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Global biodiversity and ecosystem service models typically operate independently. Ecosystem service projections may therefore be overly optimistic 
because they do not always account for the role of biodiversity in maintaining ecological functions. We review models used in recent global 
model intercomparison projects and develop a novel model integration framework to more fully account for the role of biodiversity in ecosystem 
function, a key gap for linking biodiversity changes to ecosystem services. We propose two integration pathways. The first uses empirical data 
on biodiversity–ecosystem function relationships to bridge biodiversity and ecosystem function models and could currently be implemented 
globally for systems and taxa with sufficient data. We also propose a trait-based approach involving greater incorporation of biodiversity 
into ecosystem function models. Pursuing both approaches will provide greater insight into biodiversity and ecosystem services projections. 
Integrating biodiversity, ecosystem function, and ecosystem service modeling will enhance policy development to meet global sustainability goals.
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At present, global models of biodiversity and    
 ecosystem services estimate the impacts of anthropo-

genic stressors (e.g., climate change, land-use change) using 
scenarios that operate independently (Rosa et  al. 2017). 
Projections of socioeconomic variables such as demogra-
phy and land-use change are traditionally used to estimate 
impacts on biodiversity separately from those on ecosystem 
services (Pereira et  al. 2010). Although efforts have been 
made to incorporate some attributes of nature or ecosystems 
(e.g., total biomass or particular service-providing species), 
these projections are often made without explicit consider-
ation of the role of biological diversity itself in maintaining 
ecological functions underpinning the provision of ecosys-
tem services (figure  1; Rosa et  al. 2020), even though the 
scientific understanding of these links has advanced sig-
nificantly (Isbell et al. 2017, van der Plas 2019). As a result, 
global projections of biodiversity, ecological functions, and 
ecosystem services may be overly optimistic because they 

assume that the remaining biological components of nature 
will continue to provide the same flow of benefits to people, 
regardless of how much biodiversity is lost (Isbell et  al. 
2015). For example, some carbon storage models assume 
constant carbon pools after land-use change (Kovacs et  al. 
2013), even though biodiversity loss continues over time 
after the initial habitat loss (Rosenzweig 1999). Efforts to 
integrate biodiversity and ecosystem function models are 
increasing but still fall short (Rosa et al. 2020).

Many biodiversity and ecosystem function models oper-
ate at different spatial and temporal scales, which poses 
a challenge for integration (Isbell et  al. 2017). Moreover, 
some models include parameters that do not incorporate 
biodiversity but that may be dependent on biodiversity 
(e.g., a carbon storage model may consider total biomass 
but not the species diversity that makes up that biomass). 
Therefore, before integration strategies can be developed, 
scientists need a synthetic understanding of the ways that 
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existing models operate, including which biodiversity attri-
butes and ecosystem functions are addressed, the inputs and 
outputs of each model type, and the spatial and temporal 
scales at which they work. This information will allow 
the scientific community to identify the areas of overlap 
between models and to determine which integration strate-
gies are most feasible.

To review and develop strategies to link biodiversity and 
ecosystem service models, we convened a team of modelers 
and socioeconomic and policy experts as part of a SESYNC 
(National Socio-Environmental Synthesis Center) Pursuit 
project. We focused specifically on how to link biodiversity 
and ecosystem function models at the global scale, because 
this has been identified as a key knowledge gap and a first step 
toward full integration between biodiversity, ecosystem func-
tion, and ecosystem service modeling (Ferrier et al. 2016).

Specifically, the objectives of this study were to review 
existing biodiversity, ecosystem function, and ecosystem 
service models to identify areas of complementarity and 
mismatches; to develop a conceptual framework for how to 
link them to more fully account for the role of biological 
diversity in ecosystem functions; and to illustrate the poten-
tial of this framework through a case study. We restricted 
our review to models used in the intercomparison of bio-
diversity and ecosystem services models using harmonized 

scenarios (BES-SIM; Kim et al. 2018) and 
models from the Fisheries and Marine 
Ecosystem Model Intercomparison 
Project (Fish-MIP) intended to pro-
vide input to the Intergovernmental 
Panel on Climate Change (IPCC) sixth 
assessment report (see the supplemen-
tal material). Many of these models 
were used in the Intergovernmental 
Platform on Biodiversity and Ecosystem 
Services (IPBES) global assessment and 
the recent Bending the Curve initiative 
(Shin et  al. 2019, Leclère et  al. 2020). 
The choice of these models was driven 
by the intended audience of our model 
integration—namely, scientists (and, 
ultimately, policymakers) interested 
in tracking and investigating policy 
options for achieving the biodiversity-
related Sustainable Development Goals 
and the Convention on Biological 
Diversity post-2020 biodiversity targets 
(United Nations 2015, Convention on 
Biological Diversity 2021).

