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Abstract

Inaccurate representations of iceberg calving from ice shelves are a large source of uncertainty in
mass-loss projections from the Antarctic ice sheet. Here, we address this limitation by imple-
menting and testing a continuum damage-mechanics model in a continental scale ice-sheet
model. The damage-mechanics formulation, based on a linear stability analysis and subsequent
long-wavelength approximation of crevasses that evolve in a viscous medium, links damage
evolution to climate forcing and the large-scale stresses within an ice shelf. We incorporate
this model into the BISICLES ice-sheet model and test it by applying it to idealized (1) ice
tongues, for which we present analytical solutions and (2) buttressed ice-shelf geometries. Our
simulations show that the model reproduces the large disparity in lengths of ice shelves with
geometries and melt rates broadly similar to those of four Antarctic ice shelves: Erebus Glacier
Tongue (length ∼ 13 km), the unembayed portion of Drygalski Ice Tongue (∼ 65 km), the
Amery Ice Shelf (∼ 350 km) and the Ross Ice Shelf (∼ 500 km). These results demonstrate that
our simple continuum model holds promise for constraining realistic ice-shelf extents in
large-scale ice-sheet models in a computationally tractable manner.

Introduction

The largest source of uncertainty in projections of future sea-level rise is the response of the
Antarctic ice sheet to a warming climate (e.g. Pachauri and others, 2014; Edwards and others,
2021). Unlike in Greenland, the majority of Antarctica’s ocean-terminating glaciers extend
into the ocean to form floating ice shelves (Cuffey and Paterson, 2010). Horizontal stress gra-
dients in these fringing shelves, associated with pinning points and embayment walls, reduce
the ice flux across the grounding line by buttressing the upstream glaciers (e.g. Dupont and
Alley, 2005; Goldberg and others, 2009; Gudmundsson, 2013; Pegler, 2018).

Antarctic ice shelves lose mass to the ocean primarily through ocean-driven submarine
melting and iceberg calving (e.g. Liu and others, 2015). Although complex, the thermody-
namics associated with large-scale ice-shelf melt are relatively well understood (Jenkins and
Holland, 2007). However, both the small- and large-scale physical rifting and fracturing
processes controlling iceberg calving have proven more difficult to understand and model
(Benn and others, 2007b). Calving changes the geometry of ice shelves through the production
of icebergs, which can separate the ice from pinning points or embayment walls. These
detachments reduce the buttressing of ice shelves, increasing the ice flux across their grounding
lines. Because much of the West Antarctic ice sheet is grounded below sea level and ice flux
across the grounding line depends strongly on the ice thickness there, the loss of buttressing
affects the stability of the grounding line itself (Schoof, 2007; Joughin and Alley, 2011;
Gudmundsson, 2013; Pegler, 2018; Martin and others, 2019).

Early attempts to model iceberg calving focused on calving from grounded margins and
suggested a proportionality between water depth or ice thickness and calving rate
(e.g. Brown and others, 1982; Warren, 1992). Benn and others (2007a) and Amundson and
Truffer (2010) later extended the ice-thickness-criterion calving model to support floating
margins, and others have suggested heuristic relationships based on ice temperature (Reeh,
1968) or strain rate (Alley and others, 2008; Levermann and others, 2012), but these are
unlikely to be broadly applicable, both geographically and under a changing climate. Nye
(1957) developed a process-based ‘zero-stress model’ that calculates the depth to which surface
crevasses penetrate, and Weertman (1973) derived an equivalent formulation for ice-shelf
basal crevasses. However, the latter predicts that basal crevasses will rarely penetrate the entire
ice thickness of freely floating ice shelves unless surface depressions become filled with water
(van der Veen, 1998a, 1998b).

In areas with sufficiently large surface melt rates, networks of supraglacial lakes can form
on an ice shelf. When these lakes fill crevasses, they drive downward penetration by applying
an additional tensile stress at the crevasse tip (Weertman, 1973; van der Veen, 1998b), a pro-
cess known as hydrofracture. Combined with the elastic response of the ice shelf to the melt-
water load, these lake networks can connect systems of crevasses throughout the ice. In this
case, drainage of one supraglacial lake may cause a chain reaction among adjacent lakes
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that destabilizes the entire ice shelf, causing it to collapse (Banwell
and others, 2013). The Larsen B Ice Shelf underwent such a
meltwater-induced disintegration in 2002, and Borstad and others
(2012) used the theory of continuum damage mechanics in a
large-scale ice-dynamics model as a proxy for the ‘health’ of the
ice shelf prior to the collapse (Borstad and others, 2016).
Others have used damage mechanics (e.g. Pralong and Funk,
2005; Duddu and Waisman, 2012; Sun and others, 2017) and lin-
ear elastic fracture mechanics (e.g. Kenneally and Hughes, 2002)
to model iceberg calving, but the computational costs are challen-
ging when incorporating these complex, process-scale models
within large-scale ice-sheet models in order to project ice-sheet
evolution over centennial and millennial timescales.

Recently, Bassis and Ma (2015) developed a process-based,
crevasse-depth model that provides a link between the propaga-
tion of fractures through an ice shelf and basal melt, the existence
of which has been suggested by previous studies (e.g. Liu and
others, 2015). Using a linear stability analysis, they deduced an
evolution equation that represents crevasse depth as a continuum
variable and governs the deepening and widening of crevasses in
time. Here, we implement this crevasse evolution model as a pas-
sive tracer in the BISICLES ice flow model (Cornford and others,
2013) and apply it to a number of idealized ice-shelf geometries to
compare it to analytic test cases and to demonstrate its capability
in modeling ice-shelf extent in different environments with widely
varying characteristics.

Model description

Damage mechanics

Our model represents ice-shelf crevasse penetration depths by the
effective ‘damage’, a continuum variable we define as

Damage ; r = dh
h
, (1)

where δh is the total crevasse depth and h is the local ice thick-
ness, as shown schematically in Fig. 1. This damage variable is
defined over the range [0, 1], where r = 0 in the absence of cre-
vasses and r = 1 when crevasses extend through the full thickness
of the ice shelf. This is similar to the model proposed by Sun and
others (2017), which incorporates crevasse depth directly into the
ice rheology. However, unlike other reported models, which use ad
hoc definitions of damage laws, the crevasse depths in our model
evolve based on a pseudo-plastic necking instability (Bassis and
Ma, 2015). In contrast, Borstad and others (2016) define damage
through a viscosity weakening factor, which they find by way of
inversion with assumed ice temperatures and recompute instant-
aneously based on computed strain rates, whereas Albrecht and
Levermann (2012) define damage as a fracture density field with
a specified fracture growth rate that depends only on the strain
and an empirical parameter to be fitted.

