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Humans can freely adopt gait parameters like walking speed, step length, or

cadence on the fly when walking. Planned movement that can be updated

online to account for changes in the environment rather than having to rely on

habitual, reflexive control that is adapted over long timescales. Here we present

a neuromechanical model that accounts for this flexibility by combining

movement goals and motor plans on a kinematic task level with low-level

spinal feedback loops. We show that the model can walk at a wide range of

different gait patterns by choosing a small number of high-level control

parameters representing a movement goal. A larger number of parameters

governing the low-level reflex loops in the spinal cord, on the other hand,

remain fixed. We also show that the model can generalize the learned behavior

by recombining the high-level control parameters and walk with gait patterns

that it had not encountered before. Furthermore, the model can transition

between different gaits without the loss of balance by switching to a new set of

control parameters in real time.
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1 Introduction

Human locomotion is amazingly flexible. We can avoid obstacles of different sizes and

shapes, precisely step to a suitable location with a variety of swing foot trajectories (Zhang

et al., 2020), and walk with a wide range of overall gait patterns (Inman et al., 1981;

Ackermann and van den Bogert, 2012; Steele et al., 2012). Despite plenty of empirical

studies on human walking behavior, however, the concrete neuromuscular processes that

generate and regulate human locomotion are still not well understood. During

locomotion, the central nervous system must generate a stable, rhythmic movement

pattern that moves the body in a certain direction in space with a relatively constant speed

while keeping movements in other directions to a minimum (Inman et al., 1981). For each

step, the swing leg must be moved to a new location over an appropriate time, and errors

in either time or location of the step will perturb the overall stability of the walking body.

The stance leg, on the other hand, needs to generate forces against the ground that prevent
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the body from collapsing due to gravitational forces and propel

the body forward to maintain a steady movement speed

(Reimann et al., 2020). Furthermore, as the body traverses

throughout the gait cycle, movement generation and control

for the two legs must dynamically switch between stance and

swing. Despite these challenges, humans are not only capable of

easily performing steady state locomotion but also of smoothly

adapting their locomotion patterns to external requirements

(Zhang et al., 2020). They can walk on their tiptoes, step over

obstacles, or bend their knees while walking. Their gait patterns

are often characterized by high-level parameters such as walking

speed, step length, step width, and stepping cadence, and they can

generally freely vary these parameters and walk with a variety of

different gait patterns (Nilsson and Alf, 1987).

The flexibility of human walking behavior is contrasted by

the highly repetitive nature of the gait cycle (Clark, 2015). A large

body of research has shown that stable locomotion patterns are

generated solely by spinal structures in insects (Mantziaris et al.,

2020), lampreys (Ayers et al., 1983), and cats (Perret et al., 1988;

Kiehn, 2016). Less is known about how humans generate stable,

rhythmic walking patterns or how the flexibility of high-level

human movement generation is integrated with the rhythmic,

repetitive patterns usually associated with spinal structures. One

way to test conjectures that integrate high-level motor planning,

low-level spinal modules and reflexes, and the musculoskeletal

biomechanics of the body and environment is to develop

computational models those include all factors of interest. In

such models, it is possible to independently manipulate specific

factors and observe the resulting effect on the movement pattern

(Allen and Ting, 2016; De Groote and Antoine, 2021). Most

neuromuscular models for walking use spinal circuits to generate

the rhythmic movement patterns. These models are based either

on the central pattern generators (Taga, 1995; Van der Noot et al.,

2018; Aoi et al., 2019) or finite state machines that organize the

model’s behavior on the basis of its state using specialized reflex

modules (Günther and Ruder, 2003; Song and Geyer, 2015; Ong

et al., 2019). They can reproduce human walking behavior (Song

and Geyer, 2015; Ong et al., 2019) and are, to some degree,

flexible. Existing models of this style can walk at different speeds

(Günther and Ruder, 2003; Van der Noot et al., 2018; Ong et al.,

2019; Di Russo et al., 2021), change the walking direction (Song

and Geyer, 2015; Van der Noot et al., 2018), step over obstacles

(Taga, 1998), or vary their gait parameters (Di Russo et al., 2021).

Flexibility in existing models is largely limited to specific

variations, such as speed modulation or increasing the toe

clearance during swing. We postulate that these limitations of

existing neuromuscular models are due to their almost

exclusively spinal nature and the lack of supraspinal motor

planning and control. Experimental studies of human walking

suggest a duality of steps as both 1) part of the rhythmic

movement patterns of the whole body and 2) reaching

movements with the foot (Clark, 2015). We previously

presented a model that attempts to bridge this gap by

integrating high-level, voluntary movement planning for the

swing leg with low-level, habitual control (Ramadan et al.,

2022). The model could avoid obstacles, vary movement speed

and walking direction, and perform goal-directed movements

with the swing leg by executing a motor plan to reach a kinematic

goal, without re-optimizing model parameters. Since generation

of planned, voluntary movements is restricted to the swing leg,

variations of overall gait parameters such as step length, cadence,

and the resulting movement speed are limited. The movement

speed could be varied by increasing trunk lean and exploiting the

interaction between balance control and speed, but step length

and cadence could not be controlled independently in the way

humans are clearly capable of.

Here, we develop a model of walking that combines planned,

voluntarymovements with habitual, reflexive control for both the

swing and stance leg, with the goal of reaching a similar level of

flexibility in walking as observed in humans. To challenge

flexibility, our goal is to have the model capable of walking at

a large range of different gaits, represented here by the two gait

parameters step length and cadence. The high-level controller

represents movement goals as a set of eight control parameters,

consisting of desired kinematic states for joint angles or body

parts (see Section 2.1 for details). For any set of control

parameters, the controller plans a movement to a goal in the

kinematic task space. The task-level movement plan is then

transformed into descending motor commands that

integrate with spinal structures using a combination of

internal models and neural networks. Our specific research

goals are 1) to show that it is possible to generate stable

walking patterns as a planned and voluntary movement, with

gait parameters spanning the range typically adopted by

humans. To this end, we use evolutionary optimization to

find sets of control parameters that will generate a given gait

pattern. This results in a large set of individually learned sets

of high-level control parameters, each of which produces a

stable walking pattern with different gait parameters. 2) To

test whether the learned gaits can be generalized by

interpolation in the space of control parameters to walk

with gait patterns that were not previously learned. Success

would show that the high-level voluntary control is sufficient

to generate any desired gait pattern within a reasonable range.

3) To test whether the model can transition between different

gaits in real time. Success would show that the motor behavior

generated by the model is robust, without losing balance when

transitioning between stable states.

In Section 2, we introduce the model used in this work.

Section 3 describes the optimizations conducted to learn high-

level parameter sets and presents the approach used to walk at

and transition between arbitrary cadences and step lengths.

Section 4 describes the results obtained from the simulation

experiments, and in Section 5, we discuss insights and conclusion

from the results and limitations as well as possible model

extensions.
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2 Model

We present a neuromechanical model of human locomotion

that is based on the work of Ramadan et al. (2022) and spans

high-level movement planning and coordination, spinal reflex

arcs, muscle physiology, and skeletal biomechanics. Figure 1

provides an overview of the major model components. A

finite state machine organizes the gait phases and switches

each leg between early swing, late swing, and stance phases,

depending on feedback from ground contact and measured

FIGURE 1
Overview of themodel architecture. In the supraspinal layer, motor goals for the swing leg are desired kinematic states, set by a volitionmodule
andmodulated by balance control feedback. Amotor plan toward these goal joint configurations is generated byminimal jerk trajectories that can be
updated during execution. For the stance leg, the goal for propulsion is a desired forward acceleration of the trunk, transformed into a joint-level
motor plan by an inverse kinematics module. An internal inverse model comprising biomechanics, muscle moment arms, muscle activation
properties, and the spinal stretch reflex transforms themotor plan into descending commands that execute the plannedmovement. The descending
commands are integrated with the stretch reflex in the spinal layer. The stance leg is additionally controlled by three functional reflex modules that
stabilize the trunk (Sharbafi and Seyfarth, 2015), generate leg compliance and prevent overextension of the knee (Song and Geyer, 2015). Spinal
motor neurons activate Hill-type muscle–tendon units that actuate the biomechanical model in the environment. A finite-state machine organizes
switches between early swing phase, late swing phase, and stance phase. The concrete feedback paths are described in detail in the equations below.
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movement time. In the supraspinal layer, a volition module

represents the task-level movement goals for the swing and

stance leg. Movement goals are desired kinematic states, that

is, positions, velocities, or accelerations of joint angles or specific

body parts. A planning module generates a task-level motor plan

to reach any given movement goal. A movement plan is

generated in the form of a trajectory that moves the task

variable from its current state to the desired state in a given

time. Movement plans are updated in real time based on sensory

feedback. A combination of a neural network and an explicit

internal model then transforms the high-level motor plans into

descending motor commands by inverting dynamics, forces, the

muscle model, and the stretch reflex. The resulting descending

commands interface with the neural control modules in the

spinal cord to execute the movement plan. The spinal control

includes a generic stretch reflex for each muscle. This stretch

reflex uses proprioceptive information about muscle length and

velocity as input, compares the input to an activation threshold,

and activates motor neurons in proportion to the difference

between the sensed muscle state and reference threshold. The

reference threshold is modulated by the descending motor

commands. In addition to this general stretch reflex, the

stance leg is controlled by specific functional reflex modules

that (1) generate compliant leg behavior, 2) prevent knee

overextension, and 3) balance the trunk. Motorneural

activation is fed into Hill-type muscle models that actuate a

three-dimensional biomechanical model. The following section

provides a detailed description of the innovations made to the

work presented in Ramadan et al. (2022). For details on the

adapted parts of the model, please refer to Ramadan et al. (2022).

