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Neural-Network-Based Adaptive Model
Predictive Control for a Flexure-Based
Roll-to-Roll Contact Printing System

Jingyang Yan

Abstract—High-precision contact force control is es-
sential for continuous roll-to-roll contact printing via me-
chanical contact on flexible web substrates using stamps.
Nonuniformly controlled stamp contact force will cause
failures during printing, especially for large-area printing
processes. Due to their high precision in positioning and
force control, flexure mechanisms have been applied in
roll-to-roll contact printing systems; however, conventional
physical model-based control systems cannot manage the
nonlinear effects that exist in flexure-based roll-to-roll con-
tact printing systems. To achieve precise contact force con-
trol, we propose a neural-network-based adaptive model
predictive control for a flexure-based roll-to-roll contact
printing system. The nonlinearity of the flexure mecha-
nism is learned and modeled by an artificial neural net-
work. To eliminate the steady-state error caused by model
mismatches and external disturbances, an online adap-
tive mechanism is designed via updating the biases of
the output layer of the neural network model. Experimen-
tal results show that the root-mean-square error of the
contact force can be controlled in the range of 0-0.075 N
with balances on two ends of the print roller, outperform-
ing a proportional-integral-derivative controller, a neural-
network-based standard model predictive control (MPC)
controller, and a neural-network-based robust MPC con-
troller. The proposed control algorithm is implemented in
a microcontact printing process that prints 45-pm width
gold patterns and achieves a variation of 0.3 um in the
average gold line width at different locations on an 88.9-
mm width flexible substrate. The uniform microscale print-
ing results have shown the effectiveness of the proposed
neural-network-based adaptive model predictive control in
the applied printing process.

Index Terms—Adaptive model predictive control, contact
force control, flexure mechanism, neural network (NN) mod-
eling, roll-to-roll (R2R) contact printing.
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[. INTRODUCTION

LEXIBLE electronics have demonstrated potential in a
F wide range of applications in flexible displays, photo-
voltaics, medical devices, bio-integrated sensors, microfluidic
devices, and computing platforms due to their lightweight,
adaptability, and robustness. Roll-to-roll (R2R) printing
methods, known for their high efficiency of mass production of
flexible electronics, have been applied in the continuous printing
of flexible electronics at low cost and high throughput [1].
Among these R2R printing methods, contact printing technolo-
gies, including microcontact printing [2], nanoimprinting [3],
and offset printing [4], can transfer the pattern from a stamp to
a substrate via ink contact and pressure. This relative simplicity
of the printing process offers high scale-up potential for their
applications in the mass production of flexible electronics. Due
to the nature of the contact printing mechanism, the contact force
is critical for the quality control of these R2R contact printing
methods. For example, for microcontact printing in which an
elastomeric stamp is used to transfer submicron scale patterns
onto a flexible substrate via ink monolayers, over or imbalanced
pressing of the stamp will cause failures of pattern transfer [5].

Conventional R2R contact printing control technologies
are built with conventional mechanical components, which
suffer from backlashes, assembly errors, and frictions; hence,
preventing printing methods from achieving high-level precision
[6], [7]. To overcome this problem, we have built a flexure-based
R2R contact printing system as shown in Fig. 1, which consists of
a web handling system and a controllable flexure-based printing
module (refer to the detailed introduction of the test bench in
Section III-A). Flexure mechanisms rely on bending and torsion
of flexible elements, which allows us to achieve much higher
precision in positioning compared to conventional mechanisms
that rely on surface interaction between multiple moving parts
[8]. Another key feature of the flexure mechanisms is that they
are monolithic, which means there is no friction-induced wear
and tear, and therefore no need for lubrication of components.
Moreover, the monolithic build means complex assembly is not
required, which altogether eliminates the possibility of assembly
errors. Due to the superiority in motion and force control,
flexures have been used in many R2R printing processes.
For example, in [9], a five-axis flexure-based positioning
system was introduced to compensate for misalignment in
a multilayer R2R microcontact printing process. In [10], a
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Fig. 1. Experimental setup setup of the flexure-based R2R contact

printing system.

flexure-based microcontact printing platform was designed
to achieve high-resolution printing. In [11], a flexure-based
register system was designed for R2R electronics printings. The
above-mentioned flexure-based R2R contact printing systems
all used proportional-integral-derivative (PID) controllers for
the force and position control based on their physical models
[9]-[11]. However, the physical modeling of complex flexure
mechanisms is challenging and time-consuming because
many system parameters and inter-relationship among them
need to be identified. For example, for the five-axis flexure
mechanism in [9], up to 26 system parameters need to be
identified. Meanwhile, the presence of nonlinearity in the
flexure mechanisms makes it difficult to obtain an accurate
physical model, causing the model mismatch problem and
preventing the controller from providing correct inputs to the
actuators. Although some classic adaptive and robust control
methods can be used to solve the model mismatch problem,
these methods still have difficulties in the system identification
of the physical models of the complex flexure mechanisms as
illustrated above. As a result, advanced control algorithms that
are capable of dealing with nonlinear, time-varying dynamics
of print processes need to be investigated further.