We describe the necking instability using the results of a linear
stability analysis, in which the strain-rate-weakening nature of ice
magnifies large-scale ice-shelf thinning and local ductile deform-
ation. In the long-wavelength limit appropriate for
depth-integrated, two-dimensional (2-D), dynamic approxima-
tions to full-Stokes ice-sheet models, where the widths of basal
crevasses are large compared to the ice thickness, damage evolves
according to (Bassis and Ma, 2015)

dr
dt

= n∗ 1− S0( )1̇1 +
ṁ
h

[ ]
r, (2)

where 1̇1 is the depth-averaged, largest principal strain rate and ṁ
is the total melt rate (which may be negative for accumulation/

accretion). Although ṁ may include contributions from both sur-
face and basal melting, here we focus exclusively on the basal con-
tribution, leaving exploration of surface crevasses and the process
of hydrofracture for future work. We have also assumed that the
melt rate within a crevasse is the same as the ambient melt rate of
the basal surface of the ice, though observations have shown
everything from accumulation of marine ice within crevasses
(e.g. Fricker and others, 2001) to enhanced melt (e.g. Dutrieux
and others, 2014).

The dimensionless number S0 is a ratio between hydrostatic pres-
sure and the largest principal deviatoric stress within the ice shelf:

S0 =
ri rw − ri
( )

gh
2t1rw

, (3)

where τ1 is the largest principal deviatoric stress. We use ρi = 910 kg
m−3 as the meteoric ice density, ρw = 1028 kgm−3 as the density of
sea water and g = 9.81m s−2 as the acceleration due to gravity. We
assume that the entire thickness h has the density of meteoric ice
and therefore ignore the presence of firn. The star superscript on
n∗ denotes the usual parameter n from Glen’s flow law, adjusted
to include the ratio of the principal horizontal strain rates
a = 1̇2/1̇1:

n∗ =
4n 1+ a+ a2

( )

4 1+ a+ a2( ) + 3 n− 1( )a2 . (4)

Equation (2) assumes that the perturbation to the ice shelf
extends uniformly through the thickness such that there exists a
relationship, α, between the principal strain rates (Bassis and
Ma, 2015). The evolution equation is consistent with the damage
formulation proposed by Albrecht and Levermann (2012), with
the addition of a dependence on the stress state and the basal
melt rate. Although this model could be used in conjunction
with, for example, the eigencalving model of Levermann and
others (2012) to calculate the average probability of calving at
the terminus (Albrecht and Levermann, 2012), here we are pri-
marily interested in the location where crevasses are predicted
to penetrate the full ice thickness (i.e. where r = 1), which coin-
cides with what we refer to below as the ‘fully-damaged terminus’.

In the linear stability analysis, when S0 < 1, the tensile stress of
the ice shelf pulls crevasses apart and allows them to deepen. By
contrast, when S0 > 1, the gravitational restoring force causes the
ice to flow into the depressions associated with crevasses, healing
them over time even in the absence of negative strain rates and
accretion, which are the sole drivers of crevasse healing in other
damage models (Pralong and Funk, 2005; Borstad and others,

Fig. 1. Schematic diagram of the model system showing a longitudinal cross section
of an ice shelf. The ice flux at the grounding line is held constant in time and directed
along the x-direction. Damage r is defined as the local ratio between the crevasse
depth δh and total ice thickness h.
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2016). This viscous healing can nevertheless be overcome by a suf-
ficiently large melt rate that deepens the crevasse faster than it can
close. Ice shelves usually have S0 > 2 across most of their horizontal
extents, with S0 < 1 occurring in small shear bands with high tensile
stresses or where the ice is thin (Bassis and Ma, 2015). Below, we
show that freely floating ice tongues have S0 = 2. Not surprisingly,
the gravitationally driven flow of ice tongues results in crevasses
that close in the absence of thinning by melting.

Nothing in Eqn (2) explicitly prevents damage from exceeding
r = 1, unlike other damage models (e.g. Albrecht and Levermann,
2012; Borstad and others, 2016). However, as we have defined r as
the ratio of crevasse depth to ice thickness (Eqn (1)), we use r = 1
as a physical upper bound, consistent with the applications of
damage mechanics. As damage approaches this upper limit, the
perturbative approach used to derive Eqn (2) breaks down, similar
to most other damage mechanics, which are technically valid only
for small damage (Keller and Hutter, 2014).

Our model cannot form new crevasses to increase damage
when r = 0 in Eqn (2) as the evolution results from the instability
of already present perturbations. We therefore take the ice to
always be densely crevassed along the basal surface to at least
the depth where the tensile stress pulling them open balances
the cryostatic pressure pushing them closed, also called the Nye
zero-stress model (Nye, 1957; Weertman, 1973; Jezek, 1984;
Nick and others, 2010):

rN = ri
rw − ri

2+ a( )t1
righ

[ ]
, (5)

which assumes that ice has small tensile strength. With finite frac-
ture strength, the initial value of, and lower-bound to, damage
could be smaller (Weertman, 1977). For a freely floating ice ton-
gue, rN∼ 0.44 everywhere, as we show below. For more compli-
cated ice shelves rN is spatially varying: reduced relative to the
freely floating ice tongue in the presence of buttressing and
increased where ice is spreading. The damage mechanics of Sun
and others (2017) advects this Nye zero-stress damage, which
increases as it advects into thinner ice, but does not account for
the growth of fractures in a manner akin to our shear-thinning
necking to deepen an already present crevasse (the first term in
the brackets on the right hand side of Eqn (2)).

