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Abstract

Due to its high data density and longevity, DNA is considered a promising medium for satisfying ever-increasing data storage

needs. However, the diversity of errors that occur in DNA sequences makes efficient error-correction a challenging task. This

paper aims to address simultaneously correcting two types of errors, namely, short tandem duplication and edit errors, where an

edit error may be a substitution, deletion, or insertion. We focus on tandem repeats of length at most 3 and design codes for

correcting an arbitrary number of duplication errors and one edit error. Because an edited symbol can be duplicated many times

(as part of substrings of various lengths), a single edit can affect an unbounded substring of the retrieved word. However, we show

that with appropriate preprocessing, the effect may be limited to a substring of finite length, thus making efficient error-correction

possible. We construct a code for correcting the aforementioned errors and provide lower bounds for its rate. Compared to optimal

codes correcting only duplication errors, numerical results show that the asymptotic cost of protecting against an additional edit

is only 0.003 bits/symbol when the alphabet has size 4, an important case corresponding to data storage in DNA.

I. INTRODUCTION

Recent advances in DNA synthesis and sequencing technologies [2] have made DNA a promising candidate for rising data

storage needs. Compared to traditional storage media, DNA storage has several advantages, including higher data density,

longevity, and ease of generating copies [2]. However, DNA is subject to a diverse set of errors that may occur during the

various stages of data storage and retrieval, including substitutions, duplications, insertions, and deletions. This poses a challenge

to the design of error-correcting codes and has led to many recent works studying the subject, including [2]–[16]. The current

paper focuses on correcting short duplication and edit errors, where an edit is a substitution, insertion, or deletion.

A (tandem) duplication error generates a copy of a substring of the DNA sequence and inserts it after the original substring [3].

For example, from ACGT we may obtain ACGCGT. The length of the duplication is the length of the substring being copied,

which is 2 in the preceding example. In the literature, both fixed-length duplication [3]–[6] and bounded-length duplication,

where the duplication length is bounded from above [3], [17]–[19] have been studied. For duplications whose length is at most
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3, the case most relevant to this paper, Jain et al. [3] proposed error-correcting codes that were shown to have an asymptotically

optimal rate by Kovačević [18].

In an edit event, a symbol in the sequence is substituted or deleted, or a new symbol is inserted. Among these, substitution

errors have been studied in the literature in conjunction with fixed-length duplication errors, including substitution errors that

are restricted to the inserted copies, reflecting the noisiness of the copying mechanism during the duplication process [20]–[22],

and substitution errors that may occur anywhere in the string [6].

We focus on correcting errors that may arise from channels with many duplication errors of length at most 3, which we

refer to as short duplications, and one edit error, which may occur in any position in the string. Considering a single edit

error reveals important insights into the interactions between edit and duplication errors and will be of use for studying the

general case of t edit errors. As a simple example of this channel, the input ACG may become ACG ! ACCCG ! ACTCG !

ACTACTACTCG ! ACTCTACTACTCG , where the duplication copies are marked with underlines, and the occurrences of

the symbol T result from copies of the substitution C ! T. Given that an arbitrary number of duplications are possible, an

unbounded segment of the output word may be affected by the errors, and, for example, the substituted symbol may appear

many times. However, relying on the fact that short tandem duplications lead to regular languages, we show that with an

appropriate construction and preprocessing of the output of the channel, the deleterious effects of the errors may be localized.

We leverage constrained coding and maximum distance separable codes to design codes for correcting the resulting errors,

establish a lower bound on the code rate, and provide an asymptotic analysis that shows that the code has rate at least log(q�2),

where q is the size of the alphabet and the log is in base 2. We note that the rate of the code correcting only short duplications is

upper bounded by log(q�1). When q = 4, the case corresponding to DNA storage, we provide a computational bound for the

code rate, showing that asymptotically its rate is only 0.003 bits/symbol smaller than the code that corrects short duplications

but no edits.

We will first consider only substitution edits and construct error-correcting codes capable of correcting many short duplications

and a substitution. We will then prove that the same code can correct any number of duplications and an edit error by

transforming insertion and deletion errors to substitution errors.

The paper is organized as follows. In Section II, we provide the notation and relevant background. Section III analyzes the

error patterns that result from passing through duplication and substitution channels. After that, the code construction as well

as the code size are presented in Section IV. In particular, in Subsection IV-A, we construct codes that can correct any number

of duplications and one substitution and in Subsection IV-B, we show that the same codes can correct duplication and edit

errors. Finally, Section V presents our concluding remarks.

II. NOTATION AND PRELIMINARIES

Let ⌃q = {0, 1, . . . , q � 1} denote a finite alphabet of size q. To avoid trivial cases, we assume q � 3, which in particular

includes the case of q = 4, relevant to DNA data storage. The set of all strings of finite length over ⌃q is denoted by ⌃⇤
q
,

while ⌃n

q
represents the strings of length n. In particular, ⌃⇤

q
contains the empty string ⇤. Let [n] denote the set {1, . . . , n}.
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Strings over ⌃q are denoted by bold symbols, such as x and yj , or by capital letters. The elements of strings are shown

with plain typeface, e.g., x = x1x2 · · ·xn and yj = yj1yj2 · · · yjm, where xi, yji 2 ⌃q . Given two strings x,y 2 ⌃⇤
q
, xy

denotes their concatenation and xm denotes the concatenation of m copies of x. We use |x| to denote the length of a word

x 2 ⌃⇤
q
. For four words x,u,v,w 2 ⌃⇤

q
, if x can be expressed as x = uvw, then v is a substring of x. Furthermore, u is a

prefix of x and w is a suffix of x. For a string x, two substrings u and v are said to overlap if we can write x = abcde,

where a, b, c,d, e are nonempty, u = bc, and v = cd.

Given a word x 2 ⌃⇤
q
, a tandem duplication (TD) of length k copies a substring of length k and inserts it after the original.

This is referred to as a k-TD. For example, a 2-TD may generate abcbcde from abcde. Here, bcbc is called a (tandem) repeat

of length 2. Our focus in this paper is on TDs of length bounded by k, denoted k-TD, for k = 3. For example, given

x = 1201210 we may obtain via 3-TDs

x =1201210 ! 1201201210 !