Model review
Using the two sets of global models 
used in recent model intercomparison 
projects (i.e., BES-SIM and FISH-MIP), 
we conducted a review to understand 
the possible links between the models 

that could reflect the increasing knowledge that biodi-
versity plays a role in many ecosystem processes. First, 
we assigned these models into three general categories: 
biodiversity models, ecosystem function models, and 
ecosystem service models (table 1). This approach follows 
the general breakdown of Kim and colleagues (2018) but 
splits the models assessing changes in ecosystem function 
from those that directly link to benefits to people (i.e., 
ecosystem services). Then, for each model, we extracted 
the following information: model inputs, model outputs, 
biodiversity metrics or ecosystem functions included or 
projected in the model, diversity-dependent parameters 
(if applicable), temporal scale, and spatial scale (resolu-
tion and extent). In the following paragraphs, we summa-
rize information and attributes for the models included in 
our three model categories.

In total, we reviewed 29 models: 11 biodiversity models, 7 
ecosystem function models, and 11 ecosystem service mod-
els, which we summarize in the following sections. Although 
a number of the models, especially the marine models, 
consider both ecosystem function and services, fewer of the 
models reviewed attempt to consider links (or the relation-
ship between) biodiversity and function. The supplemental 
material provides the data extracted for each model consid-
ered in the review.

Figure 1. Many ecosystem function models do not incorporate the role of 
biological diversity in ecosystem function. For example, many traditional 
dynamic global vegetation models skip from leaves to individual trees to grid-
cell parameters (the top panel) without incorporating detailed representation 
of demographic processes and vegetation composition (the dashed box and 
the arrows). The illustrations are courtesy of Tracey Saxby, Integration and 
Application Network (ian.umces.edu/media-library).
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Biodiversity models. Of the 29 models reviewed, 11 were 
related to biodiversity measurements (10 mainly focused 
on terrestrial ecosystems and 1 on marine; figure  2). In 
general, the temporal scale was flexible, but an annual 
resolution was the most frequently used, depending on the 
environmental inputs needed by the model. For BES-SIM, 
all of the models were run up to 2050, but the temporal 
extent of the models can vary depending on user specifi-
cations. The spatial extent was flexible but usually global 
(global scale output was a requirement for BES-SIM), 
whereas the resolution (while also being flexible) varied 
greatly, from 50 meters to about 50 kilometers (see the 
supplemental material).

Most of the biodiversity models were correlative mod-
els. We further classified these correlative biodiversity 
models on the basis of modeling approach and scale (fig-
ure 2). Some of the models use a bottom-up approach, in 
which species-level models are layered to arrive at overall 
biodiversity estimates. These models can provide alpha 

(local), beta (regional species turnover), or gamma (overall 
regional or global) diversity estimates across the spatial 
extent over which the models are run (e.g., an ecoregion, 
or a major ecosystem type). Other models use a macroeco-
logical approach, in which changes in drivers are used to 
predict changes in total alpha, beta, or gamma diversity in 
a top-down manner, without explicitly modeling changes 
in individual species.

Some of the models included in our review cannot be 
neatly categorized into either biodiversity or ecosystem func-
tion or service models. Several process-based models encode 
some aspects of biodiversity. For example, the Madingley 
model is a process-based, mechanistic general ecosystem 
model that represents cohort dynamics for heterotrophic 
organisms and stocks of autotrophic organisms for both 
terrestrial and marine ecosystems (Harfoot et  al. 2014). 
Although some level of diversity is included in the model, 
there is room to expand the level of diversity represented.

Ecosystem function models. We classified seven models as 
ecosystem function models, primarily on the basis of the 
main model output (see table  1). For example, the model 
outputs included species biomass and production. Because 
we reviewed these models in the context of IPBES and IPCC 
analyses, the spatial extent tended to be global, but some 
models also made predictions constrained to regional and 
local scales. The temporal resolution of the ecosystem func-
tion models varied from static predictions to hourly, daily, 
monthly, quarterly, and yearly predictions (see the supple-
mental material).

Ecosystem service models. We classified 11 models as eco-
system service models, some of which had submodules 
(including InVEST and GLOBIO). The key element that dis-
tinguished ecosystem service models from the model types 
discussed above is that they had an explicit connection to 
how a change in the ecosystem led to changes in ecological 
contributions to humans (or even expression of this change 
in monetary values). The spatial resolution of these models 
varied widely, ranging from half degree at the coarsest level 
to 10 meters at the finest scale. Temporal scale was flexible 
for most models and determined by the frequency of input 
data (see the supplemental material).

