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ABSTRACT

In the natural environment, we often form stable perceptual experiences from ambiguous and
fleeting sensory inputs. Which neural activity underlies the content of perception and which neural
activity supports perceptual stability remains an open question. We used a bistable perception
paradigm involving ambiguous images to behaviorally dissociate perceptual content from perceptual
stability, and magnetoencephalography (MEG) to measure whole-brain neural dynamics in humans.
Combining multivariate decoding and neural state-space analyses, we found frequency band-specific
neural signatures that underlie the content of perception and promote perceptual stability,
respectively. Across different types of images, non-oscillatory neural activity in the slow cortical
potential (SCP, <5 Hz) range supported the content of perception. Perceptual stability was
additionally influenced by the amplitude of alpha and beta oscillations. In addition, neural activity
underlying perceptual memory, which supports perceptual stability when sensory input is
temporally removed from view, also encodes elapsed time. Together, these results reveal distinct
neural mechanisms that support the content vs. stability of visual perception.
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INTRODUCTION

How vivid visual perceptual experiences are generated by the brain remains a central question in
neuroscience. There are two critical functions that the visual perceptual system is able to
accomplish: the first is to generate the specific content of perceptual experience (such as seeing a
predator); the second is to maintain a stable perceptual experience despite noisy and unstable
retinal input due to constant head and eye movements and complexities of the natural environment
involving occlusion, shading, and dynamic changes of sensory input (e.g., the predator is
camouflaged and hidden in the bush). Here, we investigate neural mechanisms giving rise to specific
perceptual content and supporting perceptual stability in the human brain.

Motivated by several strands of previous work, we hypothesized that there might be different
components of electrophysiological neural activities that support perceptual content and perceptual
stability, respectively. First, previous studies using multivariate analysis to decode perceptual
content based on electroencephalography/magnetoencephalography (EEG/MEG) activity have
typically reported greater successes when the decoder’s input was raw filtered field potentials in the
relatively low (<30 Hz) frequency range [e.g., (Carlson et al., 2013; Salti et al., 2015; King et al.,
2016)]. Further, studies using frequency band-specific analysis have shown that the ability to decode
perceptual content is contributed most by the slow cortical potential (SCP, <5 Hz) frequency range
(Baria et al., 2017; Flounders et al., 2019). This is consistent with the 1/f distribution of EEG/MEG
power spectrum suggesting that the SCP band contributes most to the power in the ERP/ERF
frequency range (He et al., 2010; He, 2014; Donoghue et al., 2020).

Second, a line of work focused on brain oscillations has shown that moment-to-moment fluctuations
of alpha oscillation amplitude in sensory cortices modulate local cortical excitability in a manner that
transcends specific stimulus/perceptual contents (Samaha et al., 2020). In addition, alpha and beta
oscillations can carry top-down feedback influences (van Kerkoerle et al., 2014; Michalareas et al.,
2016), and top-down feedback may facilitate resolving perceptual ambiguity by carrying information
consistent with prior knowledge (Cavanagh, 1991; Yuille and Kersten, 2006). We therefore
hypothesized that there might exist a frequency-band separation between neural activity supporting
perceptual content and neural activity supporting perceptual stability, with the former residing in
the non-oscillatory activity in the SCP range, and the latter predominantly residing in oscillatory
activity in the alpha/beta range.

To test this hypothesis, we recorded whole-head MEG while participants performed a bistable visual
perception task involving two different ambiguous figures (Necker cube and Rubin face-vase
illusion). Data from these two images were separately analyzed, providing a within-study
reproducibility and generalizability check. In two different conditions, the images were either
continuously presented (Ambiguous condition, Figure 1A) or intermittently presented (Discontinuous
condition, Figure 1E). The Ambiguous condition allowed us to dissociate perceptual content
(perceiving one or the other interpretation) from perceptual stability (how long a percept lasts). The
Discontinuous condition allowed us to investigate the neural underpinnings of perceptual memory:
previous research has shown that perceptual alternations slow down during intermittent
presentation and that a perceptual memory trace exists in the intervening blank periods such that
the recently experienced percept is likely reinstated when the image reappears (Orbach et al., 1966;
Leopold et al., 2002; Pearson and Brascamp, 2008). This phenomenon provides a window into neural
mechanisms supporting perceptual stability when sensory input is both ambiguous and fleeting, as
often is the case in natural vision. Finally, to test the generalizability of the identified neural
correlate of perceptual content, participants additionally performed a task in which modified
versions of the Necker cube and Rubin face-vase images with ambiguity removed (Wang et al., 2013)
were presented and perceptual content varied with the actual physical stimulus (Unambiguous
condition, Figure 1C).
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To test our hypothesis, we combined multivariate decoding with an innovative multivariate
regression approach which allowed us to identify separate neural subspaces relevant to the
encoding of different types of behavioral information that are simultaneously present in the same
task (Mante et al., 2013)—specifically, perceptual content and perceptual switching dynamics in the
present task. Across two different task conditions with different levels of stimulus ambiguity
(Ambiguous and Unambiguous), we found that non-oscillatory neural activity in the SCP range, but
not alpha or beta oscillations, encoded perceptual content. Furthermore, across both Ambiguous
and Discontinuous conditions, we found that the fluctuations of alpha and beta amplitudes
modulated perceptual stability and perceptual memory. Interestingly, we also found that SCP
modulated perceptual stability, although with less spatial consistency across subjects than alpha and
beta oscillations. These results reveal an intriguing frequency-domain separation of neural activity
encoding perceptual content and that supporting perceptual stability.

RESULTS

Task paradigm and behavioral results

We recorded eighteen subjects with whole-head MEG (CTF, 272 functional axial gradiometers)
performing three conditions of a visual perception task involving two commonly studied ambiguous
figures (Necker cube and Rubin face-vase illusion). The first condition consists of the classic bistable
perception task (Ambiguous, Figure 1A), in which subjects viewed ambiguous images for 60 seconds
at a time and used button presses to indicate their spontaneous perceptual switches (with three
buttons corresponding to two of the possible percepts and an ‘unsure’ option). In the second
condition (Unambiguous, Figure 1C), subjects viewed modified versions of these images for 5
seconds at a time, which enhance one of the possible interpretations and largely abolish perceptual
switching (Wang et al., 2013); subjects indicated their percepts in a similar fashion as before. In the
final condition (Discontinuous, Figure 1E), each ambiguous figure was presented repeatedly with
interleaving blank periods, allowing us to investigate neural underpinnings of perceptual memory
during the blank periods (Leopold et al., 2002; Pearson and Brascamp, 2008); subjects indicated their
percepts whenever the image was in view.

During the Ambiguous condition (Figure 1A,B) perceptual switching occurred, with group-level
results showing that each of the possible percepts was perceived (on average > 25% of the time),
and that subjects were rarely unsure of which percept they were experiencing (< 10% occurrence,
these time periods were removed from further analyses). Modifying the images to be unambiguous
(Figure 1C,D) was successful, as evidenced by subjects having on average > 80% valid trials (defined
as trials with only one button press indicating the intended percept). In the Discontinuous condition
we found an increased likelihood that perception remained stable across the blank period for the
Necker cube (one-tailed Wilcoxon Sign-Rank(17)=116.5, p=0.031) but not for the Rubin face-vase
image (one-tailed Wilcoxon Sign-Rank(17)=71.5, p=0.736).

