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ABSTRACT

Polaron formation following optical absorption is a key process that defines the photophysical properties of many semiconducting tran-
sition metal oxides, which comprise an important class of materials with potential optoelectronic and photocatalytic applications. In this
work, we use hematite (a-Fe;O3) as a model transition metal oxide semiconductor to demonstrate the feasibility of direct optical population
of band edge polaronic states. We employ first-principles electron-phonon computations within the framework of the density functional
theory+U+J method to reveal the presence of these states within a thermal distribution of phonon displacements and model their evolution
with temperature. Our computations reproduce the temperature dependence of the optical dielectric function of hematite with remarkable
accuracy and indicate that the band edge optical absorption and second-order resonance Raman spectra arise from polaronic optical transi-
tions involving coupling to longitudinal optical phonons with energies greater than 50 meV. Additionally, we find that the resulting polaron
comprises an electron localized to two adjacent Fe atoms with distortions that lie primarily along the coordinates of phonons with energies of

31 and 81 meV.
Published under an exclusive license by AIP Publishing.

INTRODUCTION

Semiconducting transition metal oxides are a promising class
of materials for the development of next-generation light-harvesting
devices due to their exceptional photochemical stability and sustain-
able large-scale synthesis from earth-abundant precursors, and have
thus been the subject of intense research throughout the past two
decades. ~ However, the scope of solar energy conversion applica-
tions for transition metal oxides has been limited by their inherent
tendency to form polarons, quasiparticles comprised of a charge
carrier (electron or hole) bound to a proximal distortion of the
host lattice.”” Polarons arise from strong carrier-phonon inter-
actions and are primarily classified by the spatial extent of their
characteristic lattice distortion. A large polaron is one whose carrier
wavefunction and lattice polarization extend beyond a single lattice
constant. Conversely, a small polaron is contained within the volume
of approximately one primitive unit of the crystal structure.” The
size of a polaron influences its mobility: Large polarons exhibit band
transport properties similar to free carriers, whereas the mobility
of small polarons is limited to thermally activated carrier-hopping

processes. The theoretical description of polarons dates back to 1933,
when Landau first proposed their existence;’ however, atomically
precise descriptions of polaronic states and their formation in transi-
tion metal oxides that fully account for extended solid-state structure
and can accurately reproduce experimental spectroscopic data are
lacking. Such models are crucial to developing a complete under-
standing of the electronic structure and photophysics of transition
metal oxide semiconductors.

Transition metal oxides are particularly challenging to model
within the context of band theory due to their unique electronic
structure. In conventional crystalline semiconductors (e.g., II-VI,
III-V, and group-14 elemental systems), the electronic structure of
the bandgap is dictated by hybridization of valence s and p orbitals
of the atomic constituents of the crystal. Significant orbital mixing
within the sp subspace results in dispersive bands that accommo-
date efficient covalent charge transport. In contrast, the electronic
structure of transition metal oxides is strongly influenced by addi-
tional interactions involving the 3d orbitals of transition metal ions,
particularly those with an open-shell configuration. As a result, the
near-gap bands are generally more ionic in character and, thus,
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weakly dispersive.”” This phenomenon has a series of profound
consequences: (i) Weakly dispersive bands give rise to a high density
of strongly localized electronic states within the lattice, (ii) charge
carriers (electrons or holes) occupying these bands experience
relatively high effective masses and strong on-site carrier—carrier
interactions, and (iii) the energy and mobility of these carriers
become inherently coupled to the motion of the surrounding nuclei
(i.e., phonons).” Altogether, these consequences comprise two of
the most pervasive and fundamental challenges to computational
modeling of the electronic structure of transition metal oxides:
strong carrier—carrier and carrier-phonon interactions.

Localized electronic states in solids, such as polarons, are noto-
riously difficult to describe within the confines of approximate
density functional theory (DFT). This difficulty is due, in part,
to the failure of standard exchange and correlation functionals to
describe strong Coulombic interactions between localized electrons.
Such self-interaction errors typically lead to an over-delocalization
of valence electrons in the ground state predicted by standard DFT.
Open-shell transition metal oxide semiconductors are particularly
susceptible to these errors due to the strongly correlated nature of
their metal d-orbital subspace. Fortunately, this problem is now
routinely mitigated by the widely used DFT+U and DFT+U+]
methods, whereby an on-site Coulombic repulsion (Hubbard) para-
meter U and a site exchange (Hund’s) parameter J are added
to the total energy functional of standard DFT. Given the addi-
tive nature of the corrective functionals, implementation of these
methods into existing computational codes is simple; however, the
task of choosing appropriate values for the U and J parameters can
prove challenging. Many authors choose to tune the parameters
until a particular computed observable agrees with experimental
data, while others simply opt to use previously reported values
successfully applied in modeling similar systems.'’ Although preva-
lent in literature, both routes are poorly justified. Both U and J
should be taken as inherent properties of the system itself and of the
particular pseudopotentials and functionals employed in the model.
A more rigorous approach is to explicitly calculate the parameters
ab initio by way of density functional perturbation theory (DFPT) in
order to ensure the corrected functional precisely accounts for the
magnitude of self-interaction errors present in the specific system of
interest.’"

