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Abstract—Codes over permutations have received significant

attention due to their applications in memory devices and

powerline transmission systems. In this paper, we construct a

family of permutation codes that are capable of correcting a

burst of at most t deletions with log n + O(log log n) bits of

redundancy where t is a constant, which significantly improves

upon the state-of-the-art construction with redundancy 2t log n
bits.

I. INTRODUCTION

Permutation codes were first proposed by Slepian [1] for
data transmission in the presence of additive Gaussian noise,
and have been studied in the context of powerline transmission
systems to combat impulse noise [2], [3] and in the design of
block ciphers [4]. More recently, permutation codes have gar-
nered attention due to their applications in flash memories [5]–
[9].

Flash memories have evolved into a sophisticated technol-
ogy for nonvolatile data storage because of their advantages in
terms of speed, power consumption, and reliability. To avoid
the challenge of precisely programming each cell in a flash
memory device to its designated level, Jiang et al. [5] proposed
a rank modulation approach to express information using
permutations. To overcome deletions/erasures that may arise
under this setup, Gabrys et al. [10] classified deletions into two
categories: symbol-invariant deletions (SID) and permutation-
invariant deletions (PID); they proposed permutation codes for
correcting a single deletion under both models. Sala et al. [11]
extended this work to the multipermutation setup.

In this paper, we focus on permutation codes for correcting
a burst of consecutive deletions under the SID model, where
deleting some symbols does not affect the values of others.
Although there have been several works on binary and non-
binary codes for correcting a burst of deletions [12]–[15], per-
mutation codes for these type of errors are not as well-studied.
Han et al. [16]–[18] constructed a series of permutation and
multipermutation codes for correcting a burst of deletions
using an interleaving technique. However, their constructions
requires linear redundancy in terms of the code length. Chee
et al. in [19] proposed two permutation codes for correcting
a burst of exactly t and at most t deletions with redundancy
2 log n and 2t log n, respectively. The idea behind their code
construction for correcting a burst of exactly t deletions is
outlined below:

• The permutation is interleaved into t rows and interpreted
as a t⇥

n
t array.

• A Tenegolts’ code, which is capable of correcting a single
deletion, is applied in the first row. This code is used to
correct the deletion in the first row as well as to determine
the location of the burst of deletions.

• Ranking constraints are placed on each pair of adjacent
columns in the remaining rows to correct the remaining
errors.

For correcting a burst of at most t deletions, the approach
proposed by Chee et al. [19] is similar except that it requires
a set of t related constraints (to correct every possible burst
length) resulting in a construction which requires roughly
2t log n bits of redundancy.

In this paper, we construct a family of permutation codes
that are capable of correcting a burst of at most t deletions with
redundancy log n+O(log log n) bits. Unlike [19], we do not
rely on a matrix representation of our codewords but instead
introduce a simple binary map (which is formed based on the
values of the symbols) to first determine approximately where
the burst of deletions occurs. Afterwards, we introduce a novel
secondary mapping based upon the rankings of (overlapping)
groups of consecutive symbols in a given permutation to re-
cover the exact positions and ordering of the deleted symbols.

II. NOTATION AND PRELIMINARIES

Let ⌃q = {0, 1, . . . , q�1} denote a finite alphabet of size q

and ⌃n
q represents the set of all sequences of length n over ⌃q .

We use bold letters to denote sequences, such as u and their
elements with plain letters, e.g., u = u1 · · ·un for u 2 ⌃n

q .
For functions, if the output is a sequence, we also write them
with bold letters, such as p(u). The ith position in p(u) is
denoted p(u)i. Also, u[i,j] denotes the substring beginning at
index i and ending at index j, inclusive.

For ease of notation, we will denote the set {0, 1, . . . ,m�1}
as [[m]] and the set {1, 2, . . . ,m} as [m]. Let n be a positive
integer and Sn be the set of all permutations on the set [n].
Denote ⇡ = (⇡1,⇡2, . . . ,⇡n) 2 Sn as a permutation with
length n. A burst of at most t deletions deletes at most t

consecutive symbols from the permutation ⇡, leading to ⇡0 =
(⇡1,⇡2, . . . ,⇡i,⇡i+t0+1, . . . ,⇡n), where t

0
 t. Our goal in

this paper will be to design codes Pt(n) over Sn where for



any ⇡ 2 Pt(n), we can recover ⇡ from ⇡0, provided that ⇡0

is the result of a burst of at most t deletions occurring in ⇡.
For a sequence of positive integers u of length n, the per-

mutation projection of u, denoted by Prj(u), is a permutation
in Sn where:

Prj(u)i = |{j : uj < ui, 1  j  n}|

+ |{j : uj = ui, 1  j  i}|.

