yan and Xian Du , Member, IEEE

Abstract—High-precision contact force control is es-
sential for continuous roll-to-roll contact printing via me-
chanical contact on flexible web substrates using stamps.
Nonuniformly controlled stamp contact force will cause
failures during printing, especially for large-area printing
processes. Due to their high precision in positioning and
force control, flexure mechanisms have been applied in
roll-to-roll contact printing systems; however, conventional
physical model-based control systems cannot manage the
nonlinear effects that exist in flexure-based roll-to-roll con-
tact printing systems. To achieve precise contact force con-
trol, we propose a neural-network-based adaptive model
predictive control for a flexure-based roll-to-roll contact
printing system. The nonlinearity of the flexure mecha-
nism is learned and modeled by an artificial neural net-
work. To eliminate the steady-state error caused by model
mismatches and external disturbances, an online adap-
tive mechanism is designed via updating the biases of
the output layer of the neural network model. Experimen-
tal results show that the root-mean-square error of the
contact force can be controlled in the range of 0–0.075 N
with balances on two ends of the print roller, outperform-
ing a proportional–integral–derivative controller, a neural-
network-based standard model predictive control (MPC)
controller, and a neural-network-based robust MPC con-
troller. The proposed control algorithm is implemented in
a microcontact printing process that prints 45-µm width
gold patterns and achieves a variation of 0.3 µm in the
average gold line width at different locations on an 88.9-
mm width flexible substrate. The uniform microscale print-
ing results have shown the effectiveness of the proposed
neural-network-based adaptive model predictive control in
the applied printing process.

Index Terms—Adaptive model predictive control, contact
force control, flexure mechanism, neural network (NN) mod-
eling, roll-to-roll (R2R) contact printing.
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I. INTRODUCTION

F
LEXIBLE electronics have demonstrated potential in a

wide range of applications in flexible displays, photo-

voltaics, medical devices, bio-integrated sensors, microfluidic

devices, and computing platforms due to their lightweight,

adaptability, and robustness. Roll-to-roll (R2R) printing

methods, known for their high efficiency of mass production of

flexible electronics, have been applied in the continuous printing

of flexible electronics at low cost and high throughput [1].

Among these R2R printing methods, contact printing technolo-

gies, including microcontact printing [2], nanoimprinting [3],

and offset printing [4], can transfer the pattern from a stamp to

a substrate via ink contact and pressure. This relative simplicity

of the printing process offers high scale-up potential for their

applications in the mass production of flexible electronics. Due

to the nature of the contact printing mechanism, the contact force

is critical for the quality control of these R2R contact printing

methods. For example, for microcontact printing in which an

elastomeric stamp is used to transfer submicron scale patterns

onto a flexible substrate via ink monolayers, over or imbalanced

pressing of the stamp will cause failures of pattern transfer [5].

Conventional R2R contact printing control technologies

are built with conventional mechanical components, which

suffer from backlashes, assembly errors, and frictions; hence,

preventing printing methods from achieving high-level precision

[6], [7]. To overcome this problem, we have built a flexure-based

R2R contact printing system as shown in Fig. 1, which consists of

a web handling system and a controllable flexure-based printing

module (refer to the detailed introduction of the test bench in

Section III-A). Flexure mechanisms rely on bending and torsion

of flexible elements, which allows us to achieve much higher

precision in positioning compared to conventional mechanisms

that rely on surface interaction between multiple moving parts

[8]. Another key feature of the flexure mechanisms is that they

are monolithic, which means there is no friction-induced wear

and tear, and therefore no need for lubrication of components.

Moreover, the monolithic build means complex assembly is not

required, which altogether eliminates the possibility of assembly

errors. Due to the superiority in motion and force control,

flexures have been used in many R2R printing processes.

For example, in [9], a five-axis flexure-based positioning

system was introduced to compensate for misalignment in

a multilayer R2R microcontact printing process. In [10], a
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Fig. 1. Experimental setup setup of the flexure-based R2R contact
printing system.

flexure-based microcontact printing platform was designed

to achieve high-resolution printing. In [11], a flexure-based

register system was designed for R2R electronics printings. The

above-mentioned flexure-based R2R contact printing systems

all used proportional–integral–derivative (PID) controllers for

the force and position control based on their physical models

[9]–[11]. However, the physical modeling of complex flexure

mechanisms is challenging and time-consuming because

many system parameters and inter-relationship among them

need to be identified. For example, for the five-axis flexure

mechanism in [9], up to 26 system parameters need to be

identified. Meanwhile, the presence of nonlinearity in the

flexure mechanisms makes it difficult to obtain an accurate

physical model, causing the model mismatch problem and

preventing the controller from providing correct inputs to the

actuators. Although some classic adaptive and robust control

methods can be used to solve the model mismatch problem,

these methods still have difficulties in the system identification

of the physical models of the complex flexure mechanisms as

illustrated above. As a result, advanced control algorithms that

are capable of dealing with nonlinear, time-varying dynamics

of print processes need to be investigated further.

