

Hox proteins as regulators of extracellular matrix interactions during neural crest migration

Aubrey G. A. Howard IV^{1,2} and Rosa A. Uribe^{*1,2}

1. BioSciences Department, Rice University, Houston, Texas, 77005, USA

2. Biochemistry and Cell Biology Program, Rice University, Houston, Texas, 77005, USA

*Corresponding author email address: rosa.uribe@rice.edu

Key words: Hox, neural crest, ECM, EMT, Integrin

Abstract

Emerging during embryogenesis, the neural crest are a migratory, transient population of multipotent stem cell that differentiates into various cell types in vertebrates. Neural crest cells arise along the anterior-posterior extent of the neural tube, delaminate and migrate along routes to their final destinations. The factors that orchestrate how neural crest cells undergo delamination and their subsequent sustained migration is not fully understood. This review provides a primer about neural crest epithelial-to-mesenchymal transition (EMT), with a special emphasis on the role of the Extracellular matrix (ECM), cellular effector proteins of EMT, and subsequent migration. We also summarize published findings that link the expression of Hox transcription factors to EMT and ECM modification, thereby implicating Hox factors in regulation of EMT and ECM remodeling during neural crest cell ontogenesis.

34

35

36 **1. Introduction: Neural Crest Cell Development**

37

38 Neural Crest Cells (NCCs) are a migratory and multipotent stem cell population common among
39 vertebrate species. These transient embryonic stem cells arise from the dorsal-most aspect of the
40 neural tube (**Figure 1**)—a transient embryonic structure fated to become the entire central
41 nervous system—and begin extensive and stereotypic migratory paths throughout the developing
42 mesendoderm. (Le Douarin, 1982; Le Douarin and Kalcheim, 1999; Saint-Jeannet, 2016). NCCs
43 contribute to numerous and diversely specialized tissues; including, for example, craniofacial
44 skeleton, corneal endothelium and stroma, auditory skeletal structures, sympathetic and sensory
45 neurons, enteric nervous system, several classes of pigment producing cells across species, as
46 well as many other tissues types(Jasrapuria-Agrawal and Lwigale, 2014; Lapedriza et al., 2014;
47 Matsuo et al., 1995; Prendergast and Raible, 2014). Indeed, the field has come to appreciate that
48 the spectacular diversity of structures formed by NCCs highlights their crucial role in vertebrate
49 development.

50

51 NCC ontogenesis occurs in four major stages: specification, delamination, migration, and
52 differentiation (**Figure 1**). NCCs first emerge at the dorsal aspect of the neural tube along the
53 majority of the anterior-posterior (A-P) axis of the elongating embryo in response to a mélange of
54 signaling factors; including, WNTs, BMPs, FGFs, Retinoic Acid, and TGF β signaling (Conlon,
55 1995; Goldstein et al., 2005; Hosokawa et al., 2010; Li et al., 2009). At the time of specification,
56 NCCs can be segregated into four major subpopulations which are collinear with their axial region
57 of origin; namely the cranial, vagal, trunk, and sacral (Bronner, 2012; Rothstein et al., 2018)
58 Shortly after their specification, NCCs delaminate from the neural tube and assume mesenchymal
59 character just prior to their emigration, a process known as epithelial-to-mesenchymal transition
60 (EMT)(Taneyhill and Padmanabhan, 2014). Following delamination, NCCs migrate along
61 stereotypic routes throughout the embryo, guided both by NCC-mesenchyme interactions and
62 chemotaxis. The migration paths of NCCs can be predicted by the axial region of origination—the
63 most anterior NCCs migrate rostrally to give rise to structures in the head, while more posterior
64 NCCs give rise to more posteriorly fate structures. Following arrival in the target tissue, NCCs
65 further undergo changes to assume their stably differentiated tissue types.

66

67 As NCCs emigrate and migrate throughout the early vertebrate body, NCCs interact with, express,
68 and modify a diversity of extracellular matrix (ECM) constituents. The ECM itself is a diverse and
69 dynamic microenvironment comprised of hydrated scaffold proteins, polysaccharides, and
70 signaling molecules, which fundamentally provide structure and support for cell adhesion and
71 form in tissues (Frantz et al., 2010). Across a number of stem cell niches, the stem cell deposition
72 of and interaction with ECM defines a large number of their most important properties, such as
73 retention of stem state, survival, and onset of differentiation programs (Gattazzo et al., 2014).
74 Undeniably, NCC-ECM interactions are involved in EMT, migration, and differentiation in the
75 embryo, which are summarized here. Further, while tremendous research efforts have been made
76 toward elucidating biomechanical and cellular roles of NCC-ECM interactions, the question of
77 which transcriptional regulators directly regulate the expression of ECM and ECM-interacting
78 components in NCCs remains to be comprehensively addressed. Intriguingly, mounting evidence
79 exists which positions Hox transcription factors as potential modulators of both ECM constituent
80 proteins and cell-surface ECM-interaction components. Thus, we present a primer into the role of
81 the ECM in NCC development, as well as review the potential role of Hox transcription factors as
82 regulators of the NCC-ECM interactions.