Example 1. Let u = (3, 8, 4, 1, 5). Then Prj(u) =
(2, 5, 3, 1, 4). 4

Let the function µ : Sn ! [1, n!] be a bijection such that
µ(⇡) is the lexicographic rank of ⇡ in Sn. For a sequence
u of length n, we define the permutation rank of u as
r(u) = µ(Prj(u)) 2 [1, n!]. Also, we define the corre-
sponding overlapping ranking sequence for a permutation ⇡ of
length n as pt+1(⇡) = (p1, p2, . . . , pi, . . . , pn�t) 2 ⌃n�t

(t+1)!,
where pi = r(⇡i,⇡i+1, . . . ,⇡i+t).

Example 2. For permutations of length 3, we have µ(⇡1 =
(1, 2, 3)) = 1, µ(⇡2 = (1, 3, 2)) = 2, µ(⇡3 = (2, 1, 3)) = 3,
µ(⇡4 = (2, 3, 1)) = 4, µ(⇡5 = (3, 1, 2)) = 5 and µ(⇡6 =
(3, 2, 1)) = 6. 4

Example 3. Suppose ⇡ = (6, 4, 2, 1, 5, 3) and t = 2, then
the corresponding overlapping ranking sequence p3(⇡) =
(6, 6, 3, 2). 4

The size of a permutation code C ✓ Sn is denoted |C| and
its redundancy is defined as log(n!/|C|). All logarithms in this
paper are to the base 2.

Proposition 1. (Chee et al. [19]) Let n > t be positive
integers, the maximum size of a t-burst permutation code over
Sn is at most n!/(t!(n� t+ 1)).

Hence, the lower bound of the minimal redundancy of the
permutation code for correcting at most t deletions is log n+
O(1).

We now introduce several codes, which are similar to ones
from [14] that will be of use in the paper for locating the
deletions in an O(log n) interval in Section III. Denote the
indicator vector of the pattern w as w:

w(x)i =

(
1, if x[i,i+|w|�1] = w

0, otherwise
(1)

Let nw be the number of ones in w and define ↵w(x) to
be a vector of length nw + 1 whose i-th entry is the distance
between positions of the i-th and (i + 1)-th 1 in the string
(1, w, 1).

Fix the pattern w = 0t1t and � = t22t+2
dlog ne. We now

introduce the set of (w, �)-dense strings:

Dw,�(n) = {x 2 ⌃n
2 : ↵w(x)i  �,

8i 2 {1, 2, . . . , |↵w(x)|}}.

Since the length of w is 2t and its occurrences are non-
overlapping, every component in ↵w(x) has value at least

2t. Furthermore, the number nw of patterns in x is at most
nw 

|x|
2t .

For u 2 ⌃n
q , define the VT checksum as VT(u) =Pn

i=1 iui. The following construction proposed in [14] applies
the VT constraint to the (w, �)-dense strings, enabling the
localization of the deletion to an O(log n) interval.

Lemma1. ( [14, Construction 1]) For any integers 0  c0 < 4
and 0  c1 < 2n, let

Cloc(n, c0, c1)
�
= {x 2 Dw,�(n) : nw(x) ⌘ c0 (mod 4),

VT(↵w(x)) ⌘ c1 (mod 2n)}.

The code Cloc(n, c0, c1) has redundancy log n + 4 and is
capable of locating a burst of deletions to an interval of length
at most � = t22t+2

dlog ne.

In Section III, we give a construction for the first code,
which requires roughly log n bits of redundancy, that is based
upon using a simple mapping between non-binary and binary
symbols. The more difficult task is to design the second code,
which corrects the burst of deletions provided we roughly
know its location, given that we want the second code to have
redundancy less than log n bits.