Fortunately, neural-network (NN)-based model predictive

control (MPC) recently emerged with the intelligence capable

of coping with the uncertainty present in the autonomous man-

ufacturing process [12]. Such control has shown high perfor-

mance with nonlinear, continuous, and differentiable activation

functions. In the meantime, NN-based MPC has been widely

used in precision motion control fields and has shown better

performance than the conventional PID controller. For example,

in [13], researchers demonstrated that the NN-based MPC can

reduce the root-mean-square error (RMSE) by at least 50% com-

pared with the PID control of piezo actuators for trajectory track-

ing. Also, MPC is a viable control strategy for a multiple-input

and multiple-output system, such as flexure-based R2R contact

printing, because of its intrinsic capabilities of handling multi-

variable interactions and constraints. Therefore, we propose an

NN-based MPC for flexure-based R2R contact printing systems.

The accuracy of the NN-based MPC, however, can be di-

minished by temporary variations in the plant. In R2R contact

printing systems, there are many disturbance sources including

noncircularity, radius variations of the rollers, sliding of the

web substrate, and variation of the web material properties. An

NN-based MPC cannot be sufficiently and accurately trained

offline to incorporate all temporary variations in the plant by

limited data for online operation [14]. Meanwhile, external

disturbances, such as temperature and humidity changes, always

exist in industrial systems which could also induce prediction

errors to the NN model [15]. In any case, a static NN-based

MPC scheme would suffer from steady-state errors when facing

model mismatches and external disturbances. In literature, there

have been several ways to eliminate the steady-state errors for

NN-based MPC methods. For example, external processes can

be added to the controller to eliminate the steady-state error

[16], [17]. In [16], an integrating controller is added in the

outer loop around the controller. In [17], a disturbance model is

trained to learn the external disturbances and model mismatches.

The disadvantage of the above methods is that more complex

structures are introduced to the controller. Alternatively, the

trained NN model can be directly updated during each control

loop to adapt to the disturbance. In [18], the entire NN model is

updated during each control loop to compensate for the temporal

mismatch between the online NN model and the plant. However,

we find that the controller can become unstable if both weights

and biases are updated during each control loop. The reason

is that the dynamics of the system are stored in the weights

and biases of the NN model. If all the weights and biases are

updated by sequential sample data acquired from an online con-

trol loop, the NN model tends to forget the past subsequences’

training information. Thus, the prediction error may occur

for the new subsequent samples, leading to improper control

action.

To overcome this problem, we propose a novel NN adaptive

mechanism to eliminate the steady-state error, which only needs

to update the biases of the output layer of the NN model to

compensate for the error between the NN model output and the

actual plant’s output while still retaining the other weights’ val-

ues for past sequences’ training information. Our method adapts

the biases to the model mismatches and external disturbances

in dynamic processes, different from the method in [19] that

only calculates prediction error in the steady-state and ignores

the model mismatches and external disturbances in the dynamic

processes. Our proposed method can update the NN model in

every control loop and hence offers higher accuracy than [21]

for the online control process.

The main contributions of this article are as follows:

1) A NN model is developed to characterize the dynamic

behavior of the designed flexure mechanism in an R2R

contact printing system.

2) A novel adaptive mechanism is designed for the NN-

based MPC.

3) A prototype with successful mN-scale R2R contact force

control using our NN-based MPC is implemented.

The rest of the article is organized as follows. The principles

of the NN modeling and the adaptive MPC are described in Sec-

tion II. The experimental setup, simulations, and comparative

experimental results are shown in Section III. Finally, Section IV

concludes this article.
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II. NEURAL-NETWORK-BASED ADAPTIVE MODEL

PREDICTIVE CONTROL

A. Neural Network Modeling

Many manufacturing processes are nonlinear which can

be dealt with the nonlinear autoregressive exogenous model

(NARX) as described by the following:

y (k)=f(y (k−1) , . . . ,y (k−ny) ,u (k−1) , . . . ,u (k−nu)
(1)

where k denotes the kth sampling period, f(·) is an unknown

nonlinear function, u ∈ R
m denotes the control input series

vector, y ∈ R
n denotes the system output series vector, and nu

andny are, respectively, the exogenously designated time delays

of the input and output. The NARX model can be implemented

by using an NN architecture where feedback connections are

enclosed between layers of the network. In this article, we model

the NARX network using a single hidden layer feedforward NN

to approximate the function f(·) by the following:

yNN (k) = w2 σ (w1x (k) + b1) + b2 (2)

where yNN (k) refers to the output of the NARX NN or predic-

tion of the dynamic system for the kth period, w1 and w2 are,

respectively, the weight matrices for the hidden layer and the

output layer, b1 and b2 are, respectively, the bias vectors for the

hidden layer and the output layer, and σ(·) is the activation func-

tion for the hidden layer. The input feature vector is defined as

x (k) = [y(k − 1), . . . ,y(k − ny),u(k − 1), . . . ,u(k − nu)].
According to the universal approximation theorem [20], the NN

model can be trained to accurately model the nonlinear mapping

f(·), i.e., ‖yNN (k)− y(k)‖ < ǫ for any ǫ > 0 where ǫ is an

arbitrarily small approximation bound. Therefore, the NN model

can be trained by seeking the optimal solution to the following

error function:

Jtrain =
∑

k

‖yNN (k)− y (k) ‖2. (3)

This is accomplished by finding a set of weights and biases to

minimize the error between the plant outputs and the predicted

outputs of the NN.