Inclusion of vibrational degrees of freedom presents further
challenges to accurate modeling of polaronic states using traditional
computational treatments. Thermal lattice vibrations are described
by a stochastic superposition of phonons and represent a departure
from Bloch periodicity. The resulting disorder causes states of pre-
viously well-defined wavevector to become mixed, often leading
to a significant renormalization of the electronic structure. Stan-
dard DFT is severely limited by the fundamental approximation
that atomic nuclei are completely immobile in the crystal lattice
(i.e., fixed at their equilibrium positions). As such, the effects
of dynamic thermal fluctuations on the nuclear potential are
neglected."* Among the most significant of these neglected phe-
nomena is the contribution of phonon-coupled optical transitions
to computed optical spectra. These effects are crucial to the accu-
rate modeling of the temperature dependence of optical functions
of materials, such as transition metal oxides, that exhibit strong
carrier-phonon coupling and polaron formation in ground and/or
photoexcited states.” '’
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Here, we use hematite (a-Fe;O3) as a model transition metal
oxide to develop a method to compute temperature-dependent
electronic structures of strongly correlated semiconductors based
on a first-principles atomically precise treatment of carrier—phonon
coupling. Among transition metal oxides, hematite has emerged
as one of the most well-studied materials due to its poten-
tial application as a photoanode for water oxidation.'”” How-
ever, bulk charge transport in hematite is constrained by small
polaron formation. Although some studies have suggested that
both electrons””* and holes’ * form polarons in hematite fol-
lowing excess charge injection or oxygen-vacancy doping, other
theoretical investigations indicate that localization of holes injected
into hematite in the absence of excess electrons is unfavorable.”””
Recent reports of transient absorption spectroscopy measurements
that probe in the near-infrared (NIR)*"" or XUV suggest that
photogenerated electrons and holes can co-localize in hematite
to form self-trapped excitons, also known as exciton polarons.
Other transient XUV" " and pump-push photocurrent (PPPC)*’
spectroscopy studies have shown that small polarons form along-
side thermal relaxation of photoexcited electrons. Our group pre-
viously demonstrated that small polaron bands can arise in a
pristine hematite lattice without the need for prior charge injec-
tion, defect doping, or photoexcitation.* The computational meth-
ods developed here reveal several highly localized optical transi-
tions that appear near the band edge of hematite upon inclusion
of a thermal distribution of atomic displacements along phonon
eigenvectors. By varying the temperature that governs the ther-
mal distribution of phonon displacements in the lattice, we can
reproduce accurately the thermal difference spectra of hematite
we reported previously.** This work unambiguously confirms that
these band tail transitions give rise to the formation of electron
small polarons through strong coupling with longitudinal optical
phonons.

THEORETICAL BACKGROUND
The DFT+U and DFT+U+J framework

The DFT+U method is characterized by the addition of a
parameterized correction to the total energy functional of stan-
dard DFT that is intended to mitigate self-interaction errors arising
from strongly correlated electronic states. The resulting DFT+U
functional can be expressed as

Eprr+u = Eper[n(r)] + EU[{an'}} (1)

where Eppr is the standard DFT total energy functional, n(r) is
the electron density, Ey is the Hubbard correction, and n’J,, are
the orbital occupation matrix elements for each atom I within the
Hubbard manifold.” " Here, ¢ represents the electron spin index,
t or |. In the original formulation proposed by Anisimov and
co-workers, Ey was not rotationally invariant with respect to the
localized Hubbard subspace and, as such, depended heavily on the
choice of basis for the Hubbard orbital wavefunctions.'” Today, the
most widely used DFT+U method is the rotationally invariant form,
first developed by Liechtenstein and co-workers ™"’ and further
simplified by Cococcioni and de Gironcoli.'' In this formulation, Ey
is expressed as
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where U’ is the atomic Coulomb repulsion and n'° is the occupa-
tion matrix of the Hubbard atom I. In this form, Ey effectively acts
as a penalty function that favors either full or null occupancy of
the Hubbard subspace over fractional occupations, thus driving the
system toward a state more akin to that predicted by exact DFT.
The elements of n'" take the general form of a projection of the
electronic Kohn-Sham valence wavefunctions (yy,), denoted by
crystal momentum k and band index v, onto a choice of localized
basis functions,

ﬂﬁgm’ = Zk,vflz/<W§V|i5£nm'|‘//lZV>- ©)

In Eq. (3), fi, represents the Fermi-Dirac occupation number.
Throughout this work, we employ a basis of atomic iron (Fe®) d
orbitals, ¢, where the index I now specifically denotes iron atomic
sites within the lattice. As such, the projection operator takes the
simple form given in the following equation:

P = 9} P | (4)

In this work, we determine the value of U’ for the iron 3d
subspace of hematite within the framework of the linear response
approach developed by Cococcioni and de Gironcoli.'! The aim
is to compute, from first principles, a value for the Hubbard
parameter that corrects for the unphysical curvature of the total
energy induced by non-integer occupation numbers. This goal is
accomplished by way of constrained density functional calculations
that provide a means of tracking the total energy of the system as a
function of the local occupation of the Hubbard atoms. In practice,
these constraints are implemented by applying localized perturba-
tions, &, to the Kohn-Sham potential of individual Hubbard sites, I,
isolated within a supercell. Thus, the response function given in the
following equation affords a quantitative measurement of the total
energy curvature with respect to changes in the on-site occupancy of
the Hubbard manifold:

_ OB _om
A= 8061806/ N 806].

)

Elements of the response matrix are calculated as numerical deriva-
tives by evaluating the occupations (1n'° = Tr[n°]) subject to a
discrete set of applied potentials centered tightly around 0 meV,
typically within £100 meV, starting from the self-consistent
potential of a converged standard DFT ground state. The Hubbard
parameter for a given site, I, is subsequently calculated as the
difference in the inverse of two unique response functions, i.e.,

U=(0'-x"), (6)

The first (y,) represents the bare, noninteracting response evaluated
after a single iteration of the self-consistent field calculation and
the second () is the self-consistent, interacting response evaluated
following convergence. Subtraction of the two response functions
effectively removes the total energy curvature associated with the
instantaneous rehybridization induced by the applied potential,
leaving only the Hubbard U of the interacting system.
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At its conception, the methodology described above explicitly
neglected higher-order terms in the Coulomb interaction (i.e., those
described by Hund’s J) in favor of a simplified description of the
on-site Coulomb repulsion. The resulting Hubbard U was taken to
be an effective linear combination of both the true Hubbard U and
Hund’s ],

Uy = U—J. 7)

Although Eq. (7) is ubiquitous in literature, its form has yet to be
rigorously justified."” Himmetoglu et al. later proposed an extension
of the linear response method to the calculation of J.'> Notably,
they found that the correct insulating ground state of cubic CuO
could be reproduced only with the inclusion of Hund’s J as the
original DFT+U formulation neglected stabilizing magnetic inter-
actions, thus predicting a metallic ground state. These interactions
are reintroduced to the functional Ey according to the following
expression:

1 1
Bu= Y, o Tl (1- )]

T
#2257 ), ®)

The spin index omin specifically denotes the minority spin channel.
The method for calculating J' closely follows that for the calculation
of U'. Here, the response matrix elements take the form

aml
= Aa )
M= oy
which defines the response of local magnetization (m; = n; - n}) to
an applied magnetic perturbation of magnitude f8;. Hund’s J is then
calculated according to the following equation:

T==(x' =x7"), (10)

Importantly, the functionality of this technique is limited to the
calculation of J from a nonmagnetic ground state in order to
preserve linearity of the response matrices. This limitation is a
direct consequence of the fact that the total energy of a system is
not variational with respect to its magnetization as ground state
magnetization will typically tend toward saturation.'”