As an illustration of this difficulty, suppose we are provided
with the sequence ⇡0, which is the result of t symbols
being deleted from the permutation ⇡ = (⇡1, . . . ,⇡n), and
suppose that we know roughly where the burst of deletions has
occurred, namely in an interval of length O(log n). Recall that
the constraint in [19] only works for exactly t deletions and a
set of t related constraints are needed to handle at most t dele-
tions. One naive approach is to directly spilt the permutation ⇡
into several blocks each with length O(log n), and introduce
constraints into each block. However, the alphabet size for
each block is still n, which would result in a construction
for the second code that cannot have less than log n bits of
redundancy.

In order to avoid this issue, we introduce what we refer to
as an “overlapping ranking sequence” for the permutation ⇡ in
Section IV, which allows us to avoid using codes defined over
large alphabets. To make use of the connection between the
overlapping ranking sequence and its associated permutation,
we design codes that are capable of correcting substring edits
of length at most 2t in Section V. The resulting code, which
requires O(log log n) bits of redundancy, is then shown to be
capable of correcting a burst of deletions provided that we
know its approximate location. The overall construction for
correcting a burst of at most t deletions for the permutation
code and its total redundancy are presented in Section VI.

III. LOCATING THE DELETION

In this section, we want to identify the location of the
burst of deletions to be within an interval of size at most
O(log n). Our approach will be to first convert each of the
permutations in our code to be binary sequences of length n

by way of a simple mapping. Afterwards, we will introduce
some additional constraints on the resulting binary sequences
that will allow us to obtain the desired localizing code.



A. Mapping from permutations to binary sequences
Define bP : Sn ! ⌃n

2 as:

bP (⇡)i =

⇢
1, if ⇡i > n/2
0, if ⇡i  n/2

(2)

Example 4. Suppose ⇡ = (5, 3, 4, 1, 2, 6). Then, the corre-
sponding binary sequence is bP (⇡) = (1, 0, 1, 0, 0, 1). 4

The binary sequence bP (⇡) after mapping will have an
equal number of 0s and 1s when n is even, and the number of
1s is one more than 0s when n is odd. For even n, let De(n)
be the set of binary sequences of length n with equal number
of 0s and 1s, and when n is odd, let De(n) be the set of binary
sequences that have one more 1s than 0s. We call sequences
in De(n) balanced sequences. The size of the set |De(n)| is

|De(n)| =

( � n
n/2

�
, when n is even,� n

(n+1)/2

�
, when n is odd. (3)

For simplicity, we will focus on the case where n is even, but
similar results also hold for the case where n is odd.

B. Densifying binary sequences by a fixing pattern w

Next, we make use of (w, �)-dense strings from the set
Dw,�(n) [14], which was introduced in Section II.

The next lemma provides the bound on the size of set
|De(n)|. The proof is given in Appendix A.

Lemma 2. From Stirling approximation, we have

2n
p
6p

⇡(3n+ 2)
 |De(n)| =

✓
n

n/2

◆


2n+1

p
⇡(2n+ 1)

.

Lemma 3. The number of (w, �)-dense strings of length n

among balanced sequences is

|De(n) \Dw,�(n)| �

✓
n

n/2

◆
�

2n

n2 log e�1

�
2n

p
6p

⇡(3n+ 2)
�

2n

n2 log e�1
.

Proof. Similar to the Proof of Lemma 1 in [14], let z 2 ⌃n
2

and Ei be the event that z[i+1,i+�] does not contain the pattern
w. The probability of Ei is

Pr(Ei)  (1�
1

22t
)

�
2t

(a)


1

n2 log e
(4)

where (a) follows from the fact that the function (1 � 1/x)x

is increasing in x for x > 1 and limx!1(1 � 1/x)x = 1/e.
To bound the probability of the event that z 2 ⌃n

2 is not in
Dw,� , the union bound yields

Pr(z 62 Dw,�)  (n� � + 1)Pr(Ei) 
1

n2 log e�1
. (5)

Thus,

|De(n) \Dw,�(n)| � |De(n)|� 2n · Pr(z 62 Dw,�)

�
2n

p
6p

⇡(3n+ 2)
�

2n

n2 log e�1
.

(6)

Since 1
n2 log e�1 = o(

p
6p

⇡(3n+2)
), the value of |De(n) \

Dw,�(n)| is dominated by the first term.