B. Neural-Network-Based Model Predictive Control

MPC calculates control commands by minimizing a cost

function over a finite prediction horizon. The cost function is

typically formulated by minimizing not only the squared error

between the reference signal and the plant’s output but also the

weighted squared change of the control input. Given the NN

architectures [refer to (2) and (3)] for the plant dynamics model,

the MPC cost function can be formulated by the following:

JMPC =

P
∑

j=1

‖yr (k + j)− yNN (k + j) ‖2

+

M
∑

j = 1

λ (j) ‖∆u (k + j) ‖2 (4)

whereP is the prediction horizon,M is the control horizon,yr is

the reference signal, yNN (k + j) is the predicted output of the

system at the (k + j)th period based on the available measure-

ments at the kth sampling period, λ(j) is the regulating factor for

the control input that maintains the smoothness of the control

signal and is typically chosen to be constant or exponential, and

∆u(k + j) = u(k + j)− u(k + j − 1) denotes the change

in u.
In the cost function (4), three parameters are required to be

tuned, namely P , M , and λ(j). The selection of control horizon

P and prediction horizon M are correlated with both control

performance and time consumption. For optimal performance,

the prediction horizon P should be sufficiently large compared

with the settling time of the plant to achieve stability [21]. The

weighting factors λ(j) are used to control the balance between

the two summations and acts as a damper to the control input.

Smaller λ(j) would result in more aggressive control moves.

For simplicity, we chose λ(j) to be constant.

The objective of the MPC is to minimize the cost

function JMPC in (4) with respect to [u(k + 1),u(k + 2),
. . . ,u(k +M)], denoted by U. Since the plant model is an NN

structure, a gradient descent method can be used to minimize the

cost function iteratively. In each iteration, the intermediate val-

ues for JMPC can be denoted by JMPC(n). The control command

sequence U(n) can be updated by the following:

U (n+ 1) = U (n) + ∆U (n) (5)

∆U (n) = η

(

−
∂JMPC (n)

∂U (n)

)

(6)

where η > 0 is the update rate for a control command sequence.

Since the two summation terms in the cost function are both

functions of U modeled by the NN, it is feasible to calculate

the Jacobian matrix (∂JMPC/∂U) through the backpropagation

algorithm, which is the key process of the MPC. After U is

optimized through the iterative process, only the first element of

U is used as the input to the system.

C. Eliminating Steady-State Error

The controller described in Section II-B relies on a static

NN model, which suffers from model mismatches and external

disturbances, and thus will have steady-state errors when applied

in practical printing processes. To eliminate the steady-state

error, a novel adaptive mechanism is proposed for the NN-based

MPC model. First, an NN model is trained offline using training

data from the plant. Then, the pretrained NN model is applied

in the MPC controller to predict the plant outputs. According to

the predicted outputs, an iterative process is carried out to find

the optimal control input sequence. Next, the first element of the

optimized control input sequence is sent both to the NN model

and the real plant. Finally, the prediction error of the NN model

is added to the biases of the output layer. The overall adaptive

mechanism is elaborated upon in the pseudocode displayed

in Algorithm 1. We prove below that the proposed adaptive

algorithm can eliminate the steady-state error.

The steady-state error can be measured by the difference

between the measured system output y(k) and the predicted
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system output yNN (k) at the kth sampling period as e (k) =
y(k)− yNN (k) and assume that the error is constant within the

prediction horizon. Meanwhile, according to the MPC control

process, multistep predictions need to be generated based on the

prediction horizon and the available measurements from the sys-

tem. Specifically, by defining yNN (k + j) as the prediction for

the system outputy(k + j) based on the available measurements

at the kth sampling period, the multistep prediction procedure is

described as follows:

yNN (k + j − i) = y (k + j − i) , ∀i ≥ j,

yNN (k + j) = w2 σ (w1xNN (k + j) + b1)

+ b2 (k + j) , 1 ≤ j ≤ P (7)

where xNN (k+j) = [yNN (k+j−1), . . . ,yNN (k+j−ny),
uNN (k + j − 1), . . . ,uNN (k + j − nu)] is the input feature

vector predicted by the NN to the MPC model.

Proposition 1: The nonlinear NN-based MPC system (4)

has no steady-state error using the update steps in Algorithm 1

if 1) the closed-loop system is stable and 2) the reference yr is

reachable [22].

