
Correcting multiple short duplication and
substitution errors

Yuanyuan Tang⇤, Shuche Wang†, Ryan Gabrys‡, and Farzad Farnoud⇤
⇤ Electrical & Computer Engineering, University of Virginia, U.S.A., {yt5tz,farzad}@virginia.edu

† Institute of Operations Research and Analytics, National University of Singapore, shuche.wang@u.nus.edu
‡ Calit2, University of California-San Diego, U.S.A., rgabrys@eng.ucsd.edu

Abstract—Due to its higher data density, longevity, energy

efficiency, and ease of generating copies, DNA is considered

a promising storage technology for satisfying future needs.

However, a diverse set of errors including deletions, insertions,

duplications, and substitutions may arise in DNA at different

stages of data storage and retrieval. The current paper constructs

error-correcting codes for simultaneously correcting short (tan-

dem) duplications and at most p substitutions, where a short

duplication generates a copy of a substring with length  3
and inserts the copy following the original substring. Compared

to the state-of-the-art codes for duplications only, the proposed

codes correct up to p substitutions (in addition to duplications)

at the additional cost of roughly 8p(logq n)(1 + o(1)) symbols

of redundancy, thus achieving the same asymptotic rate, where

q � 4 is the alphabet size. Furthermore, the time complexities of

both the encoding and decoding processes are polynomial when

p is a constant with respect to n.

I. INTRODUCTION

With recent advances in sequencing and biological synthe-
sis, deoxyribonucleic acid (DNA) is considered a promising
candidate for satisfying future data storage needs [1], [2].
In particular, experiments in [1], [3]–[7] demonstrate that
data can be stored on and subsequently retrieved from DNA.
Compared to traditional data storage media, DNA has the
advantages of higher data density, longevity, energy efficiency,
and ease of generating copies [1], [7]. However, a diverse set
of errors may occur at different stages of the data storage and
retrieval process, such as deletions, insertions, duplications,
and substitutions. Many recent works, such as [7]–[24], have
been devoted to protecting the data against these errors. The
current paper constructs error-correcting codes for duplication
and substitution errors.

A (tandem) duplication in a DNA sequence generates a copy
of a substring and then inserts it directly following the original
substring [8], where the duplication length is the length of
the copy. For example, given ACTG, a tandem duplication
may generate ACTCTG, where CTCT is a (tandem) repeat.
Bounded-length duplications are those whose length is at
most a given constant. In particular, we refer to duplications
of length at most 3 as short duplications. Correcting fixed-
length duplications [8], [10]–[12], [25] and bounded-length
duplications [8], [23], [26]–[29] have been both studied re-
cently. In particular, the code in [8], which has a polynomial-
time encoder, provides the highest known asymptotic rate for
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correcting any number of short duplications. For an alphabet
of size q, the rate is log r, where r is the largest positive real
root of x3� (q�2)x2� (q�3)x� (q�2) = 0. For q = 4 this
rate is log 2.6590 and as q increases, the rate is approximately
log(q � 1) [23].

For channels with both duplication and substitution errors,
restricted substitutions [12], [25], which occur only in du-
plicated copies, and unrestricted substitutions [12], [29]–[31]
have been studied. The closest work to the current paper, [31],
constructed error-correcting codes for short duplications and
at most p unrestricted substitutions with an asymptotic code
rate lower bounded by log(q � 2) [31]. However, compared
to the codes for only duplications [8], the codes in [31] incur
an asymptotic rate loss in order to correct the additional  p

substitutions. The current paper focuses on constructing error-
correcting codes for short duplications and at most p (unre-
stricted) substitutions with significantly less redundancy than
the approach from [31]. We note that the short duplications
and substitutions can occur in an arbitrary order.