C. Approximately locating the deletions

Construction A. For any integers 0  c0 < 4 and 0  c1 <

2n, let

C
P
loc(n, c0, c1)

�
= {x 2 ⌃n

2 : x 2 {De(n) \Dw,�(n)},

nw(x) ⌘ c0 mod 4, VT(↵w(x) ⌘ c1 mod 2n}

Lemma 4. The code C
P
loc(n, c0, c1) is capable of locating

the burst of deletions to an interval of length at most � =
t22t+2

dlog ne.

Proof. The lemma can be proved from Lemma 1. The only
difference is that the binary sequence bP (⇡) is in {De(n) \
Dw,�(n)}.

It can be noticed that if a burst of at most t deletions
occurred in the permutation ⇡, the corresponding binary
sequence bP (⇡) suffers a burst of at most t deletions at the
same location. Thus, the localizing code C

P
loc(n, c0, c1) also

implies the deletion location in ⇡.

Lemma 5. There exist integers c0 and c1 such that the size
of the permutation code whose codewords ⇡ satisfy bP (⇡) 2
C
P
loc(n, c0, c1) is at least n!/(16n).

Proof. By Lemma 2, Lemma 3, and the pigeonhole principle,
there exist values of c0 and c1 such that the size of the result-
ing permutation code with its corresponding binary mapping
sequence bP (⇡) 2 C

P
loc(n, c0, c1) is at least:

|De(n) \Dw,�(n)| · ((n/2)!)
2

4 · 2n
�

⇣� n
n/2

�
�

2n

n2 log e�1

⌘
·

n!

( n
n/2)

8n

�
n!(1�

p
6⇡
3 · n

1.5�2 log e)

8n

�
n!

16n

where the first inequality follows from Lemma 3 and the
second inequality follows from the lower bound in Lemma 2
for n � 2. The final inequality can also be shown to hold for
n � 3.

IV. MAPPING THE PERMUTATION CODE TO THE
OVERLAPPING RANKING SEQUENCE

In the following, we define a mapping which bears a re-
semblance to one originally introduced in [19] for the purpose
of correcting a burst of deletions when the length of the burst
was known. The key difference between their mapping and the
one introduced here is that the ranking sequence in [19] was
constructed using disjoint sets of symbols from the underlying
permutation whereas our ranking sequence will be generated
using every consecutive set of symbols from the underlying
permutation. We now describe these ideas in more details.



Note that if ⇡0 is obtained from ⇡ through deletions, the
identities of the deleted symbols can be determined by noting
which symbols are missing.

Lemma 6. Let ⇡0 =
�
⇡
0
1,⇡

0
2, . . . ,⇡

0

n�t0
�

be obtained from
⇡ 2 Sn by deleting t

0
 t consecutive symbols. Further,

let ⇡00
2 Sn be the result of inserting the deleted symbols

consecutively into ⇡0. For any ⇡00
6= ⇡, the overlapping

ranking sequence pt+1(⇡00) and pt+1(⇡) are not identical.

Proof. The lemma is proved by showing that a contradiction
arises if we assume that there exist ⇡00 and ⇡ such that their
corresponding overlapping ranking sequence pt+1(⇡00) and
pt+1(⇡) are the same.

Suppose the deleted symbols from ⇡ are ⇡[i,i+t0�1] and
⇡00 is the result of inserting these symbols (consecutively)
beginning at position j. Without loss generality, we assume
that j < i.

Thus, ⇡ and ⇡00 can be shown as:

⇡ = (· · · ,⇡j ,⇡j+1, · · · ,⇡i�1,⇡i, · · · ,⇡i+t0�1, · · · )

⇡00 =
�
· · · ,⇡

00

j ,⇡
00

j+1, · · · ,⇡
00

i�1,⇡
00

i , · · · ,⇡
00

i+t0�1, · · ·
�

From the definition of ⇡00, we can have ⇡
00

k = ⇡k�t0 when
k � j+ t

0. To illustrate the changed and unchanged part in ⇡
and ⇡00, we denote the unchanged part in both ⇡ and ⇡00

as (⇡j ,⇡j+1, . . . ,⇡i�1) = (⇡00

j+t0 ,⇡
00

j+t0+1, . . . ,⇡
00

i+t0�1) =
(a1, a2, . . . , am), where m = i � j. Further, we use
(x1, x2, . . . , xt0) = (⇡i,⇡i+1, . . . ,⇡i+t0�1) to denote the
deleted symbols from ⇡ and (x00

