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Abstract  21 
Emerging during embryogenesis, the neural crest are a migratory, transient population of 22 

multipotent stem cell that differentiates into various cell types in vertebrates. Neural crest cells 23 

arise along the anterior-posterior extent of the neural tube, delaminate and migrate along routes 24 
to their final destinations. The factors that orchestrate how neural crest cells undergo delamination 25 

and their subsequent sustained migration is not fully understood. This review provides a primer 26 
about neural crest epithelial-to-mesenchymal transition (EMT), with a special emphasis on the 27 

role of the Extracellular matrix (ECM), cellular effector proteins of EMT, and subsequent migration. 28 
We also summarize published findings that link the expression of Hox transcription factors to EMT 29 

and ECM modification, thereby implicating Hox factors in regulation of EMT and ECM remodeling 30 
during neural crest cell ontogenesis. 31 
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 35 
1. Introduction: Neural Crest Cell Development 36 

 37 
Neural Crest Cells (NCCs) are a migratory and multipotent stem cell population common among 38 

vertebrate species. These transient embryonic stem cells arise from the dorsal-most aspect of the 39 
neural tube (Figure 1)—a transient embryonic structure fated to become the entire central 40 

nervous system—and begin extensive and stereotypic migratory paths throughout the developing 41 
mesendoderm. (Le Douarin, 1982; Le Douarin and Kalcheim, 1999; Saint-Jeannet, 2016). NCCs 42 

contribute to numerous and diversely specialized tissues; including, for example, craniofacial 43 
skeleton, corneal endothelium and stroma, auditory skeletal structures, sympathetic and sensory 44 

neurons, enteric nervous system, several classes of pigment producing cells across species, as 45 

well as many other tissues types(Jasrapuria-Agrawal and Lwigale, 2014; Lapedriza et al., 2014; 46 
Matsuo et al., 1995; Prendergast and Raible, 2014). Indeed, the field has come to appreciate that 47 

the spectacular diversity of structures formed by NCCs highlights their crucial role in vertebrate 48 
development.  49 

 50 
NCC ontogenesis occurs in four major stages: specification, delamination, migration, and 51 

differentiation (Figure 1). NCCs first emerge at the dorsal aspect of the neural tube along the 52 
majority of the anterior-posterior (A-P) axis of the elongating embryo in response to a mélange of 53 

signaling factors; including, WNTs, BMPs, FGFs, Retinoic Acid, and TGFβ signaling (Conlon, 54 
1995; Goldstein et al., 2005; Hosokawa et al., 2010; Li et al., 2009). At the time of specification, 55 

NCCs can be segregated into four major subpopulations which are collinear with their axial region 56 

of origin; namely the cranial, vagal, trunk, and sacral (Bronner, 2012; Rothstein et al., 2018) 57 
Shortly after their specification, NCCs delaminate from the neural tube and assume mesenchymal 58 

character just prior to their emigration, a process known as epithelial-to-mesenchymal transition 59 
(EMT)(Taneyhill and Padmanabhan, 2014). Following delamination, NCCs migrate along 60 

stereotypic routes throughout the embryo, guided both by NCC-mesenchyme interactions and 61 
chemotaxis. The migration paths of NCCs can be predicted by the axial region of origination—the 62 

most anterior NCCs migrate rostrally to give rise to structures in the head, while more posterior 63 
NCCs give rise to more posteriorly fate structures. Following arrival in the target tissue, NCCs 64 

further undergo changes to assume their stably differentiated tissue types.   65 

 66 
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As NCCs emigrate and migrate throughout the early vertebrate body, NCCs interact with, express, 67 

and modify a diversity of extracellular matrix (ECM) constituents. The ECM itself is a diverse and 68 
dynamic microenvironment comprised of hydrated scaffold proteins, polysaccharides, and 69 

signaling molecules, which fundamentally provide structure and support for cell adhesion and 70 
form in tissues (Frantz et al., 2010). Across a number of stem cell niches, the stem cell deposition 71 

of and interaction with ECM defines a large number of their most important properties, such as 72 
retention of stem state, survival, and onset of differentiation programs (Gattazzo et al., 2014). 73 