In most scalar damage mechanics models, the damage affects
the stress field of the ice by reducing the effective cross-sectional
area over which forces act. Thus, damage is associated with a fac-
tor (1− r) −1 multiplying either the deviatoric stress, resulting in a
decreased viscosity (Borstad and others, 2016; Sun and others,
2017), or the full stress tensor to affect buoyancy and allow hydro-
fracturing (Pralong and Funk, 2005; Duddu and Waisman, 2012;
Mobasher and others, 2016). Our model incorporates damage in
an effective stress (including the hydrostatic component) in deter-
mining the growth rate of damage (Eqn (2)) and can be extended
to affect the ice rheology in this way (e.g. as in the model of Sun
and others, 2017). In this work, however, we neglect this higher-
order coupling and damage acts as a passive tracer. A future
extension of this damage model will incorporate both the physical
mechanisms for crevasse evolution presented here as well as the
effects of damage on ice rheology.

Numerical method for damage

We implement damage evolving and advecting with the ice flow
velocity u using

∂r
∂t

+ u · ∇r = dr
dt

, (6)

with dr/dt given by Eqn (2), in the BISICLES finite-volume,
adaptive-mesh-refinement ice flow model, which solves a
modified form of the L1L2 ice equations from Schoof and
Hindmarsh (2010). As BISICLES expresses the laws of motion
in vertically integrated, conservative form, we write the damage
evolution as

∂(rh)
∂t

+ ∇ · !urh( ) = s (7)

for some source σ and vertically integrated velocity h!u =
%h
0 udz.

To determine the form of σ, we integrate Eqn (6) vertically, noting
that damage has no depth dependence (i.e. r = r(x, y) for horizon-
tal coordinates x, y and vertical coordinate z)

h
∂r
∂t

+ h!u · ∇r = h
dr
dt

. (8)

We apply the product rule to obtain

∂(rh)
∂t

+ ∇ · !urh( )− r
∂h
∂t

+ ∇ · (h!u)
[ ]

= h
dr
dt

. (9)

The terms in the square bracket constitute the left-hand side hori-
zontal transport equation (see, e.g. Cornford and others, 2013,
Eqn (7))

∂h
∂t

+ ∇ · (h!u) = −ṁ. (10)

The melt rate term is negative because we are defining positive
melt rates to remove mass. Substituting Eqn (10) into Eqn (9)
and changing sides gives:

∂(rh)
∂t

+ ∇ · !urh( ) = h
dr
dt

− ṁr. (11)

Finally, comparing Eqns (8) and (11) we find that the vertically
integrated, conservative force to be

s = h
dr
dt

− ṁr, (12)

which is now written in terms of the damage evolution expression
of dr/dt in Eqn (2).

Incorporating the source term, we update the damage field
using a piecewise parabolic method-based predictor-corrector
method (see Cornford and others, 2013, Section 3.5):

r(t + dt) = r(t)

− dt
h(t + dt)

∇ · (!urh)(t + 1
2
dt)− s(t + 1

2
dt)

[ ]

(13)

for each cell in the domain, and the time step dt is calculated from
a Courant–Friedrichs–Lewy condition. We constrain the damage
to the range r∈ [rN(x, y, t), 1] at all times, where rN is given by
Eqn (5), so that crevasses always penetrate to at least the depth at
which the tensile and compressive stresses balance.

Test cases

To assess model performance we first compute the steady-state
damage of idealized representations of ice tongues and ice shelves.
We specify the initial ice-shelf geometry, the sub-shelf melt

Journal of Glaciology 989
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rate and assume isothermal ice. The melt rate applied in all cases
is spatially uniform over the whole ice shelf and constant in time.

Analytic solution for ice tongues
We begin by examining geometries that correspond to the Erebus
Glacier Tongue and to the unembayed portion of the Drygalski
Ice Tongue. We focus exclusively on the unembayed portion of
the Drygalski Ice Tongue here to avoid the complicating effects
of shear margins, which would make the system inherently 2-D,
as we explore further in the ‘Idealized ice shelves’ Section.

Ice tongues have proven challenging to represent in numerical
models because they range in length from tens to hundreds of
kilometers. This variability makes them difficult to recreate in
large-scale ice-sheet models, which often choose to ignore or
remove ice tongues (see, e.g. Martin and others, 2011), or instead
predict them in places where they do not exist (see, e.g. Larour
and others, 2012, their Fig. 8, which predicts a long ice tongue
from Sermeq Kujalleq in Greenland). With our two examples,
we demonstrate how damage evolution provides a plausible
explanation for, and mechanism for modeling, their characteris-
tics. Another reason for starting with ice tongues is that they
lack the complications associated with buttressing and shear
zones and can thus be approximated as 1-D by applying free-slip,
lateral boundary conditions. This simplification allows us to gen-
erate an analytic, steady-state solution for the damage with which
to verify and validate the damage evolution simulated by
BISICLES.

With no bottom or lateral stresses, the depth-averaged driving
stress for an ice tongue is, following Weertman (1957):

t∗xx(x) =
rw − ri
4rw

righ
∗(x), (14)

where h∗(x) is the ice thickness at location x downstream of the
grounding line and the star superscript represents profiles of
the 1-D, floating ice tongue in steady state. Through Glen’s flow
law, Eqn (14) results in a strain rate of

1̇∗xx(x) = C h∗(x)[ ]n, (15)

where we define the parameter C as

C = A
rig rw − ri

( )

4rw

[ ]n
(16)

that depends on the Glen’s flow law parameter A, which is a func-
tion of temperature. Substituting the strain in Eqn (15) into the
continuity Eqn (10) and integrating, van der Veen (2013, Eqn
5.80) derived an analytic solution for the thickness of an ice ton-
gue experiencing a positive, uniform melt rate ṁ of

h∗(x) =
un+1
0 1+ C/ṁ

( )
hn+1
0

[ ]

h0u0 − ṁx( )n+1 − C
ṁ

{ }−1/ n+1( )

. (17)

The constant flux boundary thickness and velocity are given by h0
and u0, respectively, which can be specified from observations, as
described below. To solve for the steady-state velocity u∗, we use
mass conservation: h∗u∗ = h0u0 − ṁx. The length of the ice ton-
gue cannot exceed

Lmax = h0u0/ṁ, (18)

where the thickness vanishes due to basal melting alone. Here, we
refer to this distance as the ‘mass-balance terminus’. For non-

negative melt rates (zero or positive accumulation), the extent is
unbounded (van der Veen, 2013).