1 , x
00
2 , . . . , x

00

t0) to denote the in-
serted symbols in ⇡00, where (x00

1 , x
00
2 , . . . , x

00

t0) is a permutation
of the deleted symbols (x1, x2, . . . , xt0). Then, ⇡[j,i+t0�1] and
⇡00

[j,i+t0�1] can be rewritten as the following, taking m > t
0

case as example:

⇡ = (a1, a2, · · · , at0 , at0+1, · · · , am, x1, · · · , xt0)

⇡00 = (x00

1 , x
00

2 , · · · , x
00

t0 , a1, · · · , am�t0 , am�t0+1, · · · , am)

For uniformity of notation, we sometimes denote xj by
am+j and x

00

j by a�t0+j . Let [ya, yb] = {ya, ya+1, . . . , yb}.
For a set {y1, y2, . . . , yk} with distinct elements, we say
a � {y1, y2, . . . , yk} if a  yi holds for all i 2 {1, . . . , k},
with equality holding for at most one value of i.

• Consider the case where i � j > t. To guarantee each
element in pt+1(⇡) and pt+1(⇡00) are the same, we can
have the following two relationships:
If ai � [ai, ai+t0 ], for 1  i  m� t

0, then

ai+t0 � [ai+t0 , ai+2t0 ] (7)

and if ai � [ai, am], for m� t
0
< i < m, then

ai+t0 � [ai+t0 , am+t0 ] (8)

Let a
⇤ = min{a1, . . . , am, x1, . . . , xt0} =

min{x00
1 , . . . , x

00

t0 , a1, . . . , am}. Recall that all elements
are distinct.
Suppose there exists some 1  i  m such that a⇤ = ai.
Note that elements [ai, ai+t0 ] in ⇡ and [ai�t0 , ai] in ⇡00

have the same value in the corresponding overlapping

ranking sequence as the number of elements in each of
these segments is t0+1  t+1. On the other hand, if the
minimum ai appears in two different places in a segment
with same starting and end location in ⇡ and ⇡00, then the
overlapping ranking sequence cannot be the same. Thus,
it implies the contradiction arises when considering the
minimum element a⇤ in {a1, . . . , am}.
Hence, there must be some 1  i  t

0 such that a⇤ = x
00

i .
Noting that r(ai, . . . , ai+t0) = r(x00

i , . . . , x
00

t0 , a1, . . . , ai)
and we have ai � [ai, ai+t0 ]. We now show that

ai � [ai, ai+t0 ]

ai+t0 � [ai+t0 , ai+2t0 ]

ai+2t0 � [ai+2t0 , ai+3t0 ]

...
ai+kt0 � [ai+kt0 , ai+kt0+t0 ]

ai+kt0+t0 � [ai+kt0+t0 , am+t0 ]

(9)

where k is the largest integer such that i+ kt
0
 m. All

relations except the last one follow from (7) and the last
one follows from (8). The last two relations imply that

ai+kt0 � [ai+kt0 , am+t0 ] = (ai+kt0 , . . . , am, x1, . . . , xt0),

which is a contradiction since the minimum among all
elements is among the elements {x

00
1 , . . . , x

00

t0}, where
{x

00
1 , . . . , x

00

t0} and {x1, . . . , xt0} contain the same ele-
ments.

• Consider the case where i � j  t. When j 6= i, note
that the elements [am, am+t0 ] in ⇡ and [am�t0 , am] in
⇡00 have the same value in the corresponding overlapping
ranking sequence as the number of elements in each of
these segments is t

0 + 1  t+ 1. Also, [am, am+t0 ] in ⇡
and [am�t0 , am] in ⇡00 have common elements am and
xi, 9i 2 {1, . . . , t0}. However, this is impossible that am
and xi are in reversed order in both.
When i = j, the elements in ⇡[i,i+t] and ⇡00

[i,i+t] cannot
be in the same order due to ⇡00

6= ⇡. Thus, the over-
lapping ranking sequence pt+1 of ⇡ and ⇡00 are not the
same in this case.

After mapping the permutation code to the overlapping
ranking sequence, the alphabet size is reduced from n to
(t+1)!. As a result, we want to correct a burst of deletions in
⇡ by first recovering the corresponding overlapping ranking
sequence pt+1(⇡), and then we will use this information to
uniquely determine ⇡ according to Lemma 6. Recall that for a
string (v1, v2, . . . , vn), we say that (vi, vi+1, . . . , vi+`�1) is a
substring of length ` that appears in (v1, v2, . . . , vn) at position
i.