Fortunately, neural-network (NN)-based model predictive
control (MPC) recently emerged with the intelligence capable
of coping with the uncertainty present in the autonomous man-
ufacturing process [12]. Such control has shown high perfor-
mance with nonlinear, continuous, and differentiable activation
functions. In the meantime, NN-based MPC has been widely
used in precision motion control fields and has shown better
performance than the conventional PID controller. For example,
in [13], researchers demonstrated that the NN-based MPC can
reduce the root-mean-square error (RMSE) by at least 50% com-
pared with the PID control of piezo actuators for trajectory track-
ing. Also, MPC is a viable control strategy for a multiple-input
and multiple-output system, such as flexure-based R2R contact
printing, because of its intrinsic capabilities of handling multi-
variable interactions and constraints. Therefore, we propose an
NN-based MPC for flexure-based R2R contact printing systems.

The accuracy of the NN-based MPC, however, can be di-
minished by temporary variations in the plant. In R2R contact

printing systems, there are many disturbance sources including
noncircularity, radius variations of the rollers, sliding of the
web substrate, and variation of the web material properties. An
NN-based MPC cannot be sufficiently and accurately trained
offline to incorporate all temporary variations in the plant by
limited data for online operation [14]. Meanwhile, external
disturbances, such as temperature and humidity changes, always
exist in industrial systems which could also induce prediction
errors to the NN model [15]. In any case, a static NN-based
MPC scheme would suffer from steady-state errors when facing
model mismatches and external disturbances. In literature, there
have been several ways to eliminate the steady-state errors for
NN-based MPC methods. For example, external processes can
be added to the controller to eliminate the steady-state error
[16], [17]. In [16], an integrating controller is added in the
outer loop around the controller. In [17], a disturbance model is
trained to learn the external disturbances and model mismatches.
The disadvantage of the above methods is that more complex
structures are introduced to the controller. Alternatively, the
trained NN model can be directly updated during each control
loop to adapt to the disturbance. In [18], the entire NN model is
updated during each control loop to compensate for the temporal
mismatch between the online NN model and the plant. However,
we find that the controller can become unstable if both weights
and biases are updated during each control loop. The reason
is that the dynamics of the system are stored in the weights
and biases of the NN model. If all the weights and biases are
updated by sequential sample data acquired from an online con-
trol loop, the NN model tends to forget the past subsequences’
training information. Thus, the prediction error may occur
for the new subsequent samples, leading to improper control
action.

To overcome this problem, we propose a novel NN adaptive
mechanism to eliminate the steady-state error, which only needs
to update the biases of the output layer of the NN model to
compensate for the error between the NN model output and the
actual plant’s output while still retaining the other weights’ val-
ues for past sequences’ training information. Our method adapts
the biases to the model mismatches and external disturbances
in dynamic processes, different from the method in [19] that
only calculates prediction error in the steady-state and ignores
the model mismatches and external disturbances in the dynamic
processes. Our proposed method can update the NN model in
every control loop and hence offers higher accuracy than [21]
for the online control process.

The main contributions of this article are as follows:

1) A NN model is developed to characterize the dynamic
behavior of the designed flexure mechanism in an R2R
contact printing system.

2) A novel adaptive mechanism is designed for the NN-
based MPC.

3) A prototype with successful mN-scale R2R contact force
control using our NN-based MPC is implemented.

The rest of the article is organized as follows. The principles
of the NN modeling and the adaptive MPC are described in Sec-
tion II. The experimental setup, simulations, and comparative
experimental results are shown in Section III. Finally, Section IV
concludes this article.
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II. NEURAL-NETWORK-BASED ADAPTIVE MODEL
PREDICTIVE CONTROL

A. Neural Network Modeling

Many manufacturing processes are nonlinear which can
be dealt with the nonlinear autoregressive exogenous model
(NARX) as described by the following:

Y(k):f(y(k_l)7'~‘7y(k_ny)7u(k_l)7"'au(k_nu)
(H

where k denotes the kth sampling period, f(-) is an unknown
nonlinear function, u € R™ denotes the control input series
vector, y € R” denotes the system output series vector, and n,,
and n,, are, respectively, the exogenously designated time delays
of the input and output. The NARX model can be implemented
by using an NN architecture where feedback connections are
enclosed between layers of the network. In this article, we model
the NARX network using a single hidden layer feedforward NN
to approximate the function f(-) by the following:

yNN (k) = w0 (wix (k) + by) + by 2

where y n v (k) refers to the output of the NARX NN or predic-
tion of the dynamic system for the kth period, w; and w, are,
respectively, the weight matrices for the hidden layer and the
output layer, b, and b, are, respectively, the bias vectors for the
hidden layer and the output layer, and o (-) is the activation func-
tion for the hidden layer. The input feature vector is defined as
x(k)=[y(k—1),....y(k —ny),u(k —1),...,ulk —n,)].
According to the universal approximation theorem [20], the NN
model can be trained to accurately model the nonlinear mapping
f(), e, lynn(k) — y(k)|| < e for any € > 0 where € is an
arbitrarily small approximation bound. Therefore, the NN model
can be trained by seeking the optimal solution to the following
error function:

Juain = Y Iy (k) —y (k) [ Q)
k

This is accomplished by finding a set of weights and biases to
minimize the error between the plant outputs and the predicted
outputs of the NN.

