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Abstract—The landscape of automotive vehicle attack surfaces
continues to grow, and vulnerabilities in the controller area net-
work (CAN) expose vehicles to cyber-physical risks and attacks
that can endanger the safety of passengers and pedestrians.
Intrusion detection systems (IDS) for CAN have emerged as a
key mitigation approach for these risks, but uniform methods
to compare proposed IDS techniques are lacking. In this paper,
we present a framework for comparative performance analysis
of state-of-the-art IDSs for CAN bus to provide a consistent
methodology to evaluate and assess proposed approaches. This
framework relies on previously published datasets comprising
message logs recorded from a real vehicle CAN bus coupled
with traditional classifier performance metrics to reduce the
discrepancies that arise when comparing IDS approaches from
disparate sources.

I. INTRODUCTION

Modern cars can contain tens to hundreds of electronic

control units (ECUs) that communicate with each other over

in-vehicle networks including the controller area network

(CAN) for enhanced performance, safety, and comfort. CAN

is a robust serial shared bus communication standard that aims

to be simple and efficient while delivering real-time and fault-

tolerant performance in harsh environments. A major concern

is that the CAN bus implements no security mechanism and

the increasing number of ECUs that communicate with each

other and external networks make the CAN bus an attractive

target for cyber attackers and has led to a rise in security and

privacy risks. The attack surface continues to grow proportion-

ally to new vehicle features, and the demonstrated exploits of

its vulnerabilities [1]–[6] have made vehicular security a con-

cern for all. Securing CAN is a significant step toward ensuring

that the critical systems which communicate on the bus are

protected from cyber and physical attacks. Approaches toward

CAN security include deploying an intrusion detection system

(IDS) [7], [8] on the network to detect indications of attacks

over the CAN bus, or using cryptographic techniques [9]–

[11] and authentications mechanisms [12]–[14]. Although an

IDS can be adopted without perturbing bus performance [15],

the latter approaches cannot be easily applied to in-vehicle

networks due to computational constraints and real-time re-

quirements [16]. Hence, an IDS is a promising method for

improving CAN security.

Despite their promise, adoption of IDSs poses significant

challenges because their efficacy is unclear due to variations

in the datasets, evaluation metrics, and experimental infras-

tructure used to validate proposed approaches. Also, it is

often infeasible to properly vet these approaches since the

documentation of their implementation and experimentation

are not comprehensive enough for comparative study: reported

success is often dependent on experimental setup procedures.

To address these challenges, we introduce a framework to

facilitate comparing CAN IDS performance in detecting at-

tacks. Using this framework, we investigate the differences

in the experimental settings of detection methods proposed in

prior work and conduct a comprehensive evaluation of their

performance using a consistent experimental methodology.

The contributions of this paper are:

• design and implementation of a novel framework to

facilitate consistent, fair comparisons of proposed CAN

IDS approaches;

• categorization and explanation of prior approaches pro-

posed for CAN IDS;

• and application of the framework to proposed IDS ap-

proaches in eight categories.

II. BACKGROUND AND RELATED WORK

Many IDSs have been proposed and developed to identify

attacks on the CAN bus, but inconsistencies in their experi-

mental evaluation hinders the adoption of these approaches in

practice as their comparative performance is unclear. Further,

the lack of predictable performance of these algorithms across

datasets and environments, including software versions and

host machine architecture, has resulted in difficulties in the

interpretation of comparative study results. When an algorithm

is trained and evaluated on a specific dataset and metric,

its performance in other contexts remains opaque. To effec-

tively compare proposed IDS algorithms, we have created a

framework for CAN IDS evaluation that aims to eliminate

the inconsistencies and enable a smooth, scalable, consistent

approach for comparison of each algorithm. In the remainder

of this section we discuss these inconsistencies and other

drawbacks of prior work in the area of CAN IDS evaluation.
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1) Disparate Training Dataset: The process used by IDSs