We now simplify the damage evolution equation and solve for
an analytic expression for the steady-state damage in a freely float-
ing ice tongue confined to flow in only one direction. Given the
forces in the ice tongue in Eqn (14), we find that S0 = 2, α = 0,
n∗ = n and rN = ρi/2ρw≈ 0.44. Equation (2) becomes

dr
dt

= ∂r
∂t

+ u∗(x)
∂r
∂x

= −n
∂u∗(x)
∂x

+ ṁ
h∗(x)

[ ]
r

= −nCh∗n(x)+ ṁ
h∗(x)

[ ]
r. (19)

We can quantify the location along the thickness profile where the
viscous-healing and melt-driven terms balance in Eqn (19) by set-
ting dr/dt = 0. Using the analytic expression for ice thickness in
Eqn (17) and conservation of mass, we can derive an analytic
expression for this critical position xcr (see Appendix A):

xcr = Lmax 1− ṁ+ Chn+1
0

(n+ 1)Chn+1
0

[ ]1/(n+1)
{ }

. (20)

Downstream of xcr, damage production is dominated by melt,
whereas crevasses would be closed upstream of xcr due to strain-
driven healing except that they are held open by the Nye
zero-stress criterion in Eqn (5). For non-negative melt rates
(zero or positive accumulation), the melt term has the same
sign as the compressive stress and damage does not increase
beyond the Nye zero-stress damage.

In an advective steady state (∂r/∂t = 0), beyond the critical dis-
tance at which damage production exceeds healing, the damage
satisfies the following differential equation in x alone:

1
r∗(x)

dr∗(x)
dx

= − n
u∗(x)

du∗(x)
dx

+ ṁ
u∗(x)h∗(x)

. (21)

Using conservation of mass and bringing some expressions into
the derivative gives:

d[ ln r∗(x)]
dx

= −n
d[ ln u∗(x)]

dx
+ ṁ

u0h0 − ṁx
, (22)

which we may readily integrate to find

ln
r∗(x)
r∗(xcr)

[ ]
= −n ln

u∗(x)
u∗(xcr)

[ ]
− ln

1− x/Lmax

1− xcr/Lmax

( )
. (23)

Rearranging we arrive at an analytic form for the damage along a
1-D ice tongue with a uniform, positive melt rate:

r∗(x) =
rN x ≤ xcr

rN u∗(xcr)
u∗(x)

[ ]n
1−xcr/Lmax
1−x/Lmax

( )
x . xcr.

{

(24)

In the low melt rate limit, which smoothly approaches the zero
melt profiles (see van der Veen, 2013, Eqn5.71), gradients in
the ice thickness and velocity are small away from the grounding
line and thus the damage increases minimally from the Nye
zero-stress damage. We use Eqn (24) to compare against the dam-
age evolution results predicted from BISICLES.

We may also find the distance beyond the grounding line at
which the ice tongue becomes fully damaged, with crevasses
penetrating the entire depth. This ‘fully-damaged terminus’ is

990 Samuel B. Kachuck and others
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located at Lr such that r(Lr) = 1, or

rN
u∗(xcr)
u∗(Lr)

[ ]n
= 1− Lr/Lmax

1− xcr/Lmax
, (25)

which we compute numerically by root finding. Note that while
Eqn (24) is valid for any constant lower bound of damage, Eqn
(25) does not assure that Lr < Lmax so that crevasses terminate
the shelf before melt does. As a reminder, we have chosen the
Nye zero-stress damage rN to be the lower bound of damage.
We may also use Eqn (25) to extract a quantity that is useful
for comparison to observations: the thickness of the ice at the
fully-damaged terminus. By substitution and a bit of algebra
(see Appendix A) we find that

h∗(Lr) = 0.25
ṁ
C

( )1/(n+1)

, (26)

which depends only on the uniform melt rate (ṁ) and the tem-
perature and density of the ice and water (within the expression
for C, see Eqn (16)).

We determine the model parameters for the ice tongues
(grounding line thickness and velocity, h0 and u0, uniform melt
rate, ṁ, and the viscosity rate-parameter, A) by
geodesic-accelerated least-squares minimization (Transtrum and
others, 2011) between the analytic solutions for thickness and vel-
ocity, and observations along central flowlines (Holdsworth, 1974;
Wuite and others, 2009; Blankenship and others, 2012). This fit-
ting method corrects for the tendency of traditional algorithms to
be sensitive to the starting guess and to spuriously prefer infinitely
rigid ice (A→ 0). The best-fit parameters, as well as those within
1 SD, are listed in the first two columns of Table 1. The melt rate
we infer for Erebus Glacier Tongue is ∼2 m a−1, which is consist-
ent with the basal melt rates calculated by Holdsworth (1982) that
vary spatially between −0.4 and 4.0 m a−1 along the length of the
ice tongue. Drygalski Ice Tongue’s inferred melt rate of ∼3.1 m
a−1 is also consistent with the melt rates reported by Wuite and
others (2009) across the full ice tongue, which vary spatially
between −1 m a−1 (accumulation) and 21 m a−1 along the final
65 km of unembayed ice.

Rectangular ice shelves
To allow for damage evolution simulations that include the effects
of ice-shelf buttressing, we construct two idealized ice-shelf geom-
etries with aspect ratios and grounding line fluxes similar to those

of the Amery and Ross ice shelves, also in Antarctica. We idealize
each ice shelf as a 2-D rectangular box. In each of the two
geometries, we apply lateral no-slip boundary conditions along
a rectangular embayment prescribed to be approximately the
length and width of the average observed embayment: 505 km
long and 100 km wide for the Amery-like geometry; 650 km
long and 950 km wide for the Ross-like geometry, as recorded
in Table 1. We use 1 and 6 km as our coarsest horizontal grid
resolution for the Amery- and Ross-like geometries, respectively.
We define the constant input fluxes as corresponding to the
grounding lines of each ice shelf, and prescribe them along one
edge of the box, perpendicular to the embayment walls, using a
uniform thickness and a smooth velocity profile that goes to
zero at the walls (see Supplementary material Section 1). For
the grounding line ice thickness and centerline velocity, we take
representative values from Bedmap2 (Fretwell and others, 2013)
and the MEaSUREs InSAR-Based Antarctica Ice Velocity Map
(Rignot and others, 2011a, 2011b). We take representative
values for average melt rate from Depoorter and others (2013),
Schodlok and others (2016) and Rignot and others (2013) to be
ṁ = 0.8 m a−1 for the Amery Ice Shelf and ṁ = 0.25 m a−1 for
the Ross Ice Shelf, but further explore melt rate dependence in
the ‘Discussion’ Section. For both idealized ice shelves, we pre-
scribe Glen’s flow rate parameter to be 1.29 × 10−17 Pa−3 a−1,
which corresponds to a temperature of ∼− 9.5°C, the average of
a linear vertical temperature profile from an air-surface tempera-
ture of −19°C to a pressure-melt temperature of 0°C.