One of the challenging aspects of correcting duplications
and at most p substitutions simultaneously is that a single
substitution may be duplicated many times and affect an
unbounded segment. However, assuming that the input to
the channel is irreducible, i.e., it has no repeats of length
 3, after removing all tandem copies with length  3 from
the output, the effects of short duplications and at most p

substitutions can be localized in at most p substrings, each
with length  17 [29], [31]. Therefore, similar to [31], we
construct our error-correcting codes as a subset of irreducible
strings, but leverage the syndrome compression technique to
substantially reduce the redundancy. Syndrome compression
has been recently used to provide explicit constructions for
correcting a wide variety of errors with the redundancy as
low as roughly twice the Gilbert-Varshamov bound [32]–
[35]. More specifically, we protect the data by appending
a vector with length around 8p(logq n)(1 + o(1)) to each
input of length n, where the appended vector is used to
distinguish all confusable inputs. We ensure that the appended
vector is itself protected against errors and can be decoded
correctly. We then use it to recover the data by eliminating
incorrect confusable inputs. Compared to the explicit code
for duplications only [8], the proposed code corrects  p

substitutions in addition to duplications at the extra cost of
roughly 8p(logq n)(1+o(1)) symbols of redundancy for q � 4,
and achieves the same asymptotic code rate. This improves



upon the approach from [31], which suffers an asymptotic rate
loss. Both time complexities of the encoding and decoding
processes are polynomial when p is a constant.

The paper is organized as follows. Section II presents the
notation and preliminaries. In Section III, we derive an upper
bound on the size of the confusable set for an irreducible
string, which is a key step of the syndrome compression
technique used to construct our error-correcting codes. Finally,
Section IV presents the code construction, as well as a
discussion of the redundancy and an analysis of the encoding
and decoding complexities. Due to lack of space, some of the
proofs are omitted or only sketched.

II. NOTATION AND PRELIMINARIES

Let ⌃q = {0, 1, 2, · · · , q � 1} represent a finite alphabet of
size q, ⌃n

q the set of all strings of length n over ⌃q , and ⌃⇤
q

the set of all finite strings over ⌃q . Given two integers a, b

with a  b, the set {a, a + 1, · · · , b} is shown as [a, b]. We
simplify [1, b] as [b]. Unless otherwise stated, logarithms are
to the base 2.

We use bold symbols to denote strings over ⌃q , i.e.,
x,yj 2 ⌃⇤

q . The entries of a string are represented by plain
typeface, e.g., the ith elements of x,yj 2 ⌃⇤

q are xi, yji 2 ⌃q

respectively. For two strings x,y 2 ⌃⇤
q , let xy denote

their concatenation. Given four strings x,u,v,w 2 ⌃⇤
q , if

x = uvw, then v is called a substring of x. Furthermore, we
let |x| represent the length of a string x 2 ⌃n

q , and let kSk
denote the size (the number of elements) of a set S.

A (tandem) duplication (TD) of length k (k-TD) is the
operation of generating a copy of a substring and inserting
it directly following the substring, where k is the length of
the copy. For example, for x = uvw with |v| = k, a k-TD
may generate uvvw, where vv is called a (tandem) repeat
with length 2k. A duplication of length at most k is denoted
as a k-TD. We focus on k-TDs with k = 3, which we call
short duplications. For example, given x = 213012 2 ⌃⇤

4, a
sequence of 3-TDs may produce

x = 213012 ! 213213012 ! 21321303012

! 213221303012 = x0
,

(1)

where the duplicated copies are marked with underlines. We
call x0 a descendant of x, i.e., a string generated from x by
a sequence of 3-TDs. Furthermore, for a string x 2 ⌃⇤

q , let
D

⇤
k(x) be the set of all descendants generated from x by an

arbitrary number of k-TDs.
A deduplication of length k replaces a repeat vv by v with

|v| = k. Then  k-deduplications are deduplications with
length upper bound by k. In this paper, we focus on  3-
deduplications, simply called deduplications in the rest of the
paper. For example, the string x in (1) can be recovered from
x0 by three deduplications.

The set of  k-irreducible strings of length n, denoted
Irrk(n), consists of strings without repeats vv, where |v| 
k. Furthermore, Irrk(⇤) represents all k-irreducible strings
of finite length. A duplication root of x0 is a k-irreducible
string x such that x0 is a descendant of x. Equivalently, x
can be obtained from x0 by performing all possible  k-
deduplications. The set of duplication roots of x0 is denoted

Rk(x0), i.e., Rk(x0) = {x 2 Irr(⇤) | x0 2 D
⇤
k(x)}. For

3-TDs, the work [8] showed that R3(x0) is a singleton,
and so we treat it as a string instead of a set. The uniqueness
of the root for k = 3 implies that if x00 is a descendant of x0,
we have R3(x0) = R3(x00).