We employ this extended linear response method to indepen-
dently calculate the Hubbard U and Hund’s ] parameters for the
Fe 3d subspace of hematite. Starting from a fully relaxed standard
DFT ground state, local potential shifts («' and p’) ranging from
—-60 to 60 meV are sequentially applied in 20-meV increments to
a single Fe center isolated in a 2 x 2 x 2 rhombohedral supercell
of hematite. In order to obtain an accurate noninteracting response
function, the accuracy threshold of the first iterative Hamiltonian
diagonalization of each perturbation was fixed to its final value at
convergence of the preceding DFT ground-state calculation. Due
to the symmetry-equivalence of the iron centers in hematite, the
response function can be computed from perturbing a single iron
atom. In order to account for the background response of the lattice,
we perform an additional set of perturbations in which equivalent
potential shifts are applied to every atom in the supercell except the
isolated iron. Therefore, each response function takes the form of a
2 x 2 matrix.
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To impose self-consistency on the calculated values of U and
J, the response functions are iteratively recalculated from a DFT+U
and DFT+] ground state, respectively. In this scheme, we apply Uiy,
(Jin) and recalculate an updated value, Uour (J,,¢). This sequence
is repeated until the output value is within 1% of the input value.
We note that an iterative recalculation of J from a DFT+] ground
state without the inclusion of the Hubbard U parameter may not
be generally applicable to all materials. Many systems are driven
toward a metallic ground state as the value of the applied ] parameter
increases (i.e., the bandgap narrows with increasing J). Conse-
quently, iterating on a DFT+] ground state is rendered impossible
if the bandgap of the system closes. In such cases, one may choose
to first compute a self-consistent U and then iteratively compute J
from a fixed DFT+U ground state. In the case of hematite, how-
ever, increasing both U and J widens the bandgap and preserves an
insulating ground state.

Ab initio electron-phonon coupling
via vibrational averages

The earliest electron-phonon coupling computations were
based on perturbative methods aimed toward the direct calcula-
tion of electron-phonon matrix elements.”’ ™ Here, we use the
non-perturbative method of vibrational averages, which involves
computing electronic observables within a supercell subjected to
a set of atomic displacements that approximate an average ther-
mal configuration, thus circumventing explicit calculation of the
interaction matrix. This approach was first developed by Williams™”
and Lax’ and has recently been extended to the computation
of temperature-dependent band structures and optical absorption
spectra by Zacharias et al.”” " and Monserrat et al.”"*’ Notably,
perturbative methods of computing electron-phonon matrix ele-
ments are limited to include only terms up to a given order. In
the vibrational averages approach, this limit is surpassed by virtue
of performing full electronic structure calculations on a given con-
figuration. Thus, higher-order terms are implicitly captured in all
computed observables.®!

Following the adiabatic Born-Oppenheimer approximation,
the temperature-dependent expectation value of an electronic
observable can be defined as

O(1) = Z X (@O eiw)e T, ()

1

where |®;(u)) represents nuclear states of energy E; described by a
nuclear configuration expressed in terms of normal mode coordi-
nates, u = {uq}. Subscripts m and q represent the phonon band
index and wavevector, respectively. Z is the canonical partition
function and kp is the Boltzmann constant. The central goal of
the method of vibrational averages is to construct a nuclear con-
figuration (or set of configurations), ur, that produces a value
of the observable equivalent to the vibrational average at a given
temperature, T, i.e.,

O(ar) = (O(T)). (12)

Within the quadratic approximation of the harmonic oscillator,
Eq. (12) can be converted into a set of 3(N — 1) equations that
determine ur, where N is the total number of atomic coordinates,
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1

g (T) = smq(zéimq[zm;(omq, )+ 1])2. (13)

In Eq. (13), Syq takes the form of a sign matrix with elements +1 and
18(Qumq> T) represents the Bose-Einstein occupation number of a
phonon with frequency Qq at temperature T.”""

Real-space representations of vibrational displacements are
restricted to phonons with real-valued eigenvectors (i.e., those
with q = 0). Therefore, the sampling of finite-wavevector phonons
requires the construction of a supercell commensurate with the
desired q-grid. Herein, we omit the q subscript as all phonons that
are considered are effectively “folded” into the center of the first Bril-
louin zone of the chosen supercell. Equation (13) then yields a set of
231 atomic configurations, where N now denotes the number of
atoms in the supercell whose nuclei have been displaced from their
equilibrium positions according to the following equation:

Ar(T) = (A’;K);;um,rem, (14)

where M, is the mass of atomic species x and eq, are the
phonon eigenvectors obtained from diagonalization of the dynami-
cal matrices.”

In practice, the methodology described above demands care-
ful consideration of the balance between accuracy and efficiency.
Dense sampling of the phonon dispersion curve requires the use
of large supercells; however, the configuration space defined by
Eq. (14) scales dramatically with system size and is staggeringly
vast for even the smallest supercells. In recent years, a number of
sophisticated approaches toward overcoming this challenge have
been reported. Zacharias et al. demonstrated an efficient Monte
Carlo integration scheme,” a one-shot approach to generating opti-
mized sign matrices,”® and a rigorous algorithm to construct a
single temperature-dependent atomic configuration.”” Monserrat
proposed a method of so-called thermal lines, whereby the tem-
perature dependence of electronic observables is computed along
a small set of lines in the configuration space (i.e., by keeping the
sign matrices constant as temperature is varied).”® In this work,
we adopt an approach that combines Monte Carlo integration with
the method of thermal lines in order to generate a small subset of
configurations that closely approximate the thermal average.