B. Neural-Network-Based Model Predictive Control

MPC calculates control commands by minimizing a cost
function over a finite prediction horizon. The cost function is
typically formulated by minimizing not only the squared error
between the reference signal and the plant’s output but also the
weighted squared change of the control input. Given the NN
architectures [refer to (2) and (3)] for the plant dynamics model,
the MPC cost function can be formulated by the following:

P
Tvee = Y |lyr (k+5) —ynw (k+5) |

j=1

M
+ > A I Auk+ ) [P )

J=1

where P is the prediction horizon, M is the control horizon, y,. is
the reference signal, y n v (k + 7) is the predicted output of the
system at the (k + j)th period based on the available measure-
ments at the kth sampling period, A () is the regulating factor for
the control input that maintains the smoothness of the control
signal and is typically chosen to be constant or exponential, and
Au(k+j) = u(k+j)—u(k+j— 1) denotes the change
inu.

In the cost function (4), three parameters are required to be
tuned, namely P, M, and A(j). The selection of control horizon
P and prediction horizon M are correlated with both control
performance and time consumption. For optimal performance,
the prediction horizon P should be sufficiently large compared
with the settling time of the plant to achieve stability [21]. The
weighting factors A(j) are used to control the balance between
the two summations and acts as a damper to the control input.
Smaller A(j) would result in more aggressive control moves.
For simplicity, we chose A(j) to be constant.

The objective of the MPC is to minimize the cost
function Jypc in (4) with respect to [u(k + 1),u(k +2),
...,u(k + M)], denoted by U. Since the plant model is an NN
structure, a gradient descent method can be used to minimize the
cost function iteratively. In each iteration, the intermediate val-
ues for Jypc can be denoted by Jypc(n). The control command
sequence U(n) can be updated by the following:

U (n+1)= U(n)+ AU (n) 5)
_ dJupc (n)
AU (n) = n (—aU o ) ©)

where 7 > 0 is the update rate for a control command sequence.
Since the two summation terms in the cost function are both
functions of U modeled by the NN, it is feasible to calculate
the Jacobian matrix (9Jypc/0U) through the backpropagation
algorithm, which is the key process of the MPC. After U is
optimized through the iterative process, only the first element of
U is used as the input to the system.

C. Eliminating Steady-State Error

The controller described in Section II-B relies on a static
NN model, which suffers from model mismatches and external
disturbances, and thus will have steady-state errors when applied
in practical printing processes. To eliminate the steady-state
error, a novel adaptive mechanism is proposed for the NN-based
MPC model. First, an NN model is trained offline using training
data from the plant. Then, the pretrained NN model is applied
in the MPC controller to predict the plant outputs. According to
the predicted outputs, an iterative process is carried out to find
the optimal control input sequence. Next, the first element of the
optimized control input sequence is sent both to the NN model
and the real plant. Finally, the prediction error of the NN model
is added to the biases of the output layer. The overall adaptive
mechanism is elaborated upon in the pseudocode displayed
in Algorithm 1. We prove below that the proposed adaptive
algorithm can eliminate the steady-state error.

The steady-state error can be measured by the difference
between the measured system output y (k) and the predicted
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Algorithm 1: The Overall NN-Based Adaptive MPC Scheme. y%N (k—|— 1) =W»y0o (wlxoo (k;—|— 1 ) —|—b1)
Input: control horizon M, prediction horizon P, update rate 7,
iteration number N, previous control input u(k), reference + bgo (k; + ]) . (1 0)

[yr(k+1)],...,y:(k + P)], previous output layer bias by (k)
Output: new output layer bias ba(k + 1), control input u(k + 1)
/* Initialization */
1 form=1: M do
2 | u(k+m)=u(k)
3 end
/* STEP 1: Calculate optimal control input sequence U */
4 forn=1:Ndo
5 calculate Jprpc(n) using (4)
6 calculate 8Jpypc(n)/OU(n)
7 update U(n + 1) using (5) and (6);
8 end
9 output optimized u(k + 1) to the plant and the neural network, record
the outputs y(k+ 1) and ynn(k + 1), respectively.
/% STEP 2: Online update the bias ba(k +1) */
10 calculate e(k+1) =y(k+ 1) —ynn(k+1)
11 if e(k+1) # 0 then
12 | ba(k+1) =by(k) +e(k+1)
13 else
14 | ba(k+1) =ba(k)
15 end

system output y nn (k) at the kth sampling period as e (k) =
v (k) — y~~ (k) and assume that the error is constant within the
prediction horizon. Meanwhile, according to the MPC control
process, multistep predictions need to be generated based on the
prediction horizon and the available measurements from the sys-
tem. Specifically, by defining y ;v (k + ) as the prediction for
the system output y (k + j) based on the available measurements
at the kth sampling period, the multistep prediction procedure is
described as follows:

ynNn(k+j—i)=y(k+3j—1), Vi>j,
ynn (k+j) =wro (wixnn (K+j) +bi)
+by(k+j7), 1<j<P (7

where xnyn(k+7) = [yNN(k-i-j— 1),... ,yNN(k—i—j—ny),
unn(k+j—1),....,unn~(k+j—ny)] is the input feature
vector predicted by the NN to the MPC model.

Proposition 1: The nonlinear NN-based MPC system (4)
has no steady-state error using the update steps in Algorithm 1
if 1) the closed-loop system is stable and 2) the reference y,. is
reachable [22].