Proof: Assumption 1) implies that the closed-loop system

can reach an asymptotically stable equilibrium point defined by

the following:

y∞ = f (y∞, . . . ,y∞,u∞, . . . ,u∞) (8)

where the superscript ∞ denotes the steady state, and y∞, u∞

are the system’s steady-state output and input, respectively. From

(2), the model output

y∞
NN

= w2 σ (w1x
∞ + b1) + b∞

2 (9)

is a constant at the process’s steady state {y∞,u∞}, where

x∞ = [y∞, . . . ,y∞,u∞, . . . ,u∞]. Then, the model mismatch

e∞ = y∞ − y∞
NN �= 0 is always a constant within the predic-

tion horizon. According to the update steps in Algorithm 1, we

obtain the one-step-ahead prediction

y∞
NN

(k+1)=w2σ (w1x
∞ (k+1)+b1)

+ b∞
2 (k + 1) . (10)

Since

x∞ (k+1) = [y∞
NN

(k) ,. . .,y∞
NN

(k+1−ny) ,u
∞,. . .,u∞]

= [y∞, . . . ,y∞,u∞, . . . ,u∞] = x∞ ,

b∞
2 (k + 1) = b∞

2 + e∞

(10) becomes y∞
NN

(k + 1) = y∞
NN

+ e∞ = y∞ .

For the two-step-ahead prediction

y∞
NN

(k + 2) = w2 σ (w1x
∞ (k + 2) + b1)

+ b∞
2 (k + 2) (11)

where

x (k + 2) = [yNN (k + 1) ,y∞ . . . ,y∞,u∞, . . . ,u∞]

= [y∞, . . . ,y∞,u∞, . . . ,u∞] = x∞ ,

b∞
2 (k + 2) = b∞

2 (k + 1) = b∞
2 + e∞

(11) becomes y∞
NN

(k + 2) = y∞
NN

+ e∞ = y∞ .

Recursively, for step-ahead prediction of three or more

y∞
NN

(k + j) = y∞, j = 34, . . . , P. (12)

Meanwhile, when the process reaches a steady state,

∆u∞ (k + j) = u∞ (k + j)− u∞ (k + j − 1) = 0, thus al-

lowing us to reduce the cost function (4) to

JMPC =
P
∑

j=1

‖yr (k + j)− y∞
NN

(k + j) ‖2. (13)

Since y∞
NN

(k + j) = y∞, j = 1, 2, . . . , P , for the ideal

solution and considering assumption (b), we can conclude that

yr = y∞ and there is no steady-state error.

D. Stability Analysis

In Proposition 1, we have assumed that the closed-loop system

is stable. In fact, the stability of the closed loop is of utmost

importance for any application of nonlinear MPC to a real pro-

cess. Many contributions have been made to tackle the stability

problems in a state-space framework. These methods either use a

cost function as a Lyapunov candidate function or require some

state to decrease in a certain norm. However, in the proposed

method, the system is modeled by a neural network model rather

than a state-space mode meaning the stability analysis based on

state-space cannot be applied. Therefore, we propose a method

to achieve stability by imposing a terminal constraint on outputs

to ensure the monotonicity of the cost function as established

in [23], [24]. This requires the addition of a terminal constraint

to (4) to ensure stability. The terminal constraint is defined as

follows:

yr (k + P + j)− yNN (k + P + j) = 0, ∀j ∈ [1, Nc] (14)

where Nc is the constraint horizon.

Proposition 2: The nonlinear MPC controller is asymptoti-

cally stable if the following conditions are satisfied:
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1) λ �= 0;

2) Nc = max[ny + 1, nu + 1 +M − P ] .

Proof: Consider the cost function

JMPC (k) =

P
∑

j=1

‖e (k + j) ‖2 + λ

M
∑

j = 1

‖∆u (k + j) ‖2 (15)

at time k , where e (k + j) = yr (k + j)− yNN (k + j). Let us

assume that U (k) = [u(k + 1), u(k + 2), . . . ,u(k +M)] is

the optimal control at timek found by an optimization procedure.

Suppose the suboptimal control U∗(k + 1) postulated at time

k + 1 is

U∗ (k+1)=[u (k+2) ,u (k+3) ,. . .,u (k+M) , u (k+M)] .
(16)

The control sequence U∗(k + 1) is formed based on the

control derived at time k. Assume that the model mismatches

and unmeasured disturbances are constant within the prediction

horizon, and the predictions yNN (k + j) derived at time k + 1

are the same as those derived at time k. For the suboptimal

control U∗(k + 1), the cost function can be defined as follows:

JMPC
∗ (k + 1) =

P+1
∑

j=2

‖e (k + j) ‖2 + λ

M
∑

j = 2

‖∆u (k + j) ‖2.