120120201210 ! 1201202201210 = x0,
(1)

where the underlined substrings are the inserted copies. We say that x0 is a descendant of x, i.e., a sequence resulting from

x through a sequence of duplications.

Let Irrk(n) ✓ ⌃n

q
denote the set of irreducible strings (more precisely, k-irreducible strings) of length n, i.e., strings

without repeats of length at most k. We use Irrk(⇤) denotes k-irreducible strings of arbitrary lengths. Furthermore, let

D⇤
k

(x) denote the descendant cone of x, containing all the descendants of x after an arbitrary number of k-TDs.

Given a string x0, let

Rk(x
0) = {x 2 Irrk(⇤)|x0 2 D⇤

k
(x)}

denote the set of duplication roots of x0, i.e., irreducible sequences of which x0 is a descendant. Note that x is the root of

itself if x 2 Irrk(⇤). For a set S of strings, Rk(S) is the set of strings each of which is a root of at least one string in S.

If Rk(·) is a singleton, we may view it as a string rather than a set. A root can be obtained from x by repeatedly replacing

all repeats of the form aa with a, where |a|  k (each such operation is called a deduplication). For 3-TDs, the duplication

root is unique [3], i.e., |R3(·)| = 1. If x0 is a descendant of x, we have R3(x) = R3(x0). For k = 3, we may drop the

 3 subscript from the notation and write D⇤(·), R(·), Irr(·).

We also consider substitution errors, although our attention is limited to at most one error of this kind. Continuing the

example given in (1), a substitution occurring in the descendant x0 of x may result in x00:

x0 = 1201202201210 ! x00 = 1201202101210, (2)

where the substituted symbol is underlined.

We denote by Dt,p

k
(x) the set of strings that can be obtained from x through t TDs of length at most k and p substitutions,

in any order. We note that substitutions are unrestricted in the sense that they may occur in any position in the string, unlike

the noisy duplication setting, where they are restricted to the inserted copies [6], [20]. Replacing t with ⇤ denotes any number
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of k-TDs and replacing p with  p denotes at most p substitutions. We again drop  k from the notation when k = 3. In

the example given in (1) and (2), we have x00 2 D⇤,1(x), denoting that x00 is a descendant generated from x after an arbitrary

number of 3-TDs and a substitution error.

III. CHANNELS WITH MANY 3-TDS

AND ONE SUBSTITUTION ERROR

In this section, we study channels that alter the input string by applying an arbitrary number of duplication errors and at

most one substitution error, where the substitution may occur at any time in the sequence of errors. We will first study the

conditions a code must satisfy to be able to correct such errors. Then, we will investigate the effect of such channels on the

duplication root of sequences, which is an important aspect of designing our error-correcting codes.

A code C is able to correct an arbitrary number of 3-TDs and a substitution if and only if for any two distinct codewords

c1, c2 2 C, we have

D⇤,1(c1) \D⇤,1(c2) = ?.

To satisfy this condition, it is sufficient to have

R(D⇤,1(c1)) \R(D⇤,1(c2)) = ?. (3)

Condition (3) implies that for distinct codewords c1 and c2, R(c1) 6= R(c2). Since both R(c1) and R(c2) are singleton, this

latter condition is in fact sufficient for correcting only 3-TDs since this type of error does not alter the duplication root. For

correcting only 3-TDs, defining the code as the set of irreducible strings of a given length leads to asymptotically optimal

codes [3], [18]. The decoding process is simply finding the root of the received word.

We take a similar approach to correct many 3-TDs and a substitution. More specifically, the proposed code C is a subset

of 3-irreducible strings, i.e., R(c) = c for c 2 C. To recover c from the received word y, we find R(y) and from that

recover R(c) = c, as will be discussed.

We start by studying the effect of 3-TDs and one substitution on the root of a string. Specifically, for strings x and

x00 2 D⇤,1(x), it is of interest to determine how R(x00) differs from R(x). We either have x00 2 D⇤(x), i.e., x00 suffers only

duplications, or x00 2 D⇤,1(x). In the former case R(x00) = R(x). Hence, below we consider only x00 2 D⇤,1(x). Note that

duplications that occur after the substitution do not affect the root and so in our analysis we may assume that the substitution

is the last error. We start by a providing a useful definition and an auxiliary lemma and then a lemma that considers a simple

case.

Let s and s̄ be strings of length n, and let A be the set of symbols in s and Ā the set of symbols in s̄. We say that s

dominates s̄ if there exists a function f : A ! Ā such that s̄ = f(s), where f(s) = f(s1) · · · f(sn). For example, 0102

dominates 1212 (using the mapping f(0) = 1, f(1) = 2, f(2) = 2) but 0102 does not dominate 0010. The string 012 · · · k

dominates any string of length k + 1.

The following lemma helps reduce the number of cases we need to consider using the dominance relationship defined above.
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Figure 1: Finite automaton for the regular language D⇤(012) based on [17].
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Figure 2: Finite automaton for the regular language D⇤(01234) based on [17].

Lemma 1. Suppose s dominates s̄. The following hold:

i) Suppose we apply the same duplication in both s and s̄ (that is, in the same position and with the same length). Let the

resulting strings be s0 and s̄0, respectively. Then s0 dominates s̄0.

ii) If a deduplication is possible in s, a deduplication in the same position and with the same length is possible in s̄. Let the

result of applying this deduplication to s and s̄ be denoted by s0 and s̄0, respectively. Then s0 dominates s̄0.

iii) Let s̄0 be obtained from s̄ via a substitution in position i and let s0 be obtained from s by substituting the symbol in

position i with a symbol x not present in s. Then, s0 dominates s̄0.

iv) We have |R(s̄)|  |R(s)|.

Before proving the lemma, we provide an example for each statement below, where duplicated, deduplicated, and substituted

symbols are underlined. For i) consider

s = 0102 ! s0 = 010102
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s̄ = 0101 ! s̄0 = 010101,

for ii) consider

s = 01021021 ! s0 = 01021

s̄ = 01011011 ! s̄0 = 01011,

for iii) consider

s = 01021021 ! s0 = 01023021

s̄ = 01011011 ! s̄0 = 01010011,

and for iv) consider

s = 01021021 ! 01021 = R(s)

s̄ = 01011011 ! 01011 ! 011 ! 01 = R(s̄).