Proof: Assumption 1) implies that the closed-loop system
can reach an asymptotically stable equilibrium point defined by
the following:

yo=fy™,...

where the superscript co denotes the steady state, and y*>°, u®
are the system’s steady-state output and input, respectively. From
(2), the model output

o0

7yoo7u ‘7"'7u00) (8)

YN = W2 o (Wwix™® +by) + by )

is a constant at the process’s steady state {y>,u>}, where
x® = [y*®,...,y>,u>, ..., u™]. Then, the model mismatch
e® =y* —yXy # 0is always a constant within the predic-
tion horizon. According to the update steps in Algorithm 1, we
obtain the one-step-ahead prediction

Since

X (k1) = [N (k) oy (b 1—my) 0%, 0]

— [y,
b (k+1) =bF + e

00 .00 001 __ 00
yy ,u ..., u ] =X,

(10) becomes y (K +1) =y + € =y™.
For the two-step-ahead prediction

yan (k+2)=wy 0 (wix™ (k+2)+by)

+b37 (k+2) (11)
where
x(k+2)=[ynn(k+1),y°...,y°,u™, ..., u¥]
= [y*,....y*,u”, ..., u*] =x>,

b (k+2) =b (k+1) =by +e™

(11) becomes ySn(k+2) =yNn + e =y>™.
Recursively, for step-ahead prediction of three or more
yan(k+7) =y>,j =34,...,P.
Meanwhile, when the process reaches a steady state,
Au® (k+j)=u* (k+j)—u>® (k+75—1)= 0, thus al-
lowing us to reduce the cost function (4) to

12)

P

Jmpc = Z lyr (k+5) —yan (k+37)[I*
=i

13)

Since yNn(k+7) = y>©,5 = 1,2,..., P, for the ideal
solution and considering assumption (b), we can conclude that
y» =y and there is no steady-state error.

D. Stability Analysis

In Proposition 1, we have assumed that the closed-loop system
is stable. In fact, the stability of the closed loop is of utmost
importance for any application of nonlinear MPC to a real pro-
cess. Many contributions have been made to tackle the stability
problems in a state-space framework. These methods either use a
cost function as a Lyapunov candidate function or require some
state to decrease in a certain norm. However, in the proposed
method, the system is modeled by a neural network model rather
than a state-space mode meaning the stability analysis based on
state-space cannot be applied. Therefore, we propose a method
to achieve stability by imposing a terminal constraint on outputs
to ensure the monotonicity of the cost function as established
in [23], [24]. This requires the addition of a terminal constraint
to (4) to ensure stability. The terminal constraint is defined as
follows:

Vr(k+P+35) —ynn (k+P+3)=0,Yj€[1,N] (14)

where N, is the constraint horizon.
Proposition 2: The nonlinear MPC controller is asymptoti-
cally stable if the following conditions are satisfied:
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1) A#£0;
2) N =max[n, +1, n, + 1+ M — P].
Proof: Consider the cost function

P M
Juee (k) = lle(k+ 7)1 +2 ) [Au(k+5) > (5)

Jj=1 j=1

attime k, wheree (k+ j) =y, (k+j) —ynn(k+j). Letus
assume that U (k) = [u(k+ 1), u(k+2),...,u(k+ M)]is
the optimal control at time % found by an optimization procedure.
Suppose the suboptimal control U*(k + 1) postulated at time
k+1is

U (k+1)=[u(k+2),u(k+3),...,u(k+M), u(k+M)].
(16)

The control sequence U*(k + 1) is formed based on the
control derived at time k. Assume that the model mismatches
and unmeasured disturbances are constant within the prediction
horizon, and the predictions y yn (k + j) derived at time k + 1
are the same as those derived at time k. For the suboptimal
control U*(k + 1), the cost function can be defined as follows:

P+1 M
Juec” (k+1) = lle(k+5) I* +21 Y IAu(k+j) [
j=2 j=2

(I7)
The difference of cost functions Jypc (k) and Jyvpc*(k + 1)
can be calculated as follows:

Juec” (k+1) = Jwec (k) = [le (k+P+1) | — [le (k + 1) |?

— A Au (k4 1) |2 (18)

From the terminal equality constraints (14), |le(k+
P + 1)|]> = 0, we obtain the following:

Jvec’ (k+1)=Jwiee (k)=—e (k+1) [> = A Au (k + 1) ||*.
(19)
The terminal equality constraints hold for all 7 > 1 if
1) Ne>ny+1,ifny >n, +1+M— P;
2) Ne>ny,+1+M~—P,ifny, <n,+1+M-—P.
These two conditions lead to the constraint horizon

N.=max[n, +1, n,+ 1+ M — P] (20)

which guarantees that the equality constraints of tracking error
hold for all j > 1. From the definition of U*(k + 1) in (16),
we can infer that constraint (14) is satisfied at time &k + 1.
Furthermore, if U(k + 1) is the optimal solution to the optimiza-
tion problem at time k + 1, then Jyipc(k + 1) < Jypc™(k + 1).
Finally

Adyie (k+1) < —[le(k+ 1) > = A Au(k+ 1) > 2D

For A # 0, it is clear to see that the cost function monoton-
ically decreases with respect to time and the control system
is stable. The constrained MPC optimization problem can be
solved according to the algorithm presented in [23].

Impression roller

Print roller

Stamp

Inner flexure Outer flexure

/

Fig. 2. Schematic diagram of the flexure based R2R contact printing

system.