Undeniably, NCC-ECM interactions are involved in EMT, migration, and differentiation in the 74 
embryo, which are summarized here. Further, while tremendous research efforts have been made 75 

toward elucidating biomechanical and cellular roles of NCC-ECM interactions, the question of 76 
which transcriptional regulators directly regulate the expression of ECM and ECM-interacting 77 

components in NCCs remains to be comprehensively addressed. Intriguingly, mounting evidence 78 

exists which positions Hox transcription factors as potential modulators of both ECM constituent 79 
proteins and cell-surface ECM-interaction components. Thus, we present a primer into the role of 80 

the ECM in NCC development, as well as review the potential role of Hox transcription factors as 81 
regulators of the NCC-ECM interactions.  82 

 83 
 84 

2. Neural crest EMT and migration are regulated through ECM interactions 85 
 86 

EMT in the NCC is canonically marked by upregulation of the genes Snail1, Snail2 and Twist1, 87 
which encode for transcription factors that globally regulate EMT. Each of these transcription 88 

factors does so by controlling cellular programs and initiate NCC migration by repressing cell-cell 89 

adhesion mediating proteins, such as E-cadherin (adherens junctions), Occludins (tight 90 
junctions), and Desmoplakin (Desmosomes) (Ohkubo and Ozawa, 2003; Yang et al., 2010; Yook 91 

et al., 2006). Additionally, EMT is marked by species-dependent switch in Cadherin composition 92 
(Rogers et al., 2018), secretion of Fibronectin and Laminin, and reorganization of actin through 93 

expression of Integrins (Henderson and Copp, 1997; Lamouille et al., 2014), all of which 94 
coordinate active, directed cellular migration of NCC. Thus, through the loss of tight cell adhesion 95 

and promotion of a more mesenchymal cell type, Snail1, Snail2, and Twist1 all initiate the dramatic 96 
migratory phenotype intrinsic to NCC function.  97 

 98 
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NCC remodeling of the ECM is a critical aspect of both NCCs undergoing EMT and throughout 99 

NCC migration to target tissues. The function of the ECM as a director of NCC migration has 100 
recently been thoroughly reviewed (Leonard and Taneyhill, 2020). Building upon this prior 101 

summary, a hallmark of NCC migration is the upregulated expression and secretion of ECM 102 
proteins, such as the Fibronectin family, which enables a more permissive microenvironment for 103 

cell migration(Bilozur and Hay, 1988; Boucaut et al., 1984; Monier-Gavelle and Duband, 1997). 104 
NCC interaction with secreted Fibronectin proteins is primarily mediated by the Integrin family of 105 

transmembrane proteins, which promote cell adhesion, migration, actin polymerization, cell 106 
proliferation, and cell survival(Huttenlocher and Horwitz, 2011; Zeltz and Gullberg, 2016). 107 

Antibody blockade of Integrin signaling in vitro disrupts NCC ability to interact with fibronectin and 108 
inhibits migration (Monier-Gavelle and Duband, 1997; Strachan and Condic, 2003). As such, 109 

regulation of Integrin expression is critical to NCC migration. Additionally, not only are ECM 110 

constituent proteins secreted by NCC, the existing ECM is proteolytically remodeled before and 111 
during NCC migration, typically through secretion of matrix metalloproteinases (MMPs) (Small 112 

and Crawford, 2016). Expression of certain MMPs, including ADAM13, MMP14, MMP16, and 113 
MMP9, have been shown by either gain or loss of function in Xenopus and chick embryos to be 114 

crucial for cranial NCC for migration (Alfandari et al., 2001; Garmon et al., 2018; Monsonego-115 
Ornan et al., 2012; Roth et al., 2017). MMPs themselves appear to play even more complex roles 116 

in NCC EMT, beyond their catalytic function. Both MMP14 and MMP28 have been observed to 117 
have nuclear localization, facilitated through either NCC-centric autocrine or paracrine signaling 118 

paradigms, implying a more directed function of these MMPs in EMT progression (Andrieu et al., 119 
2020; Gouignard et al., 2021). Therefore, NCC modulation of ECM by direct contribution, as well 120 

as active remodeling, supports a system where differential microenvironmental composition of 121 

permissive and non-permissive substrates facilitate NCC migration and EMT.  122 
 123 