Besides  3-TDs, we consider substitution errors, where
each substitution replaces a symbol by another one from the
same alphabet. Continuing the example in (1), two substitu-
tions and two duplications applied to x0 may produce

x0 = 213221303012 ! 213211303012 ! 213213211303012

! 213213211323012 ! 213213211323323012 = x00
,

where the substituted symbols are marked in red. Let D↵,p
k (x)

represent the set of strings derived from x by ↵  k-TDs
and p substitutions. Furthermore, let D⇤,p

k (x) represent the
set of strings generated by an arbitrary number of k-TDs
and at most p substitutions. In the example above, we have
x00 2 D

⇤,2
k (x).

For simplicity, when k = 3, we drop the 3 subscript and
write D

⇤(·), R(·), Irr(·), D↵,p(x), and D
⇤,p(x). In the rest

of the paper, unless otherwise stated, duplications are assumed
to be 3-TDs, and irreducible strings represent 3-irreducible
strings.

We define a substring edit in a string x 2 ⌃⇤
q as the

operation of replacing a substring u with a string v, where
at least one of u,v is nonempty. The length of the substring
edit is max{|u|, |v|}. An L-substring edit is one whose length
is at most L. Furthermore, an L-burst deletion in x 2 ⌃⇤

q is
defined as removing a substring v of x, where |v| = L is the
length of the burst deletion.

Given a sequence x 2 ⌃n
q , we define the binary represen-

tation matrix U(x) of x as
2

6664

u1,1 u1,2 · · · u1,n

u2,1 u2,2 · · · u2,n
...

...
. . .

...
udlog qe,1 udlog qe,2 · · · udlog qe,n

3

7775
2 {0, 1}dlog qe⇥n

,

(2)
where the jth column of U(x) is the binary representation
of the jth symbol of x for j 2 [n]. The ith row of U(x) is
denoted as Ui(x) for i 2 dlog qe.

In order to construct error-correcting codes by applying the
syndrome compression technique [32], we first introduce some
auxiliary definitions and a theorem.

Suppose q � 3 is a constant. We start with the definition of
confusable sets for a given channel and a given set of strings
S ✓ ⌃n

q . In our application, S is the set of irreducible strings,
upon which the proposed codes will be constructed.

Definition 1. A confusable set B(x) ✓ S of x 2 S consists
of all y 2 S, excluding x, such that x and y can produce the
same output when passed through the channel.

Definition 2. Let R(n) be an integer function of n. A labeling
function for the confusable sets B(x),x 2 S, is a function

f : ⌃n
q ! ⌃2R(n)

such that, for any x 2 S and y 2 B(x), f(x) 6= f(y).



Theorem 3. (c.f. [32, Theorem 5]) Let f : ⌃n
q ! ⌃2R(n) ,

where R(n) = o(log log n · log n), be a labeling function for
the confusable sets B(x),x 2 S. Then there exists an integer
a  2log kB(x)k+o(logn) such that for all y 2 B(x), we have
f(x) 6⌘ f(y) mod a.

The above definitions and theorem are used in our code
construction based on syndrome compression, presented in
Section IV. The construction and analysis rely on the con-
fusable sets for the channel, discussed in the next section.

III. CONFUSABLE SETS FOR CHANNELS WITH SHORT
DUPLICATION AND SUBSTITUTION ERRORS

In this section, we study the confusable sets of input strings
passing through channels with an arbitrary number of 3-TDs
and at most p substitutions.

Since 3-TDs and deduplications do not alter the dupli-
cation root of the input and because the duplication root is
unique, Irr(n) is a code capable of correcting 3-TDs. The
decoding process simply removes all tandem repeats. In other
words, if we append a deduplication block, which removes all
repeats, to the channel with duplication errors, any irreducible
sequence passes through this concatenated channel with no
errors. This approach produces codes with the same asymptotic
rate as that of [8], achieving the highest known asymptotic rate.