(17)

The difference of cost functions JMPC(k) and JMPC
∗(k + 1)

can be calculated as follows:

JMPC
∗ (k+1)− JMPC (k) = ‖e (k+P+1) ‖2 − ‖e (k + 1) ‖2

− λ‖∆u (k + 1) ‖2. (18)

From the terminal equality constraints (14), ‖e(k +
P + 1)‖2 = 0, we obtain the following:

JMPC
∗ (k+1)−JMPC (k)=−‖e (k+1) ‖2 − λ‖∆u (k + 1) ‖2.

(19)

The terminal equality constraints hold for all j ≥ 1 if

1) Nc ≥ ny + 1 , if ny ≥ nu + 1 +M − P ;

2) Nc ≥ nu + 1 +M − P , if ny < nu + 1 +M − P .

These two conditions lead to the constraint horizon

Nc = max [ny + 1, nu + 1 +M − P ] (20)

which guarantees that the equality constraints of tracking error

hold for all j ≥ 1. From the definition of U∗(k + 1) in (16),

we can infer that constraint (14) is satisfied at time k + 1.

Furthermore, ifU(k + 1) is the optimal solution to the optimiza-

tion problem at time k + 1, then JMPC(k + 1) ≤ JMPC
∗(k + 1).

Finally

∆JMPC (k + 1) ≤ −‖e (k + 1) ‖2 − λ‖∆u (k + 1) ‖2. (21)

For λ �= 0, it is clear to see that the cost function monoton-

ically decreases with respect to time and the control system

is stable. The constrained MPC optimization problem can be

solved according to the algorithm presented in [23].

Fig. 2. Schematic diagram of the flexure based R2R contact printing
system.

III. EXPERIMENTS AND DISCUSSIONS

In this section, we will demonstrate an R2R microcontact

printing prototype where we test the mN-scale contact force con-

trol using our NN-based MPC. We generate the training dataset

for system identification and NN architecture initialization using

a pulse-train method in Section III-B. In Section III-C, we first

use simulations to tune the parameters for the MPC. Then, we

measure the performance of the contact force control broadly

using various reference signals, pressure-sensitive films, and

straight-line pattern printings.

A. Experimental Setup

The proposed control method was evaluated on a flexure-

based R2R contact printing system as shown in Fig. 1. It consists

of two subsystems: the web handling system and the printing

module. The web handling system is composed of two motorized

rollers and two idler rollers. A ring rotation encoder and a

readhead were mounted on the left idler roller to measure the

linear web moving speed. The measured speed is then used as a

feedback signal to control the web moving speed. The right idler

roller is a tension measuring roller, which measures the tension

of the moving web for the web tension control. As the web

tension and motion speed are correlated in the R2R system [25],

[26], the web tension and the linear speed of the moving web

need to be synchronously controlled. In Fig. 1, the motorized

unwind roller is controlled to maintain a constant linear web

moving speed using the feedback signal from the speed encoder;

the motorized rewind roller is operated under torque control

mode to maintain a constant web tension using the feedback

signal from the tension measuring roller.

Fig. 2 shows the schematic diagram of the flexure-based R2R

contact printing system, where the springs at the two ends of

the print roller represent the inner flexure and the outer flexure.

Before printing, a stamp must be wrapped onto the print roller.

During printing, the inked stamp is actuated by a positioning

stage to transfer the patterns on the stamp to the flexible web

substrate by compressing the inked stamp against the web sub-

strate. The positioning stage is made up of two parallel plate
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Fig. 3. Simulated motions of a single flexure mechanism. (a) Vertical
direction. (b) Horizontal direction.

flexures with each one connected to the print roller shaft via

air bushings. Each flexure has two degrees of freedom with a

±3 mm range of motion (ROM) in the vertical axis, and a ±1

mm ROM in the horizontal direction as simulated in Fig. 3. The

two ends of the impression roller are clamped to two load cells

(MAGPOWR TS25FC, MAXCESS) to measure the contact

force on both ends with a resolution of 0.03 N. The print roller is

driven by two voice coil actuators (VCAs) (NCC08-34-350-2X,

H2W TECHNOLOGIES) through the flexure mechanism. The

VCAs are connected to linear current amplifiers (LCA-5/15,

H2W TECHNOLOGIES) that generate the driving currents

linearly proportional to the command voltages. The VCAs pro-

vide force to push the motion stage and the print roller in the

vertical direction to bring the stamp in contact with the web.

The command voltages are from the real-time controller (NI

CompactRIO 9049) where all the sensors and amplifiers are

integrated. The amplifier and VCA constants are 0.1 A/V and

59.6 N/A. The control loop rate is set at 10 ms. In summary,

the control inputs are the voltage commands from the real-time

controller and the controlled variables [refer to y in (1)] are the

contact force measured by the two load cells. The main objective

of the contact force control is to maintain a constant force at the

contact areas between the stamp on the print roller and substrate

surface. As the print roller is force-controlled at both ends, it

also has an alternative objective of balancing the force at the

two ends for large-area printing.