Results

Ice tongues

Figures 2 and 3 show the simulated steady-state damage and thick-
ness profiles for the Erebus Glacier Tongue and the unembayed
portion of the Drygalski Ice Tongue, downstream to the fully-
damaged terminus Lr (where damage r = 1), alongside their analytic
1-D solutions. Values of damage across both ice tongues are shown
directly within each ice column as the depths to which basal
crevasses penetrate. These simulated profiles are overlain by
observed cross-sectional thicknesses from Holdsworth (1974) for
Erebus Glacier Tongue and from Operation IceBridge data for
Drygalski Ice Tongue (Blankenship and others, 2012).

For Erebus Glacier Tongue, our model predicts a steady-state
fully-damaged terminus at 15.0 km beyond the grounding line.
This is almost within the 11.6 ± 3 km observed range of decadal
terminus variability reported by Holdsworth (1974), although
the recent variability has been slightly smaller (± 2 km, Stevens
and others, 2013). We also see good agreement between the
shapes of the simulated and reported thickness profiles, with a
terminal thickness of 67 m. Uncertainties in the fitted glacio-
logical parameters contribute to the disagreement between the
simulation output and the data. Sampling from the best-fit distri-
bution, we find 1− σ uncertainties of ± 1.5 km in the damage-
terminated length, shown in Fig. 2, and ± 5 m in the terminus
thickness. (See Supplementary material Section 2 for more infor-
mation on fitting and uncertainties.)

Damage reaches unity on the unembayed portion of the
Drygalski Ice Tongue at a steady-state length of 60.5 ± 0.5 km
beyond the embayment walls, ∼6 km shorter than the 67 km
observations used from the November 2011 Operation
IceBridge flyover (Blankenship and others, 2012) but still well
within the 40 km range of observed decadal terminus variability
(Frezzotti and Mabin, 1994). The terminus thickness of 82 ± 1 m
is also consistent with the observations.

These 1-D results verify the numerical implementation of
damage evolution within BISICLES using the analytic result of

Table 1. Simulation parameters: grounding line thickness h0 and velocity u0,
embayment length ℓem and width wem (for the ice shelves), rate constant A
(found in Eqn (16)) and uniform basal melt rate ṁ

Ice tongues Ice shelves

Inputs
Erebus Glacier

Tongue
Drygalski Ice

Tongue
Amery Ice

Shelf
Ross Ice
Shelf

h0 (m) 434 ± 50 421 1090 660
u0 (m a−1) 95 ± 12 523 390 340
ℓem (km) – – 505 650
wem (km) – – 100 950
A
(10−17 Pa−3 a−1)

2.5 ± 0.4 1.43 ± 0.01 1.29 1.29

ṁ (m a−1) 2.0 ± 0.24 2.64 ± 0.04 0.8 0.25

The ice tongue values result from fitting centerline thickness and velocity observations
(Holdsworth, 1974; Wuite and others, 2009; Blankenship and others, 2012). Our simulations
take Drygalski Ice Tongue’s input flux as the approximate value at a position 52 km
downstream from the grounding line, at the edge of the embayment. For the ice shelves, the
tabulated values are our best estimates of observations at the grounding lines (Rignot and
others, 2011a, 2011b; Fretwell and others, 2013).

Journal of Glaciology 991

.���7�  ��/���� ������� 0�����������
�
1/7.�����1/���
��	�2
�/������/:��7/���
��77

https://doi.org/10.1017/jog.2022.12


Eqn (24) and validate the model as reproducing, within observa-
tional error, the length and terminal thickness of these ice ton-
gues. We now turn to applying the model to the idealized 2-D
geometries for which no closed form solution exists.

Idealized ice shelves

Figures 4 and 5 show results for geometries with the approximate
width, incoming flux and melt rate of the Amery and Ross ice
shelves, as recorded in Table 1. When we introduce no-slip
boundary conditions to simulate an embayed ice shelf, like the
Amery and Ross ice shelves, we also introduce spatial variations
in stress transverse to the direction of flow that affect how damage
evolves.

Buttressing stresses from the walls extend the region where the
stresses are compressive, reducing damage and allowing the dis-
tances to the fully-damaged terminus (identified as the start of
hatching in Figs 4a and 5a) in these embayed ice shelves to extend
further than that of their unembayed, or free-slip counterparts
(shown as vertical lines labeled Lr). This reduction in damage is
more pronounced in the Amery-like ice shelf with its width of
100 km (Fig. 4a) than the Ross-like ice shelf (Fig. 5a) with the

almost an order of magnitude larger width of its embayment
(950 km).

In both simulations, the observed length between the ground-
ing line and terminus position (solid and dashed white lines,
respectively) is approximately reproduced by the centerline dis-
tance to the fully-damaged terminus, although this is not a signifi-
cant improvement over the predicted length from the equivalent
floating ice-tongue (Lmax). The thickness at the fully-damaged ter-
minus is 74 and 52 m along the center line for the Amery- and
Ross-like geometries, respectively. The fully-damaged terminus
thickens near the embayment margins, where increased shear
due to friction from the walls causes damage to reach the critical
value of r = 1 in thicker ice.