Similar to [31], we extend this strategy to correct duplication
and substitution errors. First, we take the code to be a subset
of irreducible strings. Second, we find the code for a new
channel obtained by concatenating a deduplication block to
the channel with duplication and substitution errors (recall that
duplications and substitution errors can occur in any order).
Denote the channel that introduces any number of duplications
and  p substitutions, followed by a deduplication block that
removes all repeats, as the DSD(p) channel. It is clear that an
error-correcting code for the DSD(p) channel is also an error-
correcting code for the channel with duplications and  p

substitutions. We define the confusable sets over Irr(n) for
the DSD(p) channel.

Definition 4. Suppose x 2 Irr(n) is an irreducible string of
length n. Let

B
p
Irr (x) = {y 2 Irr(n) : y 6= x,

R(D⇤,p(x)) \R(D⇤,p(y)) 6= ?}
(3)

denote the irreducible-confusable set of x.

We now find a bound on kBp
Irr (x)k, which is needed to

construct the code and determine its rate. Since deduplications
can be undone by duplications, instead of the DSD(p) channel,
we can consider a concatenation of p DSD(1) channels, with-
out reducing the size of the confusable set. The input of each
DSD(1) channel suffers a number of duplications, at most one
substitution, and then all possible deduplications. Fig. 1 shows
a confusable string z, obtainable from both x,y 2 Irr(n),
after passing through p DSD(1) channels, each represented
by a solid arrow. More precisely, xi 2 R(D⇤,1(xi�1)) and
yi 2 R(D⇤,1(yi�1)), where x = x0,y = y0, z = xp = yp.

Figure 1. Confusable strings for a concatenation of channels with dedupli-
cations, at most 1 substitution, and all possible deduplications.

Lemma 5. Given an irreducible string x 2 Irr(n), the
irreducible-confusable set of x satisfies

���Bp
Irr (x)

���  max
{xi},
{yj}

p�1Y

i=0

��R(D⇤,1(xi))
��

pY

j=1

��R(D⇤,1(yi))
��

where the maximums are over xi 2 R(D⇤,i(x)), yj 2
R(D⇤,j(y)) with y 2 B

p
Irr (x), and xp = yp.

Proof sketch: As discussed above, if y 2 B
p
Irr (x), then

there exists z that can be obtained from both x and y via p

concatenated DSD(1) channels, as shown in Fig. 1. Critically,
the DSD(1) channel is reversible. That is, if u and v are irre-
ducible sequences such that u 2 R(D⇤,1(v)), we also have
v 2 R(D⇤,1(u)). The dashed lines in the figure represent
the reverse channels. So the total number of possibilities for
y can be bounded by considering the number of possibilities
in each step from x to y. The lemma then follows by induction
on the number of possibilities for each string in the sequence
x ! x1 ! · · · ! z ! yp�1 ! · · · ! y.

Our next step in bounding kBp
Irr (x)k is to bound

kR(D⇤,1(u))k for an irreducible string u. We need only con-
sider kR(D⇤,1(u))k as kR(D⇤,1(u))k  kR(D⇤,1(u))k+1.
The next lemma provides a bound on kR(D⇤,1(u))k, which
depends on the length of u. The proof relies on first reducing
the problem to a special case in which |u| = 5 and then
leveraging the regular language representing D

⇤(u).

Lemma 6. Let u 2 Irr(n) ✓ ⌃n
q be an irreducible string of

length n with q � 3. Then

kR(D⇤,1(u))k  968nq.

Proof sketch: We first show that the effect of the
substitution can be isolated to a substring of length 5, i.e.,

kR(D⇤,1(u))k  n max
abcde2⌃5

q

kR(D⇤,1(abcde))k.

It can then be shown that the maximum on the right side can be
obtained by assuming all symbols are distinct, i.e., replacing
abcde by 01234. We then use a finite automaton to represent
the set D⇤(01234), where paths correspond to descendants of
01234. A substitution can be represented by changing the label
of an edge. With certain modifications, the automaton can also



be used to represent R(D⇤,1(01234)) and to bound its size,
which is determined to be 968q.