Proof: Let f be a function that can show s dominates s̄. i) For the first statement, the same mapping f also shows that

s0 dominates s̄0. ii) For the second statement, consider a repeat aa in s. Then the repeat f(a)f(a) is present in s̄ in the same

position. So the deduplication is possible in s̄. The same mapping f proves that s0 dominates s̄0. iii) For the third statement,

let the substitution in s̄ alter the symbol in position i to some symbol a. If we extend f by mapping x to a, then f proves

that s0 dominates s̄0. iv) From ii), any sequence of deduplications applied to s can also be applied to s̄ = f(s). In particular,

the sequence of deduplications that takes s to its root R(s) takes s̄ = f(s) to f(R(s)). The root of s̄ can be obtained by

removing any remaining repeats in f(R(s)) (recall that the root is unique so all sequences of deduplications must lead to the

same sequence). Hence |R(s̄)|  |f(R(s))|. Noting |f(R(s))| = |R(s)| completes the proof.

Lemma 2. For any alphabet ⌃q ,

max
x2⌃3

q

max
x002D⇤,1(x)

|R(x00)| = 13, (4)

max
x2⌃5

q

max
x002D⇤,1(x)

|R(x00)|  17. (5)

Proof: For the first statement, it suffices to consider only x = 012 and assume that the substitution that leads to x00

replaces a symbol in x with some symbol other than 0, 1, and 2, e.g., 3. To see this, consider any string x̄ of length 3 over

any alphabet. The string x̄ is dominated by x. Now consider any x̄00 2 D⇤,1(x̄). There is a sequence of “errors” consisting of

duplications, a substitution, and more duplications that transforms x̄ to x̄00. By Lemma 1, i) and iii), there is a corresponding

sequence of errors, consisting of duplications, a substitution, and duplications, that when applied to x will result in x00, where

x00 dominates x̄00 (the substitution in the sequence of errors for x substitutes the existing symbol with a symbol not in the set

{0, 1, 2}). Then by Lemma 1, iv), we have |R(x̄00)|  |R(x00)|. Since this is true for any choice of x̄ and any x̄00 2 D⇤,1(x̄),
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Table I: Paths representing irreducible strings starting from and ending at specific states.

State Irreducible paths
from ‘Start’ to state

Irreducible paths
from State to S3

S1 0 012, 1012, 12, 12012,
S2 01, 01201 012,1012, 12, 12012, 2, 2012, 212,

212012
S3 012 012, 02012, 12, 12012, 2, 2012, 212,

212012
S4 0120 012, 02012, 1012, 12, 12012, 2012
T2 010, 012010 012, 1012,12, 12012
T3 0121 12, 12012, 2, 2012, 212, 212012
T4 01202 012, 02012, 2012

it suffices to find

max
x002D⇤,1(012)

|R(x00)|,

where the substitution resulting in x00 replaces the existing symbol with a symbol not present in x = 012. Henceforth, we

assume x = 012.

As shown in [17], D⇤(x) is a regular language whose words can be described as paths from ‘Start’ to S3 in the finite

automaton given in Figure 1, where the word associated with each path is the sequence of the edge labels. Let x0 2 D⇤(x)

and x00 2 D0,1(x0). Assume x0 = uwz and x00 = uŵz, where u, z are strings and w and ŵ 62 {0, 1, 2} are distinct symbols.

The string u represents a path from ‘Start’ to some state U and the string z represents a path from some state Z to S3 in the

automaton, where there is an edge with label w from U to Z.

Since R(x00) = R(R(u)ŵR(z)), we have |R(x00)|  |R(u)| + 1 + |R(z)| (recall that R(s) is a singleton for a string s).

The maximum value for |R(u)| is the length of some path from ‘Start’ to U such that the corresponding sequence does not

have any repeats (henceforth, called an irreducible path). All such paths/sequences are listed in the second column of Table I

for all choices of U . Similarly, the maximum value for |R(z)| is the length of some irreducible path from Z to S3; all such

possibilities are listed in the third column of Table I. An inspection of Table I shows that choosing U = T2 and Z = S2 leads

to the largest value of |R(u)|+ 1 + |R(z)|, namely 6 + 1 + 6 = 13. We note that the specific sequence achieving this length

is x00 = 0120103212012, which can be obtained via the sequence x ! 012 012 012 ! 012 01012 012 ! 012 0101212 012 !

0120103212012 = x00 with a substitution 1 ! 3 in the last step, where we have combined non-overlapping duplications into

a single step.

Let us now prove the second statement. Again we need only consider x = 01234, for which D⇤(x) is the regular language

whose automaton is shown in Figure 2. In a similar manner to the proof of the previous part, we can show that the length of

the longest irreducible path from ‘Start’ to any state in the automaton is at most 8 and the length of the longest irreducible

path from any state to S9 is also at most 8. Hence, |R(x00)|  8 + 1 + 8 = 17, completing the proof.

We now consider changes to the roots of arbitrary strings when passed through a channel with arbitrarily many 3-TDs

and one substitution. The next lemma is used in the main result of this section, Theorem 5, which shows that even though a

substituted symbol may be duplicated many times, the effect of a substitution on the root is bounded.
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Lemma 3. Let x be any string of length at least 5 and x0 2 D⇤(x). For any decomposition of x as

x = r ab t de s,

for a, b, d, e 2 ⌃q and r, t, s 2 ⌃⇤
q
, with t nonempty, there is a decomposition of x0 as

x0 = u ab w de v

such that u,w,v 2 ⌃⇤
q
, uab 2 D⇤(rab), abwde 2 D⇤(abtde), and dev 2 D⇤(des).

Proof: If x = x0, the claim is true since we may choose u = r,w = t,v = s. It suffices to consider the case in which

x0 is obtained from x via a single duplication. The case of more duplications can be proved inductively.

First suppose the length of the duplication transforming x to x0 is 1. If this duplication occurs in r, we choose u to be the

descendant of r and let w = t and v = s, satisfying the claim. Duplication of a single symbol in t or s is handled similarly.