While NCC do differentially secrete ECM proteins (Duband and Thiery, 1987; Leonard and 124 
Taneyhill, 2020; Wang and Astrof, 2016), there is significant production of these components by 125 

cells in the migratory environment of the neural tube, ectoderm, and somites (Copp et al., 2011; 126 
Crawford et al., 2003; Latimer and Jessen, 2010). Importantly, while Laminins and Fibronectins 127 

are expressed by a wide variety of cell types, specific isoforms of each protein are differentially 128 
expressed throughout the developing embryo (Copp et al., 2011; Crawford et al., 2003). As Wang 129 

and Astrof (2016) demonstrated, the NCC-autonomous expression of Fibronectin is necessary 130 

for proper vagal NCC patterning in the heart. Further, antibody staining for Fibronectin expression 131 
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shows NCC likely begin secreting Fibronectin following EMT (Newgreen and Thiery, 1980). 132 

Laminins, which normally are expressed by cells adjacent to the basal laminae of a tissue, have 133 
been shown to play a more important role in NCC differentiation than migration. So, while post-134 

EMT NCC may not upregulate Laminins at the time of EMT, Fibronectin is required as a substrate 135 
for correct NCC migration and is expressed cell autonomously and in the surrounding 136 

mesenchyme. Cumulatively, these findings highlight the centrality of ECM-NCC interactions in 137 
governing appropriate EMT and NCC migration.  138 

 139 
 140 

3. Integrins as directors of NCC migration and survival 141 
 142 

The significance of integrins in NCC migration lies primarily upstream of the formation of focal 143 

adhesion complexes, which allow NCC to apply the contractile force necessary to move through 144 
the embryo. Integrin binding domains are found on Fibronectins, Laminins, and Collagens. At 145 

sites where Integrin heterodimers bind to one of these ECM components, Focal Adhesion Kinase 146 
(FAK) is recruited and activated to the intracellular domain of the activated Integrins. FAK further 147 

initiates recruitment of accessory proteins and eventually the initiation of actin stress fibers 148 
(Huttenlocher and Horwitz, 2011). By regulating the polarity of surface integrin localization, NCC 149 

are capable of initiating actin polymerization in a directional manner. Directional and differential 150 
actin recruitment applies a force at the cell membrane, propelling the cell forward and enabling 151 

migration. While other regulatory and cues are mediated through integrin signaling, their function 152 
as mediators of focal adhesion complex formation has been well established in NCC(Breau et al., 153 

2009; Mckeown et al., 2013). As an illustrative example, within the context of the periocular NCCs 154 

which give rise to the corneal endothelium and stroma, Integrin α8β1 expressed by NCCs 155 
interacts with Nephronectin in the ECM to facilitate migration into the eye (Ma et al., 2022).  156 

Inhibition of either component reduced the capacity of NCC to populate the cornea. The failure of 157 
periocular NCCs to migrate into the presumptive corneal stroma after Nephronectin-α8β1 158 

abrogation was further shown to be mediated through depletion of focal adhesions. Indeed, 159 
considered here as a special case, Integrin mediated interactions with the ECM are fundamental 160 

drivers of NCC migration.  161 
 162 

Integrin signaling is also known to impact both cell proliferation and survival, but NCC cell 163 

proliferation may be governed by a different mechanism (Lawson and Burridge, 2014; Moreno-164 
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Layseca and Streuli, 2014; Pugacheva et al., 2006; Walker and Assoian, 2005). Integrin activation 165 

at the cell membrane regulates cell proliferation by inciting a phosphorylation cascade, mediated 166 
canonically by Erk signal transduction pathway. Ultimately, the phosphorylation cascade leads to 167 

the activation of Cdk4/CyclinD1 complex, initiating G1/S progression during the cell cycle. 168 
Interestingly however, NCC-specific depletion of Integrin α4β1 signaling by antibody blockade in 169 

chick embryos dramatically increased NCC cell death, but did not decrease the cell proliferation 170 
rate as shown by TUNNEL and BrdU assays, respectively (Testaz and Duband, 2001). In partial 171 

corroboration of these data, Cre knockout of Integrin β1 exhibited no change in proliferation rates 172 
and did not demonstrate the same NCC-specific cell death in mouse NCC fated for the enteric 173 