According to Lemma 6, the upper bound of kR(D⇤,1(u))k
depends on the length n of u. Therefore, we can obtain upper
bounds on kR(D⇤,1(xi))k and kR(D⇤,1(yj))k in Lemma 5
if upper bounds on |xi| and |yj | are available. To obtain these
bounds, we recall a theorem from [36].

Theorem 7. [36, Theorem 5] Given strings x 2 ⌃n
q and

v 2 D
⇤,1(x), R(v) can be obtained from R(x) by deleting a

substring of length at most L = 17 and inserting a substring
of length at most L in the same position.

In Lemma 5, we have xi 2 R(D⇤,i(x)) and yj 2
R(D⇤,j(y)) with i, j  p, implying that

|xi|  n+ pL, |yj |  n+ pL. (4)

The next theorem follows from Lemmas 5 and 6.

Theorem 8. Let x 2 Irr(n) ✓ ⌃n
q be an irreducible string of

length n, with q � 3. Then

kBp
Irr (x)k  (968q(n+ pL) + 1)2p.

IV. ERROR-CORRECTING CODES

As stated in Section III, our error-correcting code for cor-
recting duplications and substitutions is a subset of irreducible
strings of a given length. In this section, we construct this
subset by applying the syndrome compression technique [32],
where we will make use of the size of the irreducible-
confusable set kBp

Irr (x)k derived in Section III. In this section,
unless otherwise stated, we assume q � 4.

A. Code construction

We will start from a preliminary code, given in (5), and
address its shortcomings, building up to the final code given
in Construction 12.

Suppose p is constant with respect to n. Furthermore,
suppose there exists a labeling function f and, for each
x 2 Irr(n), an integer a such that for any y 2 B

p
Irr (x),

f(x) 6⌘ f(y) mod a. Let r be a vector which encodes the
information (a, f(x) mod a), to be precisely determined later.
The set

{xr : x 2 Irr(n)} (5)

is a code capable of correcting duplications and at most p sub-
stitutions provided that, given the output w 2 R(D⇤,p(xr)),
the following conditions are satisfied: 1) we can recover
(a, f(x) mod a) and 2) we can find some v 2 R(D⇤,p(x)).
To see this, observe that if y 6= x can also produce v, then
y 2 B

p
Irr (x), and hence it can be eliminated as an input

candidate since f(y) 6⌘ f(x) mod a.
The first condition can be addressed by adapting the code

given in [31, Construction 10], which has asymptotic rate �
log(q�2). More precisely, a straightforward extension of [31,
Theorem 11] leads to the following lemma.

Lemma 9. Let � = 01020. There exists an encoder E1 :
⌃m

2 ! Irr(m0) such that i) �E1(u) 2 Irr(⇤) and ii) for

any string x 2 Irr(⇤) with x�E1(u) 2 Irr(⇤), we can re-
cover u from any w 2 R(D⇤,p(x�E1(u))). Asymptotically,
m

0  m/ log(q � 2)(1 + o(1)).

We use E1(a, f(x) mod a) to denote E1(u), where u is a
binary sequence representing the pair (a, f(x) mod a). From
the lemma, letting r = �E1(a, f(x) mod a) will enable us
to recover (a, f(x) mod a) from any w 2 R(D⇤,p(xr)) for
any x 2 Irr(⇤) provided that xr 2 Irr(⇤). We will discuss
ensuring xr is irreducible later.

The second condition requires us to find some v that is only
a function of x rather than xr. This is more challenging as
the boundary between x and r becomes unclear or may not
even exist after duplication and substitution errors, making it
difficult to find v 2 R(D⇤,p(x)) from w 2 R(D⇤,p(xr)).
To address this, instead of finding v, we find some string s that
is only a function of x as follows. Denote by D

⇤,p,2pL(x)
the set of strings that can be obtained by deleting a suffix of
length at most 2pL from some v 2 R(D⇤,p(x)).