Figures 4b, d and 5b, d display the damage (b) and thickness
profiles (d) of the ice shelf along the center line in Figs 4a and 5a,
respectively. We see that the damage follows the Nye zero-stress
minimum damage (Eqn (5)) through most of the length of the
ice shelf, where the flow is largely compressive. Furthermore,
due to buttressing from the walls resisting the driving stress, the
Nye zero-stress crevasse penetration depth initially decreases
from the free-slip ice tongue value of rN = 0.44. Similarly, the but-
tressed shelf is thicker than the unbuttressed, free-slip tongue with

Fig. 2. (a) Damage profile along the Erebus Glacier
Tongue, computed by BISICLES and from the analytic
solution in Eqn (24). The Nye zero-stress damage is
shown for reference. (b) Thickness profile of the
Erebus Glacier Tongue, comparing the results from our
model (solid blue line) to data reported by
Holdsworth (1974) (dashed red line, solid circles). The
ice is shaded purple up to the depth to which basal cre-
vasses penetrate. Axis marks are provided for the analyt-
ically derived xcr (Eqn (20), where damage begins to
increase), Lr (Eqn (25), where damage equals 1) and
Lmax (Eqn (18), the maximum mass-balance length of
the ice sheet). Error bars are shown for uncertainties
in the observed terminus position (dashed) and uncer-
tainties in Lmax and Lr propagated from the uncertainties
in the parameter fit.

a

b

Fig. 3. Same as Figure 2 for the unembayed portion of
the Drygalski Ice Tongue, with data from Blankenship
and others (2012). Estimated uncertainties in Lr and
Lmax are 0.32 and 0.27 km, respectively, and too small
to visualize on this scale.

a

b
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the equivalent incoming flux, but is not as thick as the observed
thicknesses.

The effect of buttressing on damage is more pronounced for
the narrower confinement, with crevasses only penetrating 11%
through the thickness at its minimum for the Amery-like ice
shelf (compared to 30% for the Ross-like geometry and the con-
stant 44% for the 1-D ice tongue). Damage that exceeds the Nye
zero-stress damage is concentrated in a narrow band where melt
rate and spreading dominate the damage evolution, and rapidly
increases until the threshold is reached at 304 km for the
Amery-like domain. This region points to the importance of the
source term in the damage evolution (first term in Eqn (2)) com-
pared to the Nye zero-stress specification of Sun and others
(2017). In the Ross-like domain, due to its comparatively low
melt rate (0.25 m a−1 compared to 0.8 m a−1), the departure
from the Nye zero-stress damage along the center line is smaller,
and the damage threshold is reached at 543 km along the center
line – 12 km closer to the grounding line than the Nye zero-stress
damage predicts.

Discussion

The fully damaged terminus reproduces the terminus positions of
the Erebus and Drygalski ice tongues, within the range of obser-
vations, despite the two systems having lengths that differ by a
factor of five. Figure 6 is a summary of the ice thickness at the
fully damaged terminus from all the simulations described
above, as compared to the analytic prediction for a confined ice
shelf with free-slip walls (Eqn (26)). Our geometries with no-slip
walls showed ice thicknesses at the fully damaged termini of 74 m

along the center line for the Amery-like parameters and 52 m for
the Ross-like parameters (solid points in Fig. 6). Although much
smaller than the observed thicknesses of ∼250 m for both ice
shelves (Fretwell and others, 2013), the fully damaged terminus
is a significant improvement for simultaneous predictions of the
location and thickness of the terminus relative to the mass-
balance terminus – which predicts zero thickness at the terminus
by definition – without heuristic specifications of how thick the
ice should be at the terminus. Still, important discrepancies
exist between the observations and our predictions that point to
factors missing from our simulations that contribute to the
evolution of crevasses and calving fronts.

We have made several simplifying assumptions about the
(1) mass-balance forcing, (2) boundary conditions, and (3) mech-
anical properties of damaged ice. In our simulations, we assumed
uniform melt rates across the ice shelves to demonstrate the phys-
ics of the damage evolution equation (Eqn (2)) and facilitate the
comparison to an analytic solution. We showed that for the ice
tongue case, the thickness of the fully damaged terminus was
entirely controlled by the uniform melt rate and the temperature
of the ice (Eqn (26)), with no dependence on the flux across the
grounding line, unlike the distance to the fully damaged terminus
(Eqn (25)). The three curves in Fig. 6a show the thickness
dependence on melt rate for the three temperatures used in the
study and the four curves in Fig. 6b show the length dependence
for all four geometries. Physically, higher melt rates increase dam-
age production, pushing the location of the fully damaged ter-
minus closer to the grounding line and into thicker ice. On the
other hand, warmer ice deforms and thins more easily, leading
to a smaller thickness, but a less significant effect on the length.

a

b c

d

Fig. 4. (a) Simulation results overlain on the observed grounding line and ice front marked in white (solid and dashed, respectively) from Bedmap2 (Fretwell and
others, 2013), for the Amery-like ice-shelf geometry. The purple shades show the damage within the simulated ice extent, with the hatching indicating fully
damaged ice (r = 1), and the green contours show the ice thickness. The grounding line thickness, the centerline velocity at the grounding line, the temperature
and the melt rate are as prescribed in Table 1. Analytic predictions from the flux-equivalent 1-D ice tongue (see Supplementary material Section 1) for xcr, Lr and
Lmax (Eqns (20), (25) and (18)) are shown along the top axis. (b) Evolved damage and the Nye damage from BISICLES along the center line, compared to the pre-
diction from the 1-D flux-equivalent model. (c) Size and location of the idealized domain for Bedmap2 contours in panel (a). (d) Thickness profile along the center
line, as in Fig. 2b, with thickness data (red, dotted) from Bedmap2.
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The thicknesses we measure from the BISICLES simulations of
Erebus and Drygalski ice tongues fall right on these curves, as
expected from the agreement between the simulated and analytic
profiles.

The confined ice shelves with no-slip walls show a generally
similar melt rate dependency (blue, dashed lines in Fig. 6a).
The Amery-like ice shelf, with its narrow confinements, produces
a thicker terminus for smaller melt rates than predicted by the

a

b c

d

Fig. 5. Same as Fig. 4, for the Ross-like ice shelf with the inset map in panel (c) rotated counterclockwise so the flux in the domain flows left-to-right.
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1-D theory. The buttressing from the walls slows the ice, allowing
it to thicken relative to an equivalent free-slip ice tongue.
However, with a higher melt rate, the smaller ice thickness results
in less contact with the wall, less buttressing, and thus the shelf
thickness looks more like that of the analytic tongue.