The positioning system in this microcontact printing module

suffers various disturbances from both the web handling sys-

tem and the positioning system itself, including misalignment,

cylindricity, and fabrication errors. These disturbances produce

nonlinear effects that are difficult to manage with conventional

control systems as shown in Fig. 4. We will demonstrate the

excellent performance of the proposed NN-based adaptive MPC

method for precise contact force control on this module in the

following sections.

B. Model Identification

To capture the dynamics of the flexure mechanism, we used

a pulse-train method to generate the training dataset. Figs. 5

Fig. 4. Open-loop performance of the flexure mechanism. (a) Read-
ings from the inner load cell. (b) Readings from the outer load cell.

Fig. 5. Pulse train examples used as the input to the plant. (a) Inputs
to the inner VCA. (b) Inputs to the outer VCA.

Fig. 6. Responses of the plant due to the pulse train inputs.
(a) Responses of the inner flexure. (b) Responses of the outer flexure.

and 6 show the series of pulses with random amplitudes and

the responses of the plant. Each pulse lasts one second so that

the plant can settle to a stable state during the pulse signal. The

sampling time is set to 10 ms which is the same as the control loop

rate. To compensate for the imbalance of the flexure mechanism,

which may be caused by the misalignment in the system, fault

in calibration, or both, the input voltages to the inner VCAs and

the outer VCAs are randomly selected in [4 V, 5.5 V] and [0.5 V,

1.5 V], respectively. The corresponding forces measured from

load cells are in the range of 8–18 N as shown in Fig. 6. To

sufficiently span the working space of the plant, 50000 samples

are generated. In this experiment, we use 80% of the data for

training, and 20% for testing.

Since the contact force is affected by both its output value

history and the input control commands, the dynamics of the

plant can be approximated by the NARX function in (1). The

time delay for the input and the output is nu = ny = 2 and
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Fig. 7. Actual outputs and predicted outputs of the flexure mechanism
of (a) inner flexure and (b) outer flexure, and the corresponding errors
(c), (d), respectively.

TABLE I
COMPARISON RESULTS OF DIFFERENT PREDICTIVE MODELS

Note: The winner is shown in boldface.

the number of hidden nodes in the NN is chosen to be 7. With

these values in mind, the dimensions of w1, b1, w2, and b2 in

(2), respectively, become 7 × 8 , 7 × 1, 2 × 7, and 2 × 1. The

tangent-sigmoid function is chosen as the activation function

since the training data are normalized between [–1], [1]. The

NN is trained using the Levenberg–Marquardt algorithm in the

MATLAB R2019a environment. Fig. 7 shows the prediction

results for the testing data, with the RMSE of 0.048 N. In

order to examine the predictive accuracy and inference speed

of the proposed method, the NN model is compared with a

Gaussian process model (GP) [27], a Gaussian mixture model

(GMM) [28], and a multivariate support vector regression model

(MSVR) [29]. From the testing results listed in Table I, the NN

model shows superior accuracy and prediction speed.

C. Simulations and Predictive Control

First, to evaluate the proposed method, simulations are carried

out to tune the parameters for the MPC, including the control

horizon, the prediction horizon, and the weighting factor λ.

To tune the control horizon and the prediction horizon, we

summarize the average RMSE of contact force for three different

signals, namely step signals, ramp signals, and sinusoidal signals

shown in Table II by varying M from 1 to 10 intervals and P

from 1 to 20 intervals. Note that Table II is upper triangular

because M cannot be larger than P . When P > 7 and M > 2

sampling intervals, the improvement in the system performance

is trivial as shown in Table II. Therefore, M = 2 and P = 7

are chosen for the final control horizon and prediction horizon

to achieve desirable real-time force control. For the weighting

factor λ, since the system outputs and the inputs are both scaled

to [–1], [1], it is reasonable to assume that λ is greater than 0

and smaller than 1. To quantitively evaluate the effects on the

control performance from different weighting factor λ, we use

overshoot (%) and rise time (ms) for performance evaluation

criteria. Table III shows the overshoot and rise time for different

values of λ. It can be found that there is a tradeoff between

the rise time and the overshoot. For example, for λ = 0.1, the

rise time is shorter than that of λ = 0.01, but the overshoot is

greater. We ultimately select λ = 0.1 for a balance between the

rise time and the overshoot. Using the above-tuned parameters,

the execution of the proposed control algorithm takes 4 ms for

real-time contact force control, which is less than the control

loop rate of 10 ms as mentioned in Section III–A. To demonstrate

the computational performance that one might expect to get with

this algorithm and the optimization, timing data was collected

on the real-time controller using different values of M and P

which are displayed in the Appendix.

Second, to test the proposed adaptive algorithm of the NN

model in eliminating the steady-state error, simulations are car-

ried out considering different updating laws and the results are

shown in Fig. 8. For standard MPC without any adaptive mech-

anism, there will be a steady-state error as shown in Fig. 8(a).