nervous system(Breau et al., 2006), which differs from Integrin α4β1 functional depletion in chick.  174 
Lastly, Integrin α5β1 null mice showed cranial NCC specific cell death(Goh et al., 1997). As such, 175 

loss of Integrin signaling is not sufficient to decrease cell proliferation rates, but may be required 176 

in some NCC populations for cell survival. Further work, including analysis of gain of integrin 177 
function, is necessary to elucidate the precise role integrins may play specifically in directing NCC 178 

proliferation.  179 
 180 

Overall, multiple observations—the distinction in ECM composition in various embryonic regions, 181 
diversity of integrin heterodimer subtypes (Takada et al., 2007), and regulation of cell surface 182 

localization of integrin subtypes—brings to light the possibility of complex regulatory mechanisms 183 
which may govern NCC development. Indeed, NCC migration, then, is directed not only by NCC-184 

autonomous expression of integrins, but also by the availability of their local ECM substrate. 185 
Additionally, cell survival signaling in migrating NCCs may be facilitated by Integrins. In this way, 186 

the Integrin-ECM interaction go beyond facilitating cell adhesion, but specifically directs cell 187 

migration and survival in NCCs. 188 
 189 

 190 
4. Non-integrin ECM interactions with the microenvironment facilitate NCC migration 191 

 192 
Beyond Integrin-ECM interactions, NCC migration is guided by additional microenvironmental 193 

cues. Protein-Protein interactions on the NCC surface between Eph-Ephrins and Semaphorins-194 
Neuropilins are non-permissive to cranial NCC migration (Davy et al., 2004; Kuriyama and Mayor, 195 

2008; McLennan and Kulesa, 2007). Eph are a family of Tyrosine Kinase Receptors expressed 196 

by cranial NCC and detect Ephrins, another class of membrane bound ligand proteins. In the 197 
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cranial domain, Ephrins are expressed by the mesenchyme that lies between each cranial NCC 198 

stream into their respective pharyngeal arches (PAs), structures which make up much of the lower 199 
cranial structures, and restricts the Eph-positive NCC into discrete migratory routes (Santiago and 200 

Erickson, 2002). Homozygous knockout of EphrinB2 leads to mislocalization of mouse cranial 201 
NCC, however expression of the extracellular domain is sufficient to rescue proper NCC migration 202 

and arch invasion(Adams et al., 2001), clearly demonstrating that EphrinB2 functions as the 203 
required ligand to direct cranial NCC infiltration. Similarly, the Neuropilin and Plexin family of cell 204 

surface proteins heterodimerize to mediate NCC migration, where Npn1 (Neuropilin 1) knockdown 205 
by siRNA in chicken embryos prevented NCC from migrating completely into the 2nd PA 206 

(McLennan and Kulesa, 2007). Semaphorins, the ligand for Neuropilin receptors, are secreted by 207 
non-neural crest mesenchyme and are required for proper pattering of certain cranial NCC 208 

populations (Lepore et al., 2006). Thus, Semaphorin-Neuropilins and Eph-Ephrin interactions 209 

modulate NCC migration by altering the way NCC interact with their microenvironment. Together 210 
with Integrin signaling, the layered regulation afforded by these cell surface mechanisms direct 211 

NCC migration in a complex manner necessary to give rise to multiple and distinct NCC fates.  212 
 213 

 214 
5. Hox genes as potential regulators of NCC migration and proliferation 215 

 216 
The broad diversity of ECM constituents and NCC-localized cell surface receptors provides a 217 

remarkable regulatory framework to regulate both EMT and migration throughout the vertebrate 218 
embryo. The migratory routes chosen by NCC subpopulations are spatially separated along the 219 

A-P axis, collinear, at least part, with the expression of Hox transcription factors. This ancient 220 

family of genes shares a high degree of conservation in both function and organization between 221 
diverse organismal lineages, from flies to fish, from mice to humans (Figure 2) (Mallo and Alonso, 222 

2013). Primarily known for their role in establishing the A-P axis, select Hox family members have 223 
been shown to play an integral function in tumor metastasis (Hong et al., 2015; Wu et al., 2006), 224 

cell proliferation (Krosl et al., 1998; Lee et al., 2015), angiogenesis (Amali et al., 2013; Mace et 225 
al., 2005), and pharyngeal arch formation (Trainor and Krumlauf, 2001), among other functions. 226 