If a is duplicated, we let u = ra, w = t, v = s. If b is duplicated, we let u = r, w = bt, v = s. The cases for d and e are

similar.

Second, consider a duplication of length 2 or 3. Such a duplication is fully contained in rab, abtde, or des. A duplication of

length 2 or 3 applied to a string z does not alter the first two and the last two symbols of z. So, for example, if the duplication

occurs in rab, then we can choose u such that uab 2 D1(rab) and let w = t and v = s. The cases of duplications contained

in the other strings are similar.

We now provide an example in which we illustrate how the root of a string can be altered by several duplications and one

substitution.

Example 4. Fix ⌃4 = {0, 1, 2, 3} as the alphabet. In the following examples, x is an irreducible string, x0 2 D⇤(x), and

x00 2 D0,1(x0). We compare R(x) = x with R(x00). In particular, we will decompose R(x) and R(x00) as R(x) = ↵�� and

R(x00) = ↵�0�. In other words, R(x00) can be obtained from R(x) by deleting � and inserting �0.

• Let x = 012302, x0 = 011201201230202, and x00 = 011201301230202, where the underlined symbols result from

duplication and the bold symbol from substitution. Then R(x00) = 012013012302 and the change from R(x) to R(x00)

can be viewed as

R(x) = 012|{z}
↵

302|{z}
�

! R(x00) = 012|{z}
↵

013012| {z }
�0

302|{z}
�

,

with � = ⇤.

• Let x = 13203103, x0 = 1313213203103103, and x00 = 1313213103103103. Then R(x00) = 13213103 and the change

from R(x) to R(x00) can be viewed as

R(x) = 132|{z}
↵

0|{z}
�

3103|{z}
�

! R(x00) = 132|{z}
↵

1|{z}
�0

3103|{z}
�

.

• Let x = 012010321201230, x0 = 01201201032120201201230, and x00 = 01201201012120201201230. Then R(x00) =
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01230 and the change from R(x) to R(x00) can be viewed as

R(x) = 012|{z}
↵

0103212012| {z }
�

30|{z}
�

! R(x00) = 012|{z}
↵

30|{z}
�

, (6)

with �0 = ⇤.

Let L be the smallest integer, if it exists, such that for any alphabet ⌃q , any x 2 ⌃⇤
q
, and any x00 2 D⇤,1(x), we can

obtain R(x00) from R(x) by deleting a substring of length at most L and inserting a substring of length at most L in the same

position. The example given in (6) shows that L, if it exists, satisfies L � 10. We note however that the definition does not

guarantee that L exists as we may be able to produce examples in which the length of the deleted or the inserted substring

is arbitrarily long. The next theorem shows that such examples cannot be constructed by providing an explicit upper bound

on L.

Theorem 5. L exists (i.e., it is finite). Moreover, L  17.

Proof: We may assume x is irreducible. If it is not, let x0 = R(x) so that x00 2 D⇤,1(x) ✓ D⇤,1(x0). If the statement

of the theorem holds for x0, it also holds for x since R(x) = R(x0).

We will find ↵,�,�0,� 2 ⌃⇤
q

with R(x) = ↵�� and R(x00) = ↵�0� such that |�0|  17. By symmetry, it suffices to

prove |�0|  17 for all irreducible x. To see this symmetry, note that ↵�0� is obtained from ↵�� by applying, in order,

duplications, a single substitution, more duplications, and finally removing all repeats (performing all possible deduplications).

Recall that for 3-TDs, the root is unique and regardless of the order in which deduplications are applied, we will arrive at

the same root. In other words, applying a sequence of duplications to a string s and then removing all repeats is equivalent

to removing all repeats from s. Hence, we may instead assume that the process transforming ↵�� to ↵�0� is as follows:

duplications, substitution, deduplications. Since this process is reversible, general statements that hold for �0 also hold for �.

Let x0 2 D⇤(x) be obtained from x through duplications and x00 be obtained from x0 through a substitution. We assume

that x = rabcdes, where r, s 2 ⌃⇤
q

and a, b, c, d, e 2 ⌃q , such that the substituted symbol in x0 is a copy of c. Note that if

|x| < 5 or if a copy of one of its first two symbols or its last two symbols are substituted, then we can no longer write x as

described. To avoid considering these cases separately, we may append two dummy symbols to the beginning of x and two

dummy symbols to the end of x, where the four dummy symbols are distinct and do not belong to ⌃q , and prove the result

for this new string. Since these dummy symbols do not participate in any duplication, substitution, or deduplication events,

the proof is also valid for the original x.

With the above assumption and based on Lemma 3, we can write

x = r ab c de s

x0 = u ab w de v 2 D⇤(x),

x00 = u ab z de v 2 D0,1(x0),

(7)

where uab 2 D⇤(rab), abwde 2 D⇤(abcde), dev 2 D⇤(des), and z is obtained from w by substituting an occurrence

of c. From (7), R(x00) = R(rR(abzde)s), where R(abzde) starts with ab and ends with de (which may fully or partially
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overlap). The outer R in R(rR(abzde)s) may remove some symbols at the end of r, beginning and end of R(abzde), and

the beginning of s, leading to ↵�0�, where ↵ is a prefix of r, �0 is a substring of R(abzde), and � is a suffix of s. Hence,

|�0|  |R(abzde)|. But abzde 2 D⇤,1(abcde) and thus by Lemma 2, |R(abzde)|  17, completing the proof.

IV. ERROR-CORRECTING CODES

Having studied how duplication roots are affected by tandem duplication and substitution errors, in Subsection IV-A, we

construct codes that can correct such errors. In Subsection IV-B, we show that the same codes can correct duplication and edit

errors. We will also determine the rate of these codes and compare it with the rate of codes that only correct duplications,

which provides an upper bound.

A. Code constructions for correcting duplications and a substitution error

As noted in the previous section, the effect of a substitution error on the root of the stored codeword is local in the sense

that a substring of bounded length may be deleted and another substring of bounded length may be inserted in its position. A

natural approach to correcting such errors is to divide the codewords into blocks such that this alteration can affect a limited

number of blocks. In particular, we divide the string into message blocks that are separated by marker blocks known to the

decoder. We start with an auxiliary construction.