When weights and biases update together in one control loop

[18], the system becomes unstable as shown in Fig. 8(b). The

reason is that if weights are updated according to one sample

acquired from one control loop, the NN model tends to forget

the past sequential training information. Thus, the prediction

error may increase for the subsequent new samples leading the

controller to make improper decisions. As shown in Fig. 8(c), our

proposed adaptive MPC scheme can significantly compensate

the induced disturbance.

Third, contact force control experiments are carried out to test

the proposed NN-based adaptive MPC controller. The perfor-

mance of the proposed control scheme has been assessed using

three different signals, namely step signals, ramp signals, and si-

nusoidal signals. The proposed control method is compared with

a PID controller, an NN-based standard MPC, and an NN-based

robust MPC controller [30]. Figs. 9–11 show control results

for different reference signals. For clarity of presentation only,

results for the proposed NN-based adaptive MPC controller and

the NN-based standard MPC controller are presented. Table IV

shows the control quality of different controllers, quantified by

RMSE between the reference outputs and the actual outputs

shown in Figs. 9–11 under different reference signals. Overall,

our proposed NN-based adaptive MPC controller outperformed

all other controllers.

Fourth, to further verify the robustness of our proposed control

method in real printing processes, we measured and recorded

the contact forces on both ends of the impression roller for one

revolution (360°). Fig. 12 shows the contact force data with a
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TABLE II
AVERAGE RMSE (N) OF CONTACT FORCE WHERE M AND P VARY BETWEEN 1–10 AND 1–20, RESPECTIVELY

Note: ‘-’ indicates the system is not stable.

TABLE III
OVERSHOOT AND RISING TIME FOR DIFFERENT λ

Fig. 8. Simulation results for different update laws for inner flexure
and outer flexure. (a) No updating laws. (b) Updating both weights and
biases. (c) Updating only biases.

reference contact force of 12 N and a rolling speed of 1 mm/s.

The RMSE of the contact forces is maintained in the range of

0–0.075 N. In other words, our NN-based adaptive MPC method

has achieved a desirable stable contact force control and can

compensate for model mismatches and external disturbances.

Fig. 9. Experimental results, comparison of the reference tracking
results between the proposed NN-based adaptive MPC controller and
the NN-based standard MPC controller of the flexure mechanism. (a)
Inner flexure. (b) Outer flexure.

Fig. 10. Experimental results, comparison of the reference tracking
results between the proposed NN-based adaptive MPC controller and
the NN-based standard MPC controller of the flexure mechanism. (a)
Inner flexure. (b) Outer flexure.

Moreover, we used pressure-sensitive films to mimic the

web substrate in order to measure the real contact pressure

from our proposed control scheme. The pressure-sensitive films

change color from white to red over a certain pressure range:

the higher the pressure, the more intense the color change.

The pressure-sensitive films (177.8 mm × 88.9 mm, Prescale

LLLLW, Fujifilm) used in our experiments have a pressure

sensing range of 0.05–0.2 MPa. Fig. 13(a) and (b), respectively,

show the films that were pressed by the print roller using the

NN-based standard MPC controller and the proposed NN-based

adaptive MPC controller. Our proposed MPC controller resulted

in a visually more uniform color (pressure) distribution on the
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Fig. 11. Experimental results, comparison of the reference tracking
results between the proposed NN-based adaptive MPC controller and
the NN-based standard MPC controller of the flexure mechanism. (a)
Inner flexure. (b) Outer flexure.

TABLE IV
CONTROL RESULTS (RMSE) FOR DIFFERENT REFERENCE SIGNALS

Note: The winner is shown in boldface.

Fig. 12. Measured printing forces for one revolution when the printing
speed is 1 mm/s. (a) Inner flexure. (b) Outer flexure.

Fig. 13. Pressure-sensitive film test results. (a) NN-based standard
MPC controller. (b) Proposed NN-based adaptive MPC controller.

film compared to the alternative MPC control. To quantify the

pressure values obtained on the films, we have evaluated the

results by mapping the color density onto the amount of applied

pressure. First, the films were divided into two regions evenly

along the web rolling direction, namely the inner portion and the

outer portion. Then, we calculated the average color densities

in each region. Lastly, we mapped the color densities to the

Fig. 14. Large-area gold patterns printed on flexible PET substrates
based on the proposed NN-based MPC controller. (a) PDMS stamp
with line features wrapped around the print roller. (b) Photo of printed
large-area gold patterns on flexible PET substates. The size of the
patterned area is 88.9 mm × 88.9 mm. (c), (d) Magnified images of
printed patterns on the inner side and the outer side respectively, which
show the uniform printing results achieved by the proposed NN-based
adaptive MPC controller.