The large width of the Ross-like shelf results in a more pro-
nounced melt rate dependence along the center line, owing to a
balance between the buttressing that causes both the damage to
heal and the ice to thicken. At low values of the melt rate, the
ice shelf is connected to the wall for longer, allowing the crevasses
to heal more (the Nye zero-stress damage decreases with
increased buttressing) so that the fully damaged terminus location
is pushed farther from the grounding line (cf. the Ross points in
Fig. 6b diverge from the theoretical 1-D prediction), into thinner
ice, while the thickening effect is not as pronounced. For high
melt rates, the ice shelf decouples from the walls almost immedi-
ately, and so the ice spreads out rapidly. Between these extremes,
the healing is not as significant but the buttressing allows the ice
to thicken, resulting in the non-monotonicity in Fig. 6a. These
melt rate experiments suggest that a thicker fully damaged ter-
minus could result from a more representative melt-rate profile
(e.g. decreasing from the grounding line to the terminus at
Amery as in Wen and others (2010) or increasing for Ross as
in Stewart and others (2019)), but only in combination with a
more complete representation of the boundaries of the ice shelves,
as we describe next.

Our approximation of the domain as a rectangular embayment
with no-flux, no-slip walls gives a general sense of how friction
and lateral shearing affect the evolution of damage. In regions
near the side walls, where strain rates are large, damage evolves
more quickly, such that the length from grounding line to fully
damaged terminus decreases (to ∼160 km in the Amery-like
geometry and 134 km in the Ross-like geometry), causing the
ice shelf to terminate in thicker ice (221 and 91 m, respectively).
However, comparing our boundaries to the observed grounding
lines (white contours in Figs 4 and 5) highlights topographical
features in the actual ice shelves that are absent in our simulations.
This includes pinning points along the walls of the Amery Ice
Shelf and islands in the Ross Sea, which would provide buttressing
and allow the modeled ice shelves to thicken and extend farther
beyond their grounding lines. These pinning points, and a more
complex grounding-line flux, would also bring the modeled thick-
nesses closer to the observed thicknesses (compare solid-blue and
dotted-red lines in Figs 4d and 5d).

We expect damage to be affected by the inclusion of these
topographical features as well. As with the walls in our domains,
ice flow around these features would experience increased shear
rates, which would lead to faster accumulation of damage and a
thicker fully damaged terminus. This is consistent with an empir-
ical damage estimate along the Amery and Ross ice shelves by
Bassis and Ma (2015, their Figs 5a and c), who integrated the
damage evolution Eqn (2) using satellite-derived thicknesses
and velocity profiles. They found, as here, that damage is low
throughout the majority of the floating ice shelf, with a rapid
increase occurring near the terminus. What their estimates
show that ours do not, however, are flowlines of high damage
emanating from topographical features along the walls and from
features along the grounding lines. Similarly, Indrigo and others
(2021) find that fracture propagation at Drygalski Ice Tongue is
controlled by the thickness variations in the form of across-
and along-flow basal channels that evolve from grounding line
to calving front, suggesting an important interplay between
grounding line morphology, melt and damage production. For
the Drygalski Ice Tongue, although thicker ice between along-
flow channels impedes fracture propagation, the large-scale calv-
ing behavior is determined by the thinning of the across-flow
channels (Indrigo and others, 2021), in line with the necking
instability we describe here, and captured by our 1-D model.
For the Amery Ice Shelf, however, with buttressing forces and
the accretion of marine ice (Fricker and others, 2001), this inter-
action between grounding line and basal features will have a more
pronounced effect on damage. We therefore believe that a more
representative grounding line topography and the presence of pin-
ning points would contribute to a more varied fully damaged ter-
minus position: further from the grounding line in areas where
buttressing lessens the shear stress and closer to the grounding
line downstream of high shear zones.

Finally, we have assumed that damage has no effect on the
dynamics of the ice and focused solely on the locations where
damage reaches its maximum value r = 1. When a crevasse pene-
trates through the entire ice thickness, ice should detach, calve
away and change the stress balance on the front. Calved ice
does not evacuate to the open ocean immediately, however, but
can persist in front of the ice as a mélange, pushing back as a but-
tressing force on the intact ice (e.g. Burton and others, 2018). Our
results can be understood as one end-member on the spectrum
between the presence of a mechanically strong mélange and ice
that is immediately evacuated away from the terminus. Any

a b

Fig. 6. (a) Ice thickness at h(Lr) and (b) distance from the grounding line to the fully damaged terminus as it depends on melt rate and average ice temperature.
Lines in (a) show the analytic prediction for a 1-D ice tongue with temperatures corresponding to the best fits for Erebus Glacier Tongue (−5.9°C) and Drygalski Ice
Tongue (−8.8°C), as well as for the prescribed ice-shelf temperature used in the Amery-like and Ross-like simulations (−9.4°C). Lines in (b) show the analytic pre-
diction for each flux-equivalent tongue for each geometry. For the idealized Amery and Ross Ice Shelf geometries, which are 2-D by nature of the no-slip embay-
ment walls, the thickness shown here is along the center line. Solid dots represent the experiments from Table 1, whereas open dots represent additional
experiments discussed in text.
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decrease in the viscosity of the damaged ice as a result of coupling
to the ice rheology will decrease the back-stress exerted on the
still-intact ice and push the fully damaged terminus upstream,
into thicker ice. Similarly, if calving occurs at a threshold lower
than r = 1 (see, e.g. Pralong and Funk, 2005), the terminus
would also fall closer to the grounding line, in thicker ice.

Challenges arise in implementing and interpreting simulations
in which we remove damaged ice from the idealized ice-shelf
geometries. Damage at the point where the moving ice, static-wall
and ocean meet always grows due to a singularity in the stress,
causing the ice shelf to decouple from the wall and thin consider-
ably, similar to the rapid retreat observed by Sun and others
(2017) in the MISMIP+ experiments with damage calving.
Possible resolutions to this challenge will likely involve relaxing
the no-slip boundary condition, coupling to a mélange model
(e.g. Amundson and Burton, 2018; Schlemm and Levermann,
2021), or introducing a lubrication layer, such as a shear margin
(e.g. Lhermitte and others, 2020), as we would get with geometries
that depict more of the details of observed glacial boundaries.