Together, these behavioral results demonstrate the classic bistable perception phenomenon in the
Ambiguous condition, successful disambiguation of the images in the Unambiguous condition, and a
means to investigate perceptual memory by contrasting stable and unstable blank periods in the
Discontinuous condition. Importantly, the use of two different ambiguous figures in all three
conditions allowed us to test whether the neural findings are reproducible and generalizable across
the specific stimulus characteristics. Here, taking advantage of the large-scale neural dynamics
recorded by whole-head MEG, we aimed to dissociate dynamical neural activity underlying
perceptual content and supporting perceptual stability, respectively.

Perceptual content can be decoded from SCP but not amplitude of band-limited oscillations
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In the classic bistable perception task, perceptual content experienced by the subject continuously
alternates between two possible outcomes while the sensory input stays constant. This allows the
investigation of the neural correlates of the content of conscious perception while controlling for
low-level sensory processing. To this end, we applied time-resolved multivariate decoding to whole-
brain MEG data (for details, see Methods). We tested three components of neural field potentials —
slow-cortical potential (SCP, < 5 Hz), alpha-band amplitude (amplitude envelope of 8-13 Hz filtered
data) and beta-band amplitude (amplitude envelope of 13-30 Hz filtered data) — in their ability to
distinguish between the two percepts that are alternatively experienced for each ambiguous figure.
The SCP activity corresponds to the low-frequency component of the broadband, non-oscillatory
(i.e., aperiodic) activity (He et al., 2010; He, 2014), while the alpha and beta bands have prominent
oscillatory activity (Figure 1—figure supplement 1A-B). After extracting the relevant neural feature,
perceptual content decoding was performed using a four-fold cross-validated linear support vector
machine, with significance determined using cluster-based permutation testing that corrects for
multiple comparisons across time.

To investigate neural activity underlying specific perceptual content, we selected time periods (‘sub-
trials’) that were preceded and followed by button presses for two different percepts (i.e., excluding
periods preceded or followed by unsure presses, or at the beginning or end of the image
presentation) and sorted them into two groups. Thus, each sub-trial begins with a button press
indicating the relevant percept and ends with a button press that indicates a switch to the opposite
percept. These sub-trials were of different lengths (Figure 1—figure supplement 1C-D), as percept
duration is highly variable during spontaneous bistable perception—a topic we will address in the
following section. To decode perceptual content, we then subsampled each sub-trial by taking 100
equally spaced time points from the beginning to the end of that sub-trial (henceforth referred to as
percentile of a percept). This way, we tested whether a decoder trained using neural features
recorded at the beginning (/middle/end) of a sub-trial generalized to the beginning (/middle/end) of
other sub-trials, even if they were of different lengths (Figure 2A).

Decoding accuracies over the course of a percept for the three different neural features are shown
in Figure 2C, left column. Significant decoding of perceptual content is found for SCP, but not alpha
or beta amplitude (except for a very small temporal cluster for the face-vase image), and SCP shows
significantly stronger decoding than alpha or beta amplitude (Figure 2—figure supplement 1)
suggesting that the currently experienced percept is most strongly encoded in SCP activity. These
findings are consistent with previous results using other visual perceptual tasks (Baria et al., 2017;
Flounders et al., 2019). To shed light on whether the neural representation of the percept stays
stable over the duration of the percept or changes constantly over time, we tested the temporal
generalization of the decoder, whereby decoders trained at each timepoint are tested at all other
timepoints (King and Dehaene, 2014). We observed broad decoder temporal generalization in the
SCP band for both the Necker cube and Rubin face-vase illusion (Figure 2C, right column), especially
from 20" to 80™ percentile of the percept duration. This suggests that neural representation
underlying perceptual content, except at the very beginning and end of a percept, is relatively stable
over time regardless of percept duration, and localizes to the SCP band in the frequency domain.

We next tested whether a similar pattern of findings exists when stimulus ambiguity is removed, by
decoding perceptual content using data from the Unambiguous condition. To this end, we selected
valid trials (wherein the subject only had one button press indicating the intended percept), which
account for the vast majority of all trials (Figure 1D), and constructed decoders to distinguish
between the two different perceptual contents which coincided with different image inputs (i.e.,
decoding between the two versions of face-vase image, and between the two versions of cube
image, Figure 2B). Similar to the Ambiguous condition, significant perceptual content decoding was
obtained using SCP activity, but not alpha or beta amplitude (except for one small temporal cluster



183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

at image onset for alpha amplitude, face-vase image) (Figure 2D, left column) and decoding was
stronger in the SCP band (Figure 2—figure supplement 1). Decoding accuracy in the SCP band was
highest in the first second after image onset and then drops to a lower level (likely due to neural
adaptation). The higher decoding accuracy in the Unambiguous condition as compared to the
Ambiguous condition is likely due to the differences in sensory input that coincides with different
perceptual contents, as well as consistent timing across all trials (all image presentations last 5
seconds, as opposed to variable percept durations in the Ambiguous condition). Lastly, as in the
Ambiguous condition, the SCP decoder of perceptual content generalized well across time in the
Unambiguous condition (Figure 2D, right column), suggesting that the underlying neural code is
stable over time after the very initial image onset-related activity.

Together, these results show that perceptual content information is decodable from SCP activity, but
not from the amplitude of alpha or beta oscillations, regardless of whether sensory input is
ambiguous or not. In the next section we investigate neural processes controlling the stability of a
percept as compared to the neural processes underlying the content of that percept.

Defining a behaviorally relevant neural subspace

To simultaneously extract neural activity relevant to different behavioral metrics—here, the content
of perception and the dynamics of perceptual switching—we adapted a multivariate analysis
approach recently developed in animal neurophysiology (‘state space analysis’) (Sussillo, 2014). In
this framework, multivariate neural activity (across neurons or sensors) at each time point
corresponds to a specific location in the neural state space, where each dimension is a
neuron/sensor. Because different neurons/sensors are highly correlated and not all are informative
for the behavior of interest, dimensionality reduction methods (such as principal component
analysis, PCA) are typically applied to identify a low-dimensional subspace capturing the majority of
the variance in the data and/or most relevant to the behavior in question (Briggman et al., 2005;
Churchland et al., 2012; Stokes et al., 2013; Baria et al., 2017). Here, following earlier studies (Mante
et al.,, 2013; Kayser et al., 2016), we identify the neural subspace most relevant to a particular
behavioral metric by conducting a multilinear regression using orthogonal, task-related axes that
capture perceptual content and perceptual switching dynamics, as described in detail below.
Importantly, unlike the decoding approach employed in the earlier analysis, where a different
decoder is trained for each time point within a trial and decoder weights are sometimes difficult to
interpret (Haufe et al., 2014), the state space analysis aims to identify a neural subspace that is
unchanging across time, wherein the trajectory of neural activity informs about changes in behavior
across time.