COMPUTATIONAL METHODS
Electronic structure computations

First-principles DFT and DFT+U+J computations were con-
ducted utilizing the pseudopotential plane wave method imple-
mented in the Quantum ESPRESSO package.” *" Throughout this
work, we employed the exchange-correlation functional proposed
by Perdew, Burke, and Ernzerhof and revised for solids (PBEsol)**"”
and Optimized Norm-Conserving Vanderbilt (ONCV)"""" pseu-
dopotentials. Converged values of the plane wave cutoff energy and
k-point grid density were determined for a 10-atom rhombohedral
primitive cell of hematite with nuclei clamped at their equilibrium
positions. A high plane wave energy cutoff of 1100 eV was chosen
to ensure total energy and total interatomic forces were converged

J. Chem. Phys. 157, 174703 (2022); doi: 10.1063/5.0116233
Published under an exclusive license by AIP Publishing

157, 174703-4


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

to within 10 meV and 0.10 meV/A per atom, respectively. Self-
consistent field (SCF) optimization of the Kohn-Sham wavefunc-
tions was converged on a 4 x 4 x 4 Monkhorst-Pack’” k-point grid,
sampling 28 symmetry-weighted k-points in the first Brillouin zone
of the primitive cell. For all SCF calculations involving supercells,
the k-point grid density was reduced commensurate with the dimen-
sions of the supercell. Iterative atomic relaxations were performed
utilizing the Broyden-Fletcher-Goldfarb-Shanno (BFGS)™” " algo-
rithm until the total interatomic forces were less than 0.03 meV/A.
Lattice parameters were fixed to an average of experimental val-
ues reported for hematite.”””” The antiferromagnetic sublattice of
hematite (1]{1 along the principle axis) was constructed by explic-
itly treating spin-up and spin-down iron centers as unique atomic
species with a fixed antiparallel spin configuration.

Vibrational structure computations

Full phonon dispersion curves were calculated with den-
sity functional perturbation theory (DFPT) as implemented in
the PHonon code distributed with the Quantum ESPRESSO
package.”” *’ Starting from a fully relaxed DFT+U+J ground state,
dynamical matrices were evaluated on a uniform 3 x 3 x 3 grid of ¢-
points. Finer sampling was then achieved via Fourier interpolation
on a denser q-grid.

RESULTS AND DISCUSSION

Electronic and vibrational properties of the static
DFT+U+J ground state of hematite

We begin by using the linear response method for determining
U and ] to compute electronic and vibrational structures and spectra
of the static ground state of hematite, in which all atoms are clamped
in their geometrically relaxed positions. Linear response calculations
performed within a 2 x 2 x 2 (80-atom) rhombohedral supercell
of hematite produced a Hubbard U parameter of 3.120 + 0.006 eV
and a Hund’s J parameter of 1.535 + 0.008 eV. Self-consistency was
achieved within five iterations, following which both U, and J,,;
were consistently within 0.1% of their respective preceding values
(see Fig. S1 in the supplementary material). We confirmed that these
values were converged with respect to the volume of the supercell by
performing an identical set of linear response calculations within a
3 x 2 x 2 (120-atom) supercell. The output parameters were within
2.5% of those reported above. Therefore, we conclude thata2 x 2 x 2
supercell is sufficient for hosting single-atom perturbations and ade-
quately suppresses spurious interactions of the localized potential
with its periodic image.

The electronic band structure and optical dielectric spectrum
computed from the static DFT+U+]J ground state of hematite are
shown in Figs. 1(a) and 1(b). We chose to apply a rigid shift of
+0.5 eV to all conduction band eigenvalues in order to bring the
computed dielectric function into agreement with the measured
spectrum. Herein, this shift is applied to all electronic band dia-
grams, electronic density of states plots, and computed dielectric
functions. In order to fulfill the f-sum rule governing total oscillator
strength, all computed optical spectra are subsequently renormal-
ized by a factor of (1 - % ).7’7“7‘\ With the applied shift, the
computed bandgap is ~2.4 eV and is characterized by a direct transi-
tion midway between the zone-center and the X-momentum critical
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point; however, given the weak dispersion of the conduction band
edge, several indirect gaps of similar magnitude exist throughout the
Brillouin zone. Consequently, there is little value in definitively clas-
sifying the static ground state of hematite as either a direct or indirect
semiconductor.

Projection of the DFT+U+] Kohn-Sham wavefunctions onto
an atomic orbital basis [Fig. 1(a), right panel] indicates that the
uppermost valence bands (>—4 eV) are predominantly of O 2p
character with minor Fe 3d hybridization. These mildly dispersive
bands become maximally hybridized in a narrow region (~-5 eV)
before giving way to the more ionic Fe 3d orbitals that comprise
the less dispersive bands at the bottom of the valence continuum
(<=5 eV). Unoccupied Fe 3d orbitals give rise to the minimally dis-
persive conduction bands and clearly exhibit crystal-field splitting
characteristic of high-spin octahedral Fe’* ions. The t;, and e, con-
duction edges are separated by ~1 eV, in agreement with reported
experimental values.”" In accordance with ligand-field theory, the
higher-energy e; bands exhibit significantly higher O 2p hybridiza-
tion than their more ionic ty; counterparts. Higher-energy (>4 eV)
conduction bands are comprised of highly dispersive Fe 4s orbitals
and contribute negligibly to the density of states, particularly when
compared to the sharply peaked density of the Fe 3d conduction
bands. As a result, the visible and near-UV absorption spectrum
of hematite is dominated by optical transitions from O 2p valence
bands to Fe 3d conduction bands.

The single-particle optical dielectric spectrum of the static
DFT+U+] ground state of hematite was obtained by evaluating
the momentum matrix elements coupling each pair of valence
and conduction band wavefunctions according to the following
equation:*”"’

A0 \|2
Wil Vi) s g g o), (15)

4n (874
(hw) = 2
€ ( w) V Nk Zc,vZk (Ekc *Ekv)

where V represents the volume of the primitive cell, Ny is the
total number of k-points sampled, and P is the momentum oper-
ator. Equation (15) does not account for the finite lifetime of the
optically excited state; therefore, we chose to apply a homoge-
neous spectral Gaussian function with a linewidth of 0.3 eV to
the computed spectrum in order to approximate lifetime broaden-
ing. Herein, this broadening function is applied to all computed
spectra. We have previously reported the optical dielectric spec-
trum of hematite obtained via Fresnel analysis of transmission
and reflectance spectra measured for a series of polycrystalline
thin films of hematite.** As shown in Fig. 1(b), all notable fea-
tures of the measured dielectric spectrum above 2.4 eV are repro-
duced in the computed spectrum, with only minor differences in
intensity and energetic positions. Importantly, the absorption onset
near 2 eV is absent from the computed dielectric function. In
the next section, we demonstrate that optical transitions in this
region are recovered following the inclusion of electron-phonon
coupling.