2.1 High-level task variables

2.1.1 Propulsion
The model generates propulsion by pushing against the

ground with the stance leg. We define the task variable as a

desired forward acceleration of the trunk center of mass ax. This

desired acceleration is constant and applied throughout the

stance phase of each leg. The role of the constant acceleration

from the propulsion module is to offset the deceleration

generated by friction and energy dissipation from viscoelastic

elements in the muscles and connective tissue. This deceleration

is consistent throughout the gait cycle, though the average level of

energy loss depends on the chosen gait pattern and speed. We

chose constant acceleration as the simplest form to counter the

consistent energy loss, instead of a more complex, state-

dependent term. Specifically, there is no desired speed that is

explicitly controlled via a sensory feedback loop.

In order to execute the planned whole-body acceleration with

the DoF of the stance leg, we transform ax into desired joint

accelerations for the stance leg. We compute the current velocity

vector vcom of the trunk CoM as

vcom �

vx,com
vy,com
vz,com
ωx,com

ωy,com

ωz,com

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

jx
jy
jz
jrx
jry
jrz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

_θhipfl
_θhipab
_θknee
_θankle
_θball

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� J _θst, (1)

where vi and ωi are the translational and rotational components

of the trunk velocity, J = J(θst) the Jacobian matrix of partial

derivatives relating changes in trunk configuration to changes in

joint angles, θ, with row vectors j*, and _θ* are the angular

velocities of the corresponding joints. We use the Jacobian

that relates the trunk CoM to the four degrees of freedom of

the corresponding stance leg and an extra hinge joint at the balls

of the foot for motion of the foot segment around the contact

during pushing off, for a total of five degrees of freedom

represented as θst.

Deriving Eq. 1 by time yields

acom � _J θ( ) _θst + J θ( )€θst ≈ J θ( )€θst. (2)

Here we neglect the velocity-dependent term using _J(θ). This is
reasonable because the leg configuration changes relatively

slowly during stance. The resulting mapping of the desired

acceleration of the whole-body CoM to joint accelerations is

sufficiently accurate to generate walking movements, which is the

overall goal, showing that neglecting this term is acceptable. The

vector acom is six dimensional comprising both translational and

rotational degrees of freedom. The stance leg model, however,

has only four degrees of freedom that are actuated by muscles,

and we have the constraint of being unable to apply torques at the

unactuated degree of freedom at the football, and the hip

abduction degree of freedom, although actuated, does not

move the trunk in the anterior–posterior direction. We solve

the inverse kinematic problem while accounting for these

constraints as

€̃θst �
jx
jrz
mball

mhipab

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

~ax
0
0
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where jx, jrz are the components of the trunk CoM Jacobian that

affect forward translation and rotation in the sagittal plane. The

additional two constraint rows ensure that the torques at the hip

abduction joint and the unactuated joint at the ball of the foot will

be zero, where mball and mhipab are the rows of the mass matrix

(compare Eq. 5 below) that relate torques in these two degrees of

freedom to accelerations across all five joints. The tilde in €̃θst and
~ax indicates that these are the desired quantities determined by

the high-level controller, instead of the actual kinematic states.

2.1.2 Swing leg task variables
Freely choosing a gait pattern requires the ability to flexibly

modify the kinematic trajectory of the swing leg. In Ramadan

et al. (2022), we presented a neuromuscular modeling approach
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to generate flexible swing leg movements that we followed and

expanded in this study. The model generates a motor plan to

bring a kinematic task variable from its current state to a goal

state in a desired time, using a minimal jerk trajectory. Aminimal

jerk trajectory is a trajectory that transports a variable from an

initial to a goal state in a given time, while observing kinematic

constraints (Flash and Hogan, 1985). It has been widely adopted

as a model for human reaching movement generation

(Engelbrecht, 2001) and extended to generate joint angle

trajectories (Andani and Bahrami, 2012). We represent the

movement goal as the desired joint angles for hip flexion,

knee flexion, and ankle flexion. As in Ramadan et al. (2022),

we subdivide the swing phase into an early and a late swing phase

and define a set of target joint angles for the end of each subphase.

Specifically for ankle flexion, we define only one target joint angle

for the entire swing phase as the task variable, since ankle flexion

does not change its direction of movement during the swing

phase in normal human walking (Lim et al., 2017). The total

movement time Tsw of the swing phase is another control

parameter. This results in a total number of six task variables

for the swing leg that are used as control parameters to modulate

the overall gait pattern: θtar, earlysw, hipfl , θ
tar, early
sw, knee , θ

tar, late
sw, hipfl, θ

tar, late
sw, knee, θ

tar
sw, ankle

and Tsw. The target hip flexion angle is additionally modulated by

a feedback control law:

~θsw, hipfl � θtar,psw, hipfl + cpdd̂ + cpv v̂ − ϕ̂trunk , (4)

for balance, where d̂ and v̂ are the time-delayed horizontal

difference between the center of pressure (CoP) and the trunk

position and its velocity; cpd and cpv are feedback gains, with the p

indicating early and late swing; and ϕ̂trunk is the time-delayed

trunk orientation. Eq. (4) is applied independently for the sagittal

and frontal plane orientations of the thigh. The control

parameters of the frontal plane, however, are not treated as

control variables in this study. All details about the

implementation of movement goals, minimal jerk trajectories,

and balance control have been introduced in Ramadan et al.

(2022). Time delays are adopted from Song and Geyer (2015) and

have been reported in Ramadan et al. (2022).

2.1.3 Trunk reference lean
The forward lean of the trunk during locomotion has a

substantial effect on the gait. It changes the mass distribution

within the body, moving the CoM forward relative to the feet and

increasing the lever arm of the gravitational force around the

pivot point at the stance foot ankle (Reimann et al., 2020). In

Ramadan et al. (2022), modulation of the trunk lean reference

angle was used to change the average walking speed of the model.

In humans, faster walking is associated with increased forward

lean of the trunk (Ahmad Sharbafi and Seyfarth, 2017). Here, we

use trunk reference lean as one of several high-level control

variables to modulate an overall gait pattern. To regulate trunk

lean, we define a reference angle for the stance leg hip flexion

joint as a supraspinal movement goal. This reference angle θrefst, hipfl

is directly sent into the spinal cord as a descending command,

where it interacts with the force-modulated compliant-hip reflex

module (see Section 2.3.1). This parameter is constant and does

not require movement planning or the modulation by an internal

model. Trunk balance in the lateral direction is controlled as in

Ramadan et al. (2022).

2.2 Internal model

The supraspinal control modules for propulsion and the

swing leg movement generate motor plans that specify desired

accelerations of individual joint angles. We transform these

accelerations into descending commands that modulate the

reflex arcs in the spinal cord to generate motorneural

activation patterns that execute the planned movement. To

this end, we use a sequence of inverse models, implemented as

a combination of neural networks and explicit algebraic

equations that invert the forward equations for spinal

control, muscle physiology, and biomechanics, with some

simplifying approximations. The following section describes

the individual components of this sequence of internal

models.

2.2.1 Inverse dynamics
Motor plans at the task level are represented by vectors of

desired joint accelerations: €θst for the stance leg and €θsw for the

swing leg. Executing the motor plan means realizing these

planned joint accelerations. We compute torque profiles that

realize the planned joint acceleration by an inverse model of the

biomechanics. For the stance leg, we approximate the

relationship between the joint accelerations and joint torques by

~τst � M θ̂( )€̃θst. (5)

The mass matrixM(θ̂) relates joint accelerations to joint torques
as part of the equation of motion, and θ̂ are the time-delayed

sensor estimates of the body configuration. Neglecting the

velocity-dependent torques is reasonable because the leg

moves relatively little during the stance phase. The

gravitational components, which do contribute significantly

during the stance phase, are assumed to be compensated by

spinal reflexes (see Section 2.3.1). This mapping of the desired

joint acceleration to joint torques, in combination with the spinal

reflexes countering the gravitational forces, is sufficiently

accurate to generate walking movements, as shown in the

Results section below, indicating that neglecting these terms is

acceptable. The resulting vector of the desired stance leg joint

torques, ~τst, is composed of five components (see Section 2.1.1).