Ill. EXPERIMENTS AND DISCUSSIONS

In this section, we will demonstrate an R2R microcontact
printing prototype where we test the mN-scale contact force con-
trol using our NN-based MPC. We generate the training dataset
for system identification and NN architecture initialization using
a pulse-train method in Section III-B. In Section III-C, we first
use simulations to tune the parameters for the MPC. Then, we
measure the performance of the contact force control broadly
using various reference signals, pressure-sensitive films, and
straight-line pattern printings.

A. Experimental Setup

The proposed control method was evaluated on a flexure-
based R2R contact printing system as shown in Fig. 1. It consists
of two subsystems: the web handling system and the printing
module. The web handling system is composed of two motorized
rollers and two idler rollers. A ring rotation encoder and a
readhead were mounted on the left idler roller to measure the
linear web moving speed. The measured speed is then used as a
feedback signal to control the web moving speed. The right idler
roller is a tension measuring roller, which measures the tension
of the moving web for the web tension control. As the web
tension and motion speed are correlated in the R2R system [25],
[26], the web tension and the linear speed of the moving web
need to be synchronously controlled. In Fig. 1, the motorized
unwind roller is controlled to maintain a constant linear web
moving speed using the feedback signal from the speed encoder;
the motorized rewind roller is operated under torque control
mode to maintain a constant web tension using the feedback
signal from the tension measuring roller.

Fig. 2 shows the schematic diagram of the flexure-based R2R
contact printing system, where the springs at the two ends of
the print roller represent the inner flexure and the outer flexure.
Before printing, a stamp must be wrapped onto the print roller.
During printing, the inked stamp is actuated by a positioning
stage to transfer the patterns on the stamp to the flexible web
substrate by compressing the inked stamp against the web sub-
strate. The positioning stage is made up of two parallel plate
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driven by two voice coil actuators (VCAs) (NCC08-34-350-2X,
H2W TECHNOLOGIES) through the flexure mechanism. The
VCAs are connected to linear current amplifiers (LCA-5/15,
H2W TECHNOLOGIES) that generate the driving currents
linearly proportional to the command voltages. The VCAs pro-
vide force to push the motion stage and the print roller in the
vertical direction to bring the stamp in contact with the web.
The command voltages are from the real-time controller (NI
CompactRIO 9049) where all the sensors and amplifiers are
integrated. The amplifier and VCA constants are 0.1 A/V and
59.6 N/A. The control loop rate is set at 10 ms. In summary,
the control inputs are the voltage commands from the real-time
controller and the controlled variables [refer to y in (1)] are the
contact force measured by the two load cells. The main objective
of the contact force control is to maintain a constant force at the
contact areas between the stamp on the print roller and substrate
surface. As the print roller is force-controlled at both ends, it
also has an alternative objective of balancing the force at the
two ends for large-area printing.

The positioning system in this microcontact printing module
suffers various disturbances from both the web handling sys-
tem and the positioning system itself, including misalignment,
cylindricity, and fabrication errors. These disturbances produce
nonlinear effects that are difficult to manage with conventional
control systems as shown in Fig. 4. We will demonstrate the
excellent performance of the proposed NN-based adaptive MPC
method for precise contact force control on this module in the
following sections.

B. Model Identification

To capture the dynamics of the flexure mechanism, we used
a pulse-train method to generate the training dataset. Figs. 5

to the inner VCA. (b) Inputs to the outer VCA.
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(@) (b)
Fig. 6. Responses of the plant due to the pulse train inputs.

(a) Responses of the inner flexure. (b) Responses of the outer flexure.

and 6 show the series of pulses with random amplitudes and
the responses of the plant. Each pulse lasts one second so that
the plant can settle to a stable state during the pulse signal. The
sampling time is set to 10 ms which is the same as the control loop
rate. To compensate for the imbalance of the flexure mechanism,
which may be caused by the misalignment in the system, fault
in calibration, or both, the input voltages to the inner VCAs and
the outer VCAs are randomly selected in [4 V, 5.5 V] and [0.5 V,
1.5 V], respectively. The corresponding forces measured from
load cells are in the range of 8-18 N as shown in Fig. 6. To
sufficiently span the working space of the plant, 50000 samples
are generated. In this experiment, we use 80% of the data for
training, and 20% for testing.

Since the contact force is affected by both its output value
history and the input control commands, the dynamics of the
plant can be approximated by the NARX function in (1). The
time delay for the input and the output is n, =n, = 2 and
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Fig. 7. Actual outputs and predicted outputs of the flexure mechanism

of (a) inner flexure and (b) outer flexure, and the corresponding errors
(c), (d), respectively.

TABLE |
COMPARISON RESULTS OF DIFFERENT PREDICTIVE MODELS

Models RMSE (N) Running time (s)
GP 0.077 304.153
GMM 0.057 0.020
MSVR 0.072 2.048
NN 0.048 0.015

Note: The winner is shown in boldface.

the number of hidden nodes in the NN is chosen to be 7. With
these values in mind, the dimensions of wy, by, w,, and b, in
(2), respectively, become 7 x 8,7 x 1,2 x 7,and 2 x 1. The
tangent-sigmoid function is chosen as the activation function
since the training data are normalized between [-1], [1]. The
NN is trained using the Levenberg—Marquardt algorithm in the
MATLAB R2019a environment. Fig. 7 shows the prediction
results for the testing data, with the RMSE of 0.048 N. In
order to examine the predictive accuracy and inference speed
of the proposed method, the NN model is compared with a
Gaussian process model (GP) [27], a Gaussian mixture model
(GMM) [28], and a multivariate support vector regression model
(MSVR) [29]. From the testing results listed in Table I, the NN
model shows superior accuracy and prediction speed.