The DFT+U+] phonon dispersion curve of hematite is shown
in Fig. 1(c). As indicated by the projected vibrational density of
states, lower-energy phonon modes (<30 meV) correspond primar-
ily to the displacement of Fe atoms, while higher-energy modes
(>50 meV) correspond to displacements of O atoms. The major-
ity of the optical phonon branches exhibit minimal dispersion and
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FIG. 1. (a) Electronic dispersion curve (left) and projected density of states (right) computed from the static DFT+U+J ground state of hematite. Dashed lines in the
dispersion curve represent bands of opposite spin along paths where spin degeneracy is lifted. (b) Optical dielectric spectrum of hematite obtained from a Fresnel analysis
of measured transmission and reflection spectra of a polycrystalline thin film [black line, reproduced with permission from Shelton and Knowles, J. Phys. Chem. Lett.
12, 3343 (2021). Copyright 2021 American Chemical Society] and computed single-particle optical dielectric spectrum of the DFT+U+J ground state of hematite (purple
line). The computed spectrum is artificially broadened with a Gaussian width of 0.3 eV. (c) Phonon dispersion curve (left) and projected vibrational density of states (right)
computed from the static DFT+U+J ground state of hematite. LO and LA branches are indicated by blue and red shading, respectively. Horizontal arrows in the density
of states indicate phonon bandgaps. (d) Resonance Raman spectrum of a polycrystalline thin film of hematite measured with an excitation energy of 2.21 eV [top, black
line, reproduced with permission from Shelton and Knowles, J. Phys. Chem. Lett. 12, 3343 (2021). Copyright 2021 American Chemical Society] and computed vibrational
density of LO (blue) and TO (light blue) phonons. The first-order region of the computed spectrum (<90 meV) corresponds to the T-point phonon density of states, while
the second-order region (>90 meV) corresponds to the two-phonon density of states across the entire phonon dispersion curve. Note that the computed spectrum does not
account for the Raman cross section of each band. Dashed vertical lines correspond to the central positions of computed zone-center Raman-active modes.

produce strong peaks in the density of states. Most notably, the
two highest-energy branches are nearly dispersionless, giving rise
to an anomalously high density of states at ~81 meV. Addition-
ally, two phonon bandgaps (i.e., regions of near-zero vibrational
density) appear in the phonon dispersion, indicated by the hori-
zonal arrows in Fig. 1(c). The first is a narrow gap that follows
the sharp drop in the density of states just below 50 meV. A sec-
ond gap appears just below 57 meV and is effectively much wider,
as the region between 57 and 62 meV is crossed only by a single,

highly dispersive band near zone center. Gaps in the phonon den-
sity of states are known to inhibit the decay of high- energy optlcal
phonons into lower-energy optical and acoustic phonons.”* Path-
ways for phonon relaxation are subject to energy and momentum
conservation; therefore, allowed routes for the decay of vibrational
population above a gap may be severely limited, potentially leading
to a buildup of long-lived optical phonons. This phenomenon can
profoundly impact the thermalization of hot carriers. If not permit-
ted to decay, high-energy optical phonons emitted during thermal
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relaxation of an excited carrier can, in turn, prolong the lifetime of
the carriers if reabsorbed. As such, we predict that phonon popu-
lation near these gaps will exhibit strong coupling to photoexcited
carriers.

The shaded regions of the dispersion curve indicate branches
of predominantly longitudinal character: Red and blue regions cor-
respond to longitudinal optical (LO) and longitudinal acoustic (LA)
branches, respectively. Details of this characterization can be found
in the supplementary material. Interestingly, the LA branch exhibits
numerous avoided crossings with lower-energy (20-30 meV) LO
branches, indicating a high degree of LA/LO phonon hybridization
away from the zone center. Acoustic/optical hybridization intro-
duces additional carrier-phonon coupling to the acoustic branches
and, similar to the occurrence of a phonon bandgap, removes
viable pathways for the decay of optical phonons into acoustic
phonons.**

A comparison of the previously measured Raman spectrum of
a polycrystalline thin film of hematite under band-edge excitation
(2.21 eV) with the DFT+U+] vibrational density of states is shown
in Fig. 1(d).** Vertical lines indicate the positions of all computed
I'-point Raman-active phonons. The computed highest-energy
mode is positioned at ~81 meV; therefore, we attribute all higher-
energy (>90 meV) features of the measured spectrum to second-
order, multi-phonon scattering processes.** We compare the first-
order region of the Raman spectrum (<90 meV) to the zone-center
density of Raman-active LO and transverse optical (TO) modes,
obtained by sampling a dense q-grid tightly centered around the
T-point (|q| < 2.5 x 10* cm™). Each of the bands observed in the
measured spectrum is accurately reproduced in the computed den-
sity spectrum. Notably, the measured bands at 31 and 51 meV
correspond to regions of predominately LO-phonon density in the
computed I'-point spectrum.

Although first-order Raman scattering is restricted to phonons
of near-zero wavevector, second-order scattering processes can
access the entire phonon density of states while still conserv-
ing the wavevector. In the simplest cases, these processes involve
the simultaneous scattering of two phonons of equal and oppo-
site wavevector from the same branch. In Fig. 1(d), the second-
order region of the measured Raman spectrum is overlaid with the
2-LO and 2-TO density of states. Both density spectra reproduce the
second-order Raman features; however, the 2-LO spectrum exhibits
the same intensity distribution as that of the measured spectrum.
Additionally, the lowest-energy band of the second-order spectrum
at ~100 meV coincides with twice the computed phonon bandgap
at 50 meV, suggesting that two-phonon Raman scattering involves
only modes above this gap. Overall, the computed phonon den-
sity of states accurately accounts for all of the features observed in
the first- and second-order regions of the Raman spectrum. In the
following sections, we demonstrate that the resonantly enhanced
second-order Raman spectrum corresponds to thermally activated
optical transitions into polaronic states near the band edge of
hematite.