For both the Ambiguous and Discontinuous conditions, we defined a set of behavioral axes capturing
both perceptual content and perceptual switching dynamics (Figure 3A). For the Ambiguous
condition, these consisted of a Type Axis, which was a binary (0 or 1) variable indicating the current
perceptual content; a Duration Axis, indicating the overall duration of the current percept; a Switch
Axis, indicating the temporal distance to a reported perceptual switch (i.e., button press); and,
finally, a Direction Axis, a binary variable indicating whether the current percept is stabilizing or
destabilizing (operationalized as the first half vs. second half of a percept). Both the Switch and
Duration axes had values normalized to the range of [0, 1], such that for the Switch axis, time points
corresponding to button presses are 0 and time points furthest away from button presses within
each percept are 1; for the Duration axis, the shorted and longest percept durations for a particular
subject are coded as 0 and 1, respectively. Thus, the Switch, Duration, and Direction axes together
capture different aspects of the perceptual switching dynamic, while the Type axis captures the
specific perceptual content.
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For the Discontinuous condition, because we are interested in neural activity underlying the
perceptual memory trace, only blank periods were analyzed. Two behavioral axes were defined to
capture the content of perception: Pre and Post, which are binary variables indicating the perceptual
content before and after the blank period, respectively. Two behavioral axes were defined to
capture the dynamics of perceptual memory: a Memory axis, which is a binary variable indicating
whether a perceptual memory trace is present or absent (defined by whether the reported
perceptual content before and after the blank period is the same); and a Blank axis, which is a
linearly ramping variable between 0 and 1 from the beginning to the end of each blank period,
indicating how long the perceptual memory trace, if present, has last since image offset.

To extract the neural subspace most relevant to each behavioral metric, half of the data were used
as a training set and a multi-linear regression model was fit for each sensor (Figure 3B). The B
weights from the regression model provide an estimate of the relative contributions of the activity
of that sensor to each of the different behavioral metrics. The set of weights across sensors for a
particular behavioral metric thus defines the identified neural subspace. The held-out test data is
then projected into that subspace (Figure 3C), which provides a prediction of the value of that
behavioral metric at each time point, solely based on the MEG activity. Comparing the actual and
predicted behavior (Figure 3D) yields a cross-validated estimate of how much information the
identified neural subspace has about that aspect of behavior.

Lastly, the set of B weights (with size equal to the number of MEG sensors) for each behavioral
metric can also be inspected for consistency at the group level (topography in Figure 3B) to
determine whether neural activity from a particular sensor significantly contributes to a particular
behavioral metric. In sum, this state space analysis allows us to simultaneously identify neural
underpinnings of multiple aspects of behavior at once.

Role of neural oscillations in perceptual switching dynamics during bistable perception

We first applied the state space analysis to data from the Ambiguous condition. For perceptual
content (‘Type’ axis), we found that the neural subspace identified using the SCP activity allows
robust prediction of moment-to-moment perceptual content experienced by the subject for the
face-vase image (Figure 4—figure supplement 1B, ‘Type’ column), with highly consistent sensor-level
weights across subjects (Figure 4—figure supplement 1A, ‘Type’ column). Interestingly, the results
did not reach significance for the cube image, consistent with weaker perceptual content decoding
for the cube than face-vase image (Figure 2A) and potentially due to the decoder being re-trained at
each time point whereas the subspace is fixed across timepoints. Using amplitude of alpha or beta
oscillations, we could not achieve significant prediction of perceptual content (except for a small
temporal cluster for beta amplitude, cube image) (Figure 4—figure supplement 1B, ‘Type’ column)
and there was no consistent weights across subjects (Figure 4—figure supplement 1A, ‘Type’
column). Together, these results reinforce the impression from the decoding results showing that
perceptual content information largely localizes to the SCP band, manifesting as moment-to-
moment changes in large-scale SCP activity.

Focusing on the ‘Duration’ axis, which captures variability in the percept durations, we found
consistent group-level B weights in occipital cortex for alpha and beta amplitude, whereby stronger
neural oscillations were associated with longer lasting percepts (Figure 4A, left; reproduced in Figure
4—figure supplement 1A, ‘Duration’ column). The ‘Duration’ neural subspace extracted from alpha
and beta amplitudes contained significant predictive information for percept durations in the left-
out test data set, as evidenced by highly significant correlations between the actual percept duration
and predicted percept duration according to neural data collected at different time points during a
percept (Figure 4A, right, showing trial-by-trial correlation; Figure 4—figure supplement 1B,
‘Duration’ column, showing predicted percept durations for trials with long vs. short actual percept
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durations). These results also show that neural activity related to perceptual stability is relatively
persistent across time, evident from the beginning to the end of a percept. For SCP activity,
significant predictive information over time was found for both images (Figure 4—figure supplement
1B, ‘Duration’ column); however, there was little consistency between B weights across subjects
(Figure 4—figure supplement 1A, ‘Duration’ column), or between the group-level B weight maps for
the two images (cosine similarity, N=272 sensors, Cos 8 = 0.08, p=0.37 assessed by a permutation
test). By contrast, the group-level B weight maps for the ‘Duration’ axis are highly correlated
between the two images for alpha amplitude (Cos 6 = 0.83, p=0.02) and beta amplitude (Cos 6 =
0.82, p=0.02). Therefore, we conclude that information about perceptual stability, as captured by
percept duration, is primarily carried by the amplitude of alpha- and beta-band activity. Although
this information also exists in the SCP band, it is encoded in a less consistent manner across subjects
and across different image inputs.

For the ‘Switch’ and ‘Direction’ axes, we found that all three neural features were significantly
predictive of behavior (Figure 4—figure supplement 1B, ‘Switch’ and ‘Direction’ columns), suggesting
that the neural representation of these processes is distributed across multiple frequency bands. For
the ‘Direction’ axis, group-level B weight maps for SCP and beta amplitude show significant sensors
lateralized over the left hemisphere whose spatial distribution could be related to the button press
response (carried out using the right hand). For the ‘Switch’ axis, the SCP-band B weight maps are
consistent with a dipole in the midline region corresponding to a potential source in the
supplementary motor area; alpha/beta amplitudes have positive B weights suggesting that the
amplitudes decrease around the time of the perceptual switch, consistent with earlier findings (de
Jong et al., 2016). Together, these findings provide a methodological validation of the present
analysis approach; however, given the potential motor contribution to the results obtained from the
‘Switch’ and ‘Direction’ behavioral axes, we do not emphasize these findings henceforth.

Role of neural oscillations in maintaining perceptual memory

Finally, we applied the state space analysis to data from the Discontinuous condition, focusing on the
blank periods (6-sec each) between repeated image presentations (Figure 1E). For perceptual
content reported before and after each blank period (‘Pre’ and ‘Post’ axes), we only found small
temporal clusters of significant prediction in the test data set for beta amplitude-defined neural
subspace in the case of cube image (Figure 4—figure supplement 2B, ‘Pre’ and ‘Post’ columns).
Overall, the information contained in neural activity during blank periods about perceptual content
experienced earlier or later is weak, which is not surprising, given that there is no active perception
related to the cube or face-vase image per se during this period.

However, all three neural features carried significant information about how far into the blank
period the timepoint was (i.e., the temporal distance to previous image offset), suggesting a strong
timing mechanism distributed across frequency bands. This is evident in the ability of the neural
subspaces to predict timing information in the left-out test data set (Figure 4—figure supplement
2B, ‘Blank’ column), as well as consistent sensor-level B weight topography across subjects (Figure
4—figure supplement 2A, ‘Blank’ column). The SCP topography shows a midline dipole, and the
alpha/beta topographies show widespread sensors whose oscillatory amplitudes decrease as time
passes. Because the blank periods have a constant duration (6 sec) before the next image onset,
these results are consistent with previous reports of a contingent negative variation potential (CNV,
an SCP activity with generators in the anterior cingulate cortex) and alpha amplitude decreases
being neural correlates of temporal anticipation (Nobre and van Ede, 2018).