C. Simulations and Predictive Control

First, to evaluate the proposed method, simulations are carried
out to tune the parameters for the MPC, including the control
horizon, the prediction horizon, and the weighting factor A.
To tune the control horizon and the prediction horizon, we
summarize the average RMSE of contact force for three different
signals, namely step signals, ramp signals, and sinusoidal signals
shown in Table II by varying M from 1 to 10 intervals and P

from 1 to 20 intervals. Note that Table II is upper triangular
because M cannot be larger than P. When P > 7 and M > 2
sampling intervals, the improvement in the system performance
is trivial as shown in Table II. Therefore, M = 2and P = 7
are chosen for the final control horizon and prediction horizon
to achieve desirable real-time force control. For the weighting
factor A, since the system outputs and the inputs are both scaled
to [-1], [1], it is reasonable to assume that A is greater than O
and smaller than 1. To quantitively evaluate the effects on the
control performance from different weighting factor A, we use
overshoot (%) and rise time (ms) for performance evaluation
criteria. Table III shows the overshoot and rise time for different
values of A. It can be found that there is a tradeoff between
the rise time and the overshoot. For example, for A = 0.1, the
rise time is shorter than that of A = (.01, but the overshoot is
greater. We ultimately select A = 0.1 for a balance between the
rise time and the overshoot. Using the above-tuned parameters,
the execution of the proposed control algorithm takes 4 ms for
real-time contact force control, which is less than the control
loop rate of 10 ms as mentioned in Section ITII-A. To demonstrate
the computational performance that one might expect to get with
this algorithm and the optimization, timing data was collected
on the real-time controller using different values of M and P
which are displayed in the Appendix.

Second, to test the proposed adaptive algorithm of the NN
model in eliminating the steady-state error, simulations are car-
ried out considering different updating laws and the results are
shown in Fig. 8. For standard MPC without any adaptive mech-
anism, there will be a steady-state error as shown in Fig. 8(a).
When weights and biases update together in one control loop
[18], the system becomes unstable as shown in Fig. 8(b). The
reason is that if weights are updated according to one sample
acquired from one control loop, the NN model tends to forget
the past sequential training information. Thus, the prediction
error may increase for the subsequent new samples leading the
controller to make improper decisions. As shown in Fig. 8(c), our
proposed adaptive MPC scheme can significantly compensate
the induced disturbance.

Third, contact force control experiments are carried out to test
the proposed NN-based adaptive MPC controller. The perfor-
mance of the proposed control scheme has been assessed using
three different signals, namely step signals, ramp signals, and si-
nusoidal signals. The proposed control method is compared with
a PID controller, an NN-based standard MPC, and an NN-based
robust MPC controller [30]. Figs. 9-11 show control results
for different reference signals. For clarity of presentation only,
results for the proposed NN-based adaptive MPC controller and
the NN-based standard MPC controller are presented. Table IV
shows the control quality of different controllers, quantified by
RMSE between the reference outputs and the actual outputs
shown in Figs. 9—11 under different reference signals. Overall,
our proposed NN-based adaptive MPC controller outperformed
all other controllers.

Fourth, to further verify the robustness of our proposed control
method in real printing processes, we measured and recorded
the contact forces on both ends of the impression roller for one
revolution (360°). Fig. 12 shows the contact force data with a
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TABLE II
AVERAGE RMSE (N) oF CONTACT FORCE WHERE M AND P VARY BETWEEN 1-10 AND 1-20, RESPECTIVELY
MP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 - .12 096 096 099 101 103 105 107 109 111 116 133 - - - - - - -
2 1.18 094 089 087 086 085 085 085 085 085 085 084 084 085 1.04 - - - -
3 095 090 0.88 087 086 086 086 085 085 085 085 085 085 085 088 - - -
4 090 088 087 086 086 086 0.86 086 086 086 086 086 086 0.86 086 0.89 0.90
5 0.88 0.87 086 086 086 088 086 086 086 086 086 0.88 086 086 087 0.87
6 0.87 08 08 08 086 086 0.8 086 08 08 08 086 0.86 0.86 0.86
7 0.86 0.86 086 08 08 086 086 0.87 086 086 086 086 088 0.86
8 0.86 086 0.86 086 086 086 086 087 086 0.86 086 0.86 0.86
9 0.86 0.86 086 086 086 08 086 0.86 0.86 0.86 086 0.86
10 0.86 086 086 086 086 086 0.86 0.86 0.86 086 0.86
Note: ‘-’ indicates the system is not stable.
TABLE llI
OVERSHOOT AND RISING TIME FOR DIFFERENT A 12 12
z z |
A 0.01 0.1 1 Sn Sn !
Overshoot 0.32% 0.26% 0.32% £ < !
Rise time 40 ms 50 ms 65 ms 10 10
0 10 20 30 40 50 0 10 20 30 40 50
122 Time (s) Time (s)
Inner flexure (a) (b)
2 Outer flexure K
c = = = Reference Adaptive MPC = Standard MPC
g 12
s
) Fig. 9. Experimental results, comparison of the reference tracking
results between the proposed NN-based adaptive MPC controller and
11.8 1 3 3 4 ry the NN-based standard MPC controller of the flexure mechanism. (a)
Time (s) Inner flexure. (b) Outer flexure.
(a)
20 12 12
18 |— Inner flexure - -
Z 16} Outer flexure Z z
v 14} Sn g
S s s
Z 10 = =
[ 10 10
St
6 1 1 1 1
0 1 2 3 4 5 0 10. 20 30 0 10' 20 30
Time (s) Time (s) Time (s)
(b) (a)
12.2 = = = Reference Adaptive MPC = Standard MPC
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2‘ Outer flexure ) ) ) )
g ‘\ Fig. 10. Experimental results, comparison of the reference tracking
e 12 results between the proposed NN-based adaptive MPC controller and
£ the NN-based standard MPC controller of the flexure mechanism. (a)
Inner flexure. (b) Outer flexure.
11.8 L + L L
0 1 2 3 4 5
Time (s) Moreover, we used pressure-sensitive films to mimic the