Lemma10. Let x be an irreducible string of length n and r be
any string such that xr is irreducible. Let w 2 R(D⇤,p(xr))
and s be the prefix of w of length n � pL. Then s can be
obtained from some v 2 R(D⇤,p(x)) by deleting a suffix of
length at most 2pL. That is, s 2 D

⇤,p,2pL(x).

Hence, by choosing the first n � pL elements of w 2
R(D⇤,p(xr)), we find s 2 D

⇤,p,2pL(x), which is a
function of only x rather than xr. But in doing so, we have
introduced an additional error, namely deleting a suffix of
length at most 2pL. As a result, we need to replace the labeling
function f with a stronger labeling function gq that, in addition
to handling both substitutions and duplications, can handle
deleting a suffix of x. More precisely, gq is a labeling function
for the confusable set

B
p,2pL
Irr (x) = {y 2 Irr(n) : y 6= x,

D
⇤,p,2pL(x) \D

⇤,p,2pL(y) 6= ?}. (6)

The details of determining gq will be discussed in Sec-
tion IV-B.

The final piece of the construction is ensuring that the
concatenation of x and r is irreducible. This can be done
by adding a buffer bx between them.

Lemma 11. For q � 3 and any irreducible string x over ⌃q ,
there is a string bx of length cq such that xbx� is irreducible.
Furthermore, it suffices to choose c3 = 13, c4 = 7, and cq = 6
for q � 5.

The lemma implies xbxr is irreducible, because r starts
with �, which has length 5, and because short repeats have
length at most 6. So any repeat must be contained in xbx�
or in r, which is not possible as they are both irreducible.

We are now ready to present the code construction and then
a theorem that establishes its error-correcting capability. The
proof of the theorem summarizes our preceding discussion.

Construction 12. Let gq be a labeling function for the con-
fusable sets B

p,2pL
Irr (x),x 2 Irr(n). Furthermore, for each



x, let a1 be an integer such that gq(x) 6⌘ gq(y) mod a1 for
y 2 B

p,2pL
Irr (x). Let

Cn = {xbxr : x 2 Irr(n), r = �E1(a1, gq(x) mod a1)}.

Note that for simplicity, we index the code by the length
of x rather than the length of the codewords xbxr, i.e., n in
Cn refers to the length of x. The length of r is discussed in
Subsection IV-C below.

Theorem 13. The code in Construction 12 can correct any
number of short duplications and at most p substitutions.

Proof: Let the retrieved word be w 2 R(D⇤,p(xbxr)).
From Lemma 9, given w, we can find a1 and gq(x) mod a1.
Let s be the (n � pL)-prefix of w. By Lemma 11, xbxr
is irreducible. Then, by Lemma 10, the (n � pL)-prefix of
w, denoted s, satisfies s 2 D

⇤,p,2pL(x). By definition,
for all y 6= x that could produce the same s, we have y 2
B

p,2pL(x). But then, gq(y) 6⌘ gq(x) mod a1, and so we
can determine x by exhaustive search.

B. The labeling function
In this subsection, we present the labeling function gq such

that gq(x) 6= gq(y) for y 2 B
p,2pL
Irr (x). As shown in

Theorem 7, each substitution is reflected in the root of the
sequence as a substring edit of length at most L. Considering
also the suffix deletion of length at most 2pL, it follows
that s 2 B

p,2pL
Irr (x) can be obtained from both x and

y by at most 3pL deletions and at most pL insertions.
Hence, it suffices to find gq such that gq(x) 6= gq(y) if
there is a string s that can be obtained from both x and y
through 4pL indels. Note that since we are utilizing syndrome
compression, choosing a more “powerful” labeling function
does not increase the redundancy, which is still primarily
controlled by maxx2Irr(n) kBp,2pL

Irr (x)k. To find gq , we use
the labeling function for binary sequences given in [35], whose
properties are discussed in the following theorem.

Theorem 14. [35] There exists a labeling function g :
{0, 1}n ! ⌃2R(t,n) such that for any two distinct strings
c1 and c2 confusable under t insertions, deletions, and
substitutions, we have g(c1) 6= g(c2), where R(t, n) =
[(t2 + 1)(2t2 + 1) + 2t2(t� 1)] log n+ o(log n).