Figure 2. An overview of the correlative biodiversity 
models included in our review in terms of modeling 
approach (i.e., bottom-up species-level versus 
macroecological community level) and level of diversity 
assessed (i.e., changes in local diversity versus changes in 
collective regional or global diversity).

Table 1. Definitions for the three general categories of models included in the present article.
Model type Definition

Biodiversity model Models that project the current state of or the effect of environmental change on the biological components 
of ecosystems, such as genes, species, functional groups, and communities. Models commonly assess 
changes in species distribution, abundance, or community structure.

Ecosystem function model Models that capture important ecological processes by modeling interactions between biotic and abiotic 
ecosystem components. Common processes captured in ecosystem function models include productivity, 
trophic interactions, and nutrient fluxes.

Ecosystem service model Models that capture how changes in ecological conditions affect the goods and services that people receive 
from natural systems, usually resulting from one or more ecosystem functions. Common services captured by 
the models include provisioning services (e.g., timber) and regulating services (e.g., hydrology).

Note: Drawn from Ferrier and colleagues (2016). Distinctions between the model classes are not always clear, and some models can fit into 
multiple categories.
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for model integration, in which we iden-
tify two possible pathways for achieving 
such integration (figure  3). The first 
uses empirical data on biodiversity-
ecosystem function relationships to link 
biodiversity model output directly to 
ecosystem services models. The second 
uses ecosystem function models to link 
biodiversity and ecosystem services. For 
each pathway, we aimed to address four 
issues: What data are needed to allow 
the integration? What future research is 
needed to be able to implement these 
links? Which ecosystem functions would 
be best suited for each of these pathways? 
And which models from the existing set 
would be best suited for each pathway?

Pathway A: Using biodiversity–ecosystem func-
tion relationships derived from empirical data 
to bridge biodiversity and ecosystem service 
models. One way to account for the 
dependence of ecosystem services on 
changes in biodiversity is to use estab-
lished biodiversity–ecosystem function 
relationships derived from empirical 
data to bridge models that project how 
biodiversity will change with models 
that project how ecosystem services will 
change. Doing so requires identifying 
biodiversity models with outputs and 
ecosystem service models with inputs 
that correspond to well-studied empiri-
cal relationships between biodiversity 
and ecosystem function.

Anthropogenic effects on the bio-
sphere have effectively provided a large-scale experiment 
on what happens when you radically change both species 
richness and composition. There are numerous biodiver-
sity assessments (e.g., Díaz et al. 2019) and a rich literature 
on the effects of cumulative change on the world's ecosys-
tems (such as the effects of fishing down or through food 
webs; Pauly et  al. 1998, Essington et  al. 2006). Although 
these observations can be used to validate the broadscale 
predictions made by the models, they often do not allow 
for disentangling the extent to which any observed change 
in ecosystem function is due to change in the number of 
species (richness), which species are present (composi-
tion), or both.

Biodiversity experiments are, however, designed with this 
in mind and provide an avenue for informing integration. 
For instance, hundreds of biodiversity experiments have 
manipulated plant species richness and measured effects on 
plant productivity (O'Connor et al. 2017, 2022). Therefore, 
biodiversity models that project future changes in plant spe-
cies richness and ecosystem service models that depend on 

Biodiversity-dependent model parameters. As part of our review, 
we identified a number of biodiversity-dependent param-
eters in the ecosystem function and services models that 
could be used to explicitly link these models to biodiversity 
models (see the supplemental material). For example, the 
InVEST crop pollination model contains several input and 
output parameters dependent on biodiversity, such as floral 
resources, foraging activity, bee relative abundance, and 
wild pollinator yield. Other examples include wild food 
and protection against erosion output parameters in the 
GLOBIO ecosystem services model and an array of output 
parameters (e.g., production rates, habitat extent, catch) 
from Atlantis. Likewise, for the process-based models (e.g., 
dynamic global vegetation models), we assessed which 
mechanisms could be improved to better reflect the role 
biodiversity plays in determining changes in functions.