Construction 6. Let l,m,N be positive integers with m > l and � 2 Irr(l). The code C� of length n = N(m+ l) � l over

⌃q consists of irreducible strings x obtained by alternating between message blocks of length m and copies of the marker

sequence �, i.e.,

x = B1�B2� · · ·�BN ,

such that x 2 Irr(N(m+ l)� l), Bi 2 Irr(m) ✓ ⌃m

q
, i 2 [N ], and there are exactly two occurrences of � in �Bi�, for all

i 2 [N ]. (Thus, there are precisely N � 1 occurrences of � in x.)

We remark that for our purposes, we can relax the condition on �Bi� for i = 1, N . Specifically, it suffices to have exactly

one occurrence of � in B1� and one occurrence of � in �BN . For simplicity however, we do not use these relaxed conditions.

Example 7. Let m = 6, N = 5, and � = 01231 with l = 5. Then the code C� in Construction 6 will contain the codeword

x = 01201301231030121012312023120123130320301231203023,

where the message blocks B1 = 012013, B2 = 030121, B3 = 202312, B4 = 303203, B5 = 203023 are marked in red.

Furthermore, �Bi� 2 Irr(16) for i 2 [5], which, as will be shown in Lemma 9 below, implies that the codeword x 2 ⌃50
4 is

irreducible.

Given an input x with N message blocks, let y be the root of the output after duplications and at most one substitution.

We define a block in y as a maximal substring that does not overlap with any separator sequence �. Note that a block in y

may or may not be an error-free message block from x.
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With Construction 6 in hand, in the next theorem, we show that the effect of one substitution and many tandem duplications

is limited to a small number of message blocks. We note that L appearing in the theorem below was defined before Theorem 5

and satisfies L  17.

Theorem 8. Let C� be the code defined in Construction 6. If m > L, then there exists a decoder D� that, for any x 2 C�

and y 2 R(D⇤,1(x)), outputs z = D�(y) such that, relative to x, either two of the message blocks Bi are substituted in z

or four of them are erased.

Proof: Let x = ↵�� and y = ↵�0�, where by Theorem 5, |�|, |�0|  L. To avoid a separate treatment for blocks

B1 and BN , the decoder appends � to the beginning and the end of y and assumes that the codewords are of the form

�B1� · · ·�BN�. The decoder considers two cases depending on whether the marker sequences � are in the same positions in

y as in the codewords in C� . If the markers are in the same positions, as shown in Figure 3, then |x| = |y|, and consequently,

|�| = |�0|  L. Since L < m = |Bi|, at most two (adjacent) blocks Bi are affected by substituting � by �0 and thus z = y

differs from x in at most two block.

On the other hand, if the markers are in different positions in y compared to the codewords in C� , the decoder uses the

location of the markers to identify the position of the message blocks that may be affected and erases them, as described

below. By the definition of blocks in y, since the markers are in different positions in x and y, there is at least one block B

in y whose length differs from m. Hence, y has a substring u of length m+ 2l that starts with � and contains part or all of

B but does not end with �. Two examples where such a situation may arise are shown in Figure 4. On the left, |�| = |�0|

and a marker is absent from y due to substituting � with �. On the right, � and �0 have different lengths, and this causes

the markers to move.

Let � = |x| � |y| = |�| � |�0| and �+ = max(0, �). Note that |�0| = |�| � �  L � �. Furthermore, |�0|  L and so

|�0|  min(L,L � �) = L � �+. Let y0 be obtained by removing u along with L � �+ � 1 elements from each of its sides

from y. This removes �0 from y. More formally, we claim y0 can be obtained via a deletion from x. First, suppose |�0| = 0.

Then y = ↵�. Note that u is not a substring of x since every substring of x that has length m + 2l and starts with � also

ends with �. Hence, it must overlap with both ↵ and �. After deleting u from y, we obtain a string y0 = ↵0�0 such that

↵0 is a prefix of ↵ and �0 is a suffix of �, proving the claim. Next, suppose that |�0| > 0 and recall that y = ↵�0�. Since

u is not a substring of x, at least one of the following holds: i) u overlaps with both ↵ and �0 or ii) u overlaps with both

�0 and �. Case i) is shown in Figure 4. In either case, the substring of y consisting of u and the L � �+ � 1 elements on

each side of y contains �0, proving the claim. Hence, y0 is a sequence that relative to x suffers a deletion of length at most

m + 2l + 2L � 2�+ � 2 + |�| � |�0| < 3m + 2l from a known position. The deletion affects at most 4 message blocks and

since its location is known, the decoder can mark these message blocks as erased.

In Construction 6, the constraint that x must be irreducible creates interdependence between the message blocks, making the

code more complex. The following lemma allows us to treat each message block independently provided that � is sufficiently

long.



11

Figure 3: If marker sequences, shown as gray, are in the same positions in the codeword x and the retrieved string y, then �
and �0 have the same length and at most two of the message blocks are affected by the errors, as discussed in the proof of
Theorem 8.

Figure 4: If marker sequences, shown as gray, are in different positions in the codeword x and the retrieved string y, then
a substring u is identified and then expanded to ensure it contains �0. Those blocks in y that intersect with this expanded
substring are marked as erasures while other blocks are error-free message blocks, as described in the proof of Theorem 8).

Lemma 9. Let x be as defined in Construction 6 and assume l � 5. The condition x 2 Irr(N(m+ l)� l) is satisfied if

�Bi� 2 Irr(m+ 2l), for all i 2 [N ]. (8)

Proof: Suppose that x has a repeat aa, with |a|  3. Since |aa|  6 and |�| � 5, there is no i such that the repeat lies

in Bi�Bi+1 and overlaps both Bi and Bi+1. So it must be fully contained in B1�, �BN , or �Bi� for some 2  i  N � 1,

contradicting assumption (8).

We now present a code based on Construction 6 and prove that it can correct any number of tandem duplications and one

substitution error.