Claim 1. After deleting a burst of at most t symbols in a
permutation ⇡ resulting in ⇡0, the corresponding overlapping
ranking sequence pt+1(⇡0) can be obtained from pt+1(⇡) by
at most t consecutive substitutions followed by a burst of at
most t deletions.



Proof. We can write pt+1(⇡) as:

pt+1(⇡) = (p1, p2, . . . , pi�t, . . . , pi�1, pi, pi+1,

. . . , pi+t0�1, pi+t0 , . . .) (10)

Let ⇡0 be the result of deleting t
0
 t consecutive symbols

⇡[i,i+t0�1] from the permutation ⇡. Thus, the corresponding
pt+1(⇡0) of permutation ⇡0 can be written as:

pt+1(⇡
0) =

�
p1, p2, . . . , p

0

i�t, . . . , p
0

i�1, pi+t0 , . . .
�

(11)

where we use pi to denote an unchanged value and p
0

j to
denote a possibly changed value in pt+1(⇡0) compared with
pt+1(⇡).

By comparing (11) with (10), we see that there are at most
t consecutive substitutions (substituting (pi�t, . . . , pi�1) by
(p0i�t, . . . , p

0

i�1)) followed by at most t consecutive deletions
(deleting (pi, . . . , pi+t0�1)).

Based on this observation, we characterize this error pattern
as substring edits that replace a substring of length at most 2t
with another substring of length at most 2t, which is a more
general type of error. Thus, in the next subsection, we will
discuss how to construct codes capable of correcting substring
edits of length at most 2t for recovering the overlapping
ranking sequence pt+1(⇡).

V. CORRECTING SUBSTRING EDITS OF LENGTH AT MOST
2t IN THE OVERLAPPING RANKING SEQUENCE

In this section, our goal is to construct a code for correcting
substring edits of length at most 2t in the overlapping ranking
sequence pt+1(⇡) based on the systematic binary code capable
of correcting up to t edits [20].

For q < log n, the basic idea is to consider q-ary sequences
as a set of dlog qe binary sequences. Then, we choose the
systematic binary code proposed in [20] as the base code,
which is capable of correcting up to t edits, where each edit is
a deletion, insertion or substitution error. It is straightforward
to see that the number of edits for substring edits of length at
most 2t is also at most 2t. Thus, we should set the number of
edits to 2t in our problem.

Lemma 7. (c.f., [20]) Let t be a constant with respect to k.
There exist an integer a  24t log k+o(log k) and a labeling
function f2t : ⌃k

2 ! ⌃2R2t(k) , where R2t(k) = O(t4 log k)
such that {(x, a, f2t(x) mod a) : x 2 ⌃k

2} can correct
substring edits of length at most 2t.

Therefore, we can get the following lemma for q-ary se-
quences:

Lemma 8. Let t be a constant with respect to k.
There exist an integer aq  2dlog qe(4t log k+o(log k))

and a labeling function f
q
2t : ⌃k

q ! ⌃2dlog qeR2t(k) ,
where f

q
2t(u) =

P
dlog qe
i=1 2R2t(k)(i�1)

f2t(A(u)i) such that
{(u, aq, f

q
2t(u) mod aq) : u 2 ⌃k

q} can correct substring
edits of length at most 2t in q-ary sequences.

From Lemma 4, we can narrow the deletion to an O(log n)
interval in the permutation ⇡. Then, we will make use of

Lemma 8 to construct a code for correcting substring edits
of length at most 2t in the corresponding overlapping ranking
sequence pt+1(⇡) with this positional knowledge (We omit
the argument t + 1 and ⇡ from pt+1(⇡) and simply write p
in the rest of this subsection).

We split the sequence p into two sets pe =
{pe,1,pe,2, . . . ,pe,s} and po = {po,1,po,2, . . . ,po,s+1},
where s = n/2P and P = t22t+2

dlog ne for even and odd
blocks, respectively:

• Even Blocks: pe,i = p[(2i�2)P+1,2iP ], i = 1, · · · , s
• Odd Blocks:

po,i =

8
><

>:

p[1,P ], i = 1;

p[(2i�3)P+1,(2i�1)P ], i = 2, · · · , s;

p[n�P+1,n], i = s+ 1.

