
CIDER: Concept-based Interactive Design Recovery

Hongzhou Fang
Drexel University

Philadelphia, PA, USA

hf92@drexel.edu

Yuanfang Cai
Drexel University

Philadelphia, PA, USA

yc349@drexel.edu

Rick Kazman
University of Hawaii

Honolulu, HI, USA

kazman@hawaii.edu

Jason Lefever
Drexel University

Philadelphia, PA, USA

jtl86@drexel.edu

ABSTRACT

In this paper, we introduce CIDER, a Concept-based Interactive DE-

sign Recovery tool that recovers a software design in the form of

hierarchically organized concepts. In addition to facilitating design

comprehension, it also enables designers to assess design quality

and identify design problems. It integrates multiple clustering algo-

rithms to reduce the complexity of the recovered design structure,

leverages information retrieval techniques to name each cluster

using the most relevant topic terms to ease design comprehension,

and identifies and labels highly-coupled file clusters to reveal possi-

ble design problems. It enables interactive selection of concepts of

interest and recovers partial design structures accordingly. The user

can also interactively change the levels of recovered hierarchical

structure to visualize the design at different granularities.

ACM Reference Format:

Hongzhou Fang, Yuanfang Cai, Rick Kazman, and Jason Lefever. 2022.

CIDER: Concept-based Interactive Design Recovery. In 44th International

Conference on Software Engineering Companion (ICSE ’22 Companion), May

21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 5 pages. https:

//doi.org/10.1145/3510454.3516861

1 INTRODUCTION

It is challenging to learn the structure of almost any complex soft-

ware systems, with many dependencies and invariably out-of-date

(or no) documentation. Most commercial tools, such as Structure

1011 and Understand2, visualize source code based on package struc-

tures. Several architecture recovery methods have been created,

including Bunch [8], Algorithm for Comprehension-Driven Clus-

tering (ACDC) [15], scaLable InforMation BOttleneck (LIMBO) [1],

Weighted Combined Algorithm (WCA) [7], and Architecture Re-

covery using Concerns (ARC) [5]. These techniques split source

files into mutually exclusive clusters, based on a guiding principle

such as coupling-and-cohesion [8] or patterns [15].

1https://structure101.com/
2https://scitools.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9223-5/22/05. . . $15.00
https://doi.org/10.1145/3510454.3516861

The problem is that these approaches are not designed to directly

support a developer’s most pressing maintenance tasks: implement-

ing features and fixing bugs. Feature location [3, 4, 18] has also

been widely studied, but these techniques have not been applied

to inform the structure of a design. Moreover, the information re-

covered by these techniques provides little insight into underlying

design quality, such as the existence of highly coupled file groups,

unexpected coupling among features, or whether the system is

appropriately structured to ease the addition, modification, and

debugging of features.

To address these problems, we have created CIDER, Concept-

based, Interactive, DEsign Recovery. CIDER integrates multiple clus-

tering algorithms to reduce the complexity of the recovered struc-

ture, leverages information retrieval methods to label each cluster,

and extracts highly-coupled file groups, e.g., cliques [10], as part of

the recovery process. We will demonstrate our tool’s capabilities

1) to recover a high-level design structure in the form of a concept

hierarchy that can be used to understand a system’s functions, fea-

tures, and their relations, 2) to reveal design problems, and 3) to

support maintenance by recovering a portion of a design relevant

to a feature or concern that is being modified.

We have conducted exploratory case studies using two open-

source projects, fEMR3 and Depends4, including surveying 10 of

their developers and architects. Most interestingly, all of the devel-

opers and architects agreed that the concept hierarchy recovered

by CIDER is meaningful and useful to them and helpful for future

maintenance tasks, such as assessing the impact of a change or

understanding how features are implemented. Both projects have

since been refactored based on the findings from CIDER, providing

early evidence of the benefit of this novel architecture recovery ap-

proach. The project data used in this paper, including the examples

elaborated in Section 3, can be found at: http://149.28.157.117/.