The most informative behavioral metric for the Discontinuous condition is the ‘Memory’ axis as it
indicates the presence or absence of a perceptual memory trace (Figure 3A). Here we found
significant temporal clusters of prediction in the test data set using alpha and beta amplitudes, but
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not SCP activity (which only showed small temporal clusters for the Cube image) (Figure 4—figure
supplement 2B, ‘Memory’ column; alpha and beta results reproduced in Figure 4B). The consistency
of the group-level B weights across images was also stronger for alpha (cos 6 = 0.65, p=0.08) and
beta amplitude (cos 6 = 0.75, p=0.10) than for SCP activity (cos 6 = -0.11, p=0.71), although the
consistency did not reach significance in any of the neural features. Interestingly, the group-level B
weight vectors are highly correlated between the Memory axis and the Blank axis for alpha and beta
amplitude (alpha amplitude: Face-vase, cos 6 = 0.84, p<0.01; Cube: cos 6 = 0.82, p=0.01; beta
amplitude: Face-vase, cos 6 = 0.83, p=0.02, Cube: cos 6 = 0.86, p<0.01), suggesting a strong timing
component to the memory trace. The negative B weights for the oscillation amplitudes (Figure 4B,
left) show that alpha and beta oscillations are weaker when there is a perceptual memory trace.

Interestingly, the encoding of perceptual memory during the blank periods occurs first in beta
activity (at ~0.5-1.5 sec after blank onset), followed by alpha activity (at ~1.5-3 sec), and is not
significant in either frequency band during the latter half of the blank period (3—6 sec) (Fig. 4B and
Figure 4—figure supplement 2). This transient encoding of perceptual memory in neural dynamics is
consistent with a recent EEG study using a similar paradigm (Zhu et al., 2022). Speculatively, after
the transient encoding in beta and alpha activity, perceptual memory trace might be maintained in
short-term synaptic plasticity within the network in an “activity-silent” state without measurable
signatures in active neural dynamics (Mongillo et al., 2008; Stokes et al., 2013; Rose et al., 2016).

Together with the earlier results showing that stronger alpha/beta amplitudes promote perceptual
stability (i.e., longer-lasting percepts) during continuous bistable perception (Figure 4A), these
results show that the neural mechanisms supporting perceptual memory localize to the same
frequency bands, but have different circuit-level mechanisms. In addition, sensors supporting
perceptual memory (when the stimulus is temporarily removed from view) reside in more anterior
regions than those supporting perceptual stability (when the stimulus is in view) (compare topoplots
between Figure 4A and 4B), suggesting that higher-order brain circuits are recruited to maintain a
perceptual memory trace when sensory input is absent, consistent with previous fMRI findings
(Wang et al., 2013).

DISCUSSION

In this study, we dissected the roles that different types of neural activity play in perception. We
found evidence that perceptual content is predominantly encoded in the SCP (< 5Hz) range, and no
evidence of perceptual content encoding in the amplitude of alpha and beta oscillations. This was
the case regardless of whether the sensory input is ambiguous or unambiguous. We additionally
found that SCP activity along with the amplitude of alpha and beta oscillations encoded aspects of
perceptual switching, including the distance to a switch and whether the current percept is
stabilizing or destabilizing. However, information about how long the current percept would last and
whether a perceptual memory trace would occur if the stimulus is temporally removed from view
was primarily encoded in alpha and beta amplitudes. Together, these results show a frequency-band
separation of information related to perceptual content and perceptual stability, with the former
encoded in raw fluctuations of low-frequency SCP activity, and the latter primarily influenced by the
amplitude fluctuations of alpha and beta oscillations.

Previous studies on bistable perception have typically focused on one aspect of perceptual behavior
at a time, such as perceptual content or perceptual switching. By using a novel neural state-space
analysis approach, we were able to simultaneously extract components of neural activity relevant to
different aspects of perceptual behavior that all vary across time/trials and are mutually
independent. Additionally, this approach can uncover important relationships between neural
activity underlying different aspects of behavior. For example, for alpha and beta amplitude, the



386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436

state space extracted for ‘Blank’ and ‘Memory’ axes in the Discontinuous condition are strongly
correlated, suggesting a strong timing mechanism to how perceptual memory is encoded during the
blank period (i.e., the neural activity pattern associated with the presence of a perceptual memory
trace is similar to the activity pattern that increases over time during the blank period). Compared to
other multivariate analysis methods, the neural state-space method has specific advantages and is
well-suited to addressing the questions investigated herein. First, compared to multivariate
decoding, the state-space method extracts multivariate neural activity patterns relevant to multiple
behavioral metrics simultaneously, as opposed to investigating neural correlate of one behavioral
metric at a time. Second, compared to automatic dimensionality reduction, such as PCA and similar
techniques (Churchland et al., 2012; Cunningham and Yu, 2014; Baria et al., 2017), the state-space
approach directly identifies the neural activity pattern (i.e. neural sub-space) relevant to a particular
behavioral metric, as opposed to being behavior-agnostic.

Our finding of perceptual content-encoding in the SCP band provides further evidence of the role of
SCP in conscious perception, consistent with earlier studies (Li et al., 2014; Baria et al., 2017;
Flounders et al., 2019). A general role of SCP in supporting conscious awareness (He and Raichle,
2009) is also corroborated by recent findings comparing different states of consciousness (Bourdillon
et al., 2020; Toker et al., 2022). In the domain of bistable perception, most studies probing neural
correlates of perceptual content have employed fMRI [e.g., (Tong et al., 1998; Haynes and Rees,
2005; Wang et al., 2013)], and most electrophysiological studies have focused on changes in ERPs
[e.g., (Britz et al., 2009; Pitts et al., 2009)], oscillatory power [e.g., (de Jong et al., 2016)] or neuronal
firing rates (Gelbard-Sagiv et al., 2018) around perceptual switches. Previous electrophysiological
studies probing neural correlates of perceptual content have typically used specialized stimulus
design, such as frequency tagging (Tononi et al., 1998; Srinivasan et al., 1999), binocular rivalry
involving face and oriented grating (where face-elicited ERFs, the M170, correlates with perceiving
faces) (Sandberg et al.,, 2013; Sandberg et al., 2014), or auditory bistable stimuli where neural
information integration correlates with perceiving an integrated auditory stream (Canales-Johnson
et al., 2020). Here, by using classic ambiguous figures where the two percepts are symmetrical in
salience and level of cortical processing, and showing results consistent across different images, our
findings provide a more generalizable electrophysiological correlate of perceptual content. Our
results also complement a recent intracranial electrophysiology study using the same ambiguous
figures which revealed changes in corticocortical information flow depending on the specific
perceptual content experienced (Hardstone et al., 2021). Finally, the potential role of gamma
frequency band in encoding perceptual content should be further investigated in future studies
using intracranial recordings which are more sensitive to gamma-band activity than MEG [e.g.,
(Panagiotaropoulos et al., 2012)].

