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ABSTRACT

In this paper, we introduce CIDER, a Concept-based Interactive DE-
sign Recovery tool that recovers a software design in the form of
hierarchically organized concepts. In addition to facilitating design
comprehension, it also enables designers to assess design quality
and identify design problems. It integrates multiple clustering algo-
rithms to reduce the complexity of the recovered design structure,
leverages information retrieval techniques to name each cluster
using the most relevant topic terms to ease design comprehension,
and identifies and labels highly-coupled file clusters to reveal possi-
ble design problems. It enables interactive selection of concepts of
interest and recovers partial design structures accordingly. The user
can also interactively change the levels of recovered hierarchical
structure to visualize the design at different granularities.
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1 INTRODUCTION

It is challenging to learn the structure of almost any complex soft-
ware systems, with many dependencies and invariably out-of-date
(or no) documentation. Most commercial tools, such as Structure
101! and Understand?, visualize source code based on package struc-
tures. Several architecture recovery methods have been created,
including Bunch [8], Algorithm for Comprehension-Driven Clus-
tering (ACDC) [15], scaLable InforMation BOttleneck (LIMBO) [1],
Weighted Combined Algorithm (WCA) [7], and Architecture Re-
covery using Concerns (ARC) [5]. These techniques split source
files into mutually exclusive clusters, based on a guiding principle
such as coupling-and-cohesion [8] or patterns [15].

!https://structure101.com/
Zhttps://scitools.com/
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The problem is that these approaches are not designed to directly
support a developer’s most pressing maintenance tasks: implement-
ing features and fixing bugs. Feature location [3, 4, 18] has also
been widely studied, but these techniques have not been applied
to inform the structure of a design. Moreover, the information re-
covered by these techniques provides little insight into underlying
design quality, such as the existence of highly coupled file groups,
unexpected coupling among features, or whether the system is
appropriately structured to ease the addition, modification, and
debugging of features.

To address these problems, we have created CIDER, Concept-
based, Interactive, DEsign Recovery. CIDER integrates multiple clus-
tering algorithms to reduce the complexity of the recovered struc-
ture, leverages information retrieval methods to label each cluster,
and extracts highly-coupled file groups, e.g., cliques [10], as part of
the recovery process. We will demonstrate our tool’s capabilities
1) to recover a high-level design structure in the form of a concept
hierarchy that can be used to understand a system’s functions, fea-
tures, and their relations, 2) to reveal design problems, and 3) to
support maintenance by recovering a portion of a design relevant
to a feature or concern that is being modified.

We have conducted exploratory case studies using two open-
source projects, fEMR® and Depends?, including surveying 10 of
their developers and architects. Most interestingly, all of the devel-
opers and architects agreed that the concept hierarchy recovered
by CIDER is meaningful and useful to them and helpful for future
maintenance tasks, such as assessing the impact of a change or
understanding how features are implemented. Both projects have
since been refactored based on the findings from CIDER, providing
early evidence of the benefit of this novel architecture recovery ap-
proach. The project data used in this paper, including the examples
elaborated in Section 3, can be found at: http://149.28.157.117/.

2 APPROACH

https://www.overleaf.com/project/6198201904e33064530fae7e Fig-
ure 1 depicts the major components of our approach: source code
processing, function clustering, concept labeling, and interactive recov-
ery. The source code processing component transforms the source
code into dependencies among entities. The function clustering
component first clusters files into function groups, defined as the
set of files used to implement a function or a feature, and applies

3https://teamfemr.org/
4https://github.com/multilang-depends/depends/releases/
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Figure 1: Approach Overview

multiple clustering algorithms to form high-level clusters so that
the recovered design structure directly reflects how functions in a
system use each other [12]. This component also detects the exis-
tence of cliques in the meantime. The concept labeling component
labels each function group and cluster using representative con-
cepts calculated via information retrieval algorithms, transforming
the recovered design as a concept hierarchy. It also explicitly marks
and labels identified cliques. The interactive recovery component
enables partial design recovery based on user-selected concepts, as
well as interactive expansion and contraction of the design struc-
ture to allow the user to choose the level of abstraction that best
suits their needs. Our rationale for this interactivity is that each
feature, pattern, or concern may have its own design space [17]
and that only the user knows what to explore.

2.1 Source Code Processing

We use two 3rd-party tools to pre-process the source code. We
first use Depends to extract static dependencies among files. De-
pends saves the dependency information in a dependency JSON
file. Depends currently only processes programs written in a single
language. We need to create additional preprocessors or introduce
other tools to extract dependencies from projects written in multi-
ple programming languages. Using this file as input, we then use
DV8 [11] to generate a design rule hierarchy (DRH) clustering [16]
and we save the clustering information in a JSON file.

The DRH clustering algorithm in DV8 arranges files into a di-
rected acyclic graph (DAG) with multiple layers, each containing
independent modules. For modules containing multiple files, the
DRH clustering recursively breaks them into sub-modules. We use
the two JSON files—one for dependency information and the other
for clustering information—as the inputs to the function clustering
component to calculate uses and facet hierarchies.