Hox transcription factors in mammals are organized into discrete paralogous clusters across four 227 
chromosomes and are numbered according to their position in the cluster (Figure 2). Intriguingly, 228 

Hox genes which occur earlier within the chromosome, that is to say with a Hox gene with a lower 229 
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number, are expressed more anteriorly, while later genes are expressed more distally from the 230 

head.  231 
 232 

The close association between the A-P expression of Hox transcription factors and the stereotypic 233 
paths chosen by NCCs during their development presents a tantalizing model where the cellular 234 

signals which regulate NCC segregation into their terminal cell types may be rooted in 235 
combinatorial Hox transcriptional regulation, which has long been under investigation (Parker et 236 

al., 2014; Parker et al., 2018; Parker et al., 2019a; Trainor and Krumlauf, 2000; Trainor and 237 
Krumlauf, 2001). Particular research efforts have been applied to discerning the role of Hox 238 

expression within cranial neural crest, which contribute cell lineages to the lower jaw (Sandell and 239 
Trainor, 2006). The earliest Hox expression in vertebrate systems, supported with evidence from 240 

mouse, zebrafish, Xenopus laevis, and human organoids, is detectable along the level of the 241 

hindbrain in the rhombomeres (r), the earliest segment of expression ranging from r2 to r3 242 
depending on species specific contexts (Libby et al., 2021; McNulty et al., 2005; Schilling et al., 243 

2001; Wilkinson et al., 1989). Prior to the rhombomeric Hox expression domains, NCC patterning 244 
in the anterior embryo is largely ruled by the non-Hox homeobox transcription factors Gbx2, 245 

Otx1/Otx2, and Emx1/Emx2, as evidenced by data collected across multiple species (Byrd and 246 
Meyers, 2005; Li et al., 2009; Matsuo et al., 1995; Roeseler et al., 2020; Steventon et al., 2012). 247 

Within the Hox-positive domain, overlapping and combinatorial expression of Hox genes from 248 
different clusters direct specific migration of NCCs into the correct PA. Disruptions in Hox gene 249 

expression in facial patterning, such as mutations in Hoxa2, Hoxb3, and Hoxb4, results in either 250 
the fate transformation or abrogation of cranial NCC migration into the PAs (Gendron-Maguire et 251 

al., 1993; Kitazawa et al., 2015; Nolte et al., 2019; Simeone et al., 1991). In the case of Hoxa2 in 252 

particular, loss of function in a murine model converts the second-PA fate to mirror that of the first, 253 
duplicating jaw and presumptive auditory structures (Gendron-Maguire et al., 1993). Ectopic 254 

Hoxa2 expression in chick conversely abolished first-PA structure, the formation of which requires 255 
Hox-negative NCC contribution (Gavalas et al., 2003). Together, these experiments demonstrate 256 

the important and conserved role of anteriorly expressed Hox transcription factors in formation of 257 
cranial NCC derived tissues. 258 

 259 
Due perhaps to the robust nature of Hox-related phenotypes which are manifest at later 260 

developmental stages, the functional role of Hox transcription factors in earlier NCC 261 

developmental programs, such as during EMT and specification, has been less well 262 
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characterized. Aligning with a previously posited hypothesis published in Taniguchi, 2014, below 263 

we highlight that Hox regulation on NCCs appears to be mediated at least in part by regulation of 264 
reciprocal ECM interactions.  265 

 266 
As previously noted, ECM interactions are foundational drivers of early NCC development. 267 

Importantly for this discussion, expression of several of the ECM modulators and components 268 
discussed previously are known to be influenced by Hox gene expression. Wu et al. (2006) found 269 

that Hoxb7 overexpression in breast cancer cell lines lead to downregulation of E-cadherin and 270 
Claudin expression, which correlated with increased EMT in tumor cells. Contextualizing this 271 

finding with respect to NCCs, suppressed expression of Claudin-1 in chick NCCs is known to 272 
increase NCC emigration from the neural tube (Fishwick et al., 2012) and both Claudin-1 and 273 