A relationship between alpha and beta amplitudes and the stability of percepts has been reported in
several previous studies of bistable perception (Kloosterman et al., 2015; Piantoni et al., 2017; Zhu
et al.,, 2022). Although the detailed mechanisms involved remain unclear, two non-mutually-
exclusive mechanisms have been proposed: lateral inhibition and the resulting dynamical attractor
at a local scale (Piantoni et al.,, 2017) and top-down feedback from higher-order regions
(Kloosterman et al., 2015; Zhu et al., 2022). While both local inhibition and top-down processing
roles have been ascribed to alpha and beta oscillations (Jensen and Mazaheri, 2010; Michalareas et
al., 2016; Spitzer and Haegens, 2017), we believe that our finding of higher alpha/beta amplitude
being associated with stronger perceptual stability (Figure 4A) is more compatible with a top-down
interpretation. While lateral inhibition between competing neuronal groups is a key ingredient of
biophysical models of bistable perception [e.g., (Shpiro et al., 2009)], and enhancing cortical
inhibition by administering lorazepam, a GABA, receptor agonist, enhances perceptual stability (van
Loon et al., 2013), lorazepam also has the effect of reducing alpha power (Lozano-Soldevilla, 2018)—
opposite to the present finding of a positive correlation between perceptual stability and alpha
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power. By contrast, recent intracranial electrophysiological evidence suggests that top-down
feedback can carry perceptual templates congruent with long-term priors that act to stabilize a
particular percept (Hardstone et al.,, 2021). Given the well-documented role of alpha and beta
oscillations in carrying top-down feedback (van Kerkoerle et al., 2014; Bastos et al., 2015;
Michalareas et al., 2016), a plausible mechanism for the present finding of higher alpha/beta
amplitudes being associated with longer percept durations is then a top-down modulatory influence
carried in the alpha and beta bands.

Similarly, we interpret our finding of alpha and beta amplitudes being associated with perceptual
memory as reflecting a top-down modulatory influence. Consistent with this interpretation, a
previous fMRI study showed that the content of perception and perceptual memory during
intermittent presentation of ambiguous images is especially decodable in higher-order
frontoparietal regions, and that intermittent presentation elicits strong top-down influences as
compared to continuous presentation (Wang et al., 2013). The locations of sensors involved in
perceptual memory (Figure 4B) are more anterior than those involved in perceptual stability (Figure
4A), which may reflect the source and target of top-down modulation, respectively.

Our finding of alpha and beta amplitudes being related to perceptual memory is concordant with a
recent EEG study (Zhu et al., 2022), but, superficially, the two studies appear to report opposite
directions of this relationship: a negative correlation (manifested as negative B weights) in the
present study vs. a positive correlation in the earlier EEG study. However, a closer inspection
suggests that the two studies are in fact consistent: Zhu et al. used short blank durations (~0.5 - 1.5
sec), and alpha/beta amplitudes are higher in stable-blank trials than unstable-blank trials early
(within 500-ms of blank-onset) during the blank period, but lower in stable-blank trials (after 800
ms) late in the blank periods (Fig. 4B therein). The present study used long blank durations (6 sec),
and the lower alpha/beta amplitude in stable-blank trials is mostly evident at 500-ms following blank
onset or later (Figure 4B, right, note ‘projected average’ is amplitude multiplied by B weights, which
are negative). The exact neurophysiological mechanisms contributing to these time courses remain
to be investigated, but both studies converge to suggest that alpha and beta amplitudes influence
not only perceptual stability when sensory input is in view but also perceptual memory when
sensory input is temporarily removed from view. Importantly, the presents results differ from
previous studies showing beta power increases during working memory maintenance (Spitzer and
Haegens, 2017), reinforcing the notion that perceptual memory differs from working memory: the
former is unconscious and automatic (Pearson and Brascamp, 2008), while the latter is largely
conscious and deliberate (Trubutschek et al., 2019). Furthermore, we found that neural activity (in
the alpha and beta band) underlying perceptual memory has significant overlap with neural activity
encoding elapsed time (as evidenced by a significant positive correlation of B weight vectors for the
‘Blank’ and ‘Memory’ axes), which also fits better with an automatic process as opposed to an
working memory account (Souza and Oberauer, 2015; Fulvio and Postle, 2020).

In sum, across multiple perceptual conditions (unambiguous vs. ambiguous sensory input;
continuous vs. intermittent presentation), we found that distinct components of dynamical neural
activity contribute to the content vs. stability of perception. While perceptual content is encoded in
the activity pattern of low-frequency neural activity in the SCP band, perceptual stability and
perceptual memory are influenced by the fluctuations of alpha and beta oscillation amplitudes.
These results provide clues to the neural mechanisms underlying stable visual experiences in the
natural environment, wherein the ever-present noise and instability in the retinal images must be
overcome to reconstruct the cause of sensory input in order to guide adaptive behavior. Finally,
these results also inform future computational models of bistable visual perception and efforts to
understand pathological processes underlying perceptual disorders in mental illnesses, including
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abnormal bistable perceptual dynamics in autism and schizophrenia (Robertson et al.,, 2013;
Kornmeier et al., 2017; Weilnhammer et al., 2020).

MATERIALS AND METHODS

Subjects

The experiment was approved by the Institutional Review Board of the National Institute of
Neurological Disorders and Stroke (under protocol #14 N-0002). All subjects were right-handed and
neurologically healthy with normal or corrected-to-normal vision. Nineteen subjects between 19 and
33 years of age (mean age 24.5; nine females) participated in the MEG experiment. We excluded one
subject from analysis due to repeatedly falling asleep during the task. All subjects provided written
informed consent.

Task design and behavioral analysis

The task was adapted from a previously run fMRI experiment (Wang et al., 2013). In the study, two
well-known ambiguous images (Necker cube and Rubin face-vase) were used to study bistable
perception under continuous (Ambiguous condition) and intermittent presentation (Discontinuous
condition) (Figure 1). As a control, we also included a condition where we manipulated the content,
outlines, and shading of the ambiguous images to accentuate one of the two percepts
(Unambiguous condition), with the intention that the subject would perceive that percept.

Stimuli were presented using E-Prime Software (Psychology Software Tools, Sharpsburg, PA) via a
Panasonic PT-D3500U projector with an ET-DLE40O lens, with the screen 55cm from the subject’s
eyes. All face-vase images subtended 16.9 x 17.6 (height x width) degrees of visual angle, and all
cube images subtended 14.3 x 14.5 degree.

Each subject completed twelve runs, consisting of four sets of three runs in the following order:
Unambiguous, Ambiguous, and Discontinuous conditions.

Each Ambiguous run contained six trials, with each trial consisting of 2 s of written instruction, 2 s of
fixation (while fixating on a crosshair in the center of the screen), 60 s of image presentation, and 3-
7 s of inter-trial interval (Figure 1A). Each ambiguous image was presented three times in a
pseudorandom order. Subjects reported every spontaneous perceptual switch using their right hand
via one of three buttons throughout the course of image presentation: one button for each of the
possible percepts, and one for ‘Unsure’ which they were instructed to press if they experience
neither or both of the possible percepts. In order to investigate spontaneous perceptual switches,
subjects were instructed to passively view the images and not to try to switch or hold onto a
percept.