2.2 Function Clustering
To obtain a high-level design, we first apply function grouping to

the input DRH clustering file. Unlike existing architecture recovery
approaches that cluster individual files [6, 14], CIDER uses function
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groups as the basic unit of clustering, so that we can model software
design as a collection of functions or features as a DAG We define
a function group as a set of files implementing a function. The
function grouping component identifies minimal function groups
with cohesive functions from the DRH. The hierarchical structure
of DRH guarantees that the result will be a DAG.

This component will also detect all the cliques in the system.

To further form a higher-level structure, we aggregate function
groups using both vertical clustering, and horizontal clustering. Both
clustering algorithms shrink the DAG with different focuses. Similar
to Bunch [8], vertical clustering merges function groups based
on their coupling and cohesion relations. It will merge cohesive
function group pairs with minimal dependency loss. Horizontal
clustering leverages the package naming structure of entry files in
a function group. It merges clusters in the same layer of the graph
that belong to the same package. To further reduce complexity and
enable hierarchical exploration, our last step is to reduce the tree
height with minimum edge loss in each iteration and stops when
the DAG height reaches 4, a threshold that can be adjusted.

2.3 Concept Labeling

To make sure that the recovered design DAG reflects the most
relevant concepts of the system, for each function group and each
cluster in the concept hierarchy, we first extract the most relevant
concepts by applying the tf-idf [13] algorithm to the file names
and the source code. We choose tf-idf since it is the most straight-
forward algorithms for ranking but we are also experimenting with
other algorithms such as Latent Dirichlet Allocation (LDA) [2]. After
that, we label each node using the top 3 most relevant concepts
by ranking the tf-idf scores. In addition, if the Function Clustering
component has identified any cliques, this component explicitly
marks them, and lists them on the side panel of the GUI, so that the
user can explore each clique in more details.

2.4 Interactive Recovery

Based on the output of the previous two components, the following
information is presented to the user to enable design exploration
through our interactive website:

(1) A fully collapsed concept hierarchy that can be expanded or
collapsed using the +/- buttons. (2) A list of all concepts extracted
from all files in the “Facet Hierarchy" tab (Figure 3b). The user can
choose one or more of them, and CIDER will present a partial con-
cept hierarchy—that is, a facet hierarchy— accordingly (Figure 3b
and Figure 4). (3) the list of function groups (Figure 3a) for the user
to explore detailed cohesive functions and how they interact.

3 CIDER’S FEATURES

In this section, we use a simple system to illustrate the key features
of CIDER. We will also illustrate how CIDER can reveal design
quality issues and help with maintenance tasks.

This simple system allows a user to create or fill out a question-
naire, which could be a survey or a test. The system supports three
types of questions—multiple-choice, matching, and essay—with the
expectation that additional types of questions will be added. The
user interface can be console-based or file-based, and is expected
to be extensible to support additional types of user input, such as
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Figure 2: Concept Hierarchies for Two Different Designs

a graphical user interface. There could of course be many designs
to achieve these requirements. We will use two different imple-
mentations of the system—Design-1° and Design-2°—to illustrate
CIDER’s capabilities.

3.1 Concept Hierarchy

Figure 2 depicts the recovered design structures from the two imple-
mentations, in the form of concept hierarchies. Each circle represents
a cluster aggregated from one or more function groups, and each

Shttp://149.28.157.117/4/demo-design1
Chttp://149.28.157.117/#/demo-design2
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edge represents a uses relation between two clusters. For example,
the Inter face cluster uses the Test cluster in Figure 2b, meaning that
the files in test are a subset of inter face. The test cluster in turn
uses the cluster labeled with “question, answer, essay, clique(5)”.
The label of a node reflects (1) the most relevant topics calculated
from the underlying source files, (2) strongly connected file groups,
if they exist. If a cluster is labeled with clique(#), it means that
there are a number of files in this cluster forming a strongly con-
nected graph. In this case, there are 5 files in Design-2 that form
a strongly connected graph. The recovered concept hierarchies
in Figure 2 reveal the fundamental differences between these two
designs and their quality differences, as we will show. For example,
the inter face cluster in Design-2 has one function group, fg_07,
containing Inter face.java, the entry file of the system that directly
or indirectly uses all the other files.

The Function Groups tab (Figure 3a) in CIDER’s UI lists all the
function groups calculated from the source code, and their top-
ranked concepts. For example, the fg_05 in Figure 3a is labeled with
answer, essay, written, suggesting that the topic of this function is
processing written questions and their answers. Here a user can
select multiple function groups and observe how they interact.

Next, the Facet Hierarchy tab (Figure 3b) lists all the concepts
extracted from the source files. For example, as shown in Figure 3b
the concept of answer is related to multiple function groups, and ap-
pears to be a crosscutting concern. The user can select one of more
concepts listed and CIDER will recover a partial design structure
accordingly.

3.2 Interactive Design Structure Exploration

For a complex system, the number of extracted concepts could
be very large. The better modularized the system is, the better
concerns are separated, and the more concepts can be independently
extracted [9]. From a developer’s perspective, understanding the
design structures related to their task at hand is more useful than
visualizing the entire design.