Thermal difference spectra of hematite computed
via ab initio electron-phonon coupling

With the self-consistent values of U and J and the vibrational
structure of hematite in hand, we are now positioned to model the
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temperature-dependent electronic structure of hematite using the
method of thermal lines combined with Monte Carlo averaging.
The experimental data used to benchmark these calculations are a
series of temperature-dependent thermal difference spectra reported
in our previous work.** Here, we define a thermal difference spec-
trum, Ae;(hw, T), to be the difference between the optical dielectric
spectrum measured at a particular temperature and that measured
at room temperature, ie.,

Aei(hw, T) = €i(hw, T) — €i(hw,294 K). (16)

Stochastic Monte Carlo averaging of the computed thermal dif-
ference spectrum (TDS) of a 2 x 2 x 2 supercell of hematite at
80 K converged rapidly with respect to the number of thermal lines
sampled. As shown in Figs. 2(a) and 2(b), the result obtained by aver-
aging spectra computed across a random distribution of 25 thermal
lines is nearly identical to that obtained by sampling only six lines. In
fact, we demonstrate that even a single thermal line can sufficiently
reproduce the Monte Carlo average [Fig. 2(c)]. A 2 x 2 x 2 supercell
of hematite permits real-space representation of 237 phonon modes
within the primitive Brillouin zone, specifically those at the Z, F, L,
Ly, and T critical points. In Fig. 2(d), we demonstrate that stochastic
sampling of the configuration space of a larger, 3 x 2 x 2, super-
cell (357 phonon modes) produces a similar average TDS at 80 K.
We therefore conclude that a 2 x 2 x 2 supercell is sufficiently large
for computing temperature-dependent optical spectra of hematite.
Finally, we note that all the computed TDSs shown in Fig. 2 accu-
rately reproduce the previously reported measured spectrum at 80
K* and recover the band edge optical transitions absent from the
computed static dielectric spectrum (Fig. 2 insets).

We previously reported TDS of a hematite thin film measured
from 30 to 573 K.** Here, we compute temperature-dependent TDS
averaged across five thermal lines of a 2 x 2 x 2 supercell of hematite,
each closely approximating the Monte Carlo average. Several repre-
sentative comparisons of the computed and measured spectra are
shown in Figs. 3(a)-3(d). At low temperatures (<294 K), the posi-
tions and relative intensities of the features in the measured TDS are
accurately reproduced in the computed spectra [Figs. 3(a) and 3(b)].
We note that, due to the UV absorption edge of the cryostat win-
dows, these measurements were restricted to photon energies below
3.5 eV. High-temperature (>294 K) spectra were collected without
the use of a cryostat and, therefore, extend to 6.4 eV. In Fig. 3(c),
we compare the measured and computed TDS at 473 K, illustrating
that the computed spectrum reproduces the near-UV features of the
measured TDS, albeit with a significant deviation in the band edge
intensity.

We characterized the temperature dependence of the com-
puted and measured spectra by integrating the absolute value of
Ae; over the interval 1.0-3.5 eV [Fig. 3(d)]. We define the total
intensity to be the negative absolute value for spectra collected at
temperatures below 294 K and the positive absolute value for spectra
collected at temperatures above 294 K. The measured and com-
puted temperature-dependent integrated intensities display remark-
able agreement, with minor deviations arising at temperatures above
400 K. Both sets of data were fit to a Bose-Einstein distribution
function according to the following equation:

f Aei(hw, T) = A x Ang(hQ, T). (17)
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FIG. 2. Computed TDS of hematite at 80 K (purple lines) obtained from Monte Carlo averaging of a random distribution of (a) 25 thermal lines and (b) 6 thermal lines within
a2 x 2 x 2 supercell. TDS at 80 K computed from (c) a single thermal line within a 2 x 2 x 2 supercell that closely approximates the Monte Carlo average and (d) a random
distribution of 6 thermal lines within a 3 x 2 x 2 supercell. For comparison, the measured TDS at 80 K of a polycrystalline thin film of hematite is shown in all panels (solid
black lines). The insets of each figure illustrate comparisons of the computed room-temperature (294 K) optical dielectric spectra (blue lines) with that measured for a thin
film of hematite (dashed black lines).

Here, A is a constant that corresponds to the value of [ Ae; at phonon, while the measured spectra correspond to that of a

0 K and Angp represents the change in the Bose-Einstein occupa- 49.2 + 1.6 meV phonon. These values suggest that the temperature-
tion number of a phonon of energy 4 relative to its occupation dependent growth of optical transitions near the bandgap of
at room temperature (294 K). The temperature dependence of the hematite coincides with population of phonons above a 50-meV

computed TDS fits the thermal distribution of a 50.3 + 0.1 meV threshold.
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FIG. 3. (a) Measured and (b) computed TDSs of hematite below room temperature (T < 294 K). Computed spectra represent the average of five thermal lines within the
configuration space of a 2 x 2 x 2 supercell of hematite that closely approximate the Monte Carlo average at 80 K. Part (a) is reproduced with permission from Shelton
and Knowles, J. Phys. Chem. Lett. 12, 3343 (2021). Copyright 2021 American Chemical Society. (c) A comparison of the computed (purple line) and measured (black line)
TDSs of hematite at 473 K. (d) The integrated intensity of the computed (purple circles) and measured (black diamonds) TDSs across the investigated temperature range.
Dashed lines indicate the fits of the computed (purple line) and measured (black line) values to the Bose-Einstein distribution function described by Eq. (17).

Correspondence between thermal difference
and resonance Raman spectra of hematite

In this section, we use the method of thermal lines to
show that including displacements along only the eigenvectors

corresponding to the phonon modes that are most strongly cou-
pled to the near band-edge excitation of hematite, as evidenced
by resonance Raman excitation profiles, can reproduce all of the
features observed in the thermal difference spectra. Our previ-
ously reported resonance Raman spectra of a hematite thin film
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collected with excitation photon energies spanning the visible range is observed only for excitations that are resonant with band-edge
are shown in Fig. 4(a).** Relative scattering intensities of the transitions (2.0-2.5 eV). In Fig. 4(b), we show the excitation pro-
observed bands exhibit a strong dependence on the excitation pho- file of the integrated intensity of each second-order Raman band.
ton energy. Most notably, the second-order spectrum (>90 meV) The bands at 100, 129, and 136 meV share a similar excitation
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FIG. 4. (a) Resonance Raman spectra measured from a polycrystalline hematite thin film using seven visible excitation photon energies. Data reproduced with permission
from Shelton and Knowles, J. Phys. Chem. Lett. 12, 3343 (2021). Copyright 2021 American Chemical Society. Excitation profiles are shown for the bands indicated by
dashed vertical lines. These include (b) all second-order modes and (c) first-order modes that exhibit a unique excitation profile. Raman intensities represent the integral
of the full bandwidth. All second-order profiles and the profile of the 81-meV band are overlaid with the TDS measured at 80 K. For comparison, we have inverted the
measured TDS such that Ae; = €;(294 K) — ¢;(80 K). (d) TDS measured at 80 K (black line) compared to that computed with displacements along only the coordinates
of LO phonons with energies above the 50-meV phonon bandgap.