to identify attacks is heavily influenced by the nature of the

attack-free dataset used to train the underlying classification

algorithms. Inconsistencies in the training datasets and as-

sumptions used by the algorithms proposed to detect CAN bus

attacks leads to significant impacts on the performance evalu-

ation in the detection (testing) phase. For example, Marchetti

and Stabili [17] used a CAN dataset containing recurring

patterns within the sequence of message identifiers (IDs) or

CAN IDs to train their proposed algorithm. Unfortunately,

these repetitive patterns of CAN IDs are not always evident

in practice, leading to errors in the algorithm’s detection

phase. Another study [18] on CAN bus IDS trains the system

using 35 distinct datasets from varied driving behaviors. These

variations in training environments have a significant impact

on the detection phase.

2) Disparate Evaluation Dataset: Each proposed CAN bus

IDS goes through an evaluation phase where it gets tested with

a CAN dataset containing attack messages. The efficacy of

the tested algorithm is highly dependent on the dataset used

to evaluate it. For example, Stabili et al. [19] evaluated their

proposed algorithm on a dataset containing fuzzy and replay

attacks assuming that the attack message will be inserted

after a predetermined number of regular messages; Marchetti

and Stabili [17] used datasets with bad and mixed injection

attacks; and Islam et al. [20] used denial-of-service (DoS)

and spoofing attack datasets. Comparing the performance of

these algorithms is difficult due to these differences in the test

datasets used for their original evaluation.

3) Disparate Evaluation Metrics: The evaluation of CAN

bus IDS requires the selection of appropriate metrics to

demonstrate the algorithm performance. However, in most

studies, there are inconsistencies among the chosen metrics.

For instance, Olufowobi et al. [21] calculated true-positive

rate, false-positive rate whereas Marchetti and Stabili [17] used

detection rate to show the efficiency of the proposed algorithm.

Previous studies have developed frameworks for comparing

anomaly detections and datasets used for IDS in CAN. Stabili

et al. [22] presented a benchmark framework for CAN IDSs,

which allows evaluation and comparison of four detection al-

gorithms. Similarly, Dupont et al. [23] provided an evaluation

framework to compare existing network intrusion detection

mechanisms for the CAN bus. Costa [24] designed a frame-

work for testing machine learning (ML) IDSs to determine

the best algorithm that alerts the adversary when a failure

in the integrity of the CAN data is identified. However, the

proposed frameworks in the literature can only compare a

fixed number of algorithms using the datasets provided in the

framework or a particular IDS approach. We present a flexible

framework that can be used to evaluate the existent state-

of-the-art algorithms focusing on classifier performance with

extensible plug-in capabilities for new datasets and algorithms.

III. THE FRAMEWORK

The evaluation of IDSs proposed for the CAN bus often

depends on different performance metrics. Comparing distinct

algorithms with different metrics does not provide a fair

judgment of the detection accuracies as attack settings of

the datasets and the objectives vary. Hence, we introduce a

framework to comprehensively and rigorously analyze IDS al-

gorithms using common input datasets and evaluation metrics.

With this framework, it is possible to train all the algorithms

using the same attack-free datasets, test the algorithms’ attack

detection mechanism using the same attack dataset, and evalu-

ate the efficiency of the algorithms by comparing measurement

values for the same metrics, thereby providing a level playing

field for comparison of IDS algorithms.

The design of our framework follows the architecture pre-

sented in Figure 1. The framework transforms raw datasets

into feature-rich data points in a preprocessing stage, which

is described in Section IV. This stage is then followed by

training the algorithms with the preprocessed data. Timing

and statistical algorithms work by computing the threshold

criteria for anomaly detection using the attack-free dataset,

while ML algorithms utilize a part of the attack dataset—the

training set—to learn patterns of the attacks. The trained ML

model is then tested on another set of input from the attack

set, called the testing set, to check the performance of the

model. Splitting the two sets helps to avoid bias. The non-ML

algorithms are tested on the entire attack dataset for anomaly

detection. Finally, the evaluated results are presented using

classification metrics, i.e., recall, precision, false-positive rate,

accuracy, and F1 score. The remainder of this section further

details the key components of the framework.