Construction 10. Let l,m be positive integers with m > l � 5, and � 2 Irr(l). Furthermore, let Bm

� denote the set of

sequences B such that �B� 2 Irr(m + 2l) has exactly two occurrences of �, and M = M (m)
� = |Bm

� |. Finally, let t be a

positive integer such that 2t  M and ⇣ : F2t ! Bm

� be an injective mapping. We define CMDS as

CMDS = {⇣(c1)�⇣(c2)� · · ·�⇣(cN ) :c 2 MDS(N,N � 4, 5)},

where MDS(N,N � 4, 5) denotes an MDS code over F2t of length N = 2t � 1, dimension N � 4, and Hamming distance

dH = 5.

Note that the mapping ⇣ exists because |F2t |  |Bm

� | by the choice of t. For example, we can sort the elements of F2t and

Bm

� lexicographically and map the ith element of F2t to the ith element of Bm

� .

Theorem 11. If m > L, then the error-correcting code CMDS in Construction 10 can correct any number of 3-TDs and at

most one substitution error.
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(a) (b)

Figure 5: The duplication-substitution channel along with the decoder (a) and an equivalent representation of the end-to-end
system (b).

Proof: Let the stored codeword be x = B1� · · ·�BN 2 CMDS , where Bi = ⇣(ci) for i 2 [N ] and c 2 C, with C

denoting an MDS(N,N � 4, 5) code. Based on the definitions of ⇣ and the set Bm

� in Construction 10, the ith message block

Bi = ⇣(ci) satisfies �Bi� 2 Irr(m+2l). Then, by Lemma 9, x 2 Irr(N(m+ l)� l) and so x 2 C� . Therefore, CMDS ✓ C� .

Suppose the retrieved word is y. By Theorem 8, D�(y) suffers either at most two substitutions or at most four erasures of

message blocks. Suppose the message block Bi is substituted by another string v of length m. If ⇣�1(v) exists, this translates

to a substitution of ci. If not, we define ⇣�1(Bi) as an arbitrary element of F2t , again leading to a possible substitution of

ci with another symbol. To decode, we can use the MDS decoder on ⇣�1(D�(y)), which relative to c suffers either  2

substitutions or  4 erasures. Given that the minimum Hamming distance of the MDS code is 5, the decoder can successfully

recover c.

B. Extension to edit errors

In this subsection, we extend Theorem 11 to include insertion and deletion errors in addition to substitution errors. We do so

by showing an insertion can be viewed as a duplication plus a substitution and a deletion as a substitution plus a deduplication.

The duplication-substitution channel discussed so far can be viewed as shown in Figure 5a, where in a pre-decoding step, the

root of the retrieved string is found and then passed to the decoder. Recall that for 3-TDs, applying a sequence of duplications

to a string s and then removing all repeats is equivalent to removing all repeats from s. Hence, The process shown in Figure 5a

is equivalent to the one shown in Figure 5b. The same equivalence holds if we replace the block representing a substitution

error with a block representing an edit error. We can now prove the following corollary to Theorem 11.

Corollary 12. If m > L, then the error-correcting code CMDS in Construction 10 can correct any number of 3-TDs and at

most one edit error.

Proof: Suppose that c 2 CMDS suffers a sequence of errors consisting of duplications, an edit, and more duplications.

Then all repeats are removed from the resulting string. This process is equivalent to applying the first set of duplications and

the edit and then removing all the repeats. Denote this sequence of operations applied to c by S and the final result by S(c).

We show that we can find a sequence S0 consisting of duplications, at most one substitution, and removal of all repeats, such

that S(c) = S0(c). If the edit in S is a substitution, then we let S0 = S. If it is an insertion or a deletion, we again start by

setting S0 = S and then modify S0 as follows: i) If the edit is an insertion, we replace it in S0 by a duplication and, if needed, a

substitution. Namely, we duplicate the symbol before the insertion and then substitute the copy as needed. For example, if in S

we have abc
ins��! abxc, we replace this step by abc

dup��! abbc
sub��! abxc, where ins stands for insertion, dup for duplication,

and sub for substitution. The substitution is not necessary if x = b. ii) If the edit is a deletion, we replace it by a deduplication
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that is preceded by a substitution if needed. Namely, we substitute the symbol that is deleted in S to be equal to the previous

symbol and then deduplicate it. For example, if in S we have abc
del��! ac, we replace this step by abc

sub��! aac
dedup����! ac in

S0, where del stands for deletion and dedup for deduplication. If b = a, the substitution is not needed. Now, S0 is a sequence

consisting of duplications, at most one substitution, and then removal of all repeats, and furthermore S(c) = S0(c). From

Theorem 11 and the above discussion about the equivalence of Figures 5a and 5a, we find that the decoder can produce c

given S0(c).

C. Construction of message blocks

In this subsection, we study the set Bm

� of valid message blocks of length m with � as the marker. Since in Construction 10,

the markers � do not contribute to the size of the code, to maximize the code rate, we set l = |�| = 5, i.e., � 2 Irr(5).

For a given �, we need to find the set Bm

� . The first step in this direction is finding all irreducible sequences of length

m+ 2l = m+ 10. We will then identify those that start and end with � but contain no other �s.

As shown in [3], the set of 3-irreducible strings over an alphabet of size q is a regular language whose graph Gq = (Vq, ⇠q)

is a subgraph of the De Bruijn graph. The vertex set Vq consists of 5-tuples a1a2a3a4a5 that do not have any repeats (of

length at most 2). There is an edge from a1a2a3a4a5 ! a2a3a4a5a6 if a1a2a3a4a5a6 belongs to Irr(6). The label for this

edge is a6. The label for a path is the 5-tuple representing its starting vertex concatenated with the labels of the subsequent

edges. In this way, the label of a path in this graph is an irreducible sequence and each irreducible sequence is the label of a

unique path in the graph. The graph Gq , when q = 3, can be found in [3, Fig. 1].

The following theorem characterizes the set Bm

� and will be used in the next section to find the size of the code.

Theorem 13. Over an alphabet of size q and for � 2 Irr(5), there is a one-to-one correspondence between B 2 Bm

� and

paths of length m+ 5 in Gq that start and end in � but do not visit � in their interiors. Specifically, each sequence B 2 Bm

�

corresponds to the path with the label �B�.