Model integration strategies
After conducting the review and identifying potential inte-
gration links, we developed a novel conceptual framework 

Figure 3. Conceptual framework for integrating biodiversity, ecosystem 
function (EF), and ecosystem service (ES) models. Pathway A links community 
biodiversity models that predict changes in overall α, β, or γ diversity to 
ecosystem service models using established biodiversity–ecosystem function 
relationships derived from empirical data. The dashed line in the center panel 
indicates that in some cases, biodiversity can decrease ecosystem function. 
Note that Δ biodiversity indicates that biodiversity could either increase or 
decrease from its current state. In pathway B, species or trait-based biodiversity 
models can be used to set initial conditions for trait-based ecosystem function 
models. Differential survival of functional groups may lead to changes in the 
distribution of effect traits (i.e., traits that influence ecosystem properties). 
Ideally, one could capture biodiversity and ecosystem function relationships 
within the EF model itself as well; for instance, communities where a stressor 
(e.g., climate or land-use change) greatly reduced initial response-trait diversity 
(i.e., traits that influence species’ ability to persist in the face of environmental 
change; the blue-dotted line) would have reduced function even at the same 
level of response trait than communities starting out with higher levels of 
response trait diversity (the black solid and red dashed lines).
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to estimate the mitigation value of conserving forest plant 
diversity in different regions and globally.

Although we highlight plants and carbon storage, other 
taxa and services are also suitable for this method where 
sufficient understanding of biodiversity–ecosystem func-
tion relationships exist. However, the kinds of intentional 
experiments needed have most commonly been undertaken 
for plants, especially in temperate grasslands, and there 
are fewer such experiments for other taxa or in the marine 
realm. Consequently, it may be necessary to draw the rela-
tionships on the basis of spatial or temporal gradients of 
depletion (noting the potential for uncertainty injected by 
confounding processes).

Pathway A: Assumptions and challenges. When using data from 
biodiversity experiments, it is important to carefully con-
sider several aspects of their study designs. First, most bio-
diversity experiments were designed to disentangle effects of 
species richness, per se, from those of species identity—for 
example, the importance of legumes in terrestrial systems 
(Spehn et  al. 2002) or whales in marine systems (Roman 
et al. 2014). When a species is lost from an ecosystem, two 
things change simultaneously: Species richness decreases, 
and species composition shifts. Biodiversity experiments 
have rigorously quantified the effects of richness and com-
position by randomizing both how many and which species 
are included in each experimental plot (Tilman et al. 2014). 
This creates a gradient of plant species richness without sys-
tematically changing which species are present at each level 
of plant diversity. Therefore, variation in ecosystem function 
between experimental levels of richness indicates an effect of 
plant diversity that is independent of any effects of changing 
which species are present. Variation in ecosystem function 
within an experimental level of richness indicates and effect 
of species composition that is independent of any effects of 
species richness. Richness and composition effects can be 
equally strong (Hector et al. 2011). In natural ecosystems, it 
will often be important to account for the effects of changes 
in both richness and composition, which may be reinforcing 
(i.e., if the most productive species are systematically lost) 
or counterbalancing (i.e., if the least productive species are 
systematically lost; Smith and Knapp 2003, Isbell et al. 2008). 
This is easier said than done. Trait-based frameworks seek to 
predict which types of species will tend to be lost or favored 
under future environmental conditions. To the extent that 
these traits can be identified and rigorously linked to 
both global changes and ecosystem services, trait-based 
approaches may help provide information for composition 
effects (see pathway B below).

Second, positive effects of biodiversity on ecosystem 
function are often observed in natural systems, where spe-
cies composition is not manipulated (e.g., Liang et al. 2016). 
However, the strength and direction of biodiversity and 
ecosystem function relationships can differ across ecosystem 
functions and ecosystem types in natural communities (van 
der Plas 2019). Moreover, the number of species included 

plant productivity would be good candidates for integration 
aimed at addressing this relationship.

Many experiments on the relationship between biodiver-
sity and ecosystem function assess changes in productivity 
due to changes in species richness, and meta-analyses of 
biodiversity experiments have produced estimates of how 
changes in species richness lead to overall biomass changes 
(e.g., O'Connor et  al. 2017). As such, biodiversity models 
used in this pathway could assess how projected changes 
in drivers (e.g., climate change or land-use change) lead to 
changes in plant species richness. Many correlative biodiver-
sity models can produce these estimates, including bottom-
up species models that are stacked to produce estimates of 
species richness changes, as well as top-down community-
level, or macroecological, models that produce estimates of 
changes in alpha, beta, and gamma diversity without consid-
ering specific species (figure 2). The resulting output could 
be converted to proportional change in species richness.

Using the aforementioned relationships between spe-
cies richness and productivity, altered plant productivity 
output could then be fed into an ecosystem service model. 
For example, the InVEST model (Natural Capital Project 
2022) requires users to upload a table with carbon storage 
values for different land-use types. Modelers could use the 
expected productivity changes to update the carbon stor-
age values for different land-use types on the basis of the 
expected biodiversity loss.