Each Unambiguous run contained 32 trials, with each block consisting of 2 s of written instruction, 2
s of fixation, 5 s of image presentation, and 3-7 s of inter-trial interval (Figure 1C). The four
unambiguous images were presented eight times each in a pseudorandom order. Subjects were
asked to indicate their percept via one of three buttons (one button for each possible percept, and
one for unsure) at each image presentation. Valid trials consisted of subjects pressing the button for
the intended percept once, and no other button presses (Figure 1D).

Each Discontinuous run contained six trials, with each trial consisting of 2 s of written instruction, 2 s
of fixation, nine repetitions of 2-s image presentation followed by a 6-s blank period (of which the
last second contained the crosshair in the center of the screen) (Figure 1E). Subjects were asked to
indicate their percept during each image presentation via a button press, and not to press buttons

11
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during the blank period. Perceptual switching during the 2-s image presentation was very rare and
was excluded from analyses. The two ambiguous images were presented in alternating trials.

For all conditions, subjects were instructed to fixate upon a crosshair at the center of the screen at
all times to avoid the potential influence of gaze on perception. Response mapping was altered
between runs, by switching the buttons for the two percepts. For the first 9 subjects the response
mapping for the two percepts was switched after every run. For the final 10 subjects, we instead
switched the response mapping after every set of 3 runs. Before entering the MEG, subjects
performed practice runs until they were comfortable with the task and the buttons corresponding to
each percept.

MEG Recordings

While performing the task, we recorded neural activity from each subject using a 275-channel
whole-head MEG system (CTF). Three dysfunctional sensors were removed from all analyses. We
also recorded gaze position and pupil size using a SR Research Eyelink 1000+ system. Eye-tracking
was used for online monitoring of fixation and wakefulness during the experiment. MEG data were
recorded at a sampling rate of 600 Hz, with a low-pass anti-aliasing filter of 150 Hz and no high-pass
filter (i.e. DC recording). Before and after each run, the head position of a subject was measured
using fiducial coils, in order to detect excessive movement. During each task subjects responded
using a fibreoptic response button box. All MEG data samples were realigned with respect to the
presentation delay of the projector (measured with a photodiode).

MEG data pre-processing and feature extraction

All pre-processing and analysis of data was performed in MATLAB (Mathworks, Natick, MA) using
custom-written code and the FieldTrip toolbox (Oostenveld et al., 2011). MEG data were first
demeaned and detrended. Data were then filtered at 0.05-150 Hz using a 3™-order Butterworth
filter, and line noise as well as harmonics were removed using 4™-order Butterworth band-stop
filters (58-62, 118-122, 178-182 Hz). Independent component analysis (ICA, Fieldtrip runica
method) was then applied, and components were manually inspected to remove those related to
eye blinks, eye movements or heart-beat-related artifacts.

Three different features of neural activity were then extracted. Slow-cortical potential (SCP) activity
was obtained using a 3"-order low-pass Butterworth filter at 5 Hz. Alpha-band amplitude was
extracted by taking the absolute of the Hilbert transform (Matlab, abs(hilbert(data))) of the pre-
processed MEG data that had been filtered at 8-13 Hz using a 3"-order Butterworth filter. Beta-
band amplitude was extracted in the same way, but using data filtered in the 13—30 Hz range.

Decoding perceptual content

We attempted to decode perceptual content during the Ambiguous and Unambiguous conditions
using the three extracted neural features (SCP, alpha amplitude, beta amplitude). For the Ambiguous
condition, we first extracted periods between button presses where each button press was for a
different percept (excluding ‘Unsure’ button presses), and the period was labelled according to the
first button press (i.e. Face, Vase, Green or Blue). As these periods were all of different durations, we
then rescaled them to be the same length by selecting 100 equally spaced time points, giving us
percentiles of the percept’s duration. For the Unambiguous condition we selected valid trials for
analysis, wherein the subject only pressed a button once for the intended percept. The time period
used for decoding was the 5 seconds that the image was on the screen, and MEG data were down-
sampled to 10 Hz before applying the decoding pipeline. The label of the trial was the image that
was presented (i.e. Face, Vase, Green or Blue). For both task conditions, the classification was done
separately for the Necker Cube (Green vs. Blue) and Rubin Face-Vase (Face vs. vase). All trials were
normalized (z-scored) across sensors at each time point. Trials were then split into 4 folds with an
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equal number of trials of each label in each fold. Trials for a fold were selected by taking every 4™
trial of that trial type (ordered by when the trial occurred during the recording).

The decoding pipeline consisted of taking one fold as the testing set, and training a linear support
vector machine (SVM) classifier (cost = 1) using the LIBSVM packages (Chang and Lin, 2011) at each
timepoint to the trials from the other three folds, which constituted the training set. Decoding
accuracy of the classifier was then calculated on the testing set. The temporal cross-generalization of
the classifier was also tested by assessing its classification accuracy at every other time point. This
was done using each fold as the testing set, and the decoding accuracy (and temporal generalization)
was averaged across the 4 folds.

Cluster-based permutation tests for multivariate pattern decoding

The group-level statistical significance of classifier accuracy at each time point was assessed by a
one-tailed, one-sample Wilcoxon signed-rank test against chance level (50%). To correct for multiple
comparisons, we used cluster-based permutation tests (Maris and Oostenveld, 2007). Temporal
clusters were defined as contiguous time points with above-threshold classification accuracy
(cluster-defining threshold: p<0.1). The test statistic W of the Wilcoxon signed-rank test was
summed across time points in a cluster to yield a cluster’s summary statistic. Cluster summary
statistics were compared to a null distribution, constructed by shuffling class labels 100 times, and
extracting the largest cluster summary statistic for each permutation. Clusters in original data with
summary statistics exceeding the 95" percentile of null distribution were considered significant
(corresponding to p<0.05, cluster-corrected, one-tailed test). For classifier temporal generalization,
the permutation-based approach for cluster-level statistical inference used the same procedure as
above, where clusters were defined as contiguous time points in training and/or generalization
dimensions with above threshold (p<0.1) classification accuracy.

Neural state-space analysis
To work out the relative contributions of different behaviors to neural activity patterns, we
developed a novel multivariate analysis method to extract the neural sub-space relevant to each
behavior, following the approach used in (Mante et al., 2013). While perceptual content is clearly an
important aspect of behavior, there are other aspects of behavior which account for the perceptual
switching dynamics (Ambiguous condition) and perceptual memory (Discontinuous condition). For
the Ambiguous condition, we first selected 100 equally spaced time-points from each period that
occurred between button presses for the two percepts (i.e. not for time points preceded or followed
by an unsure button press). We then defined 4 behavioral metrics for each time point:

e Type, a binary variable indicating the current percept.

e Duration, a continuous variable which takes the same value throughout a percept and is
normalized within subject (i.e., 0 for the shortest percept reported, and 1 for the longest
percept).

e Switch, a continuous variable that was 0 at the time of a button press and 1 at the midway point
between button presses, indicating the relative temporal distance to perceptual switches.

e Direction, a binary variable indicating whether the current percept is stabilizing (i.e., timepoint is
in the first half of its duration) or destabilizing (i.e., in the second half of its duration).