J. Chem. Phys. 157, 174703 (2022); doi: 10.1063/5.0116233 157, 174703-10
Published under an exclusive license by AIP Publishing


https://scitation.org/journal/jcp

The Journal

of Chemical Physics

profile and are strongly enhanced at 2.21 and 2.53 eV. Importantly,
each of these profiles closely trace the band edge TDS features. The
163-meV band is similarly enhanced at 2.21 eV; however, it exhibits
markedly less enhancement at 2.53 eV. This discrepancy is addressed
in the following section. These results strongly suggest that the TDS
and second-order Raman spectrum of hematite arise from the same
phenomenon.

The majority of the first-order modes (<90 meV) in the
observed Raman spectrum share a similar excitation profile (see Fig.
S2in supplementary material), with the exception of the three bands
shown in Fig. 4(c): at 31, 51, and 81 meV. Both the 31- and 51-meV
bands correspond to regions of high LO-phonon density computed
at the zone center [see Fig. 1(d)]. Similar to the second-order modes,
the 31- and 51-meV bands exhibit notable enhancement at photon
excitation energies of 2.21 and 2.53 eV, respectively. The excitation
profile of the 81-meV phonon is nearly identical to that of the 100-,
129-, and 136-meV bands and also closely reproduces the relative
intensity of the band edge TDS. We note that this band may be,
in part, a two-phonon band arising from a combination of the 31-
and 51-meV bands. Complete assignment of all conceivable multi-
phonon combinations is beyond the scope of this work. Instead,
we draw the general conclusion that the second-order Raman spec-
trum and band-edge features of the TDS arise from optical tran-
sitions coupled to phonon population above the 50-meV phonon
bandgap.

We further support this conclusion by performing a series
of calculations similar to those used above to generate the com-
puted thermal difference spectra, but with the inclusion of only
phonons of energy greater than 50 meV where the spatial phases
of these phonons have been synchronized such that their displace-
ments are localized to a single iron center. We find that atomic
displacements along the coordinates of the LO phonon modes
above the 50-meV gap are sufficient to reproduce the features of
the thermal difference spectrum [Fig. 4(d)]. This result, combined
with the correspondence of the 2-LO density of states with the
intensity distribution of the second-order Raman spectrum [see
Fig. 1(d)], indicates that the optical transitions near the bandgap
exhibit strong coupling to LO phonons with energies greater
than 50 meV.

Thermally activated polaronic optical transitions
in hematite

Longitudinal optical (LO) phonons are known to play a crit-
ical role in the formation of polarons due to the strong lattice
polarizations induced by their propagation.”” In this section, we
show that these polarizations result in the formation of a series of
polaronic band tails that give rise to the features of the TDS. We
connect our model of the temperature-dependent electronic struc-
ture of hematite to polaron formation by identifying bands in the
electronic dispersion curves that appear at finite temperature and
evaluating the localization of wavefunctions associated with these
bands.

To assign the transitions that appear in the optical dielectric
spectrum at finite temperature, we compute electronic dispersion
curves at two temperatures (294 and 573 K) in the configuration
space of a 2 x 2 x 2 supercell of hematite along a single thermal line:
that which best approximates the Monte Carlo average of the TDS
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at 80 K [see Fig. 2(c)]. The supercell band structures were unfolded
to span the first Brillouin zone of the primitive cell according to the
method proposed by Zacharias and Giustino.”” The resulting disper-
sion curves, along with their corresponding densities of states, are
shown in Figs. 5(a) and 5(b). The bands are represented by a spectral
function, p, that effectively represents a momentum-resolved density
of states. Significant thermal broadening appears in the dispersion
curve at finite temperature, giving rise to numerous phonon side-
bands and illustrating the profound strength of electron-phonon
coupling in hematite, particularly within the Fe 3d orbitals. Two
minimally dispersive band tails appear just below both the t;; and
ez conduction bands, with wavefunctions strongly localized to two
neighboring Fe** ions. Additionally, a weakly dispersive tail appears
at the valence band edge, moderately localized to the O*~ ions sur-
rounding the two Fe’* ions. The features of the computed TDS arise
primarily from optical transitions coupling the uppermost valence
bands to the localized conduction band tails.

As seen in the temperature-dependent density of states plot-
ted in Fig. 6(a), the tag and ey band tails become less dispersive
and more localized with increasing temperature, and they exhibit
a significantly stronger thermal shift than their corresponding con-
tinua. The shift of these band tail states to lower energy with
increasing temperature effectively decreases the energy gap between
the valence band maximum and the conduction band minimum,
thereby accounting for the bandgap shrinkage that previous reports
have invoked to explain features observed in the thermal difference
spectra.”®” Importantly, these conduction band tails are present
at 0 K and therefore dictate the zero-point bandgap renormaliza-
tion. Thus, the features of the TDS do not indicate the formation
of new optical transitions with increasing temperature, but rather
the evolution of transitions that are always present. At the zero
point, the t; band tails are separated by 30 meV. This splitting
increases monotonically with temperature, with the lower-energy
band shifting at a faster rate than its higher-energy counterpart.
The ey band tails exhibit a similar behavior, but they are initially
split by a larger magnitude (83 meV). As such, both pairs of band
tails give rise to similar features in the observed TDS, with the eg
absorption band notably wider than the ty; band [Fig. 6(b)]. At all
finite temperatures, the valence band tail and uppermost ty conduc-
tion band tail are separated from their respective continuum edges
by ~80 meV. We therefore propose the unique excitation profile
of the 163-meV second-order Raman band [Fig. 4(b)] is the result
of an additional double-resonance enhancement at near band edge
excitation.

Real-space depictions of the charge density (X|vic|”) of the
conduction band tails at 294 K are shown in Fig. 6(c). Both pairs are
strongly localized within the volume of a 2 x 2 x 2 supercell, with
the e; wavefunctions marginally more disperse due to hybridiza-
tion with surrounding O 2p orbitals. The localization arises from
a significant phonon-induced distortion of the octahedral ligand
fields around isolated iron centers. Notably, the charge densities of
the two tyg band tail states are localized around two adjacent pairs
of Fe atoms, indicating that these states may provide a pathway
for transport of localized charges via a thermally activated hopping
mechanism.