The component of the unactuated degree of freedom at the ball of

the foot, however, is zero due to the constraints used in Eq. 3 and

is disregarded for further considerations.
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For the swing leg, we solve the complete equation of motion

by including gravitational and interaction terms for the four

actuated joints of the swing leg, resulting in a vector of desired

joint torques ~τsw. For details on the inverse dynamics applied at

the swing leg, please refer to Ramadan et al. (2022).

2.2.2 Inversion of muscle force generation and
stretch reflex

Here, the goal is to find a descending motor command that

interfaces with the stretch reflex to generate the desired joint

torques ~τst and ~τsw. We first find a vector of muscle forces that

generates the desired joint torques, then define a descending

command that will interface with the spinal stretch reflex to

generate the desired force at each muscle.

Since the number of muscles exceeds the number of joints of

the model, there is an infinite number of possible muscle force

vectors F that potentially realize a desired torque vector ~τ. From

the space of the muscle force vectors that realize the desired

torque, we select the force vector that minimizes the total amount

of squared muscle forces across all muscles and contains only

positive muscle forces. Therefore, we solve the constrained

minimization problem

~F � min
R θ( )~F�τ
~Fi ≥ 0

∑
i

~F
2

i , (6)

using the interior point algorithm, where R(θ) is the matrix of

moment armsmappingmuscle forces to joint torques. In order to

reduce computational load of the model, we trained a feed-

forward neural network that approximates this minimum.

Details on the training of the network can be found in

Section 6.1 in the Appendix.

To find a motorneural stimulation level ~S that generates the

desired force ~Fi for each muscle, we invert the characteristics of

the Hill-type muscle model as

~Si �
~Fi

Fi,maxfl lce( )fv vce( ), (7)

where Fi,max is the maximal force; fl and fv represent the force-

length and force-velocity characteristics; and lce and vce are the

length and lengthening velocity of the Hill-type muscles

(Geyer et al., 2003). Finally, to define a descending

command that interfaces with the spinal stretch reflex to

generate the desired level of stimulation ~Si, we invert the

stretch reflex as

u � ~Si + h

Kl
− lce, (8)

where Kl is the gain and h is the resting level of the spinal stretch

reflex (see Section 2.3.2). For details on these inversions and the

associated simplifying approximations, please see Ramadan et al.

(2022).

2.3 Spinal control mechanisms

In addition to the high-level motor planning and control

described above, the model relies on various spinal reflex

pathways. Each muscle has a general stretch reflex mapping

the proprioceptive feedback about the muscle length directly to

motorneural activation of the same muscle. During the stance

phase, additional reflex arcs are used to realize specific functions

during locomotion. This section describes these reflex

mechanisms in detail.

2.3.1 Force-modulated compliant hip
To stabilize the trunk, we use an approach following the

force-modulated compliant hip mechanism (FMCH) introduced

by Sharbafi and Seyfarth (2015). In human experiments, it has

been observed that the hip torque at the stance leg generated to

balance the trunk can be approximated by a force-modulated

spring:

τst, hipfl � cFs θst, hipfl − θrefst, hipfl( ). (9)

Here, Fs is the force that the combined stance leg joint torques

apply to the trunk segment at the hip, θst, hipfl is the stance leg hip

joint flexion angle, and c is a constant gain factor. The reference

hip angle θrefhipfl is the descending command that is generated in

the supraspinal layer.

We approximate this behavior by activating the biarticular

hip muscles as

SFMCH,i � ciFs t − Δt( ) θst, hipfl t − Δt( ) − θrefst, hipfl( )[ ]+, (10)

where i indicates one of the two biarticular muscles spanning

the hip and knee joints: hamstring and rectus femoris. We

restrict the balance control to these two muscles because

human experiments suggest that trunk balance is mainly

realized by biarticular muscles (Sarmadi et al., 2019;

Schumacher et al., 2019). It has also been shown that the

use of biarticular muscles has biomechanical advantages when

generating horizontal forces (Hof, 2001). The leg force Fs is

approximated as the force

Fs � FVASmVAS + FSOLmSOL

0.032
. (11)

Here, F* and m* are the forces and moment arms of the soleus

and vastus groups, which are the two monoarticular muscles

that generate compliant leg behavior and act on the hip joint

center. The factor 0.032 approximates the transformation

from the joint torques to a force vector acting on the

hip. The feedback about muscle force is assumed to be

provided by Golgi tendon organs and feedback about the

joint angle is measured by a combination of muscle spindle

and Golgi tendon organ feedback (Kistemaker et al., 2013;

Prochazka, 2013).
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2.3.2 Generic stretch reflex and functional reflex
modules

Each muscle is always innervated by the generic stretch

reflex:

SSTR � Kl l̂ce + u( ) + Kv v̂ce + _u( ) − h[ ]+ (12)

The stretch reflex uses proprioceptive feedback from the muscle

spindles, mapping the time-delayed sensor estimates of length l̂ce
and velocity v̂ce of the contractile element to motorneural

stimulation SSTR of the Hill-type muscle, relative to a

threshold u that is modulated by the descending command.

The gain factors Kl and Kv are constant and the same for all

muscles, and h represents the resting level for the neural activity.

The rate of change of the descending command, _u, is computed

as the numerical derivative of u. Time delays for the neural

control structures are reported in Ramadan et al. (2022).

In addition to this generic stretch reflex, we adopt a subset of the

functional reflex modules for the stance leg used in Ramadan et al.

(2022), first described by Song and Geyer (2015) and Geyer and

Herr (2010). These reflexes 1) generate compliant leg behavior and

2) prevent knee overextension by mapping proprioceptive

information about muscle length, velocity, and force from muscle

spindles and Golgi tendon organs to motorneural stimulation. For

details about these functional reflex modules, please refer to Song

and Geyer (2015) and Ramadan et al. (2022).

2.4 Integration of different reflexes

The generic stretch reflex, modulated by descending

commands according to the motor plan, and the functional

reflex modules are integrated in the spinal cord. During

swing, the leg muscles are exclusively activated by the

generic stretch reflex stimulation SSTR described in Eq.

(12). During stance, we integrate the generic stretch reflex

with the dedicated reflex modules that implement force-

modulated compliant hip behavior (SFMCH) and the

compliant stance leg (SCL) and prevent knee overextension

(SPKO) by adding the components to

S � SSTR + SFMCH + SCL + SPKO[ ]+, (13)
to generate the total motorneural stimulation S that activates

each Hill-type muscle.

2.5 Biomechanics and muscle model

We adapt the biomechanics and muscle model from

Ramadan et al. (2022). The biomechanics model is three

dimensional and has a total of 14 degrees of freedom. Internal

degrees of freedom are four actuated joints at each leg,

representing hip flexion/extension, hip abduction/adduction,

knee flexion/extension, and ankle plantar/dorsiflexion. Six

free-body degrees of freedom at the trunk segment allow the

model to move freely in space. Ground reaction forces are

implemented using four contact spheres at each foot, two at

the heels and two at the balls. Muscle tendon units are modeled as

the standard Hill-type muscles. For more details, please refer

Ramadan et al. (2022).

3 Optimization and simulation studies

Our first goal is to establish that the proposed model may

generate stable walking patterns as a planned, voluntary movement,

with gait parameters spanning the range typically adopted by

humans. Target gaits are represented by two gait parameters for

step length and cadence. The model behavior is parameterized by a

set of eight control parameters, representing the target angle for the

swing leg hip flexion (θtar, earlysw, hipfl , θ
tar, late
sw, hipfl) and knee flexion (θtar, earlysw, knee ,

θtar, latesw, knee) at the end of the early and late swing phases, the swing leg

ankle at the end of the swing (θtarsw, ankle), the total movement time of

the leg swing (Tsw), the reference angle for the stance leg hip flexion

to regulate trunk lean (θrefst, hipfl), and the constant propulsion to

maintain forward velocity(~ax). We also include the initial walking

speed vinity , as an optimization parameter. Adding the initial speed

facilitates learning, since themodel does not have to relax to a steady

state from an arbitrarily chosen initial speed. The initial walking

speed has no bearing on the resulting steady state gait, however, it is

not considered a control parameter. In addition to the eight control

parameters, the model has eight gain parameters for balance control

and 27 parameters for the spinal reflexes (Ramadan et al., 2022),

totaling 43 parameters.

As a first step to achieve our goal, we optimize all 43 model

parameters once to find a parameter set for stable walking,

without constraining the gait pattern. In a second step, we

optimize the eight control parameters and the initial walking

speed of the model vinit to find settings for specific targets for the

gait parameters step length and cadence, while leaving all other

parameters fixed. This optimization is repeated multiple times

with different target gait parameters, to form a library of control

parameter sets for different gaits spanning the range of normal

human walking. We then analyze whether this control approach

allows generalization by interpolating between learned gaits to

generate new, previously not learned gait patterns. We also test

whether it is possible to transition between different gait patterns

in real time without the loss of stability. The following sections

describe these steps in detail.

3.1 Optimization of self-selected gait

The presented neuromuscular model contains a total number

of 43 control parameters for high-level goal representation and
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supraspinal balance control, as well as spinal parameters such as

reflex gains, resting lengths, and basis stimuli.