Proof: Consider a path p = v1v2 · · ·vk+1 where vi are vertices of Gq and k is the length of the path. Denote the label of

this path by s = s1s2 · · · sk+5. It can be shown by induction on k that vi = sisi+1si+2si+3si+4. Hence, the label of a path of

length m+5 that starts and ends in � but does not visit � otherwise is an irreducible sequence with exactly two occurrences

of � and is of the form �B� where B 2 Bm

� . Conversely, suppose B 2 Bm

� . Then �B� is an irreducible string of length

m+ 10 and thus the label of a unique path of length m+ 5 in Gq . This path starts and ends in �. But it does not visit � in

its interior since that would imply there are more than two occurrences of � in �B�.

D. Code rate

We now turn to find the rate of the code introduced in this section. For a code C of length n and size |C|, the rate is defined

as R(C) = 1
n
log |C|. For the code of Construction 10,

R(CMDS) =
N � 4

Nm+ (N � 1)l
log(N + 1), (9)
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where N depends on the choice of � 2 Irr(5). More specifically, N  2blogM
(m)
� c� 1. Choosing the largest permissible value

for N implies that N � (M (m)
� � 1)/2 and

R(CMDS) �
1� 4/N

m+ l
log(N + 1)

� 1

m+ l

✓
1� 8

M (m)
� � 1

◆
(logM (m)

� � 1).
(10)

If we let m and M (m)
� grow large, the rate becomes

R(CMDS) =
1

m
logM (m)

� (1 + o(1)). (11)

For a given alphabet ⌃q , let A denote the adjacency matrix of Gq , where the rows and columns of A are indexed by

v 2 Vq ✓ ⌃5
q
. Furthermore, let A(v) be obtained by deleting the row and column corresponding to v from A and c(v) (resp.

rT(v)) be the column (row) of A corresponding to v with the element corresponding to v removed. Recall that M (m)
� = |Bm

� |

and l = 5. From Theorem 13, M (m)
� equals the number of paths of length m+ l in Gq that start and end with � but do not

visit � in their interiors. The number of paths of length m + l � 2 from vertex u to vertex v in Gq is given by the (u,v)

element of
�
A(�)

�m+l�2. Noting that the paths start and end �, we have

M (m)
� = rT(�)

�
A(�)

�m+l�2
c(�), (12)

where (·)T denotes matrix transpose. Here, multiplying by rT(�) from the left and c(�) from the right allow us to sum over

elements (u,v) of
�
A(�)

�m+l�2 such that there is an edge from � to u and an edge from v to �. As m ! 1, if A(�) is

primitive [23], we have
1

m+ l
logM (m)

� ! log(��), (13)

where �� is the largest eigenvalue of A(�). Maximizing over � 2 Vq yields the largest value for M (m)
� in (12) and (13),

and thus the highest code rate. This is possible to do computationally for small values of q and, in particular, for q = 4,

which corresponds to data storage in DNA. In this case, A(�) is primitive for all choices of � 2 Irr(5) and the largest

eigenvalue is obtained for � = 01201 (and strings obtained from 01201 by relabeling the alphabet symbols). For this �, we

find �� = 2.6534, leading to an asymptotic code rate of 1.4078 bits/symbol.

It was shown in [3] that the set of  3-irreducible strings of length n is a code correcting any number of 3-TDs. In [18], it

was shown that the rate of this code, 1
n
log | Irr(n)|, is asymptotically optimal. It is easy to see that 1

n
log | Irr(n)|  log(q�1)

as no symbol can be repeated. For the case of q = 4, we have 1
n
log | Irr(n)| = log 2.6590 = 1.4109 bits/symbol. Therefore,

the cost of protection against a single edit in our construction is only 0.003 bits/symbol. It should be noted, however, that here

we have assumed m is large, thus ignoring the overhead from the MDS code and marker strings.

In addition to the computational rate obtained above for the important case of q = 4, we will provide analytical bounds on

the code rate. An important quantity affecting the rate of the code is the number of outgoing edges from each vertex in Gq

that do not lead to �. The asymptotic rate of the code is bounded from below by the number of such edges. The next lemma,

which establishes the number of outgoing edges for each vertex, will be useful in identifying an appropriate choice of �, and
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the following theorem provides a lower bound for M (m)
� for such a choice.

Lemma 14. For q > 2, a vertex v = a1a2a3a4a5 in Gq has q � 2 outgoing edges if a3 = a5 or a1a2 = a4a5. Otherwise, it

has q � 1 outgoing edges.

Proof: Consider v = a1a2a3a4a5 2 Irr(5), and w = a2a3a4a5a6 2 Irr(5). There is an edge from v to w if

a1a2a3a4a5a6 2 Irr(6). The number of outgoing edges from v equals the number of possible values for a6 such that this

condition is satisfied. Clearly, a6 6= a5. Furthermore, if a3 = a5, then a6 6= a4 and if a1a2 = a4a5, then a6 6= a3.

However, a3 = a5 and a1a2 = a4a5 cannot simultaneously hold, since that would imply a2 = a3, contradicting v 2 Irr(5).

Hence, if either a3 = a5 or a1a2 = a4a5 holds, then there are q � 2 outgoing edges and if neither holds, there are q � 1

outgoing edges.

Since � must also be excluded, it may seem that the number of outgoing edges may be as low as q � 3. But we show in

the next theorem that with an appropriate choice of �, we can have q � 2 as the lower bound.

Theorem 15. Over an alphabet of size q > 2, there exists � 2 Irr(5) such that M (m)
� � (q � 2)m�cq , where cq is a constant

independent from m.

Proof: Recall that M (m)
� is the number of paths of length m+5 in Gq that start and end in � but do not visit � otherwise.

Since the path must return to �, we will show below that for an appropriate choice of �, there is a path in Gq from any vertex

to �, and define cq such that the length of this path is at most cq + 5. Hence M (m)
� is at least the number of paths of length

m� cq from � to another vertex that do not pass through �.

As shown in Lemma 14, each vertex in Gq has at least q � 2 outgoing edges. We select � such that this still holds even

if edges leading to � are excluded. We do so by ensuring that each vertex v with an outgoing edge to � has q � 1 outgoing

edges. Let v = a1a2a3a4a5 and � = a2a3a4a5a6. Based on Lemma 14, if a2 6= a5 and a3 6= a5, then v has q � 1 outgoing

edges. In particular, we can choose � = 01020 since q � 3. With this choice, M (m)
� � (q � 2)m�cq .