A. Data

The initial datasets used for this framework are from mes-

sages logged through the OBD-II port of a vehicle and cap-

tured in datasets provided by the Hacking and Countermeasure

Research Lab [25] that contains attack-free and four message

injection attacks used to compromise the vehicle’s operation.

These attacks are denial-of-service (DoS), fuzzy, and spoofing

of IDs related to the vehicles’ RPM and gear. Each dataset has

a record of each message: its timestamp, CAN ID, the data

length code ranging from 0 to 8, up to 8 bytes of data, and

a flag field indicating attack-free or compromised message.

The DoS dataset is injected with high priority messages of ID

0000 after every 0.3 milliseconds. The fuzzy dataset is injected

with random IDs and data every 0.5 milliseconds, while the

spoofing dataset is injected with messages every millisecond.

Table I shows an overview of the total number of messages

contained in each dataset.

TABLE I
OVERVIEW OF THE DATASET.

Attack Type Normal Messages Injected Messages Total Messages

DoS 3,078,250 587,521 3,665,771

Fuzzy 3,347,013 491,847 3,838,860

Gear Spoofing 3,845,890 594,252 4,443,142

RPM Spoofing 3,966,805 654,897 4,621,702
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time detection in CAN bus is found using Sn = Sn−1 +
Sn. An attack is detected when there is a change in the

process mean after five average run length.

ii. Entropy: Müter and Asaj [28] proposed an intrusion

detection method based on the entropy change in CAN ID.

To calculate entropy, the authors used the entropy function

H(X) =
∑

xϵCx

P (x)log
1

P (x)
(2)

where P (x) is the probability of the CAN ID x within a

specified interval of time and Cx is the list of the CAN

IDs in that timing window. After computing the entropy

in the timing windows from an attack-free dataset, the

IDS observes the entropy differences in the attack dataset.

However, this entropy difference could only detect the

presence of an attack. To specify the particular CAN ID,

the authors utilize the relative entropy changes of CAN

IDs among the same timing window. The equation for

computing relative entropy is

RelEnt(p/q) =
∑

xϵCx

p(x)log
p(x)

q(x)
(3)

where q and p are the probability distribution of CAN IDs

in the attack-free and attack scenario, respectively.

iii. Graph Based: Islam et al. [20] proposed a graph-based

algorithm using statistical analysis that transform the CAN

bus messages into a graph structure. The algorithm creates

a graph for each window of 200 messages. This window

size is defined for design robustness and can be changed.

For each window, the common graph properties such as

node (message ID) count, edge (ID sequence) count, and

maximum degree (number of IDs sequential to current ID)

are derived and the algorithm computes the χ2 value, then

the threshold value for the population window. The chi-

squared test can be described by the following equation:

χ2
DoF =

DoF∑

i=0

(Oi − Ei)
2

Ei

(4)

where, O is the observed frequency and E is the expected

frequency. DoF is the degree of freedom which can be

calculated by DoF = (i−1)(j−1), where i and j are the

total number of message ID sequences and the sample

size, respectively. The first stage of the detection phase

is to compute the chi-squared value for the test dataset,

denoted as “t” in χ2
t > Thaf , and compare it to the

threshold calculated for the attack-free dataset, referred as

to “af”. Then the second stage is to perform the median

test using Mediant > (Medianaf+SDaf ), where SD is

the standard deviation. If either of these equations holds,

there is an anomaly in the test dataset that gets flagged.

iv. ID Sequences: Marchetti and Stabili [17] proposed an

algorithm that monitors the sequence of unique IDs in

the attack free dataset to create a transition matrix from

the recurring ID patterns. The transition matrix represents

a data structure that recognize all the transitions that

occurred in an attack free scenario. In a dataset with m
unique IDs, the transition matrix is a square matrix of

size m × m, with all elements initialized to False (i.e.,

no legitimate transition is detected). For a message ID a
followed by message ID b in the attack free dataset, row

a and column b of the matrix is changed to True. The

final transition matrix containing True and False values is

used to detect attacks in the compromised dataset. If any

of two consecutive IDs are not present in the transition

matrix, an alarm is raised. Also, if the two IDs are present

but there are no legitimate transitions indicated by True

in the transition matrix, an alarm is raised.