We perform one single optimization of all 43 model

parameter to find a model that walks at a self-selected step

length and cadence. We adopt the evolutionary algorithm

used in Song and Geyer (2015) and Ramadan et al. (2022),

which is based on the covariance-matrix adaptation technique

(Hansen et al., 2006). As a cost function, we define

Jcost �
c0 − xfall if f all

1
2
c0 + dsteady else.

⎧⎪⎨⎪⎩ (14)

The first part of the cost function generates basic walking

without falling and the second part generates steady

locomotion. The constant c0 = 103 is a normalization

factor, xfall is the distance the model walked before falling,

and dsteady measures the “steadyness” of the gait (see

Ramadan et al., 2022). The model that results from this

first optimization walks with a cadence of 101 steps per

minute with a step length of 0.86 m.

3.2 Optimization of high-level control
parameters

To show that it is possible to generate stable walking patterns

as a planned, voluntary movement, we now find sets of control

parameters that walk at specific values for step length and

cadence. We use the same optimization technique as in

Section 3.1, but only optimize the set of eight high-level

control parameters and the initial velocity of the model. To

find a desired gait pattern, we expand the cost function in Eq. 14

in the following way:

Jcost �
c0 − xfall if fall
c1 + | v − vtar( )| if | v − vtar( )|> δv
c2 + | cad − cadtar( )| if | cad − cadtar( )|> δcad
c3 + dsteady else.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

The first part of the cost function again enforces stable walking

without falling. The second and third parts of the cost function

ensure that the model walks at a desired cadence cadtar and speed

vtar, where the speed is determined by the cadence and step length

sltar. All gait parameters are measured over the last 10 s of 20 s

simulated walking. The last part of the cost function generates stable

locomotion as in Eq. (14). The constants δv = 0.02 m/s and δcad = 2

steps/min are tolerancemargins for the desired speeds and cadences.

The constants c0 = 103, c1 = 500, c2 = 250, and c3 = 125 are

normalization factors that ensure that the different parts of the cost

function are realized in the required order. We found that without

such tolerance margins, the model behavior was constrained too

tightly and the optimization often failed to converge. All parameters

except the control parameters are adopted from the result of the

optimization procedure in Section 3.1.

We found a total number of 98 control parameter sets with

cadence and step length values that cover the entire range usually

adopted in human walking. Figure 2 shows the resulting gait

patterns of these 98 models in the gait parameter space spanned

by step length and cadence (blue dots). The colored region illustrates

the normal range of human walking. We defined this range as all

points in the cadence–step length domain for which cadence, step

length, and speed all fall within the interval containing 95% of

human experimental data around the mean for each parameter

(Inman et al., 1981). This results in a region that is delimited by three

sets of two lines, one along the horizontal axis for cadence, one along

the vertical axis for step length, and a third along the diagonal for

speed. Going forward, we will refer to this set as the normal human

walking region. Target gait parameters during the optimization

procedure were manually selected to gradually cover the whole

normal human walking region. The actual gaits resulting from each

optimization were partially stochastic due to the randomness in the

optimization algorithm and the tolerance in the cost function. Initial

conditions for each optimization were either hand-tuned or

determined by linear combinations of the five nearest neighbors

in the step length–cadence domain. Going forward, we will refer to

this collection of 98 control parameter sets as the basis point library.

3.3 Generalization from learned gaits

The optimization procedure described in Section 3.2 provides a

general approach to generate walking at any step length and cadence

combination usually adopted by humans. However, each gait is still

FIGURE 2
Basis Point Library. Gait patterns in the cadence–step length
domain resulting from the 98 sets of control parameters found by
optimization. The shaded area is the normal human walking
region, delimited by the intervals for cadence, step length,
and speed, containing 95% of human data for each parameter.
Dashed purple lines indicate the interval limits.
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“learned” by an optimization procedure. Humans, on the other

hand, can spontaneously walk at any desired combination of step

length and cadence (Nilsson and Alf, 1987), within a certain range,

and adopt new gaits very quickly, on a time scale that is usually

considered too fast for learning or adaptation (Edwards, 2010), more

in the range of parameter estimation (Buckingham et al., 2009). Here

our goal is to test whether the learned gaits in the basis point library

can be generalized to walk at gaits that were not previously learned.

To generalize the learned patterns to new gaits, we

interpolate between the existing points in the basis point

library based on proximity in the cadence–step length

domain. Given a target gait as a combination of step length

and cadence, we select five nearest neighbors from the basis point

library, based on Euclidian distance in the cadence–step length

domain. We then define the new gait as a linear combination of

these five nearest neighbors in the control parameter space,

resulting in a new control parameter vector that is supposed

to result in a gait with the desired step length and cadence

combination. This approach is elaborated in Section 6.2 in the

Appendix. We apply this approach to a grid of target gaits evenly

spaced in the cadence–step length domain, with the results as

shown below in Section 4.2.

3.4 Transitions between gaits in real time

Our last goal is to test whether themodel can transition between

different gaits in real time without the loss of stability. This is not

trivial because even gaits that are close in the two-dimensional

cadence–step length domain might be distant in the eight-

dimensional space of control parameters, representing differences

in the gait pattern not captured by step length and cadence.

To this end, we generate transitions between gaits by switching to

a new set of control parameters at fixed points in time, regardless of

the state of gait cycle. In a first simulation study, we perform targeted

switches along different paths in the cadence–step length domain,

representing either continuous speeding up or slowing down, by

increasing or decreasing both cadence and step length

simultaneously, or modulations of step length and cadence in

opposite directions, in combinations that leave speed largely

invariant. In a second simulation study, we switch randomly to a

new gait within a certain distance in the cadence–step length domain

at fixed points in time. The results of these simulation experiments

are shown below in Section 4.3.

4 Results

4.1 Optimization of high-level control
parameters

The goal of this section is to find control parameter sets

that generate stable walking gaits that cover the normal

human walking region, that is, the range of cadence–step

length combinations usually adopted by humans. We

performed optimizations following the procedure

described in Section 3.2. This process resulted in a total

of 98 sets of control parameters covering most of the normal

human walking region. These 98 gaits are shown as blue dots

in Figure 2. For each of these 98 sets of high-level control

parameters, the model walked without falling for 100 s.

Since the optimization process was partially stochastic

and included tolerance margins for the target cadence and

step length in the cost function, we did not use a hard exit

criterion for this process. We decided to stop the process

when gaits covering most of the normal human walking

region were successfully found, and further improvements

were slow. We found gaits with cadences ranging from 85 to

140 steps/min and step lengths ranging from 0.53 to 0.97 m,

with several solutions lying outside the normal human

walking region. As Figure 2 shows, gaits with short, slow

steps (cadence ≤110 s/min and step length ≤0.75 m) were

rarely found. Optimizations in this area tended to not

converge during the stabilization phase of optimization.

Furthermore, we found one isolated gait with a step

length of 0.3 m (not shown in Figure 2). However, we did

not investigate gaits beyond human usual walking behavior

because convergence appeared to be significantly harder.

The 98 solutions are used as a basis point library for

subsequent simulation studies to test generalization and

transition.

FIGURE 3
Generalization results for 19 gaits. Blue points are target gaits
placed on a lattice in the cadence–step length domain. Green
points are the actual gaits that resulted fromplanning towalk at the
target gaits by generalizing the previously learned gaits. Pairs
of planned and the resulting actual gaits are connected by dotted
lines. Red crosses represent target gaits for which the
generalization did not result in stable walking.
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4.2 Generalization from learned gaits

Finding the basis points required the optimization of high-level

control parameters for each desired gait. Here, we test whether it is

possible to generalize between these learned basis points and walk at

gaits that were not previously learned, by interpolating the control

parameters from the basis point library, and without having to re-

optimize a new set of control parameters.

In a first simulation experiment, we tested walking at an evenly

spaced grid of 19 target gaits loosely spanning the region of normal

human walking and extending beyond the 95% confidence limits by

10% in the cadence and step length directions. For each target gait,

we simulated the model using control parameters from the linear

recombination of the five nearest neighbor basis points in the

cadence–step length space. For details on the interpolation, see

Appendix 6.2. For each set of control parameters, we considered the

resulting gait as “stable” if the model walked for at least 20 s without

falling.

Figure 3 shows the results of this simulation study in the

cadence–step length space. Out of the 19 generated parameter

sets, 12 successfully walked for at least 20 s. The target gaits for

these successful sets are shown as blue dots in Figure 3. For the

remaining seven parameter sets, the models did not walk

successfully for 20 s but fell after an average of 3.05 ± 2.12 s.

The target gaits for these unsuccessful sets are shown as red

crosses in Figure 3. For the successful gaits, we measured the

average cadence and step length over the last 10 s of walking to

determine how close the actual gait was to the target gait. The

actual gaits are shown as green dots in Figure 3, connected to the

target gaits by dashed lines.