(©)

Fig. 8. Simulation results for different update laws for inner flexure
and outer flexure. (a) No updating laws. (b) Updating both weights and
biases. (c) Updating only biases.

reference contact force of 12 N and a rolling speed of 1 mm/s.
The RMSE of the contact forces is maintained in the range of
0-0.075 N. In other words, our NN-based adaptive MPC method
has achieved a desirable stable contact force control and can
compensate for model mismatches and external disturbances.

web substrate in order to measure the real contact pressure
from our proposed control scheme. The pressure-sensitive films
change color from white to red over a certain pressure range:
the higher the pressure, the more intense the color change.
The pressure-sensitive films (177.8 mm x 88.9 mm, Prescale
LLLLW, Fujifilm) used in our experiments have a pressure
sensing range of 0.05-0.2 MPa. Fig. 13(a) and (b), respectively,
show the films that were pressed by the print roller using the
NN-based standard MPC controller and the proposed NN-based
adaptive MPC controller. Our proposed MPC controller resulted
in a visually more uniform color (pressure) distribution on the
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Fig. 11. Experimental results, comparison of the reference tracking

results between the proposed NN-based adaptive MPC controller and
the NN-based standard MPC controller of the flexure mechanism. (a)
Inner flexure. (b) Outer flexure.

TABLE IV
CONTROL RESULTS (RMSE) FOR DIFFERENT REFERENCE SIGNALS

Step Ramp Sinusoidal
PID 0.0918 N 0.0969 N 0.0963 N
NN-based standard MPC 0.2099 N  0.3303 N 0.1551 N
NN-based robust MPC 0.1206 N 0.1324 N 0.1133 N
NN-based adaptive MPC 0.0761 N 0.0647 N 0.0950 N
Note: The winner is shown in boldface.
92 92
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Fig. 12.  Measured printing forces for one revolution when the printing

speed is 1 mmy/s. (a) Inner flexure. (b) Outer flexure.

— Rolling direction — Rolling direction

Outer side (P =

Lo

¥

Fig. 13. Pressure-sensitive film test results. (a) NN-based standard
MPC controller. (b) Proposed NN-based adaptive MPC controller.

film compared to the alternative MPC control. To quantify the
pressure values obtained on the films, we have evaluated the
results by mapping the color density onto the amount of applied
pressure. First, the films were divided into two regions evenly
along the web rolling direction, namely the inner portion and the
outer portion. Then, we calculated the average color densities
in each region. Lastly, we mapped the color densities to the

-
— ===
(c) (d)
Fig. 14. Large-area gold patterns printed on flexible PET substrates

based on the proposed NN-based MPC controller. (a) PDMS stamp
with line features wrapped around the print roller. (b) Photo of printed
large-area gold patterns on flexible PET substates. The size of the
patterned area is 88.9 mm x 88.9 mm. (c), (d) Magnified images of
printed patterns on the inner side and the outer side respectively, which
show the uniform printing results achieved by the proposed NN-based
adaptive MPC controller.

TABLE V
MEAN AND STANDARD DEVIATION OF THE GOLD LINE WIDTH MEASURED
FROM THE INNER PORTION AND THE OUTER PORTION
OF THE ETCHED SAMPLE

Mean (um) Standard deviation (pm)
Inner 45.02 0.50
Outer 45.31 0.50

amounts of applied pressure using the colorimetric calibration
curve that we obtained experimentally. The quantified pressure
values are shown in Fig. 13. The difference of applied pressure on
the inner and outer side of the film from the proposed NN-based
adaptive MPC controller is 0.0082 MPa, 10 times smaller than
the difference of the NN-based standard MPC, whose difference
is 0.0883 MPa. Please note, the observable defects on the pres-
sure films originated from the raw film material but not from the
contact force control.