For the Discontinuous condition, only time points during the blank period (6 sec total, including the
1-sec fixation period) were used, where the blank period was preceded and followed by an image
presentation during which the subject pressed for one of the two percepts. Four behavioral metrics
were defined:

e Pre, a binary variable indicating the percept reported before the blank period

e Post, a binary variable indicating the percept reported after the blank period

13
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e Blank, a continuous variable increasing from 0 at the beginning of the blank period to 1 at
the end of the blank period, indicating time elapsed during the blank period

e Memory, a binary variable indicating whether the percept before the blank was the same as
that after the blank, with 1 indicating the presence of a memory trace and 0 indicating the
absence of a memory trace.

These time points were split into two data sets (1% and 2" half of timepoints based on time through
experiment), with the first half used as the training set, and the second half used as the test set.
Using the training data set, the MEG data (applied separately for the three neural features: SCP,
alpha amplitude and beta amplitude) for each sensor is first normalized over time using the mean
and standard deviation from the training set. A multi-linear regression of the following form was
solved to find the B weights in the equation (using MATLAB function fitIm, with RobustOpts):

MEGsensor1 = Baq1Behavior, + (,1Behavior, + B, Behavior, + B4 Behaviory + ¢

These B weights define the axes of the behavioral subspace for that neural feature. MEG data from
the test set (which has been normalized at the individual sensor level using the mean and standard
deviation from the training set, so that the projection method does not depend on any information
from the test set) can then be projected onto the behavioral axes (using the MATLAB function
mldivide). This gives a prediction of the value for each behavioral metric based on neural activity at
each time point of the test set.

Statistics for neural state-space analysis

To assess the consistency across subjects of the B weights defining each behavioral axis, and
whether each neural feature carried predictive information about the behavior, a cluster-based
permutation method (Maris and Oostenveld, 2007) was applied separately for each axis. This
involved shuffling the behavioral information across all of the trials only for that axis. For axes where
behavior was defined in the same way for each trial (Ambiguous: Switch and Direction Axes.
Discontinuous: Blank Axis), each trial was instead “flipped” with a 50% chance, where the flipped
trial was equal to 1 — original behavior. Once the behavioral data was shuffled, the state-space
analysis was re-applied, and this was done for 100 permutations of the data.

To assess consistency of the B weights defining each behavioral axis, a two-sided Wilcoxon sign-rank
test against zero was applied separately to each electrode. To correct for multiple comparisons
across sensors, we used cluster-based permutation tests (Maris and Oostenveld, 2007). Spatially
contiguous electrodes with a significant bias (p<0.05) and the same sign of the test statistic W,
formed a cluster (either positive or negative depending on the sign) where the cluster summary
statistic was the sum of the electrodes’ test statistic W. This cluster summary statistic was compared
to a null distribution, formed from the largest (i.e., most positive or most negative) cluster summary
statistic for each permutation. Clusters in original data with summary statistics exceeding the 95th
percentile of null distribution were considered significant (corresponding to p<0.05, cluster-
corrected, one-tailed test). Positive and negative clusters were assessed separately by comparison to
the respective null distribution.

To assess consistency between two state-spaces (either between B weight maps for the two
different images and the same axis, or between two different axes and the same image), cosine
similarity was applied:

Ba-Bs
lBAlllBell
where B4 and B correspond to the two B weight maps. Cosine similarity produces a value between
-1and 1, where 1 indicates that the projection of the MEG data into the two behavioral state-spaces

cosf =
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would produce perfectly correlated behavioral estimates, and -1 indicates that they would be
entirely anti-correlated. To assess significance of the cosine similarity, a null distribution was created
by calculating cosine similarity between the two B maps for each permutation, and the p-value was
calculated as the fraction of this distribution with values larger than the cosine similarity of the
original data.

To assess whether each neural feature carried predictive information about each behavioral axis, a
different test was applied depending on the axis. In the following analyses, a one-sided statistical
test is often used because if the neural subspace is successfully extracted, the predicted behavioral
metric in the test dataset should follow specific relationships similar to the definition of these axes
(Figure 3A).

First, data from the test data set were projected into the neural subspace defined for each axis using
the training data. For those axes with binary behavior that had the same value across time for each
trial (Ambiguous: Type; Discontinuous: Pre, Post), a paired t-test across subjects (one-sided) was
applied at each time point between the trial-averaged predicted behavior for the two groups of trials
(e.g. Green Cube and Blue Cube).

For the axis with continuous behavior that had the same value across time for each trial (Ambiguous:
Duration), two analyses were carried out: 1) (Figure 4A) For each subject, predicted percept duration
(using neural activity at each time point) was correlated with the actual percept duration across
trials by a Spearman correlation. The rho-values were then subjected to a Wilcoxon sign-rank test
across subjects (one-sided), and corrected for multiple comparisons using cluster-based permutation
test.

a one-sided Wilcoxon sign-rank test was applied at each time point between the predicted and
actual behavior. 2) (Figure 4—figure supplement 1B) A median split was performed on the test data
set for each subject according to percept duration. The projected data (i.e., predicted percept
duration based on neural data) were then compared between the two groups of trials by a paired t-
test across subjects (one-sided), and corrected for multiple comparisons using cluster-based
permutation test.

For those axes where the actual behavior changed across time within a trial in a continuous manner
(Ambiguous: Switch; Discontinuous: Blank), the trial-averaged predicted behavior from each subject
was compared to the actual behavior using a Spearman correlation. The Spearman rho values were
then subjected to a group-level test using a Wilcoxon signed-rank test against zero (one-sided).

Lastly, for the axis where actual behavior changed across a trial in a binary manner (Ambiguous:
Direction), the trial-averaged predicted behavior for each subject was compared between the first
half of the trial and the second half of the trial using a two-sample t-test. The resulting t-values were
then subjected to a Wilcoxon signed-rank test against zero (one-sided) at the group level.

To correct for multiple comparisons, we used cluster-based permutation tests (Maris and
Oostenveld, 2007). Temporal clusters were defined as contiguous time points with above-threshold
test statistic (cluster-defining threshold: p<0.05). The test statistic (Wilcoxon signed rank (W) or t-
test (t)) was summed across time points in a cluster to yield a cluster’s summary statistic. Cluster
summary statistics were compared to a null distribution, formed by extracting the largest cluster
summary statistic for each permutation. Clusters in original data with summary statistics exceeding
the 95th percentile of null distribution were considered significant (corresponding to p<0.05, cluster-
corrected, one-tailed test).
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752 Figure 1. Paradigm and behavioral results. (A) In the Ambiguous condition, bistable images were
753 presented for 60 seconds each, and subjects pressed buttons to indicate their current percept. (B)
754 Percentage of time spent in each perceptual state during the Ambiguous condition. (C) In the
755  Unambiguous condition, bistable images which were modified to reduce their ambiguity were
756  presented. (D) Percentage of valid trials for each image type during the Unambiguous condition.
757  Valid trials consisted of the subject pressing the button only once for the intended percept. (E) In the
758  Discontinuous condition, ambiguous images were shown 9 times with interleaving blank periods. (F)
759 Percentage of Blank periods that were classified as Stable, Unstable or Missing. ‘Stable’ indicates
760  that perception was the same before and after the blank period, ‘Unstable’ that it was different, and
761 ‘missing’ indicates that no button press was recorded during the pre or post image-presentation
762 period. (B,D,F) Dots indicate individual subjects; bars and error bars indicate group mean and s.e.m.
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Figure 2. The content of subjective perception is encoded in SCP activity. (A) In the Ambiguous
condition, subjects continuously reported their current perception using button presses. Neural
activity during each percept was split into 100 percentiles according to time elapsed, and percept
was then decoded at each temporal percentile. (B) In the Unambiguous condition, different
disambiguated images were shown that emphasized one of the two percepts. For valid trials in
which subjects’ reported percept matched the intended percept (see Fig. 1D), image content was
decoded separately at each timepoint during image presentation. (C) (Left) Decoding accuracy for
perceptual content during the time course of a percept. Significant temporal clusters of percept
decoding exist for both images using SCP as the decoder input, but not when alpha or beta
amplitude was used as decoder input. (Right) Temporal generalization matrices. Significant clusters
are outlined, showing generalization across a large proportion of the percept duration. (D) (Left)
Decoding accuracy for unambiguous images during their presentation. Significant temporal clusters
of image/percept decoding exist in the SCP range throughout image presentation, but not for
alpha/beta amplitude. (Right) Temporal generalization matrices showing significant generalization
across a large proportion of the image presentation duration.