Early steps have already been taken to implement this 
approach. For example, Isbell and colleagues (2015) linked 
estimated species extinction debts associated with land-use 
change with biodiversity and ecosystem function relation-
ships obtained from empirical and theoretical studies, such 
that

F = 1 – {1 – D)αβ,

where F represents ecosystem function debt, D represents 
the proportion of habitat destroyed, α is a constant indicat-
ing the magnitude of the extinction debt, and β is a constant 
indicating the strength of the biodiversity and ecosystem 
function relationship. They then linked this with an ecologi-
cal production function for carbon, and used existing land-
use and global biomass maps to estimate the gradual carbon 
loss in remaining habitat fragments expected to result from 
past land-use changes.

Using another approach, Mori and colleagues (2021) cre-
ated species distribution models for tree and shrub species 
globally under present and projected future conditions and 
combined this with multiple modeling methods to obtain 
changes in species richness between 2005 and 2070. They 
converted this change in species richness to changes in 
proportional forest productivity using elasticity of substitu-
tion values (i.e., the degree to which species can substitute 
for each other in contributing to stand productivity; Liang 
et  al. 2016) estimated from forest inventory data sets. By 
comparing different climate change scenarios, they were able 
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keep in mind that they likely include some, but not all, rel-
evant effects of biodiversity on ecosystem function. Moving 
forward, it may be possible to incorporate both experimental 
data and theoretical scaling relationships (e.g., Gonzalez et al. 
2020) in models that project how changes in beta diversity 
may affect ecosystem function and ecosystem multifunction-
ality (Pasari et al. 2013). This will allow for greater assessment 
of how processes such as homogenization of communities 
across scales may affect ecosystem function over time.

Pathway B: Using biodiversity model outputs to parameterize models 
that predict changes in ecosystem function. Trait-based models 
have proven to be a particularly effective means of modeling 
ecosystems, with different types of models focusing on dif-
ferent key traits. For example, size has a strong influence on 
many ecological processes—metabolic strategies and costs, 
sensory and feeding types, mobility and other life history 
strategies (Andersen et al. 2016)—and so can be a particularly 
useful shorthand for modeling ecosystem composition and 
how it may respond to stressors (Blanchard et al. 2017). This 
is true both in marine and terrestrial ecosystems (e.g., Brown 
et  al. 2004, Brose et  al. 2006). Although functional traits 
underpin an organism's contribution to ecosystem function 
and its tolerance to environmental pressures (e.g., (Suding 
et al. 2008), the contributions and responses of an organism 
will often depend on the combinations and tradeoffs of traits 
rather than any individual trait (e.g., Díaz et al. 2013).

Given the influence of traits on ecosystem function and 
services and how individual species represent specific trait 
combinations, traits are a logical choice for integrating 
biological diversity (via trait composition) into ecosystem 
function models. Over more than 40 years, marine scientists 
have used ecosystem models built around key species or 
functional groups to try to understand ecosystem function 
and predict the outcomes of changing drivers (e.g., climate 
change driven temperature shifts, changing ocean acidifi-
cation levels, or fishing pressure; Christensen and Walters 
2004, Blanchard et al. 2012).

Similarly, for terrestrial ecosystems, there is a long history 
of trait-based models for vegetation in which traits specific 
to plant functional types are used to simulate their physiol-
ogy, demography, and ecological dynamics (Scheiter et  al. 
2013, Fisher et al. 2018). More recently, approaches analo-
gous to marine ecosystem models have been developed and 
applied to simulate the functional composition and ecosys-
tem function of whole terrestrial ecosystems (Harfoot et al. 
2014). Consequently, it is a conceptually straightforward 
step to consider how to exploit those model structures to 
more thoughtfully include biological diversity. Although 
the reality of such implementation is complicated (given the 
many thousands of species present in most ecosystems), we 
identify three potentially fruitful modeling strategies.

The simplest approach (figure 4, pathway B1) is simply to 
mimic the outcome of differential drivers on the activities or 
survival of functional groups, with different combinations 
of response traits (i.e., traits that influence species’ ability to 

in local-scale experiments tends to be much lower than the 
diversity of natural communities, and therefore, the pro-
portional loss of function with loss of species richness may 
not be directly transferable (Mori et al. 2016, Manning et al. 
2019, but see Jochum et al. 2020). This and other uncertain-
ties in the current knowledge that stems from the local-scale 
experiments could add a considerable amount of error to 
model predictions for the consequences of biodiversity loss 
on ecosystem function. Model intercomparison efforts in 
the biodiversity and ecosystem function literature (e.g., 
Crawford et  al. 2021) can help explore differences across 
systems and improve the generalizability of biodiversity and 
ecosystem function relationships.