2 APPROACH

https://www.overleaf.com/project/6198201904e33064530fae7e Fig-

ure 1 depicts the major components of our approach: source code

processing, function clustering, concept labeling, and interactive recov-

ery. The source code processing component transforms the source

code into dependencies among entities. The function clustering

component first clusters files into function groups, defined as the

set of files used to implement a function or a feature, and applies

3https://teamfemr.org/
4https://github.com/multilang-depends/depends/releases/

26

2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3510454.3516861&domain=pdf&date_stamp=2022-10-19

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Hongzhou Fang, Yuanfang Cai, Rick Kazman, and Jason Lefever

Figure 1: Approach Overview

multiple clustering algorithms to form high-level clusters so that

the recovered design structure directly reflects how functions in a

system use each other [12]. This component also detects the exis-

tence of cliques in the meantime. The concept labeling component

labels each function group and cluster using representative con-

cepts calculated via information retrieval algorithms, transforming

the recovered design as a concept hierarchy. It also explicitly marks

and labels identified cliques. The interactive recovery component

enables partial design recovery based on user-selected concepts, as

well as interactive expansion and contraction of the design struc-

ture to allow the user to choose the level of abstraction that best

suits their needs. Our rationale for this interactivity is that each

feature, pattern, or concern may have its own design space [17]

and that only the user knows what to explore.

2.1 Source Code Processing

We use two 3rd-party tools to pre-process the source code. We

first use Depends to extract static dependencies among files. De-

pends saves the dependency information in a dependency JSON

file. Depends currently only processes programs written in a single

language. We need to create additional preprocessors or introduce

other tools to extract dependencies from projects written in multi-

ple programming languages. Using this file as input, we then use

DV8 [11] to generate a design rule hierarchy (DRH) clustering [16]

and we save the clustering information in a JSON file.

The DRH clustering algorithm in DV8 arranges files into a di-

rected acyclic graph (DAG) with multiple layers, each containing

independent modules. For modules containing multiple files, the

DRH clustering recursively breaks them into sub-modules. We use

the two JSON files—one for dependency information and the other

for clustering information—as the inputs to the function clustering

component to calculate uses and facet hierarchies.

2.2 Function Clustering

To obtain a high-level design, we first apply function grouping to

the input DRH clustering file. Unlike existing architecture recovery

approaches that cluster individual files [6, 14], CIDER uses function

groups as the basic unit of clustering, so that we can model software

design as a collection of functions or features as a DAG We define

a function group as a set of files implementing a function. The

function grouping component identifies minimal function groups

with cohesive functions from the DRH. The hierarchical structure

of DRH guarantees that the result will be a DAG.

This component will also detect all the cliques in the system.

To further form a higher-level structure, we aggregate function

groups using both vertical clustering, and horizontal clustering. Both

clustering algorithms shrink the DAGwith different focuses. Similar

to Bunch [8], vertical clustering merges function groups based

on their coupling and cohesion relations. It will merge cohesive

function group pairs with minimal dependency loss. Horizontal

clustering leverages the package naming structure of entry files in

a function group. It merges clusters in the same layer of the graph

that belong to the same package. To further reduce complexity and

enable hierarchical exploration, our last step is to reduce the tree

height with minimum edge loss in each iteration and stops when

the DAG height reaches 4, a threshold that can be adjusted.

2.3 Concept Labeling

To make sure that the recovered design DAG reflects the most

relevant concepts of the system, for each function group and each

cluster in the concept hierarchy, we first extract the most relevant

concepts by applying the tf-idf [13] algorithm to the file names

and the source code. We choose tf-idf since it is the most straight-

forward algorithms for ranking but we are also experimenting with

other algorithms such as Latent Dirichlet Allocation (LDA) [2]. After

that, we label each node using the top 3 most relevant concepts

by ranking the tf-idf scores. In addition, if the Function Clustering

component has identified any cliques, this component explicitly

marks them, and lists them on the side panel of the GUI, so that the

user can explore each clique in more details.

2.4 Interactive Recovery

Based on the output of the previous two components, the following

information is presented to the user to enable design exploration

through our interactive website:

(1) A fully collapsed concept hierarchy that can be expanded or

collapsed using the +/- buttons. (2) A list of all concepts extracted

from all files in the “Facet Hierarchy" tab (Figure 3b). The user can

choose one or more of them, and CIDER will present a partial con-

cept hierarchy—that is, a facet hierarchy— accordingly (Figure 3b

and Figure 4). (3) the list of function groups (Figure 3a) for the user

to explore detailed cohesive functions and how they interact.

3 CIDER’S FEATURES

In this section, we use a simple system to illustrate the key features

of CIDER. We will also illustrate how CIDER can reveal design

quality issues and help with maintenance tasks.