18



783
784

785
786
787
788
789
790
791
792
793
794
795

A B

@ ﬂ ﬁ Blank ﬂ Blank ﬁ ( Sensor BPE;.E“
qll'j ! ‘ ! ' ' ‘ Tirnw
Type Pre MEG Behavior

0
1
Duration

Switch
0
1

[
i
|
Direction [

]
o ; [ - - ‘MEG"‘ = B, Behavior + . + B, Behavior + ¢
/\//\ Blank ;[ / / M

Ambiguous Discontinuous

Define set of behaviors

C _ D

MEG t=25
= —
,,,,,,,,,,,,,,,,,,, = k y 2= °
”{ ........... z %
il e 11 Behavior v Y
It tia < ¢
1 Sensor H :nle 59 ™ L
Test set Tria ‘ T T e o L
Time @ 5 .. L
p Projected activity = MEG\ ee
sehim: ) y= % Duration of trial
L ) \ )
Tensars Project test set trials into Correlate projected activity
. J behavioral subspace with behavior (for each timepoint)

Figure 3. Method to define behaviorally relevant neural subspace. (A) For the Ambiguous and
Discontinuous conditions a set of behavioral metrics was defined, which incorporated information
about both the perceptual content and the perceptual switching dynamics. (B) Using a training set of
MEG data, neural subspaces were defined by apply multi-linear regression to activity from each
sensor using the four behavioral metrics as predictors. The weights across sensors for each
behavioral metric define the neural subspace relevant to that metric. (C) The test MEG dataset can
then be projected into the subspace corresponding to a particular behavioral metric to provide a
prediction of the metric value at each timepoint. (D) Accuracy of the prediction can then be tested
by comparison to the actual behavioral data.
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Figure 4. Alpha and beta amplitudes are involved in the switching process and perceptual memory
trace. (A) (Left) Group-average B weights for Duration axis in the ambiguous condition. Sensors
whose B weights are significantly different from zero (Wilcoxon signed-rank test, cluster-corrected,
p<0.05) are marked with x. (Right) Mean Fisher z-transformed Spearman rho values, obtained by
correlating predicted and actual behavioral values across trials for each subject. Shaded areas show
group-level s.e.m. Significant time points (p<0.05, cluster-based permutation test) are indicated by
the horizontal red bars. (B) (Left) Group-average B weights for Memory axis in the discontinuous
condition. Sensors whose group-level B weights are significantly different from zero (Wilcoxon
signed-rank test, cluster-corrected, p<0.05) are marked with x. (Right) Difference in neural activity
projected onto the Memory axis between the Stable and Unstable trials (i.e., blank periods
sandwiched by the same percept or different percepts). Significant differences (p<0.05, cluster-
based permutation test) between them are indicated by red horizontal bars.
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Figure 1—figure supplement 1. Individual-level power spectra, and group level duration
histograms. (A,B) Each line corresponds to a subject’s power spectrum averaged over all 272 MEG
sensors. Shaded boxes correspond to the three frequency bands analyzed, SCP (0.05-5Hz), alpha (8-
13 Hz) amplitude, and beta (13-30 Hz) amplitude. For the discontinuous condition, peaks can be seen
in low frequencies corresponding to the task structure (8 seconds between consecutive image
onsets gives rise to 0.125 Hz and its harmonics). Frequencies at line noise (60 Hz) and its harmonics
are not plotted. (C,D) Histograms showing the distribution of percept durations, including data
pooled across 19 subjects.
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Figure 2—figure supplement 1. SCP has significantly higher decoding than alpha or beta
oscillations in both the ambiguous (top) and unambiguous (bottom) conditions. (Left) Difference in
decoding accuracy between SCP and alpha/beta amplitude for perceptual content across the time
course of a percept. Significant temporal clusters of percept decoding exist for both images. (Right)
Difference in temporal generalization matrices (SCP — alpha or beta amplitude). Significant clusters
are outlined, showing the temporal-generalization locations where SCP has significantly greater
decoding accuracy. Significance for all plots is established by cluster-based permutation test and

presented at a p < 0.05, corrected level.
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Figure 4—figure supplement 1. Complete neural subspace results for the Ambiguous condition. (A)
Group-average B weights. Sensors whose B weights are significantly different from zero (Wilcoxon
signed-rank test, cluster-corrected, p<0.05) are marked with x. (B) Test data set projected onto each
behavioral axis; shaded areas indicate s.e.m. across subjects. For the. Type axis, trials for the
different percepts are projected and averaged separately, and difference between the trial-averaged
projections are tested by a paired t-test across subjects (one-sided). For the Duration axis, the
longest and shortest 50% of trials are averaged and compared by a paired t-test across subjects
(one-sided). Significant temporal clusters (p<0.05, cluster-based permutation test) are indicated by
black horizontal bars at the top. For the Switch and Direction axes, all trials are projected and
averaged, and compared to the actual behavioral metric (shown as dashed black lines here, also see
Fig. 3A) using a Spearman correlation for the Switch axis and a two-sample t-test (between the 1%
and 2™ half of the trial) for the Direction axis. Subsequently, the rho and t-stats are tested at the
group level by a Wilcoxon sign-rank test against zero (one-sided).
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Figure 4—figure supplement 2. Complete neural subspace results for the Discontinuous condition.
(A) Group-average B weights. Sensors whose B weights are significantly different from zero
(Wilcoxon signed-rank test, cluster-corrected, p<0.05) are marked with x. (B) Test data set, including
data from the blank periods only, projected onto each behavioral axis; shaded areas indicate s.e.m.
across subjects. For Pre and Post axes, trials for the different percepts are projected separately, and
difference between them tested by a paired t-test (one-sided) across subjects. For the Blank axis, all
trials are projected and averaged and compared to the actual behavior (shown as black dashed line
here; also see Fig. 3A) using a Spearman correlation; subsequently, the rho values were tested at the
group level by a Wilcoxon sign-rank test against zero (one-sided). For the Memory axis, stable and
unstable trials are projected separately, and the difference between them is plotted and tested by a
one-sample t-test across subjects (one-sided).
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