Finally, biodiversity and ecosystem function relationships 
are likely to be scale dependent (Barry et al. 2021), and there 
are often mismatches between the scale of biodiversity and 
ecosystem function experiments and the scale of biodiversity 
model outputs (Isbell et al. 2017). Biodiversity can only be 
experimentally manipulated at relatively small, local scales, 
which means that the results from biodiversity experiments 
do not yet account for additional effects of biodiversity that 
theory predicts can arise at larger spatial scales. Therefore, 
biodiversity experiments have rigorously considered how 
local species interactions can lead to effects of biodiversity 
on ecosystem function but have not yet been able to account 
for processes, such as dispersal, which can create additional 
effects of biodiversity on productivity at larger spatial scales. 
This may be especially important, because species richness 
and species turnover are not always coupled and are, there-
fore, not on their own sufficient for capturing biodiversity 
changes (Blowes et al. 2019).

At local scales, increasing plant diversity can increase 
productivity by reducing competition, increasing facilita-
tion, or both (Hooper et al. 2005). At larger landscape scales, 
dispersal, which is controlled and not considered in local bio-
diversity experiments, can regulate both biodiversity and pro-
ductivity. In many meta-community models, at low rates of 
dispersal, species fail to reach the parts of the landscape where 
they would be most productive (Loreau et al. 2003). This can 
limit both biodiversity and productivity across the landscape. 
At excessively high dispersal rates, the single species that is the 
best competitor for the average conditions across the entire 
landscape can drown out all other species, again leading to 
relatively low diversity and low productivity, given that some 
species that would have otherwise been more productive 
at some places in the landscape are outcompeted by a less 
productive species (Loreau et al. 2003). At intermediate dis-
persal rates, species can optimally sort across heterogeneous 
environments, leading to relatively high levels of diversity, 
with species reaching and becoming dominant in the parts of 
the landscape where they are most productive (Loreau et al. 
2003). This could create an effect of spatial beta diversity (i.e., 
turnover in species from one place to another) on produc-
tivity that is usually not accounted for in local biodiversity 
experiments. Therefore, when using results from biodiversity 
experiments to bridge these relationships, it is important to 
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Figure 4. Example pathway B integration strategies for a vegetation ecosystem function model that incorporates vegetation 
dynamics. Panel (a) shows how biodiversity model output can parameterize an ecosystem function model. Panel (b) 
illustrates different ways that ecosystem function models can use trait information from biodiversity models to project 
changes in ecosystem function. In pathway B1, a biodiversity model is used to set the initial response trait distribution of 
the system (the solid line in the left graph). As the vegetation model runs, the response trait distribution will change over 
time (the red dashed line), leading to changes in ecosystem function (the solid line in the right graph). In pathway B2, 
the model considers not only the initial trait distribution, but also trait variation. As environmental conditions change 
over time (the dashed line in the middle graph), systems with greater variance in the trait distribution (the solid line as 
compared with the dashed line in the left graph) may have more stable ecosystem function over time (the solid line as 
compared with the dashed line in the right graph). In pathway B3, ecosystem function models also consider mechanistic 
drivers of biodiversity–ecosystem function relationships. For example, more diverse systems (the solid line in the left 
graph) may have higher ecosystem function if interspecific competition is lower than intraspecific competition (the black 
star in the right graph). Some models may use a hybrid of these three approaches. The illustrations in panel (a) appear 
courtesy of Tracey Saxby, Integration and Application Network (ian.umces.edu/media-library).

1062-1073-biac074_COW.indd   1068 12/10/22   7:22 PM

D
ow

nloaded from
 https://academ

ic.oup.com
/bioscience/article/72/11/1062/6680192 by U

niversity of M
innesota - Tw

in C
ities user on 13 February 2023



Overview Articles

https://academic.oup.com/bioscience  November 2022 / Vol. 72 No. 11 • BioScience   1069   

for more functionally distinct species over time could be one 
way to capture complementarity effects.

Pathway B: Assumptions and challenges. One assumption of 
these methods is that functional groups accurately repre-
sent the diversity present in ecosystems. More realistically 
representing diversity within ecosystem function models is 
challenging. For example, in many dynamic global vegeta-
tion models, the biodiversity of vegetation is simplified into 
approximately 10–15 plant functional types across the globe 
(Sitch et al. 2003). Even for site-level simulations, the vegeta-
tion community is usually represented by only a few domi-
nant species (e.g., Purves et al. 2008). Moreover, there can be 
strong effects of changing diversity even within functional 
groups (Reich et al. 2004). A major obstacle for improving 
functional diversity in ecosystem function models is com-
putational demand. Another challenge is incorporating the 
relevant processes that determine how biodiversity responds 
to drivers of change; this is because most models do not 
include sufficient representation of small-scale processes 
that introduce a degree of density dependence and there is a 
tendency for model self-simplification (i.e., loss of biodiver-
sity as the model is run).