Finally, line patterns of 45 pm width and 55 pum pitch
were printed using our R2R microcontact printer to show the
effectiveness of the proposed control method. We follow the
standard R2R microcontact printing process, which include four
steps: stamp preparation; inking of the stamp; R2R printing; and
etching. We set the rolling speed at 1 mm/s, and the contact
force at 15 N. Fig. 14(a) shows the inked polydimethylsiloxane
(PDMS) stamp wrapped around the print roller. Fig. 14(b) shows
the printed gold patterns on flexible polyethylene terephthalate
(PET) substrates. The patterned area is 88.9 mm x 88.9 mm.
Fig. 14(c) and (d) are the magnified images of the printed line
patterns on the inner and outer side of the substrate. Fig. 14 shows
highly uniform printing results from the proposed NN-based
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TABLE VI
COMPUTATION TIME (ms) FOR THE PROPOSED METHOD WHERE M AND P VARY BETWEEN 1-10 AND 1-20, RESPECTIVELY

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 056 1.07 159 2.1 262 313 365 417 47 5.2 571 623 6.5 7.26 778 8.3 8.8 9.3 9.84 10.35
2 1.3 1.9 247 3.05 363 422 48 5.4 6 6.55 7.4 172 8.32 8.9 9.48 10.05  10.65 11.23  11.8

3 2 261 322 383 444 505 568 628 6.9 7.5 8.1 8.72 9.34 9.93 10.55  11.2 11.81 124

4 274 3.4 4.02 465 531 594 658 721 7.85 848 9.12 9.8 1039 11.04 11.7 1232 1293
5 353 42 488 555 62 6.86 755 821 886 9.54 10.2 10.85 11.51 1218 12.84 13.53
6 438 505 575 645 715 785 852 922 9.93 10.63 1129 12 12.69 134 14.1

7 525 6 6.7 741 813 885 9.6 1029 11.03 1172 125 132 13.9 14.65
8 6.18 693 768 844 92 9.92 10.68 1145 12.19 1293 137 1443 152

9 7.18 795 873 949 1028 11.04 11.84 12.61 1343 142 15.03 1575
10 822 9.04 9.83 10.65 1144 1225 13.1 13.9 14.7 1553 163

TABLE VI

PERCENTAGE OF TIME FOR KEY ROUTINES WHERE M =2 AND P =7

Routine Percent time
Gradient calculation 96
prediction 4

Misc. <1

adaptive MPC controller and demonstrates that the proposed
control algorithm can be used for large-area R2R contact print-
ing. In addition to the qualitative visualization of the printing
results, quantitative quality measurements were performed on
the etched sample. We used a Mitutoyo Quick Vision ACTIVE
202 (Mitutoyo American Corporation, Marlborough MA, USA)
with an object space resolution of 1.04 pm to measure the mean
and standard deviation of the gold line width. The measured
locations were selected to be the inner and outer portions of the
etched sample as shown in Fig. 14(c) and (d) to illustrate the spa-
tial variation in print quality. Table V shows the measured results.
To summarize, the difference of the average gold line width on
the inner and outer portions is approximately 0.3 pm, which is
smaller than the object space resolution of the imaging system.
Additionally, both standard deviations are 0.5 pm, respectively.
With this knowledge, we can conclude that the printing quality,
in every practical sense, is the same for the inner and outer
portions of the etched sample.

IV. CONCLUSION

In this article, we have developed an NN-based adaptive MPC
controller for a flexure-based R2R contact printing system. The
nonlinearity of the flexure mechanism is learned by an NN. To
eliminate the steady-state error in real experiments, an NN-based
adaptive MPC controller is designed, where the biases of the out-
put layer of the NN model are updated during every control loop
according to the prediction error between the NN output and the
actual plant output. Experimental results show that the RMSE
of the contact force is maintained at values less than 0. 075 N
with balances on both ends of the impression roller for rolling
speeds of 1 mm/s. Uniform microscale gold pattern printing
results have shown the effectiveness of the proposed NN-based
adaptive MPC controller in the actual printing process.

Our proposed NN-based MPC can be easily applied for con-
trol of other nonlinear manufacturing processes. The method

even shows potential for other complex control problems in the
realm of roll-to-roll manufacturing systems to reduce trial and
error commonly in physical model based control, such as the
web tension control [31] and the register control [32], [33].
Specifically, the complex models of web tension disturbances
and the register errors can be learned for control using our
proposed NN-based adaptive MPC for the web tension control
and the register control.

The limitation of the proposed method is that only short-term
temporal information is considered. In fact, for time-dependent
tasks with sequential inputs, both long-term and short-term
information affects the response of the system. To integrate long-
term information from the system into the predictive model,
long short-term memory NN structure can be further studied to
improve the modeling accuracy.

APPENDIX

To demonstrate the computational performance that one might
expect to get with this algorithm and the optimization, timing
data were collected on the real-time controller for different
values of M and P. The processor of the real-time controller (NI
CompactRIO 9049) is a 1.60 GHz Quad-Core CPU (Intel Atom
E3940). The architecture of the neural network model was the
same as the model used in Section III. The data shown in Table VI
represent the computation time for the proposed method where
the number of iterations taken to produce a solution was set to
100 as described in Section III. The values for M ranged from
1 to 10 and the values for P varied from 1 to 20. Note that
the Table VI is upper triangular because M cannot be larger
than P. The unit is in milliseconds. The computational cost
of the proposed method can be broken down into 3 separate
costs. The gradient calculation, the plant prediction, and other
miscellaneous operations are calculated based on a percentage
of computational cost. The case where M = 2and P = 7 1is
presented in Table VII. From Table VII, one can find that the
gradient calculation occupies most of the computation time.
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