To complete the proof, we need to show that there is a path in Gq from any vertex to � = 01020. For q = 3, 4, 5, we have

checked this claim computationally by explicitly forming Gq . Let us then suppose q � 6, where the alphabet ⌃q contains

{3, 4, 5}. Let v = a1 · · · a5 be some vertex in Gq . There is an edge from v to a2 · · · a6 for some a6 2 {3, 4, 5} since, from

Lemma 14, at most two elements of ⌃q are not permissible. Continuing in similar fashion, in 5 steps, we can go from v to

some vertex w = b1 · · · b5 whose elements bi belong to {3, 4, 5}. We can then reach � in 5 additional steps via the path

w ! b2 · · · b4b50 ! b3b4b501 ! · · · ! �, proving the claim. In particular, for q � 6, we have cq  5.

We can now find a lower bound on the asymptotic rate, based on (11) and the proceeding theorem:

Corollary 16. For q > 2, as m ! 1, R(CMDS) � log(q � 2)(1 + o(1)).

We note that this gives the lower bound of 1 bit/symbol for q = 4, which we can compare to the upper bound of log(q�1) =

1.585 for codes correcting only duplications and to the rate obtained computationally following (13), which was 1.4078

bits/symbol.
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V. CONCLUSION

This paper considered constructing error-correcting codes for channels with many short duplications and one edit error.

Because the channel allows an arbitrary number of duplications, a single edit may affect an unbounded segment of the output.

For example, an inserted symbol may appear many times in different positions. However, with an appropriate construction of

message blocks and processing of the output strings, the edit error leads to the erasure of at most 4 message blocks or substitution

of at most 2. Therefore, a maximum distance separable (MDS) code with minimum Hamming distance 5 over message blocks

can correct these errors. However, there is an additional requirement. Namely, the codewords must be irreducible. Separating

the message blocks with a marker sequence � of length at least 5 allows us to ensure that the codewords are repeat-free by

guaranteeing that each message block is irreducible. The rate of the code is determined by the number of such blocks, which

in turn depends on the marker sequence �. We showed that permitted message blocks are paths in a modified De Bruijn graph

and that choosing � appropriately allows each vertex to have at least q � 2 outgoing edges, thus guaranteeing an asymptotic

rate of at least log(q � 2). When q = 4, the case corresponding to DNA storage, a computational bound for the code rate

shows that the asymptotic rate is only 0.003 bits/symbol smaller than that of the code that corrects short duplications but no

edits.

The problem of correcting more edit errors is also of interest but left to future work. Another, possibly more challenging

problem is correcting edits and duplications of length bounded by an arbitrary constant k. If k is larger than 3, the duplication

root is no longer unique [3], which complicates the code design. Furthermore, a key feature of duplications of length at most

3 is that such duplications lead to regular languages. We used this fact to characterize the effect of the channel on the roots

of sequences. However, if k � 4, then the language is not regular [24], leading to challenges in characterizing the channel.

To guarantee a unique root under  k duplications with k � 4, the work [25] constructed error-correcting codes by selecting

a set of (k + 1)-distinct strings with q � (k + 1) and achieved an asymptotic code rate of 1
k

P
k

i=1 log(q � i). This means

that, despite the interesting approach, to correct duplications of length � 4, [25] requires q � 5, which is not suitable for the

important application of data storage in DNA with q = 4.
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suggestions.
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[4] M. Kovačević and V. Y. Tan, “Asymptotically optimal codes correcting fixed-length duplication errors in DNA storage systems,” IEEE Communications

Letters, vol. 22, no. 11, pp. 2194–2197, 2018.

[5] Y. Yehezkeally and M. Schwartz, “Reconstruction codes for DNA sequences with uniform tandem-duplication errors,” IEEE Transactions on Information

Theory, vol. 66, no. 5, pp. 2658–2668, 2020.



17

[6] Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-error detection and correction for duplication and substitution channels,” IEEE Transactions

on Information Theory, vol. 66, no. 11, pp. 6908–6919, 2020.

[7] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over sets for DNA storage,” IEEE Transactions on Information Theory, vol. 66, no. 4,

pp. 2331–2351, 2020.

[8] K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen, “Optimal codes correcting a single indel/edit for DNA-based data storage,” arXiv preprint

arXiv:1910.06501, 2019.

[9] O. Elishco, R. Gabrys, and E. Yaakobi, “Bounds and constructions of codes over symbol-pair read channels,” IEEE Transactions on Information Theory,

vol. 66, no. 3, pp. 1385–1395, 2020.

[10] A. Lenz, Y. Liu, C. Rashtchian, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding for efficient DNA synthesis,” in IEEE International Symposium

on Information Theory (ISIT). IEEE, 2020, pp. 2885–2890.

[11] R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Mass error-correction codes for polymer-based data storage,” in IEEE International Symposium on

Information Theory (ISIT), 2020, pp. 25–30.

[12] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Coding for optimized writing rate in DNA storage,” in IEEE International Symposium on Information

Theory (ISIT), 2020, pp. 711–716.

[13] H. M. Kiah, T. Thanh Nguyen, and E. Yaakobi, “Coding for sequence reconstruction for single edits,” in IEEE International Symposium on Information

Theory (ISIT), 2020, pp. 676–681.

[14] Y. Yehezkeally and M. Schwartz, “Uncertainty of reconstructing multiple messages from uniform-tandem-duplication noise,” in IEEE International

Symposium on Information Theory (ISIT), 2020, pp. 126–131.

[15] T. T. Nguyen, K. Cai, K. A. S. Immink, and H. M. Kiah, “Constrained coding with error control for DNA-based data storage,” in IEEE International

Symposium on Information Theory (ISIT). IEEE, 2020, pp. 694–699.

[16] J. Sima, N. Raviv, and J. Bruck, “Robust indexing-optimal codes for DNA storage,” in IEEE International Symposium on Information Theory (ISIT).

IEEE, 2020, pp. 717–722.

[17] S. Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness of genomic tandem duplication,” IEEE Transactions on Information Theory, vol. 63,

no. 10, pp. 6129–6138, 2017.
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