Hoxb7 are proximally expressed at early embryonic stages (Bell et al., 2004; Darnell et al., 2007; 274 

Simard et al., 2005). Further, Hoxa2 in chick NCC promotes EMT through the repression of 275 
Cadherin-6b (Gouti et al., 2011), while mouse Hoxa1 activates Cadherin-6b expression in a 276 

transient manner (Inoue et al., 1997). Hox control of Integrin expression is supported by the 277 
observation that Hoxd3 upregulates Integrin β3 expression in human umbilical vein endothelial 278 

cells (Boudreau et al., 1997) which has been shown to increase NCC migratory phenotype 279 
(Boudreau et al., 1997; Monier-Gavelle and Duband, 1997). Additionally, Integrin heterodimers 280 

αVβ3 and α5β1, are both under direct regulation of Hoxd3 as identified in a number of cancer 281 
types (Boudreau and Varner, 2004).  282 

 283 
Reciprocally to direct Hox transcriptional regulation of ECM components, signaling induced by 284 

ECM may also impact the expression of Hox genes themselves. Integrin α5β1 null mice showed 285 

a decrease in Hoxb9 expression along the posterior aspect of the embryo (Goh et al., 1997). 286 
Notably, in the same Integrin α5β1 null mice, anterior expression of Hoxb-1, Hoxb-4, and Hoxb-287 

5 were all reportedly similar to wild type mice (Goh et al., 1997). Moreover, both Eph and 288 
Neuropilin, whose expression are essential to segregating NCC migration into discrete streams 289 

(Kuriyama and Mayor, 2008), are likely to be differentially expressed under combinatorial control 290 
by Hoxd4 and Hoxb4 expression, at least in part (Prin et al., 2014).  291 

 292 
Each of the above-described examples contribute to a model in which Hox transcription factors 293 

may directly regulate NCC EMT and migration through transcriptional control of ECM and ECM 294 

components. Hence, the role Hox transcription factors play in NCC development may be 295 
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intrinsically tied to transcriptional regulation of NCC microenvironmental interactions, which 296 

involves both interaction with and modulation of ECM components. Several NCC cell-autonomous 297 
regulatory targets have been summarized here, namely those in the Integrin, Ephrin, and 298 

Neuropilin families. These data would position Hox genes as potent drivers of early NCC 299 
developmental programs, expanding on previous models focused on Hox regulation on later fate 300 

acquisition in NCCs. 301 
 302 

Beyond EMT and migration, the NCC proliferation rate appears to be at least partially integrin 303 
independent (Goh et al., 1997; Testaz and Duband, 2001), which may indicate an alternate 304 

mechanism for NCC cell cycle regulation by Hox factors. Supporting a model where Hox genes 305 
regulate cell cycle progression, Hoxb7-driven ex vivo cultured tumors were highly proliferative 306 

when transplanted into immunodeficient mice (Wu et al., 2006). Furthermore, the hyper-307 

proliferative nature of T47D and MCF7 breast cancer cell lines has also been attributed to altered 308 
Hoxb5 expression, as both gain and loss of function respectively increased or decreased cancer 309 

cell proliferation rate (Lee et al., 2015).  In fact, a novel binding site for a HoxA9-dependant 310 
transcriptional complex was shown to be upstream of the Cyclin-dependent Kinase Inhibitors 311 

Cdkn2a/b, the repression of which allows for G1 initiation (Collins et al., 2014). The conserved 312 
role of direct Hox activation of cell cycle gene expression is supported by experiments in C. 313 

elegans involving the Hox ortholog lin-39 as an upstream activator for cdk-4 and cye-1 (cyclin E) 314 
(Roiz et al., 2016). Indeed, while the possibility remains for NCC cell cycle control via Integrin 315 

signaling, there is a growing body of evidence for direct regulation of expression of cell cycle 316 
regulatory genes in NCC by Hox transcription factors. 317 