Since s 2 D
⇤,p,2pL(x) can be obtained from x via 4pL

indels, Ui(s) can be derived from Ui(x) by at most 4pL
indels for i 2 [dlog qe]. Based on Theorem 14, by letting
t = 4pL, we can obtain a labeling function g for recover-
ing Ui(x) from Ui(s) under at most 4pL indels. Therefore,
gq : ⌃n

q ! ⌃2dlog qeR(t,n) ,

gq(x) =

dlog qeX

i=1

2R(t,n)(i�1)
g(Ui(x)), (7)

where t = 4pL, is a labeling function for the confusable sets
B

p,2pL
Irr (x), x 2 Irr(n). For each x, a value a1 needs to

be also determined such that gq(x) 6⌘ gq(y) mod a1 for y 2
B

p,2pL
Irr (x). The existence of such a1, satisfying log a1 

log kBp,2pL
Irr (x)k+ o(log n), is guaranteed by Theorem 3

provided that p is a constant (ensuring that p4 = o(log log n)).

C. The redundancy of the error-correcting codes
In this section, we study the rate and the redundancy of the

code proposed in Construction 12 and compare these to those
of the short-duplication-correcting code given in [8], which
has the highest known asymptotic rate. A simplified version
of the construction of [8] is given below.

Construction 15. (c.f. [8]) For a positive integer n, let

Cd
n = {x 2 ⌃n

q : x 2 Irr(n)}.

Given q � 4, this code has the same asymptotic rate as the
original in [8] and its size differs by only a constant factor.
We thus compare the proposed code with Cd

n.
The codes Cn and Cd

n have the same size but the length of
Cn is larger by |bxr| symbols. We have seen in Lemma 11
that |bx|  13. The extra redundancy is then |r|+O(1), which
depends on kBp,2pL

Irr (x)k, investigated in the next lemma.

Lemma 16. For x 2 Irr(n) over the alphabet ⌃q with q � 3,

kBp,2pL
Irr (x)k  q

4pL(n+ pL)2p.

The proof relies on Theorem 8 and takes into account the
effect of the suffix deletion.

Lemma 17. Suppose both p and q � 4 are constant with
respect to n. Given x 2 Irr(n) ✓ ⌃n

q , the length L of r =
�E1(a1, gq(x) mod a1) satisfies L  8p(logq n)(1 + o(1)).

Proof: From the previous subsection, assuming p is
a constant, we have that log a1  log kBp,2pL

Irr (x)k +
o(log n). Since (gq(x) mod a1)  a1, we need Lr =
2 log kBp,2pL

Irr (x)k + o(log n) bits to represent the pair
(a1, gq(x) mod a1). By Lemma 16, assuming q is a constant,
we have Lr  4p log n + o(log n) = 4p log n(1 + o(1)).
Then, by Lemma 9, |E1((a1, gq(x) mod a1))|  4p log n(1 +
o(1))/ log(q � 2). The lemma follows from the facts that

log q
log(q�2)  2 for q � 4 and that |�| = 5.

Using Lemma 17, the next theorem gives the extra re-
dundancy of correcting p additional substitutions compared
to [8]. It also shows that there is no asymptotic rate penalty,
in contrast to prior work [31], which also corrects duplications
and p substitutions.

Theorem 18. Assuming p and q are constants, compared to
Cd
n, the proposed code Cn has the same size but is longer

by 8p logq n(1 + o(1)) symbols. The codes have the same
asymptotic rate, which equals log 2.6590 for q = 4.

D. The time complexities of encoding and decoding
The encoding process relies on determining a value for a1

satisfying the condition discussed in Subsection IV-B among
at most 2log kBp,2pL

Irr (x)k+o(logn) possibilities. This step has
complexity O(n4p+1) in n, making the total complexity of
encoding polynomial in n. Decoding requires deduplication,
which is linear in the length of the retrieved sequence, and a
brute-force search among all inputs that can lead to the same
output (n � pL)-prefix of the root of the retrieved sequence,
which is polynomial in n. Hence, decoding is polynomial in
the length of the retrieved sequence.
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