Overall, the solutions of this simulation study can be divided

into three groups. The first group of solutions generates walking

gaits very close to the target gait. Nine of the 19 solutions are in

this first group covering large portions of the search space. Three

points correspond to the second group, all in a region

corresponding to gaits with slow and short steps. The third

group of solutions did not generate stable walking. The seven

gaits in this group were all located outside the range usually

adopted by humans.

In a second simulation experiment, we investigated the same

range of gaits, but increased the grid resolution to get a more fine-

grained sampling of the region in the cadence–step length space

where the generalization performs well. This resulted in a total

number of 340 target gaits, out of which 179 walked at least 20 s

without falling. Figure 4 shows the successful (blue dots) and the

unsuccessful (red crosses) target gaits. The mean (±STD)

distance between the target and realized gaits is 0.0297 ±

0.0520 m in step length and 0.9618 ± 1.757 steps/min in

cadence. Throughout large portions of the investigated range,

generalization was successful, with the model walking for at least

20 s without falling. Very fast (> 1.65 m/s) and slow (< 1.2 m/s)

walking gaits, however, frequently led to unstable gaits. Target

gaits in the 10 percent margin around the normal human walking

region also often led to falls.

4.3 Transition between states

In the previous section, we showed that the model can

generalize the previously optimized set of basis points and

FIGURE 4
Generalization results for 340 gaits. Blue points are target
gaits placed on a lattice in the cadence–step length domain. Red
crosses represent target gaits for which the generalization did not
result in stable walking.

FIGURE 5
Gait transitions along six paths in the cadence–step length
domain. The dotted lines indicate the target paths and solid lines
indicate the actual paths. Starting points along the respective walks
are highlighted as squares.
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independently select gaits with cadence and step length within

the normal human walking region. In this section, we investigate

the model’s ability to transition between different gaits during

locomotion in real time. In a first simulation experiment, we

select six different paths through the cadence–step length

domain. Each path is a sequence of seven gaits, visualized as

circles connected by dotted lines in cadence–step length space as

shown in Figure 5. For three of these paths, movement speed is

systematically changed while the ratio of cadence and step length

remains similar. For the other three paths, the movement speed

remains similar while the ratio of cadence and step length is

systematically changed. For each of these paths through the

cadence–step length space, we initialize the model with the

parameter vector of the first basis point, shown as green dots

in Figure 5. After 20 s of walking, and irrespective of the current

state of the gait cycle, we switch the control parameters to the

subsequent set to test whether the model can transition to the

new gait in real time. We repeat this switch to the next parameter

set every 20 s, simulating a total of 140 s per path. The initial

velocity parameter is only used once at the simulation onset.

All gait transitions in this simulation study were completed

successfully, without the model falling. The solid dots and

connecting lines in Figure 5 show the step length and cadence

realized by the model over the last 10 s of each 20 s walking

period. The average (maximal) error between the desired and

realized gait parameters across all paths and transitions was 0.53

(4.60) cm for step length and 0.25 (1.08) steps/min for cadence.

Gait transitions were less accurate in regions of cadence–step

length space where generalization tended to fail (see Section 4.2

above). This is particularly pronounced inWalk 4, shown in dark

red in Figure 5, which leads through an area of the step

length–cadence space that consists of short, slow steps.

Time courses of step length and cadence for two selected

paths are shown in Figure 6. Figures 6A,B illustrate the outcome

variables step length and cadence for Walk 3, corresponding to

the light blue path in Figure 5. The red lines indicate the target

step lengths and cadences, and blue dots show measured step

lengths and cadences for each stride. Both step length and

cadence consistently relax toward their target values for all

transitions. In some cases, the gait pattern briefly oscillates

around the target values during the initial relaxation, before

stabilizing close to the target values.

Figures 6C,D show the same time courses for Walk 4,

corresponding to the dark red path in Figure 5. Cadence and

step length behave generally similar to Walk 3. In the stretch

between 40 and 60 s, the step length oscillates strongly before

stabilizing at a value ≈ 5 cm below its target value. Between

60 and 80 s, the step length initially changes in the wrong

direction, then slowly relaxes toward the target value, but

without reaching steady state within the 20 s.

We performed a second simulation experiment to further test

how well the model can transition between different gaits. In this

experiment, we tested whether the ability to transition between

different gaits is preserved when generalizing the learned basis

FIGURE 6
Time courses of step length and cadence for Walks 3 and 4 (see Figure 5). Time courses of step length and cadence are depicted in panels (A,B)
for Walk 3 and in panels (C,D) for Walk 4. Target step lengths and cadences are indicated by red lines. Blue dots show the actual cadences and step
length for each stride.
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points to new gaits, as described above. We simulated a total

number of 180 walks with a maximal duration of 120 s. We

initialized the model at one of three selected basis points with

similar speed and different relationships of step length and

cadence (see Figure 7), then updated the control parameters

to a new set every 20 s to generate a gait transition. The new

control parameter set was determined by first randomly drawing

new values for target step length and cadence from an interval

around the current values, using five different interval sizes

chosen as narrow (1 step/min or cm), medium narrow

(3 step/min or cm), medium (5 step/min or cm), medium

large (7.5 step/min or cm), or large (10 step/min or cm). For

these target gait parameters, we then determined a control

parameter set by linear recombination of neighboring basis

points, as described in Section 3. After a transition, the model

either successfully continues to walk at a new gait or fails to

recover from the transition and falls. Figure 7 shows how the

success rate of transitions develops with increasing range of the

gait parameter update.

5 Discussion

We presented a neuromuscular model of human

locomotion that is capable of voluntarily controlling both

the swing and stance leg according to a kinematic motor plan.

The model can adopt different gait patterns, with step lengths

and cadences covering the region of normal human walking,

defined as the gait parameter intervals covering 95% of

experimental data for human walking. The model

combines biomechanics, muscle physiology, spinal reflex

loops, and supraspinal neural processes in a

physiologically plausible way. The supraspinal layer

generates a movement plan from a set of high-level control

parameters that define a goal state for the swing leg,

propulsion for the stance leg, a reference stance hip angle

for balancing the trunk, and the desired movement time. The

kinematic movement plan is transformed into descending

motor commands that interface with the spinal cord, using a

combination of neural networks and explicit internal models.

The spinal layer integrates the descending commands with

reflex arcs that activate muscles based on the feedback from

muscle spindles and Golgi tendon organs. The model can

walk in a wide range of step lengths and cadences by adopting

different high-level control parameters for swing leg

movement and timing, propulsion and trunk balance that

were learned using evolutionary optimization. We found that

the model can generalize between the previously learned gaits

to some degree and walk with new gaits within the same

region. The model can furthermore transition between

different gaits in real time by switching to a new set of

control parameters without losing stability.

5.1 Volitional and habitual control of
walking

Stable locomotion requires coordinated interaction between the

different components of sensorimotor control involved in walking

(Prochazka and Gorassini, 1998; Bauby and Kuo, 2000). This

coordination is particularly important when leaving a steady state

to change the gait pattern. To increase step length, for instance, it is

necessary to extend the hip of the swing leg further. Increased step

length, however, will lead to other changes in movement kinematics

and dynamics, such as increased vertical movement of the CoM,

which increases the loss of kinetic energy at each step (Reimann

et al., 2019). Hence, it is also necessary to adjust the propulsion with

the stance leg andmaintain a constant speed at the new gait pattern.

Changing the gait voluntarily, thus, requires the ability to actively

manipulate both the kinematics of the swing leg and the kinetics of

the entire model.

In Ramadan et al. (2022), we presented an integrative

neuromuscular model that combines the ability to control the

swing leg as a planned, voluntary movement with habitual,

reflexive control of the stance leg. The model presented here

extends the voluntary control approach to the stance leg, adding

the ability to control propulsion by pushing off the ground with

the stance leg, as well as controlling trunk balance by modulating

the stance leg hip flexion angle. This enabled us to regulate the

gait pattern of the model by selecting a set of high-level control

parameters. We showed that with this high-level control

approach, the model was capable of walking with a wide

range of gaits, quantified by the gait parameters of cadence

and step length. The model could walk at gaits covering the

entire region of normal human walking by switching to a

different set of high-level control parameters, while leaving

FIGURE 7
Success of transition between randomized gaits. Data are the
success rates of transitions to a random new gait relative to all
attempted transitions. The horizontal axis is the radius of the
interval from which the new gait is randomly drawn. The
different colors show different starting points for individual walks.
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the parameters governing the behavior of the low-level reflexes

unchanged. A relatively simple generalization approach based on

linear recombination of previously learned gaits allowed the

model to walk at gaits that it had not previously learned.

Furthermore, the model could transition between different

gaits in real time without the loss of stability.

Existing neuromechanical models of walking are mostly based

on spinal control mechanisms such as reflexes and central pattern

generators (Taga, 1995; Geyer and Herr, 2010). These control

schemes generate a stable walking movement pattern that can be

modified to some degree by re-tuning the neural feedback loops that

map sensory information to muscle activation. Van der Noot et al.