v. Hamming Distance: Stabili et al. [19] used the Hamming

distance, which two strings by evaluating the minimum

number of substitutions that converts one of the strings

to the other to detect anomalies. The Hamming distance

between two strings a and b of equal length l can be

evaluated using Hl(a, b) =
∑l

i=1 |ai − bi|. For CAN

datasets containing a maximum of 64 bits of payload,

the Hamming distance, Hl between the payloads of two

consecutive instances of an ID is evaluated as

Hl(Pt, Pt+1) =

64∑

i=1

Pi,t ⊗ Pi,t+1. (5)

Here Pi,t and Pi,t+1 are bits of the payload of an ID i at

time t and t + 1 respectively. The Hamming distance is

determined by summing the results of the bitwise XOR

operation between the individual bits of the payloads.

An alarm is raised if the Hamming distance computed

from the compromised dataset is outside the range of the

calculated Hamming distances of the same ID from the

attack-free dataset.

3) ML-Based: IDSs based on ML identify patterns in CAN

transmissions to classify messages and flag intrusions with

little human intervention [29]. ML-based algorithms can be

unsupervised or supervised. A supervised algorithm requires

labeled data for training, while an unsupervised algorithm

finds patterns in unlabeled data. We consider artificial neural

network (ANN), a machine learning algorithm modeled to

imitate biological neurons in our framework.

Artificial Neural Network: Paul and Islam [30] proposed

an anomaly detection based on ANN architecture consisting

of 4 layers—an input layer, two hidden layers, and an output

layer. The input layer receives a preprocessed dataset contain-

ing ID fields and 8 bytes of data fields. Each hidden layer

consists of 16 neurons that evaluate the summation of the

multiplication of weights and inputs. The result from each

layer passes to an activation function that determines the

values fed as inputs to the next layer. For anomaly detection,

the output of ANN gives a binary classification of either 1 or

0 to signify legitimate messages and compromised messages,

respectively.

IV. EXPERIMENTAL VALIDATION

To evaluate the performance of the algorithms in our

benchmark framework, we used real vehicle CAN traffic,
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TABLE II
COMPARATIVE ANALYSIS OF MENTIONED ALGORITHMS BASED ON PROPOSED DECOUPLED FRAMEWORK

Metrics
Time Interval Frequency CUSUM Entropy Graph ID Sequences Hamming ANN

[7], [31], [32] [27], [33] [21] [18], [28], [34] [20], [35] [17], [36] [19] [30]

Attack Type 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Recall 0.83 0.97 0.0 0.0 0.18 0.99 0.05 0.07 1.0 0.99 1.0 1.0 0.02 0.03 0.06 0.06 0.69 0.98 0.75 0.53 0.96 1.0 0.33 0.42 0.95 0.99 0.0 0.0 1.0 0.98 0.86 0.87

Precision 0.60 0.51 0.0 0.0 0.99 1.0 0.89 0.9 1.0 0.48 1.0 1.0 0.25 0.33 016 0.21 0.98 0.99 0.99 0.99 0.57 0.63 0.41 0.59 0.10 0.99 0.0 0.0 0.99 1.0 1.0 1.0

F1 0.70 0.67 0.0 0.0 0.3 0.99 0.1 0.12 1.0 0.65 1.0 1.0 0.03 0.05 0.08 0.1 0.81 0.99 0.86 0.69 0.71 0.78 0.37 0.12 0.97 0.99 0.0 0.0 0.99 0.99 0.92 0.93

Accuracy 0.95 0.96 0.83 0.83 0.86 1.0 0.86 0.86 1.0 0.64 1.0 1.0 0.63 0.68 0.74 0.71 0.80 0.99 0.82 0.67 0.87 0.92 0.83 0.87 0.99 0.99 0.85 0.86 0.99 0.98 0.86 0.87