This simple system allows a user to create or fill out a question-

naire, which could be a survey or a test. The system supports three

types of questions—multiple-choice, matching, and essay—with the

expectation that additional types of questions will be added. The

user interface can be console-based or file-based, and is expected

to be extensible to support additional types of user input, such as

27

CIDER: Concept-based Interactive Design Recovery ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

(a) Design-1

(b) Design-2

Figure 2: Concept Hierarchies for Two Different Designs

a graphical user interface. There could of course be many designs

to achieve these requirements. We will use two different imple-

mentations of the system—Design-15 and Design-26—to illustrate

CIDER’s capabilities.

3.1 Concept Hierarchy

Figure 2 depicts the recovered design structures from the two imple-

mentations, in the form of concept hierarchies. Each circle represents

a cluster aggregated from one or more function groups, and each

5http://149.28.157.117/#/demo-design1
6http://149.28.157.117/#/demo-design2

edge represents a uses relation between two clusters. For example,

the 𝐼𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒 cluster uses the𝑇𝑒𝑠𝑡 cluster in Figure 2b, meaning that
the files in 𝑡𝑒𝑠𝑡 are a subset of 𝑖𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒 . The 𝑡𝑒𝑠𝑡 cluster in turn
uses the cluster labeled with “𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛, 𝑎𝑛𝑠𝑤𝑒𝑟, 𝑒𝑠𝑠𝑎𝑦, 𝑐𝑙𝑖𝑞𝑢𝑒 (5)”.
The label of a node reflects (1) the most relevant topics calculated

from the underlying source files, (2) strongly connected file groups,

if they exist. If a cluster is labeled with 𝑐𝑙𝑖𝑞𝑢𝑒 (#), it means that
there are a number of files in this cluster forming a strongly con-

nected graph. In this case, there are 5 files in Design-2 that form

a strongly connected graph. The recovered concept hierarchies

in Figure 2 reveal the fundamental differences between these two

designs and their quality differences, as we will show. For example,

the 𝑖𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒 cluster in Design-2 has one function group, 𝑓 𝑔_07,
containing 𝐼𝑛𝑡𝑒𝑟 𝑓 𝑎𝑐𝑒. 𝑗𝑎𝑣𝑎, the entry file of the system that directly

or indirectly uses all the other files.

The Function Groups tab (Figure 3a) in CIDER’s UI lists all the

function groups calculated from the source code, and their top-

ranked concepts. For example, the 𝑓 𝑔_05 in Figure 3a is labeled with
𝑎𝑛𝑠𝑤𝑒𝑟, 𝑒𝑠𝑠𝑎𝑦,𝑤𝑟𝑖𝑡𝑡𝑒𝑛, suggesting that the topic of this function is
processing written questions and their answers. Here a user can

select multiple function groups and observe how they interact.

Next, the Facet Hierarchy tab (Figure 3b) lists all the concepts

extracted from the source files. For example, as shown in Figure 3b

the concept of 𝑎𝑛𝑠𝑤𝑒𝑟 is related to multiple function groups, and ap-
pears to be a crosscutting concern. The user can select one of more

concepts listed and CIDER will recover a partial design structure

accordingly.

3.2 Interactive Design Structure Exploration

For a complex system, the number of extracted concepts could

be very large. The better modularized the system is, the better

concerns are separated, and themore concepts can be independently

extracted [9]. From a developer’s perspective, understanding the

design structures related to their task at hand is more useful than

visualizing the entire design.

Inspired by the work of Xiao et al.[17], which proposed that

each feature and each pattern can have its own design space, and

the fact that only the system stakeholders will know what the

important features are, or which cross-cutting facets they would

like to investigate, CIDER lists the topics extracted from source

files, and a user can interactively select among them. Once a user

chooses one or more topics, CIDER will present the part of the

concept hierarchy that is related to those topics, which we call a

Facet Hierarchy.

Figure 4 depicts two facet hierarchies extracted from Design-1

andDesign-2 respectively, where the user selected the 𝑒𝑠𝑠𝑎𝑦,𝑤𝑟𝑖𝑡𝑡𝑒𝑛
concept as shown in Figure 3b. The green circles are the files directly

implementing the selected concepts, and the concepts in blue circles

use the green ones. In Figure 4a, the “𝐸𝑠𝑠𝑎𝑦,𝐴𝑛𝑠𝑤𝑒𝑟,𝑊𝑟𝑖𝑡𝑡𝑒𝑛” clus-
ter is directly related to the selected concepts, and 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑀𝑎𝑖𝑛
uses them. By contrast, in Design-2, many more clusters depend

on the concepts related to essay questions.