 318 

Because of the nested expression domains of the Hox genes in the NCC, a complex “Hox code” 319 
emerges as a likely mechanism for directing NCC migration towards a correct target tissue. A 320 

combination of active Hox gene expression modules label various NCC subpopulations along the 321 
anterior-posterior axis. Studying these combinations, however, is partially complicated due to 322 

functional redundancy of many proximally expressed and true paralogous Hox genes (Boucherat 323 
et al., 2013; Horan et al., 1995; Hunter and Prince, 2002; Jarinova et al., 2008). Despite this 324 

possibility for redundancy, much of what is known regarding Hox function is derived from 325 
experiments involving loss of a single gene. A chief challenge in determining a mechanism 326 

underlying the NCC-ECM-Hox axis will be elucidating not only the impact of individual Hox 327 

perturbation on the NCC-ECM interactions, but also, perhaps more importantly, how combinations 328 
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of Hox genes work in concert to direct the same interactions.  Consideration of combinatorial Hox 329 

codes are already shedding refreshing light on other developmental contexts (Alberstat et al., 330 
2022; Parker et al., 2019b; Yamada et al., 2021), which if applied to NCC promises a tantalizing 331 

prospect of a mechanism for NCC subtypes selection through discrete activation of ECM-332 
interaction modules.  333 

 334 
As reviewed in this manuscript, Hox genes can be modeled as regulators of the NCC 335 

microenvironment, which includes control of both the contribution to ECM dynamics, as well as 336 
the NCC-ECM interactions used during migration. These data, collectively, begin to describe a 337 

putative mechanism of action for Hox regulation of cranial NCC (Figure 3); combinatorial Hox 338 
expression in NCC controls delamination/migration by differentially regulating cell surface 339 

receptors and ECM modulation. Putatively, regulation may include the direct transcriptional 340 

control of NCC-autonomous ECM interaction molecules expression, such as Integrins and 341 
Ephrins. Additionally, NCC cell cycle progression appears to be under direct Hox influence for 342 

certain NCC populations. The involvement of Hox regulation on ECM composition is an emerging 343 
topic and is an exciting area for further exploration (Akin and Nazarali, 2005; Boudreau and 344 

Bissell, 1998; Taniguchi, 2014). Significantly, these results suggest an intrinsic connection 345 
between ECM composition, Hox expression, and NCC EMT/migration, which warrants further 346 

investigation in other NCC populations beyond the cranial NCC.  347 
  348 
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Figure 1 349 

 350 
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 352 
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 359 

 360 

 361 
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 365 
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 369 
 370 

 371 

 372 
 373 

 374 

 375 

Figure 1. Generalized schematic of the stages of neural crest cell (NCC) development. NCCs are 
first specified following gastrulation in bilateral stripes in border adjacent to the neural plate. These 
neural plate boarder cells will undergo a dramatic morphogenic rearrangement, which various species 
to species, to fold inward to and reside toward the dorsal aspect of the neural tube. During and 
immediately after this morphogenesis, the now specified NCCs will undergo an epithelial-to-
mesenchymal transition to complete delamination, and begin stereotypic migratory journeys toward 
specific tissues throughout the embryo. Upon arriving in this target tissues, NCCs switch on diverse 
tissue dependent gene regulatory programs to differentiate into a multitude of tissue lineages.  
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Figure 2 380 
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 400 
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 402 
 403 

 404 

 405 
 406 

 407 

Figure 2. Schematic of the chromosomal organization of murine and zebrafish Hox gene 
clusters. (A) Hox genes in mice are arranged on four chromosomes with each paralogy group (PG) 
bearing a label A-D. PGs are defined by sequence similarity. As such, Hoxa1, Hoxb1, and Hoxd1 all 
are members of PG1. The most 5’ (left) Hox genes are expressed more anteriorly. (B) In zebrafish, due 
to a teleost-specific whole genome duplication event, PGs A-C are duplicated across an additional 3 
chromosomes. It should be noted that even with this duplication, there is a high degree of conservation 
of synteny, order, and representation across both species. 
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Figure 3 411 
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 432 

 433 

 434 

Figure 3. Model of Combinatorial Hox regulation of NCC microenvironment and cell cycle. 
Different combinations and expression levels of nested Hox genes, for example shown here from 
paralogy group A-D, leads to different combinations of cell surface protein which allow for differential 
NCC migratory behavior. The putative combinatorial “Hox code” may work in concert with differentiation 
gene networks to determine the final cell type contribution for each NCC subpopulation.  
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