For i 2 [s], let a
q
e,i = EtB(pe,i) and similarly let a

q
o,i =

EtB(po,i) for i 2 [s+1]. Note that pe and po each cover the
sequence p and that any interval of length P is fully contained
in at least one block in pe or in po. We can use the ESB to
protect each block of length 2P , as in the following lemma.

Lemma 9. There exists an integer a =
2dlog qe(4t log(2P )+o(logP )) such that for any d1, e1 2 [[a]],
d2, e2 2 [[a]], the code C2t(n, t, P ) such that

C2t(n, t, P ) = {p 2 ⌃n
(t+1)! :

sX

i=1

a
q
e,i = d1 mod a,

sX

i=1

�
f
q
2t(pe,i) mod a

q
e,i)

�
= e1 mod a,

s+1X

i=1

a
q
o,i = d2 mod a,

s+1X

i=1

�
f
q
2t(po,i) mod a

q
o,i)

�
= e2 mod a}.

can correct one substring edit of length at most 2t with the
knowledge that the location of the edited symbols is within
P consecutive positions. Furthermore, there exist choices for
d1, d2 and e1, e2 such that the redundancy of the code is at
most 4 log a.

Proof. The interval of length P in which the edit has occurred
is fully contained in a block of pe or in a block of po. Without
loss of generality, let us assume the former and also assume
that the index of this block is l. We can recover all blocks of
pe except pe,l. The value of a

q
e,l and f

q
2t(pe,l) mod a

q
e,l can

be determined by solving the equation
Ps

i=1 a
q
e,i ⌘ d1 mod

a and
Ps

i=1(f
q
2t(pe,i) mod a

q
e,i) ⌘ e1 mod a, respectively.

Then, by Lemma 9, the block pe,l can be recovered.

VI. OVERALL CONSTRUCTION

Building on the previous sections, we can present the
overall construction of the permutation code for correcting
a burst of at most t deletions. First, we apply the code
C
P
loc(n, c0, c1) to narrow the deletion into an interval of length

t22t+2
dlog ne with redundancy log n+O(1). Then, we recover

the permutation via C2t(n, (t+1)!, t22t+2
dlog ne) for correct-

ing the corresponding overlapping ranking sequence with the
positional knowledge of the deletion.

Construction B. There exists an integer a =
2dlog(t+1)!e(4t log logn+o(log logn)) such that for all c0 2 [[4]],



c1 2 [[2n]], d1, d2 2 [[a]] and e1, e2 2 [[a]]., we define a
permutation code Pt(n) over Sn as

Pt(n)
�
= {⇡ 2 Sn : bP (⇡) 2 C

P
loc(n, c0, c1),

pt+1(⇡) 2 C2t(n, (t+ 1)!, t22t+2
dlog ne)}

Theorem1. The permutation code Pt(n) over Sn is capable
of correcting a burst of at most t deletions with the redundancy
at most log n+O(log log n) bits.

Proof. The error-correcting capability of the code has already
been discussed. From Lemma 9, the redundancy of the second
part in the permutation code Pt(n) for correcting overlapping
ranking sequence will be 4 log a. Since P = t22t+2

dlog ne and
t is a constant, we have

4 log a = O(log log n).

Combining with Lemma 5, the code size |Pt(n)| is at least

|Pt(n)| =
n!

16n · a4
�

n!

16n · 2O(log logn)
.

Therefore, the total redundancy of the permutation code
Pt(n) is at most log n+O(log log n).

VII. CONCLUSION

In this paper, we presented permutation codes capable
of correcting a burst of at most t deletions, which greatly
improves upon the state-of-the-art in terms of the redundancy.
However, there still remain some interesting problems, includ-
ing extending this work to multipermutations and multiple
bursts of deletions.
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APPENDIX A
PROOF OF LEMMA 2

Lemma 2. From Stirling approximation, we have

2n
p
6p

⇡(3n+ 2)
 |De(n)| =

✓
n

n/2

◆


2n+1

p
⇡(2n+ 1)

.

Proof. First, we have
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n+ 1

2

n+ 1
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=
n
2 + n+ 1

4
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n+ 1
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3

.
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�2n
n

� = 4
n+ 1
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 4

s
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which implies
�2n
n

�n+1/3
4n is decreasing.

We also have
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which implies
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�n+1/4
4n is increasing.

From
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