In addition to extracting facet hierarchies, the CIDER website

provides a number of other interactive capabilities. For a complex

system, the user can also shrink or expand a concept hierarchy using

the +/- controls to explore the recovered design structure at different

28

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Hongzhou Fang, Yuanfang Cai, Rick Kazman, and Jason Lefever

(a) Concepts of each FG

(b) Concepts cross FGs

Figure 3: Function Gruop and Concepts

levels of granularity. The user can also use the “Function Group" tab

to explore how function groups interact, or select multiple concepts

in the “Facet hierarchy" tab to observe how these concepts interact.

(a) Design-1

(b) Design-2

Figure 4: Essay Facet Hierarchies in two designs

4 EXPLORATORY EVALUATION

To evaluate the capability of understanding a design structure, and

the possibility to assess design quality and detect design debts using

CIDER, we conducted exploratory case studies on two open-source

projects. We collected source code from these projects, reached out

and presented the concept hierarchies using the CIDER interface

to our collaborators in these projects and asked them to distribute

the survey to their community. We conducted a survey that can

be found at: http://149.28.157.117/. We received ten responses in

total. Nine of them are from developers of Depends, and the last

one came from the architect of fEMR. Based on these responses we

assessed CIDER from the following aspects:

Understanding Design Structure. Understanding the design

structure of a system involves first understanding the key abstrac-

tions and the data model. As illustrated by the questionnaire system,

the hierarchical structures used by CIDER always present the most

influential files at the top. It is clear that the two designs, although

implementing exactly the same requirements, are designed based

on very different abstractions. If a new developer wished to ex-

tend the system by adding a new type of question, the concept

hierarchy shown in Figure 2a indicates that the new question class

must inherit or use the three foundational concepts implemented

by the three base classes,𝑈 𝐼 . 𝑗𝑎𝑣𝑎,𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛. 𝑗𝑎𝑣𝑎 and𝐴𝑛𝑠𝑤𝑒𝑟 . 𝑗𝑎𝑣𝑎.
𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑀𝑎𝑖𝑛 will need to be changed to accommodate the new
question type.

A facet hierarchy aims to facilitate feature localization and change

impact analysis. For example, if there is a bug found related to es-

say questions, a developer could use facet hierarchies to locate the

problem, dramatically narrowing down the search space.

29

CIDER: Concept-based Interactive Design Recovery ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

To evaluate the effectiveness of our tool on understanding design

structure, we asked "Are the concept and facet hierarchies useful and

meaningful to users." in the survey of our case study participants.

Both the architects of FEMR and all the developers of Depends

considered the concept/facet hierarchy to be “Very Useful" or “Quite

Useful", and provided positive comments.

Assessing Design Quality. Using CIDER, a user can observe

excessive coupling, and assess how well features or concerns are

separated. In particular, CIDER explicitly marks strongly connected

file groups—cliques, one of the most prominent anti-patterns—and

the user can open a new page to explore how a clique is formed. The

number of cliques and the number of files involved in these cliques

are indicators of design quality. For example, we found a node with

a 32-file clique in Depends, and the architect confirmed that it is

technical debt and should be removed. The architects also found un-

expected coupling among features that are not anti-patterns or code

smells. For example, CIDER shows that the “𝑅𝑢𝑏𝑦" facet depends on
the “𝐶𝑝𝑝" facet, for which the architect confirmed to be the result
of a long-forgotten shortcut. Based on the insights obtained from

CIDER, both fEMR and Depends have since refactored their code

bases to reduce the amount of technical debt.

Maintenance support. The survey additionally revealed that all

9 Depends developers agreed that CIDER is useful in maintenance

activities. Even the two users who only marked “Moderately useful"

provided highly positive comments, such as: “I think it will be very

useful for understanding how features are implemented in the system.".

The fEMR architect commented: “Our developers are often working

on codes they did not author, this gives a clear framework for the inter-

dependencies that need to be tested". The Depends and fEMR teams

are now using CIDER to help new on-board new developers, and

to help existing developers understand and extend their systems.

5 CONCLUSION

In this paper we have presented CIDER, an architecture recovery

tool that integrates multiple clustering techniques to extract a high-

level design model in the form of hierarchical function clustering,

and presents the recovered architecture to a user as a tree of con-

cepts. CIDER also detects and marks the clique anti-pattern during

the clustering process so that a user can examine it in detail.