Figures 4 and 5 show that that our model does not predict
localized rifting or shear margins in these idealized geometries.
This is particularly apparent in our idealized Amery-like simula-
tions, as we do not resolve the tens of kilometers long rift system
observed at the terminus of the real ice shelf (Bassis and others,
2005). Measurements made by Bassis and others (2008) suggest
that rift propagation depends primarily on the stress within the
ice and not on short-term climate forcings or ice–ocean interac-
tions. Our model (Eqn (2)) includes a dependence on the stress
through the maximum principal strain rate and Glen’s flow law,
but this relationship also depends on the temperature through
the effective ice viscosity. Coupling damage to the stress field
via rheological feedbacks or incorporating more representative
ice temperature evolution could therefore lead to the localization
of damage in our model, similar to what was seen in Lhermitte
and others (2020). We have also omitted the process of brittle
fracture that would directly cause such localized rifting on the
scale of meters to tens of meters (Pralong and Funk, 2005;
Aström and others, 2013), which could possibly be resolved
within BISICLES using its adaptive mesh refinement capability.

Conclusions

Our continuum damage mechanics model, which simulates the
evolution of the ratio of crevasse depth to ice thickness according
to a pseudo-plastic necking instability, provides a useful frame-
work for modeling damage evolution and terminus characteristics
without introducing additional parameters. When incorporated
into an ice-sheet model, our fully damaged terminus model pre-
dicts broadly accurate steady-state extents for a suite of idealized,
isothermal ice tongues and ice shelves forced by spatially uniform
basal melt rates. We have provided an analytical expression for the
damage in an ice tongue and predicted a fully damaged terminus
thickness that increases with melt rate, decreases with ice tempera-
ture, and has no dependence on flux or system size. Whereas we
are able to reasonably model observed lengths and terminus thick-
nesses for ice tongues, we identify more complex behavior in ice
shelves with no-slip walls. Specifically, the fully damaged termini
modeled in our idealized, 2-D ice-shelf geometries are thinner
than those observed. The likely causes of these differences arise
from certain idealizations in the present study (simplified ground-
ing line, spatially uniform ocean forcing, flat, no-slip side walls and
the omission of other pinning points) and to interactions between
damage and the rheological properties of ice. Integration of these
aspects of observed ice shelves with the necking instability we
describe will be an effective way to model the future evolution of
calving fronts in large-scale ice-sheet models.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2022.12.

Code and data availability. We used the damagedBISICLES branch of the
publicly available version of the BISICLES ice-sheet model code, release ver-
sion 1.0. Instructions for downloading and installing BISICLES after free
registration with ANAG may be found in the ‘getting started’ section at
http://bisicles.lbl.gov. The specific svn command for obtaining the relevant
branch is: svn co https://anag-repo.lbl.gov/svn/BISICLES/public/branches/
damagedBISICLES BISICLES.

BISICLES is written in a combination of C++ and FORTRAN and is built
upon the Chombo AMR software framework. More information about
Chombo may be found at http://Chombo.lbl.gov.

Static code, data, input, configuration files for the runs in this work are
available at https://portal.nersc.gov/cfs/iceocean/iceshelfdamage or https://
doi.org/10.5281/zenodo.5850262.
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Appendix A

Detailed derivation of thickness at the fully damaged
terminus of an ice tongue

In this appendix, we derive the thickness of the fully damaged terminus, by
way of deriving xcr. We start by introducing a non-dimensionalization
which is particularly useful for 1-D tongues with positive, uniform melt
rates. As these have a finite extent where the total melt rate equals the flux
in Lmaxṁ = h0u0, we scale distances with this length. Inspection of the analytic
thickness suggests that the thickness should scale like (ṁ/C)1/(n+1). We thus
introduce non-dimensional variables x̃ = x/Lmax and h̃ = h/(ṁ/C)1/(n+1).
The velocity scale turns out not to matter, so we leave it dimensional for the
time being. In non-dimensional form, the thickness from grounding line
(x̃ = 0) to mass-balance terminus (x̃ = 1) is

h̃
∗
(x̃) = h̃0

−(n+1) + 1
1− x̃( )n+1 − 1

[ ]−1/ n+1( )

. (A1)

It is useful to note from this that

u∗(x̃) = h̃0u0(1− x̃)

h̃
∗
(x̃)

(A2)

and

1− x̃( )n+1= h̃0
−(n+1) + 1

h̃
∗−(n+1)

(x̃)+ 1
. (A3)

Remembering that the forces in the ice tongue give S0 = 2, α = 0, n∗ = n
and rN = ρi/2ρw≈ 0.44, the location at which damage increases, which is also
the location where the principal stress regime changes from compressive to
tensile, can be found with

dr
dt

∣∣∣∣
xcr

= −nh̃
∗n + 1

h̃
∗

[ ]
r = 0. (A4)

Simplifying Eqn (A4) for the thickness at this critical distance gives

h̃
∗(n+1)

(x̃cr) =
1
n
. (A5)

We are now ready to simplify the damage evolution equation and solve for an
analytic expression for the critical distance where damage increases in a freely
floating ice tongue confined to flow in only one direction. Using Eqn (A1), we
find that

x̃cr = 1− h̃0
−(n+1) + 1
(n+ 1)

[ ]1/(n+1)

, (A6)

which, after re-dimensionalizing, gives us Eqn (20).
We may now find the thickness of the fully damaged terminus at advective

steady state, h∗(Lr). We know from Eqn (25) that Lr is defined such that

rN
u∗(xcr)
u∗(Lr)

[ ]n
= 1− Lr/Lmax

1− xcr/Lmax
. (A7)

Upon substituting in Eqn (A2), non-dimensionalizing, and rearranging terms,
we obtain

rN
h̃
∗
(L̃r)

h̃
∗
(x̃cr)

[ ]n

= 1− L̃r
1− x̃cr

( )n+1

. (A8)

Using Eqns (A3) and (A5) and canceling some terms:

h̃
∗n
(L̃r)+ h̃

∗−1
(L̃r) =

1
rN

n+ 1
nn(n+1)

[ ]
. (A9)

Thus, the non-dimensional thickness at the fully damaged terminus,
h̃
∗
(L̃r) = a, is the root to the polynomial

an+1 − 1
rN

n+ 1
nn(n+1)

[ ]
a+ 1 = 0, (A10)

which has an analytic solution where n is an integer of 3 or less, but we find it
numerically by root-finding. For the material parameters ρi = 910 kg m−3, ρw =
1028 kg m−3 and n = 3, we find that α = 0.25. Back in dimensional form, the
thickness of the fully damaged terminus is

h∗(Lr) = 0.25
ṁ
C

( )1/(n+1)

, (A11)

which is Eqn (26).
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