(2018) showed that it is possible to generalize between different sets

of learned behaviors by interpolating between different sets of spinal

control parameters. Di Russo et al. (2021) identified polynominal

functions of a subset of reflex parameters that can be used to modify

the step length and cadence. The control approaches used by these

models are largely habitual and coordination between the individual

components involved in locomotion emerges from parameters

tuning rather than from an associated motor plan. In the model

presented here, the gait pattern is not determined by a specific

tuning of the reflexes but by a set of high-level movement

parameters. Reflexes, however, still play an important role for the

model as they substantially simplify the control problem. Ourmodel

uses positive force feedback from the Golgi tendon organs

(Prochazka and Gorassini, 1998) to keep the stance leg stretched

and compliant, countering gravitational forces during the stance

phase. Furthermore, a reflex arc built of combined feedback from

muscle spindles and fromGolgi tendon organs solves the problem of

balancing the trunk upright.

5.2 Structure of solution space

We used high-level control parameters to generate walking

movement with different gaits. The eight-dimensional control

parameter space is spanned by swing leg hip and knee flexion

target joint angles for early and late swing, trunk lean reference,

swing leg ankle target, propulsion, and step time. An additional

parameter, initial velocity, was used in the optimization but did

not affect the steady-state gait pattern. The two-dimensional task

space of gait parameters is spanned by step length and cadence.

We optimized the high-level control parameters to find solutions

at different points in task space, for a total number of 98 different

models covering the entire normal human walking region. We

also showed that it is possible to interpolate between points in

control space based on proximity in task space to generate gaits at

new points in task space.

The generalization of solutions, however, is limited, and models

using recombined parameter sets occasionally lose balance and fall.

This particularly applies to the extrapolation of solutions beyond the

region in the cadence–step length space covered by the learned

parameters set. But even within this region, interpolation is limited

in some areas. One potential reason for this limitation is redundancy of

the eight-dimensional control parameter space over the two-

dimensional task space. Two parameter sets can lie very close to

each other in the task space, yet be substantially different from each

other in the control parameter space, resulting in two gait patterns that

have similar step lengths and cadences but are different in other

aspects, such as swing leg kinematics. Recombining these two solutions

to a new gait pattern can then be problematic, since the average control

parameter set interpolated between them might not lead to a stable

gait. To analyze the dimensionality of the solutions in the control

parameter space, we ran a principle component analysis (Abdi and

Williams, 2010) on the 98 sets in the basis point library. Figure 8 shows

the explanatory power for each principal component. The first two

principle components explain less than 65% of the variability in the

data, indicating that step length and cadence are not the only gait

properties that changewithin the basis point library. Only the first four

principle components explain > 90% of the variability of the data. The

finding clarifies that the task variables cadence and step length, chosen

here to quantify a gait pattern, are not sufficient to completely describe

the complexity of the gait patterns in the basis point library. However,

extending the choice of output variables is difficult and beyond the

scope of this work. One possibility for additional constraints on the

resulting gait patterns would be to minimize the metabolic energy

expended by themodels. It is plausible that variability in the data could

be reduced by expanding the cost function by further constraints such

as theminimization ofmetabolic energy (Falisse et al., 2019; Ong et al.,

2019).

5.3 Limitations and scope

We presented a neuromuscular model of human locomotion

that can independently change step length and cadence within a

FIGURE 8
Principle component analysis of control parameters. The blue
bars show the percentage of variance explained by the respective
principle components and the red line shows the cumulative
explained variance.
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range usually adopted by humans. However, interpolation

between the obtained solutions is limited, and generalization

tended to fail for very fast and slow walking speeds. One reason

for this limitation could be a lack of flexibility in lateral balance

control. Humans use two main mechanisms for lateral balance

control, modulation of the foot placement location at each new

step, and ankle roll during single stance (Reimann et al., 2019).

Human experiments show that the relative importance of the

ankle roll mechanism increases at lower speeds and step

frequencies (Fettrow et al., 2019). Our model has only one

degree of freedom at the ankle joint, for ankle flexion, so the

ankle roll mechanism is not available for balance control in the

frontal plane. We speculate that extending the biomechanical

model to add ankle roll movement and control can improve

stability at slower gaits and increase the ability of the model to

walk and generalize between gaits, particularly in the region with

short and slow steps, where humans rely more strongly on the

ankle roll mechanism for balance control (Fettrow et al., 2019).

A second potential reason for the limited generalization of

our model is the assumption that balance control parameters

for foot placement remain constant across all gaits. The foot

placement controller adapts the foot placement location in

proportion to the current position and velocity of the trunk

center of mass relative to the stance foot (Ramadan et al.,

2022). The trunk kinematics in the frontal plane change

substantially with movement speed and stepping cadence,

so it is plausible that the gain parameters of the foot

placement controller might change in humans depending

on movement speed. When analyzing unperturbed human

walking at different speeds, Wang and Srinivasan (2014) did

not find significant differences in the slopes of linear models

relating foot placement location to the kinematic CoM state at

mid-stance, which are closely related to balance control gains.

Stimpson et al. (2018) found that the explanatory power of the

kinematic CoM state at mid-stance to predict foot placement

changes is reduced for very slow walking speeds, but did not

report how the slopes of these relationships change with

speed. Based on this experimental evidence, we chose to

keep the gain parameters fixed in the present model.

Adding the balance control gains to the high-level control

parameters could potentially improve balance control at high

or low speeds, which might lead to better generalization in

these regions.

In the current model, we use a trunk balance mechanism that

solely relies on spinal feedback, based on Sharbafi and Seyfarth

(2015). Human experiments, however, show that supraspinal

feedback can play an important role in balancing the trunk

(Shumway-Cook and Horak, 1986).

The particular set of high-level control parameters used here

was developed from a combination of historical and functional

reasons. The parameters for kinematic goal state of the swing leg

at the end of the early and late stance phases were adopted from a

robotic model (Yin et al., 2007) and used in a slightly different

form in Ramadan et al. (2022). To control cadence and step

length, we added control mechanisms and parameters for

propulsion and step time. Our goal here was to show that it is

possible to generate stable walking with different gait patterns as a

planned, voluntary movement using a small set of high-level

kinematic control parameters. The rationale for this choice is that

high-level representations of movement generally use kinematic

variables in task space, rather than low-level variables on the

execution level (Schwartz et al., 1988; Churchland et al., 2012).

Whether the specific choice of kinematic variables, based on Yin

et al. (2007), is reasonable or whether humans use different

variables, such as leg length and leg angle in space, is a question

for future research.

Data availability statement

The source code for the model implementation can be found

at https://github.com/Rachidramadan1990/FlexibleGait.

Author contributions

Conceptualization: RR, HR; data curation: RR, HR; formal

analysis: RR, HR; funding acquisition: HR; investigation: RR, HR,

FM; methodology: RR, HR; project administration: RR, HR;

resources: HR; software: RR, FM; supervision: HR, RR;

validation: RR, HR; visualization: RR, HR; writing—original

draft preparation: RR, HR, FM.

Funding

HR was funded by the National Science Foundation (NSF

CRCNS 1822568). RR was funded by the German Federal

Ministry of Education and Research (01GQ1803).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, editors, and reviewers.

Any product that may be evaluated in this article, or claim that

may be made by its manufacturer, is not guaranteed or endorsed

by the publisher.

Frontiers in Bioengineering and Biotechnology frontiersin.org14

Ramadan et al. 10.3389/fbioe.2022.959357

https://github.com/Rachidramadan1990/FlexibleGait
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.959357


References

Abdi, H., and Williams, L. J. (2010). Principal component analysis. WIREs.
Comp. Stat. 2 (4), 433–459. doi:10.1002/wics.101

Ackermann, M., and van den Bogert, A. J. (2012). Predictive simulation of gait at
low gravity reveals skipping as the preferred locomotion strategy. J. Biomechanics 45
(7), 1293–1298. doi:10.1016/j.jbiomech.2012.01.029

Ahmad Sharbafi, Maziar, and Seyfarth, A. (2017). How locomotion sub-functions
can control walking at different speeds? J. Biomechanics 53, 163–170. doi:10.1016/j.
jbiomech.2017.01.018

Allen, Jessica L., and Ting, Lena H. (2016). “Why is neuromechanical modeling of
balance and locomotion so hard?” in Neuromechanical modeling of posture and
locomotion (Berlin: Springer), 197–223.