FPR 0.03 0.04 0.02 0.02 0.0 0.0 0.0 0.0 0.0 0.45 0.0 0.0 0.03 0.02 0.08 0.08 0.02 0.0 0.01 0.02 0.15 0.09 0.08 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0

*
1 = DoS Attack, 2 = Fuzzy Attack, 3 = RPM Spoofing Attack, 4 = Gear Spoofing Attack

which contains DoS attacks, fuzzy attacks, spoofing attack

datasets. These datasets are preprocessed for use by all the

algorithms in the framework. In these datasets, the flag “R”

represents an attack-free message, while “T” represents a

compromised message. We trained the statistical and timing

detection methods using the attack-free dataset, while the

machine learning algorithm was trained using 80% of the

compromised datasets. Furthermore, we have retained most

of the original settings for the parameters in the ANN model

and introduced batch normalization and dropout layers after

the hidden layers to reduce overfitting.

To evaluate the algorithms, we used standard metrics, such

as recall, precision, F1 score, accuracy, and false-positive

rates (FPR). The recall is the proportion of correct attack

predictions in the attack class, given by R = TP
(TP+FN) , where

TP and FP are the true positive and false negative values

respectively. The precision gives the proportion of identified

attacks that were actually correct, denoted as P = TP
(TP+FP )

where FP is the false negative value. F1 score gives a view

of the weighted average of the precision and recall, given by:

F1 = 2∗(Recall∗Precision)
Recall+Precision

. Accuracy, A = TP+TN
TP+FP+TN+FN

,

is the proportion of right predictions in the total observations

and TN is the true negative value. FPR represent the prob-

ability of raising a false alarm for an attack, calculated as

FPR = FP
(FP+TN) .

V. DISCUSSION

Table II shows the performance of different approaches

on the dataset. We observe that each method has its merits

and weaknesses, and performance varies by the basis of the

attack. On fuzzy attacks, the timing interval algorithm works

best as detection of an anomaly becomes easier when there

is an aberration from the expected pattern of a CAN ID.

However, sole reliance on CAN IDs makes the performance

of the same approach questionable in detecting an attack of

different forms, such as spoofing. Straightforward techniques,

such as measuring Hamming distance and calculating entropy

changes, are computationally inexpensive and work well on

DoS attack detection where there is no reliance on different

attributes of an ECU. However, these algorithms lack the

required sophistication for detecting interrelated relationships

in vehicular features, i.e., dependencies between CAN IDs

that cause them to change transmission behavior with respect

to each other and the physical state of the vehicle. CUSUM

provides a frequency-based statistical approach that gives a

consistent performance in detecting attacks. However, more

generalized approaches can detect additional forms of attacks.

Our understanding suggests that graph-based algorithms [20]

and ML approaches such as ANN [30] can discover better

correlations among the features, which in turn helps in improv-

ing anomaly detection. ML approaches can also benefit from

automation of parameter tuning, i.e., feature selection, finding

optimum threshold values for detection, average intervals, or

window sizes [37]. Generally the ML models have better

performance with more computational resources and feature-

rich datasets, but these may not be easily available.

In light of our observations, we suggest the methods that

consider the interrelationship between messages, such as ML

models and graph-based models, are better suited for the CAN

bus datasets. In addition to comparing the performance of al-

gorithms for IDS in CAN, our framework provides a standard

evaluation platform that allows seamless incorporation of new

algorithms that can be tested against the algorithms already

in the framework. With a preprocessing stage, the framework

also allows the use of new datasets to evaluate the performance

of the algorithms already implemented.

VI. CONCLUSION

This paper presents a framework for benchmarking CAN

IDS algorithms to compare them using consistent metrics,

which facilitates fair and reproducible experiments. Future

work can add more IDSs [38], [39], attacks [40], datasets [41]–

[43], metrics [44], and runtime performance evaluation.
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