Finally, we demonstrate that population of the t»; conduc-
tion band tail directly forms an electron small polaron. An excess
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FIG. 5. Finite-temperature electronic dispersion curves of a 2 x 2 x 2 supercell of hematite at (a) 294 K and (b) 573 K along a single thermal line.
The dispersion curves have been unfolded to span the space of the first Brillouin zone of a primitive rhombohedral cell of hematite and are each repre-
sented by a three-dimensional spectral function, p, which corresponds to the momentum-resolved density of states. Projected densities of states are shown in
the panels on the right-hand side of each band dispersion diagram. Bands computed from the static DFT+U+J ground state are represented by solid white

lines.

electron introduced to a thermally distorted 2 x 2 x 2 supercell
at 294 K fully localizes to the lowest-energy t»; band tail. Follow-
ing geometrical relaxation of the singly charged state, all atoms but
those in the vicinity of the localized charge return to their pristine
equilibrium positions. The polaron charge density is shown in the
left side of and is nearly identical to the charge density of
the vacant band tail, with the amplitude more equally distributed
across the two Fe centers. Additionally, the charge density is fully
contained within the volume of a single primitive cell, indicating
the formation of an electron small polaron. Conversely, an identi-
cal charge introduced to a pristine 2 x 2 x 2 supercell, with nuclei
clamped at their equilibrium positions, delocalizes across the entire
lattice [see the right side of ]. Therefore, we conclude that
a thermal population of phonons is capable of inducing localized
lattice polarizations that serve as nucleation sites for small polaron
formation.

The displacement vectors associated with the relaxed polaron
are shown in the inset of . The distortion extends over
two octahedral Fe sites and is characterized by the compression
of the Fe-Fe distance and the symmetric displacement of oxygen
ions from the center of the distortion. We express the contribution
of a particular phonon to the polaronic distortion (Cpq) accord-
ing to Eq. , where At is the atomic displacement associated
with the polaron and dpmq are normalized phonon displacement
vectors,

Cmq = <ATp|deq> (18)

Here, the subscript p specifically denotes atoms within the pola-
ronic distortion: two iron atoms and ten oxygen atoms.
contains a plot of the phonon dispersion curve of hematite shaded
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FIG. 6. (a) Evolution of the electronic density of states within a 2 x 2 x 2 supercell of hematite with increasing temperature. The bottom panel shows the den-
sity of states computed from a static primitive cell of hematite, with nuclei clamped at equilibrium positions. The shaded regions indicate the density associated
with the tpg (purple) and eq (light blue) conduction band tails. (b) Assignment of the features observed in the TDS measured at 573 K. The purple and light blue
shaded regions indicate the absorption features associated with optical transitions from the valence band edge to the to; and ey conduction band tails, respectively.
(c) Real-space representations of the charge density associated with the to; (purple) and eq (light blue) conduction band tail wavefunctions at 294 K. Isosurfaces
represent the average probability density of the wavefunctions computed across eight equally weighted k-points. Charge densities are ordered from bottom to top
with increasing energy. Fe** ions are represented by yellow and brown spheres, distinguishing spin-up and spin-down centers, and O?~ ions are represented by red

spheres.

to indicate the phonon branches that contribute most significantly
to the polaronic distortion (Cyq > 0.5). For each phonon band m,
Fig. 7(c) plots the sum of C,q over all q-points as a function of
phonon energy. As demonstrated in Figs. 7(b) and 7(c), the strongest
contributions to the distortion arise from 81-meV phonons at the
I'- and Z-momentum critical points. These phonons account for

displacements of the oxygen atoms in the distortion. The iron dis-
placements are comprised of multiple low-energy optical phonons,
the most prominent of which is the zone-center 31-meV phonon.
Additional contributions arise primarily from the hybridized acous-
tic and optical branches (20-30 meV) at the bottom of the dispersion

curve.
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FIG. 7. (a) Geometrically relaxed charge density of an electron introduced to a thermally distorted 2 x 2 x 2 supercell of hematite at 294 K (left) and to a pristine lattice
(right). The isosurfaces represent only the contribution of the lowest occupied band. Charge densities were computed across eight equally weighted k-points. (b) Phonon
dispersion curve of hematite indicating the branches that contribute to the displacement vectors of the polaronic distortion (purple). (c) Spectral representation of the
coefficient expansion of the polaron displacement vectors. The spectrum is effectively the phonon density of states that strongly contribute to the polaronic distortion. The
inset shows the displacement vectors associated with the relaxed polaronic distortion. The vectors (green arrows) are computed by subtracting the atomic coordinates of

the pristine lattice from those of the polaron-distorted lattice.

CONCLUSION

We have demonstrated that, when combined, DFT+U+J and
the method of vibrational averages can accurately reproduce the
effects of electron-phonon coupling in hematite. Our results indi-
cate that a thermal distribution of phonons gives rise to highly local-
ized band tails at the edges of the t; and eg conduction bands. We
attribute these bands to strong lattice polarizations arising from pop-
ulation of the LO phonons above the 50-meV phonon bandgap. Fol-
lowing an electronic excitation, population of these band tails leads
directly to the formation of an electron small polaron. The result-
ing distortion lies primarily along the coordinates of the 81- and
31-meV optical phonons. Notably, this distortion encompasses two
adjacent Fe atoms, which implicates a potential pathway for electron

polaron hopping, a crucial mechanism for photoconductivity in this
material.

This work represents a first-principles theoretical description of
carrier—-phonon coupling in hematite that supports the conclusion of
our previous work: Thermally activated optical transitions directly
populate electron small polaron states in hematite. By computing
an atomically precise description of carrier-phonon coupling, we
are able to unambiguously determine which phonons contribute
to the polaronic distortion. These assignments are confirmed by
experimental resonance Raman and thermal difference spectra first
reported in our previous work.”* We anticipate that, when extended
to other transition metal oxides, this computational approach will
reveal fundamental insights into mechanisms of polaron formation
in optically excited states of these materials.
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SUPPLEMENTARY MATERIAL

Details of the convergence of the U and ] parameters calculated
from the linear response method, characterization of the phonon
modes as LO, LA, TO, or TA, and additional resonance Raman
profiles of first-order modes are provided in the supplementary
material.
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