Another key assumption in this pathway is that we accu-
rately capture the relationship between response and effect 
traits. The composition of species in an ecosystem is driven 
by how species respond to changes in the environment (i.e., 
response traits), but this may or may not be related to their 
ability to provide specific ecosystem functions (Díaz et  al. 
2013). Even when traits are linked, species respond to mul-
tiple drivers simultaneously, which may act on species in 
different ways, potentially complicating the links between 
response and effect traits and, therefore, the optimal com-
bination of traits. In addition, we lack an understanding 
of how global changes will affect trait distributions. For 
example, will climate change favor types of plants that are 
more or less productive, and will the same or different types 
of plants be productive under future environmental condi-
tions? Things become even more complex when species 
interactions further complicate outcomes via differential 
effects of changes in predation, competition, parasitism, 
and mutualism on species productivity and abundance. 
Attempting to incorporate these relationships may therefore 
lead to greater uncertainty around estimates of ecosystem 
function change, but this uncertainty could be reduced over 
time as knowledge and data improve.

Finally, limitations in our theoretical understanding 
of biodiversity and ecosystem function relationships can 
make incorporating them into process-based models dif-
ficult. For example, complementarity can be driven by 
multiple processes, including resource partitioning, abi-
otic facilitation, and biotic feedbacks (Barry et  al. 2019). 
Many studies measure complementarity effects without 
considering the underlying mechanism, whereas process-
based models incorporate mechanisms and then model the 
resulting effects on function (Barry et al. 2019). Therefore, 

persist in the face of environmental change), such as body 
size, trophic strategy, and thermal tolerance. Differential sur-
vival of these functional groups may lead to changes in the 
distribution of effect traits (i.e., traits that influence ecosystem 
properties) in the ecosystem and, therefore, the ecosystem 
function and services provided (Díaz et al. 2013). Early steps 
have been taken in this direction via explicit attempts to 
model evolution within food webs (e.g., Forestier et al. 2020), 
especially under climate change and how that may affect 
regional fisheries (e.g., Fulton and Gorton 2014). However, 
experience to date indicates that such approaches are likely 
insufficient for authentically capturing the dynamic outcomes 
of interactions between ecosystem function, species compo-
sition, and the different forms of biodiversity (Fulton et  al. 
2019). Instead, integration is needed across processes and 
scales relevant to both ecosystem function and species or trait 
composition (Mokany et  al. 2016, Grimm et  al. 2017). This 
may require linking (at least conceptually) across model types.

Another approach (figure 4, pathway B2) is to use exist-
ing species-level biodiversity models (figure 2) to provide 
information on the species present in a particular ecosystem 
that could be grouped to comprise a functional group. This 
then informs the functional groups and initial distribution 
of traits that will be included in the model. Some classes of 
models already represent trait distributions within functional 
groups, most notably marine size spectra models (Blanchard 
et al. 2017). However, other functional group-based models 
represent organisms using a central estimate of trait values. 
For example, in the Madingley general ecosystem model, 
the cohorts of the model, used to represent collections of 
individuals belonging to a categorical functional group, 
differ in trait values across cohorts, but within a cohort, all 
individuals are identical (Harfoot et  al. 2014). To address 
this, functional group-based models could adopt moment-
based approaches (Norberg et  al. 2001) to parsimoniously 
represent trait distributions and how ecological processes 
affect these. Doing so could allow models to capture the 
biodiversity as insurance hypothesis; that is, because species 
or functional groups respond differently to environmental 
changes, greater diversity promotes greater stability of func-
tions over time (Yachi and Loreau 1999).

Finally, a third approach (figure 4, pathway B3) would be to 
use theoretical understanding of biodiversity and ecosystem 
function relationships to inform processes in an ecosystem 
function model. As was discussed above, there is strong 
evidence that complementarity between species can lead to 
increased function at higher levels of diversity, and these effects 
grow stronger over time (Reich et al. 2012). In terrestrial sys-
tems, vegetation demographic models that explicitly represent 
demographic processes and individual-based competition 
have recently been developed (Fisher et al. 2018), allowing for 
more realistic simulations to investigate how biodiversity and 
community assemblage changes in the course of vegetation 
succession might lead to changes in vegetation composition, 
biogeochemical cycles, and productivity. Modeling reduced 
intraspecific competition at higher diversity levels or selection 
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Box 1. Case study: A simulation of biodiversity–productivity relationships using forest crown  
organization and community light use efficiency.