TABLE V
MEAN AND STANDARD DEVIATION OF THE GOLD LINE WIDTH MEASURED

FROM THE INNER PORTION AND THE OUTER PORTION

OF THE ETCHED SAMPLE

amounts of applied pressure using the colorimetric calibration

curve that we obtained experimentally. The quantified pressure

values are shown in Fig. 13. The difference of applied pressure on

the inner and outer side of the film from the proposed NN-based

adaptive MPC controller is 0.0082 MPa, 10 times smaller than

the difference of the NN-based standard MPC, whose difference

is 0.0883 MPa. Please note, the observable defects on the pres-

sure films originated from the raw film material but not from the

contact force control.

Finally, line patterns of 45 µm width and 55 µm pitch

were printed using our R2R microcontact printer to show the

effectiveness of the proposed control method. We follow the

standard R2R microcontact printing process, which include four

steps: stamp preparation; inking of the stamp; R2R printing; and

etching. We set the rolling speed at 1 mm/s, and the contact

force at 15 N. Fig. 14(a) shows the inked polydimethylsiloxane

(PDMS) stamp wrapped around the print roller. Fig. 14(b) shows

the printed gold patterns on flexible polyethylene terephthalate

(PET) substrates. The patterned area is 88.9 mm × 88.9 mm.

Fig. 14(c) and (d) are the magnified images of the printed line

patterns on the inner and outer side of the substrate. Fig. 14 shows

highly uniform printing results from the proposed NN-based
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TABLE VI
COMPUTATION TIME (ms) FOR THE PROPOSED METHOD WHERE M AND P VARY BETWEEN 1–10 AND 1–20, RESPECTIVELY

TABLE VII
PERCENTAGE OF TIME FOR KEY ROUTINES WHERE M = 2 AND P = 7

adaptive MPC controller and demonstrates that the proposed

control algorithm can be used for large-area R2R contact print-

ing. In addition to the qualitative visualization of the printing

results, quantitative quality measurements were performed on

the etched sample. We used a Mitutoyo Quick Vision ACTIVE

202 (Mitutoyo American Corporation, Marlborough MA, USA)

with an object space resolution of 1.04 µm to measure the mean

and standard deviation of the gold line width. The measured

locations were selected to be the inner and outer portions of the

etched sample as shown in Fig. 14(c) and (d) to illustrate the spa-

tial variation in print quality. Table V shows the measured results.

To summarize, the difference of the average gold line width on

the inner and outer portions is approximately 0.3 µm, which is

smaller than the object space resolution of the imaging system.

Additionally, both standard deviations are 0.5 µm, respectively.

With this knowledge, we can conclude that the printing quality,

in every practical sense, is the same for the inner and outer

portions of the etched sample.

IV. CONCLUSION

In this article, we have developed an NN-based adaptive MPC

controller for a flexure-based R2R contact printing system. The

nonlinearity of the flexure mechanism is learned by an NN. To

eliminate the steady-state error in real experiments, an NN-based

adaptive MPC controller is designed, where the biases of the out-

put layer of the NN model are updated during every control loop

according to the prediction error between the NN output and the

actual plant output. Experimental results show that the RMSE

of the contact force is maintained at values less than 0. 075 N

with balances on both ends of the impression roller for rolling

speeds of 1 mm/s. Uniform microscale gold pattern printing

results have shown the effectiveness of the proposed NN-based

adaptive MPC controller in the actual printing process.

Our proposed NN-based MPC can be easily applied for con-

trol of other nonlinear manufacturing processes. The method

even shows potential for other complex control problems in the

realm of roll-to-roll manufacturing systems to reduce trial and

error commonly in physical model based control, such as the

web tension control [31] and the register control [32], [33].

Specifically, the complex models of web tension disturbances

and the register errors can be learned for control using our

proposed NN-based adaptive MPC for the web tension control

and the register control.

The limitation of the proposed method is that only short-term

temporal information is considered. In fact, for time-dependent

tasks with sequential inputs, both long-term and short-term

information affects the response of the system. To integrate long-

term information from the system into the predictive model,

long short-term memory NN structure can be further studied to

improve the modeling accuracy.

APPENDIX

To demonstrate the computational performance that one might

expect to get with this algorithm and the optimization, timing

data were collected on the real-time controller for different

values of M and P. The processor of the real-time controller (NI

CompactRIO 9049) is a 1.60 GHz Quad-Core CPU (Intel Atom

E3940). The architecture of the neural network model was the

same as the model used in Section III. The data shown in Table VI

represent the computation time for the proposed method where

the number of iterations taken to produce a solution was set to

100 as described in Section III. The values for M ranged from

1 to 10 and the values for P varied from 1 to 20. Note that

the Table VI is upper triangular because M cannot be larger

than P . The unit is in milliseconds. The computational cost

of the proposed method can be broken down into 3 separate

costs. The gradient calculation, the plant prediction, and other

miscellaneous operations are calculated based on a percentage

of computational cost. The case where M = 2 and P = 7 is

presented in Table VII. From Table VII, one can find that the

gradient calculation occupies most of the computation time.
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