Andani, M. E., and Bahrami, Fariba (2012). Comap: A new computational
interpretation of human movement planning level based on coordinated
minimum angle jerk policies and six universal movement elements. Hum. Mov.
Sci. 31 (5), 1037–1055. doi:10.1016/j.humov.2012.01.001

Aoi, Shinya, Ohashi, Tomohiro, Bamba, Ryoko, Fujiki, Soichiro, Tamura,
Daiki, Funato, Tetsuro, et al. (2019). Neuromusculoskeletal model that walks
and runs across a speed range with a few motor control parameter changes
based on the muscle synergy hypothesis. Sci. Rep. 9 (1), 369. doi:10.1038/
s41598-018-37460-3

Ayers, Joseph, Carpenter, Gail A., Scott, Currie, and Kinch, James (1983). Which
behavior does the lamprey central motor program mediate? Science 221 (4617),
1312–1314. doi:10.1126/science.6137060

Bauby, Catherine E., and Kuo, Arthur D. (2000). Active control of lateral balance
in human walking. J. Biomechanics 33 (11), 1433–1440. doi:10.1016/s0021-9290(00)
00101-9

Buckingham, Gavin, Cant, Jonathan S., and Goodale, Melvyn A. (2009). Living in
A Material world: How visual cues to material properties affect the way that we lift
objects and perceive their weight. J. Neurophysiology 102 (6), 3111–3118. doi:10.
1152/jn.00515.2009

Churchland, Mark M., Cunningham, John P., Kaufman, Matthew T., Foster,
Justin D., Paul, Nuyujukian, Ryu, Stephen I., et al. (2012). Neural population
dynamics during reaching. Nature 487 (7405), 51–56. doi:10.1038/
nature11129

Clark, David J. (2015). Automaticity of walking: Functional significance,
mechanisms, measurement and rehabilitation strategies. Front. Hum. Neurosci.
9, 246. doi:10.3389/fnhum.2015.00246

De Groote, Friedl, and Falisse, Antoine (2021). Perspective on musculoskeletal
modelling and predictive simulations of human movement to assess the
neuromechanics of gait. Proc. R. Soc. B 288, 20202432. doi:10.1098/rspb.2020.2432

Di Russo, Andrea, Stanev, Dimitar, Armand, Stéphane, and Ijspeert, Auke (2021).
Sensory modulation of gait characteristics in human locomotion: A
neuromusculoskeletal modeling study. PLoS Comput. Biol. 17 (5), e1008594.
doi:10.1371/journal.pcbi.1008594

Edwards, W. H. (2010). Motor learning and control: From theory to practice.
Boston: Cengage Learning.

Engelbrecht, Sascha E. (2001). Minimum principles in motor control. J. Math.
Psychol. 45 (3), 497–542. doi:10.1006/jmps.2000.1295

Falisse, Antoine, Gil, Serrancolí, Dembia, Christopher L., Gillis, Joris, Jonkers,
Ilse, and De Groote, Friedl (2019). Rapid predictive simulations with complex
musculoskeletal models suggest that diverse healthy and pathological human gaits
can emerge from similar control strategies. J. R. Soc. Interface 16 (157), 20190402.
doi:10.1098/rsif.2019.0402

Fettrow, Tyler, Reimann, Hendrik, Grenet, David, Crenshaw, Jeremy, Higginson,
Jill, and Jeka, John (2019). Walking cadence affects the recruitment of the medial-
lateral balance mechanisms. Front. Sports Act. Living 1, 40. doi:10.3389/fspor.2019.
00040

Flash, Tamar, and Hogan, Neville (1985). The coordination of arm movements:
An experimentally confirmed mathematical model. J. Neurosci. 5 (7), 1688–1703.
doi:10.1523/jneurosci.05-07-01688.1985

Géron, Aurélien (2019). Hands-on machine learning with scikit-learn, keras, and
TensorFlow: Concepts, tools, and techniques to build intelligent systems. Sebastopol:
O’Reilly Media, Inc.

Geyer, Hartmut, and Herr, Hugh (2010). A muscle-reflex model that encodes
principles of legged mechanics produces human walking dynamics and muscle
activities. IEEE Trans. Neural Syst. Rehabil. Eng. 18 (3), 263–273. doi:10.1109/tnsre.
2010.2047592

Geyer, Hartmut, Seyfarth, A., and Blickhan, Reinhard (2003). Positive force feedback in
bouncing gaits? Proc. R. Soc. Lond. B 270, 2173–2183. doi:10.1098/rspb.2003.2454

Günther, Michael, and Ruder, Hanns (2003). Synthesis of two-dimensional
human walking: A test of the lambda-model. Biol. Cybern. 89 (2), 89–106.
doi:10.1007/s00422-003-0414-x

Hansen, Nikolaus (2006). “The cma evolution strategy: A comparing review,” in
Towards a new evolutionary computation: Advances in the Estimation of
distribution algorithms, studies in fuzziness and soft computing. Editors
Jose A. Lozano, Pedro Larrañaga, Iñaki Inza, and Endika Bengoetxea (Berlin,
Heidelberg: Springer), 75–102.

Hof, A. L. (2001). The force resulting from the action ofmono- and biarticularmuscles in
a limb. J. Biomechanics 34 (8), 1085–1089. doi:10.1016/s0021-9290(01)00056-2

Inman, Verne Thompson, Ralston, H. J., and Todd, Frank (1981). Human
walking. Pennsylvania: Williams & Wilkins.

Kiehn, Ole (2016). Decoding the organization of spinal circuits that control
locomotion. Nat. Rev. Neurosci. 17 (4), 224–238. doi:10.1038/nrn.2016.9

Kistemaker, Dinant A., Knoek Van Soest, Arthur J., Wong, Jeremy D., Kurtzer,
Isaac, and Gribble, Paul L. (2013). Control of position and movement is simplified
by combined muscle spindle and Golgi tendon organ feedback. J. Neurophysiology
109 (4), 1126–1139. doi:10.1152/jn.00751.2012

Lim, Yoong Ping, Lin, Yi-Chung, and Pandy, M. G. (2017). Effects of step length
and step frequency on lower-limb muscle function in human gait. J. Biomechanics
57, 1–7. doi:10.1016/j.jbiomech.2017.03.004

Mantziaris, Charalampos, Bockemühl, Till, and Büschges, Ansgar (2020). Central
pattern generating networks in insect locomotion. Dev. Neurobiol. 80 (1-2), 16–30.
doi:10.1002/dneu.22738

Nilsson, Johnny, and Thorstensson, Alf (1987). Adaptability in frequency
and amplitude of leg movements during human locomotion at different
speeds. Acta Physiol. Scand. 129 (1), 107–114. doi:10.1111/j.1748-1716.
1987.tb08045.x

Ong, Carmichael F., Geijtenbeek, Thomas, Hicks, Jennifer L., and Delp, Scott L.
(2019). Predicting gait adaptations due to ankle plantarflexor muscle weakness and
contracture using physics-based musculoskeletal simulations. PLoS Comput. Biol.
15 (10), e1006993. doi:10.1371/journal.pcbi.1006993

Perret, C., Cabelguen, J.-M., and Orsal, D. (1988). “Analysis of the pattern of
activity in “knee flexor” motoneurons during locomotion in the cat,” in Stance and
motion (Berlin: Springer), 133–141.

Prochazka, Arthur, and Gorassini, Monica (1998). Ensemble firing of muscle
afferents recorded during normal locomotion in cats. J. Physiology 507 (1), 293–304.
doi:10.1111/j.1469-7793.1998.293bu.x

Prochazka, Arthur (2013). “Proprioceptor models,” inDieter jaeger and ranu jung
(New York, NY: Springer), 1–20. Encyclopedia of Computational Neuroscience.

Ramadan, Rachid, Geyer, Hartmut, Jeka, John J., Schöner, G., and Reimann, Hendrik
(2022). A neuromuscular model of human locomotion combines spinal reflex circuits with
voluntary movements. Sci. Rep. 12, 8189. doi:10.1038/s41598-022-11102-1

Reimann, Hendrik, Ramadan, Rachid, Fettrow, Tyler, Hafer, Jocelyn F., Geyer,
Hartmut, and Jeka, J. (2020). Interactions between different age-related factors
affecting balance control in walking. Front. Sports Act. Living 2, 94. doi:10.3389/
fspor.2020.00094

Reimann, Hendrik, Fettrow, Tyler, Grenet, David, Thompson, Elizabeth D., and Jeka,
John J. (2019). Phase-dependency of medial-lateral balance responses to sensory
perturbations during walking. Front. Sports Act. Living 1, 25. doi:10.3389/fspor.2019.00025

Sarmadi, Alireza, Schumacher, Christian, Seyfarth, A, and Maziar, Ahmad
Sharbafi (2019). Concerted control of stance and balance locomotor
subfunctions—Leg force as a conductor. IEEE Trans. Med. Robot. Bionics 1 (1),
49–57. doi:10.1109/tmrb.2019.2895891

Schumacher, Christian, Berry, Andrew, Lemus, Daniel, Rode, Christian, Seyfarth,
André, and Vallery, Heike (2019). Biarticular muscles are most responsive to upper-
body pitch perturbations in human standing. Sci. Rep. 9 (1), 14492. doi:10.1038/
s41598-019-50995-3

Schwartz, Andrew B., Kettner, Ronald E., and Georgopoulos, Apostolos P.
(1988). Primate motor cortex and free arm movements to visual targets in
three- dimensional space. I. Relations between single cell discharge and
direction of movement. J. Neurosci. 8 (8), 2913–2927. doi:10.1523/jneurosci.
08-08-02913.1988

Sharbafi, Maziar A., and Seyfarth, A. (2015). “Fmch: A newmodel for human-like
postural control in walking,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 5742–5747.