Light environment is a key factor regulating plant species competition (Aubin et al. 2000, Bartemucci et al. 2006). High biodiversity can 
increase light interception by filling canopy gaps, increasing ecosystem productivity (Pretzsch 2014, Duarte et al. 2021, Williams et al. 
2021). Early successional species usually have higher photosynthesis, growth, and mortality rates and high crown gaps compared with 
late successional species (Pacala et al. 1996, Caspersen and Pacala 2001). In the present article, we conceptually illustrate how pathway 
B3 could be used to reproduce this pattern, and how models could be modified to illustrate pathways B1 and B2 (figure 4). Our analysis 
has unresolved assumptions, but is meant to show how more complex models could be applied.
We used a demographic vegetation model, BiomeE (Weng et  al. 2019), to simulate patterns of biodiversity-mediated changes in 
community light interception and productivity in forest succession. BiomeE assumes crowns can be any shape to fill space and the 
light competition is simulated as a function of tree height and crown area. In this test, we used two parameters to represent tradeoffs 
between light interception and plant physiology—the fraction of canopy intrinsic gap (fgap,0) and the maximum rate of carboxylation 
(Vcmax). fgap,0 affects leaf distribution and light penetration through canopy layers. Vcmax defines photosynthesis and respiration rates 
at given light and temperature conditions and, therefore, a tree's shade tolerance. Early successional species usually have a high Vcmax, 
a low leaf area index, and high canopy gaps. Late successional species usually have a low Vcmax, a high leaf area index, and low canopy 
gaps. We defined two plant functional types (PFTs; supplemental table S2): an early successional, shade-intolerant PFT that has a high 
fgap,0 and Vcmax and a late successional, shade-tolerant PFT that has a low fgap,0 and Vcmax. We conducted monoculture and polyculture 
simulations (supplemental table S3). In the polyculture run, the fraction of canopy gaps was calculated as a function of relative species 
abundances, accounting for possible resource partitioning using the following equation:

fgap , i = fgap0, i pi3i=1

R� ,

where fgap0,i is the default gap fraction of PFT i, pi is the fraction of crown area of PFT i in the total crown area. For monoculture runs, 
fgap is always equal to fgap0.
Succession in the polyculture run generates a biodiversity gradient through time, with the dominant species shifting from PFT1 to 
PFT2 (figure 5a). Net primary productivity (NPP) increased when both PFT1 and PFT2 were in the community (figure 5b and 5c) and 
was higher than NPP of the monoculture runs. This indicates gap filling with high biodiversity may be a key mechanism increasing 
light use efficiency and NPP, but data to parameterize and validate the model are needed before we can draw conclusions.

Next steps to fully implement pathways B1–B3
In this example, we artificially selected trait parameters for each PFT, but in the future, biodiversity models could be used to determine 
initial trait values (pathway B1). A few modifications could be made to implement pathway B2: In addition to setting a mean trait value 
for each PFT, one could assign variance around the mean. Alternatively, one could include an environmental driver that changes over time 
that results in changes in optimal trait values. Functional groups with greater trait variance may have lower productivity under certain 
values of the environmental driver (i.e., not all individuals have the optimal trait value at any given time), but may respond to changes 
more quickly. In all pathways, additional PFTs could be added to further explore the effects of biodiversity on ecosystem function.

Figure 5. BiomeE simulations exploring the relationship between biodiversity 
and net primary productivity (NPP). (a) As the model progresses, the early 
successional species PFT1 is gradually replaced by PFT2. (b) When PFT1 
and PFT2 are both present in the model, productivity is higher than PFT1 or 
PFT2 alone. (c) Difference in NPP (dNPP) between the polyculture run and 
monoculture runs. Values above 0 indicate that productivity is higher in the 
polyculture run.
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for colonization from nearby areas) would be particularly 
useful. Conversely, empirical data on biodiversity and 
ecosystem function relationships can be used to improve 
understanding of the links between response and effect 
traits included in process-based models and also to validate 
expected results.

In the sections above, we highlighted important knowl-
edge gaps for implementing our proposed model integra-
tion approaches. Addressing these gaps will improve our 
ability to accurately reflect the role of biological diversity 
in ecosystem functions and services. Despite the challenges 
of doing so, it is important to begin building the modeling 
infrastructure to integrate biodiversity and ecosystem func-
tion models. Once developed, models can be periodically 
updated to reflect improved understanding of biodiversity 
and ecosystem function relationships.
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