Inspired by the work of Xiao et al.[17], which proposed that
each feature and each pattern can have its own design space, and
the fact that only the system stakeholders will know what the
important features are, or which cross-cutting facets they would
like to investigate, CIDER lists the topics extracted from source
files, and a user can interactively select among them. Once a user
chooses one or more topics, CIDER will present the part of the
concept hierarchy that is related to those topics, which we call a
Facet Hierarchy.

Figure 4 depicts two facet hierarchies extracted from Design-1
and Design-2 respectively, where the user selected the essay, written
concept as shown in Figure 3b. The green circles are the files directly
implementing the selected concepts, and the concepts in blue circles
use the green ones. In Figure 4a, the “Essay, Answer, Written” clus-
ter is directly related to the selected concepts, and ProgramMain
uses them. By contrast, in Design-2, many more clusters depend
on the concepts related to essay questions.

In addition to extracting facet hierarchies, the CIDER website
provides a number of other interactive capabilities. For a complex
system, the user can also shrink or expand a concept hierarchy using
the +/- controls to explore the recovered design structure at different
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levels of granularity. The user can also use the “Function Group" tab
to explore how function groups interact, or select multiple concepts
in the “Facet hierarchy" tab to observe how these concepts interact.
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4 EXPLORATORY EVALUATION

To evaluate the capability of understanding a design structure, and
the possibility to assess design quality and detect design debts using
CIDER, we conducted exploratory case studies on two open-source
projects. We collected source code from these projects, reached out
and presented the concept hierarchies using the CIDER interface
to our collaborators in these projects and asked them to distribute
the survey to their community. We conducted a survey that can
be found at: http://149.28.157.117/. We received ten responses in
total. Nine of them are from developers of Depends, and the last
one came from the architect of fEMR. Based on these responses we
assessed CIDER from the following aspects:

Understanding Design Structure. Understanding the design
structure of a system involves first understanding the key abstrac-
tions and the data model. As illustrated by the questionnaire system,
the hierarchical structures used by CIDER always present the most
influential files at the top. It is clear that the two designs, although
implementing exactly the same requirements, are designed based
on very different abstractions. If a new developer wished to ex-
tend the system by adding a new type of question, the concept
hierarchy shown in Figure 2a indicates that the new question class
must inherit or use the three foundational concepts implemented
by the three base classes, UI.java, Question.java and Answer.java.
ProgramMain will need to be changed to accommodate the new
question type.

A facet hierarchy aims to facilitate feature localization and change
impact analysis. For example, if there is a bug found related to es-
say questions, a developer could use facet hierarchies to locate the
problem, dramatically narrowing down the search space.
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To evaluate the effectiveness of our tool on understanding design
structure, we asked "Are the concept and facet hierarchies useful and
meaningful to users." in the survey of our case study participants.
Both the architects of FEMR and all the developers of Depends
considered the concept/facet hierarchy to be “Very Useful" or “Quite
Useful", and provided positive comments.

Assessing Design Quality. Using CIDER, a user can observe
excessive coupling, and assess how well features or concerns are
separated. In particular, CIDER explicitly marks strongly connected
file groups—cliques, one of the most prominent anti-patterns—and
the user can open a new page to explore how a clique is formed. The
number of cliques and the number of files involved in these cliques
are indicators of design quality. For example, we found a node with
a 32-file clique in Depends, and the architect confirmed that it is
technical debt and should be removed. The architects also found un-
expected coupling among features that are not anti-patterns or code
smells. For example, CIDER shows that the “Ruby" facet depends on
the “Cpp" facet, for which the architect confirmed to be the result
of a long-forgotten shortcut. Based on the insights obtained from
CIDER, both fEMR and Depends have since refactored their code
bases to reduce the amount of technical debt.

Maintenance support. The survey additionally revealed that all
9 Depends developers agreed that CIDER is useful in maintenance
activities. Even the two users who only marked “Moderately useful"
provided highly positive comments, such as: ‘T think it will be very
useful for understanding how features are implemented in the system.".
The fEMR architect commented: “Our developers are often working
on codes they did not author, this gives a clear framework for the inter-
dependencies that need to be tested". The Depends and fEMR teams
are now using CIDER to help new on-board new developers, and
to help existing developers understand and extend their systems.

5 CONCLUSION

In this paper we have presented CIDER, an architecture recovery
tool that integrates multiple clustering techniques to extract a high-
level design model in the form of hierarchical function clustering,
and presents the recovered architecture to a user as a tree of con-
cepts. CIDER also detects and marks the clique anti-pattern during
the clustering process so that a user can examine it in detail.

CIDER also enables a user to select concepts and recover partial
designs based on their selections. In this way they can become
aware of unexpected couplings among features. Our exploratory
case studies confirmed the significant potential benefit of CIDER in
terms of early design debt detection and facilitating maintenance
activities. The evaluations conducted with our case study teams
have already motivated refactorings of their projects, providing
initial evidence of the practical utility of CIDER.
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