Shumway-Cook, A., and Horak, Fay Bahling (1986). Assessing the influence of
sensory interaction on balance: Suggestion from the field. Phys. Ther. 66 (10),
1548–1550. doi:10.1093/ptj/66.10.1548

Frontiers in Bioengineering and Biotechnology frontiersin.org15

Ramadan et al. 10.3389/fbioe.2022.959357

https://doi.org/10.1002/wics.101
https://doi.org/10.1016/j.jbiomech.2012.01.029
https://doi.org/10.1016/j.jbiomech.2017.01.018
https://doi.org/10.1016/j.jbiomech.2017.01.018
https://doi.org/10.1016/j.humov.2012.01.001
https://doi.org/10.1038/s41598-018-37460-3
https://doi.org/10.1038/s41598-018-37460-3
https://doi.org/10.1126/science.6137060
https://doi.org/10.1016/s0021-9290(00)00101-9
https://doi.org/10.1016/s0021-9290(00)00101-9
https://doi.org/10.1152/jn.00515.2009
https://doi.org/10.1152/jn.00515.2009
https://doi.org/10.1038/nature11129
https://doi.org/10.1038/nature11129
https://doi.org/10.3389/fnhum.2015.00246
https://doi.org/10.1098/rspb.2020.2432
https://doi.org/10.1371/journal.pcbi.1008594
https://doi.org/10.1006/jmps.2000.1295
https://doi.org/10.1098/rsif.2019.0402
https://doi.org/10.3389/fspor.2019.00040
https://doi.org/10.3389/fspor.2019.00040
https://doi.org/10.1523/jneurosci.05-07-01688.1985
https://doi.org/10.1109/tnsre.2010.2047592
https://doi.org/10.1109/tnsre.2010.2047592
https://doi.org/10.1098/rspb.2003.2454
https://doi.org/10.1007/s00422-003-0414-x
https://doi.org/10.1016/s0021-9290(01)00056-2
https://doi.org/10.1038/nrn.2016.9
https://doi.org/10.1152/jn.00751.2012
https://doi.org/10.1016/j.jbiomech.2017.03.004
https://doi.org/10.1002/dneu.22738
https://doi.org/10.1111/j.1748-1716.1987.tb08045.x
https://doi.org/10.1111/j.1748-1716.1987.tb08045.x
https://doi.org/10.1371/journal.pcbi.1006993
https://doi.org/10.1111/j.1469-7793.1998.293bu.x
https://doi.org/10.1038/s41598-022-11102-1
https://doi.org/10.3389/fspor.2020.00094
https://doi.org/10.3389/fspor.2020.00094
https://doi.org/10.3389/fspor.2019.00025
https://doi.org/10.1109/tmrb.2019.2895891
https://doi.org/10.1038/s41598-019-50995-3
https://doi.org/10.1038/s41598-019-50995-3
https://doi.org/10.1523/jneurosci.08-08-02913.1988
https://doi.org/10.1523/jneurosci.08-08-02913.1988
https://doi.org/10.1093/ptj/66.10.1548
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.959357


Song, Seungmoon, andGeyer, Hartmut (2015). A neural circuitry that emphasizes spinal
feedback generates diverse behaviours of human locomotion: A spinal feedback circuitry
generating human locomotion behaviors. J. Physiol. 593 (16), 3493–3511. doi:10.1113/
jp270228

Steele, Katherine M., van der Krogt, M., Schwartz, Michael H., and Delp,
Scott L. (2012). How much muscle strength is required to walk in a crouch
gait? J. Biomechanics 45 (15), 2564–2569. doi:10.1016/j.jbiomech.2012.
07.028

Stimpson, Katy H., Heitkamp, Lauren N., Horne, Joscelyn S., and Dean, Jesse C.
(2018). Effects of walking speed on the step-by-step control of step width.
J. Biomechanics 68, 78–83. doi:10.1016/j.jbiomech.2017.12.026

Taga, Gentaro (1998). A model of the neuro-musculo-skeletal system for
anticipatory adjustment of human locomotion during obstacle avoidance. Biol.
Cybern. 78 (1), 9–17. doi:10.1007/s004220050408

Taga, Gentaro (1995). A model of the neuro-musculo-skeletal system for human
locomotion. Biol. Cybern. 73 (2), 97–111. doi:10.1007/bf00204048

Van der Noot, Nicolas, Ijspeert, Auke, and Ronsse, Renaud (2018). Bio-inspired
controller achieving forward speed modulation with a 3D bipedal walker. Int.
J. Robotics Res. 37 (1), 168–196. doi:10.1177/0278364917743320

Wang, Yang, and Srinivasan, Manoj (2014). Stepping in the direction of the fall:
The next foot placement can be predicted from current upper body state in steady-
state walking. Biol. Lett. 10 (9), 20140405. doi:10.1098/rsbl.2014.0405

Yin, KangKang, Kevin, Loken, and Michiel van de Panne (2007). Simbicon:
Simple biped locomotion control. ACM Trans. Graph. 26 (3), 105. doi:10.1145/
1276377.1276509

Zhang, Yajie, Smeets, Jeroen B. J., Brenner, Eli, Verschueren, S., and Duysens, J.
(2020). Fast responses to stepping-target displacements when walking. J. Physiol.
598 (10), 1987–2000. doi:10.1113/jp278986

Frontiers in Bioengineering and Biotechnology frontiersin.org16

Ramadan et al. 10.3389/fbioe.2022.959357

https://doi.org/10.1113/jp270228
https://doi.org/10.1113/jp270228
https://doi.org/10.1016/j.jbiomech.2012.07.028
https://doi.org/10.1016/j.jbiomech.2012.07.028
https://doi.org/10.1016/j.jbiomech.2017.12.026
https://doi.org/10.1007/s004220050408
https://doi.org/10.1007/bf00204048
https://doi.org/10.1177/0278364917743320
https://doi.org/10.1098/rsbl.2014.0405
https://doi.org/10.1145/1276377.1276509
https://doi.org/10.1145/1276377.1276509
https://doi.org/10.1113/jp278986
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://doi.org/10.3389/fbioe.2022.959357


6 Appendix

6.1 A1: Neural network for muscle
inversion

We use a feed forward neural network as part of the inverse

model to map desired torques ~τ to desired muscle forces ~F. The

mapping is dependent on the current joint configuration θ, since

moment arms of the biomechanical model depend on the body

configuration. The network is composed of an input layer i, one

hidden layer r, and an output layer f. The neurons in i receive the

desired torque ~τ and joint configuration θ as input. The layer r

consists of 1,000 hidden neurons and is connected to i via weight

matrix W. The layer f has one neuron for each muscle and is

connected to r via weight Z.

In order to generate input training data, we sample

500,000 random torque and joint angle combinations from

physiologically determined limits and 1,000,000 torque and

joint angle combinations obtained from the walking model

presented in Ramadan et al. (2022). From the input training

data, we determined muscle forces that realize the respective

input torques depending on the input joint configuration, using a

constrained optimization algorithm to minimize the sum of all

forces under the constraint that forces remain positive (fmincon

in MATLAB).

For the training, we initialize the weightsW and Z randomly

and used tanh as the activation function in the r layer. To ensure

resulting muscle forces are not negative, we also used the

activation function ReLu in the f layer. For minimizing the

cost mean squared error, we used the Adam optimizer (Géron,

2019).

We implement the network only for nine muscles in the

sagittal plane, as the moment arms in the sagittal plane are

modeled independent from the frontal plane. Themapping in the

frontal plane is computed analytically since it does not involve

redundancies.

6.2 A2: Interpolation between control
parameter sets

Simulating the walking model defines a mapping Φ from the

eight-dimensional space of control parameters, M, to the two-

dimensional spaceN of gait parameters cadence and step length.

To walk at any desired combination of cadence c and step length

s, we need to invert this mapping to find control parameters m =

Φ−1(n) that will generate a walking pattern with the desired gait

parameters n = (c, s). To find this m, we interpolate between

existing basis points mb in the space of control parameters

developed in Section 3.2, for which we know the function

values Φ(mb) = nb relating gait parameters nb to the control

parameter set mb used to generate this gait pattern.

Let ndes � ( cdes, sdes ) be any combination of desired cadence

and step length. We use the gait

n1 � arg min
n∈Nb

‖n − ndes‖ (B1)

from the basis point library that is closest to the desired gait as the

starting point, and the four next-closest gaits ni, i = 2 . . . 5 as

supporting points for the interpolation, where Nb ⊂ N is the set

of gaits in the basis point library. Let mi = Φ−1 (ni) be the control

parameter sets associated with these five gaits. We define

direction vectors

ni′ � ni − n1 (B2)
ndes′ � ndes − n1 (B3)
mi′ � mi −m1, (B4)

with 2 ≤ i ≤ 5, and combine them to matrices M �
(m2′, m3′, m4′, m5′)T and N � (n2′, n3′, n4′, n5′)T and define the

direction vector in control parameter space as

wdes′ � WM−1ndes′ . (B5)
Finally, we calculate the control parameter vector as

mdes � m1 +mdes′ . (B6)
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