CIDER also enables a user to select concepts and recover partial

designs based on their selections. In this way they can become

aware of unexpected couplings among features. Our exploratory

case studies confirmed the significant potential benefit of CIDER in

terms of early design debt detection and facilitating maintenance

activities. The evaluations conducted with our case study teams

have already motivated refactorings of their projects, providing

initial evidence of the practical utility of CIDER.

6 ACKNOWLEDGMENTS

This work was supported in part by the National Science Founda-

tion under grants CCF-1816594/1817267, OAC-1835292, and CNS-

1823177/1823214.

REFERENCES
[1] Periklis Andritsos and Vassilios Tzerpos. 2005. Information-Theoretic Software

Clustering. IEEE Transactions on Software Engineering 31, 2 (Feb. 2005), 150–165.
[2] DavidMBlei, AndrewYNg, andMichael I Jordan. 2003. Latent dirichlet allocation.

Journal of machine Learning research 3, Jan (2003), 993–1022.

[3] K. Chen and V. Rajlich. 2000. Case study of feature location using dependence
graph. In Proceedings IWPC 2000. 8th International Workshop on Program Com-
prehension. 241–247.

[4] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2011.
Feature Location in Source Code: A Taxonomy and Survey. In Journal of Software
Maintenance and Evolution: Research and Practice.

[5] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Yuanfang Cai. 2011.
Enhancing architectural recovery using concerns. In 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2011). 552–555.

[6] S. Mancoridis, B. S. Mitchell, Y. Chen, and E. R. Gansner. 1999. Bunch: a clustering
tool for the recovery and maintenance of software system structures. In Pro-
ceedings IEEE International Conference on Software Maintenance - 1999 (ICSM’99).
’Software Maintenance for Business Change’ (Cat. No.99CB36360). 50–59.

[7] Onaiza Maqbool and Haroon A. Babri. 2007. Hierarchical Clustering for Software
Architecture Recovery. IEEE Transactions on Software Engineering 33, 11 (Nov.
2007), 759–780.

[8] Brian S. Mitchell and Spiros Mancoridis. 2001. Comparing the Cecompositions
Produced by Software Clustering Algorithms Using Similarity Measurements. In
Proc. IEEE International Conference on Software Maintenance. 744–753.

[9] Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng. 2016. Decoupling
Level: A New Metric for Architectural Maintenance Complexity. In Proc. 38rd
International Conference on Software Engineering.

[10] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng. 2019. Architecture Anti-patterns:
Automatically Detectable Violations of Design Principles. IEEE Transactions on
Software Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.2910856

[11] Ran Mo, Will Snipes, Yuanfang Cai, Srini Ramaswamy, Rick Kazman, and Martin
Naedele. 2018. Experiences Applying Automated Architecture Analysis Tool
Suites. In Proc. ASE. ACM, 779–789. https://doi.org/10.1145/3238147.3240467

[12] David L. Parnas. 1972. On the Criteria to be Used in Decomposing Systems into
Modules. Commun. ACM 15, 12 (Dec. 1972), 1053–8.

[13] Karen Sparck Jones. 2004. A statistical interpretation of term specificity and its
application in retrieval. Journal of documentation 60, 5 (2004), 493–502.

[14] V. Tzerpos and R. C. Holt. 2000. ACCD: an algorithm for comprehension-driven
clustering. In Proceedings Seventh Working Conference on Reverse Engineering.
258–267.

[15] Vassilios Tzerpos and Richard C. Holt. 2000. ACDC: An Algorithm for
Comprehension-Driven Clustering. In Proc. 7th Working Conference on Reverse
Engineering. 258–267.

[16] S. Wong, Y. Cai, G. Valetto, G. Simeonov, and K. Sethi. 2009. Design Rule Hi-
erarchies and Parallelism in Software Development Tasks. In 2009 IEEE/ACM
International Conference on Automated Software Engineering. 197–208. https:
//doi.org/10.1109/ASE.2009.53

[17] Lu Xiao, Yuanfang Cai, and Rick Kazman. 2014. Design rule spaces: a new
form of architecture insight.. In International Conference on Software Engineering,
Pankaj Jalote, Lionel C. Briand, and André van der Hoek (Eds.). ACM, 967–977.
http://dblp.uni-trier.de/db/conf/icse/icse2014.html#XiaoCK14

[18] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. 2006. SNIAFL: Towards
a Static Noninteractive Approach to Feature Location. ACM Trans. Softw. Eng.
Methodol. 15, 2 (April 2006), 195–226. https://doi.org/10.1145/1131421.1131424

30