83
84

85 **2. Neural crest EMT and migration are regulated through ECM interactions**

86
87 EMT in the NCC is canonically marked by upregulation of the genes *Snail1*, *Snail2* and *Twist1*,
88 which encode for transcription factors that globally regulate EMT. Each of these transcription
89 factors does so by controlling cellular programs and initiate NCC migration by repressing cell-cell
90 adhesion mediating proteins, such as E-cadherin (adherens junctions), Occludins (tight
91 junctions), and Desmoplakin (Desmosomes) (Ohkubo and Ozawa, 2003; Yang et al., 2010; Yook
92 et al., 2006). Additionally, EMT is marked by species-dependent switch in Cadherin composition
93 (Rogers et al., 2018), secretion of Fibronectin and Laminin, and reorganization of actin through
94 expression of Integrins (Henderson and Copp, 1997; Lamouille et al., 2014), all of which
95 coordinate active, directed cellular migration of NCC. Thus, through the loss of tight cell adhesion
96 and promotion of a more mesenchymal cell type, *Snail1*, *Snail2*, and *Twist1* all initiate the dramatic
97 migratory phenotype intrinsic to NCC function.

98

99 NCC remodeling of the ECM is a critical aspect of both NCCs undergoing EMT and throughout
100 NCC migration to target tissues. The function of the ECM as a director of NCC migration has
101 recently been thoroughly reviewed (Leonard and Taneyhill, 2020). Building upon this prior
102 summary, a hallmark of NCC migration is the upregulated expression and secretion of ECM
103 proteins, such as the Fibronectin family, which enables a more permissive microenvironment for
104 cell migration(Bilozur and Hay, 1988; Boucaut et al., 1984; Monier-Gavelle and Duband, 1997).
105 NCC interaction with secreted Fibronectin proteins is primarily mediated by the Integrin family of
106 transmembrane proteins, which promote cell adhesion, migration, actin polymerization, cell
107 proliferation, and cell survival(Huttenlocher and Horwitz, 2011; Zeltz and Gullberg, 2016).
108 Antibody blockade of Integrin signaling *in vitro* disrupts NCC ability to interact with fibronectin and
109 inhibits migration (Monier-Gavelle and Duband, 1997; Strachan and Condic, 2003). As such,
110 regulation of Integrin expression is critical to NCC migration. Additionally, not only are ECM
111 constituent proteins secreted by NCC, the existing ECM is proteolytically remodeled before and
112 during NCC migration, typically through secretion of matrix metalloproteinases (MMPs) (Small
113 and Crawford, 2016). Expression of certain MMPs, including ADAM13, MMP14, MMP16, and
114 MMP9, have been shown by either gain or loss of function in *Xenopus* and chick embryos to be
115 crucial for cranial NCC for migration (Alfandari et al., 2001; Garmon et al., 2018; Monsonego-
116 Ornan et al., 2012; Roth et al., 2017). MMPs themselves appear to play even more complex roles
117 in NCC EMT, beyond their catalytic function. Both MMP14 and MMP28 have been observed to
118 have nuclear localization, facilitated through either NCC-centric autocrine or paracrine signaling
119 paradigms, implying a more directed function of these MMPs in EMT progression (Andrieu et al.,
120 2020; Gouignard et al., 2021). Therefore, NCC modulation of ECM by direct contribution, as well
121 as active remodeling, supports a system where differential microenvironmental composition of
122 permissive and non-permissive substrates facilitate NCC migration and EMT.

123
124 While NCC do differentially secrete ECM proteins (Duband and Thiery, 1987; Leonard and
125 Taneyhill, 2020; Wang and Astrof, 2016), there is significant production of these components by
126 cells in the migratory environment of the neural tube, ectoderm, and somites (Copp et al., 2011;
127 Crawford et al., 2003; Latimer and Jessen, 2010). Importantly, while Laminins and Fibronectins
128 are expressed by a wide variety of cell types, specific isoforms of each protein are differentially
129 expressed throughout the developing embryo (Copp et al., 2011; Crawford et al., 2003). As Wang
130 and Astrof (2016) demonstrated, the NCC-autonomous expression of Fibronectin is necessary
131 for proper vagal NCC patterning in the heart. Further, antibody staining for Fibronectin expression

132 shows NCC likely begin secreting Fibronectin following EMT (Newgreen and Thiery, 1980).
133 Laminins, which normally are expressed by cells adjacent to the basal laminae of a tissue, have
134 been shown to play a more important role in NCC differentiation than migration. So, while post-
135 EMT NCC may not upregulate Laminins at the time of EMT, Fibronectin is required as a substrate
136 for correct NCC migration and is expressed cell autonomously and in the surrounding
137 mesenchyme. Cumulatively, these findings highlight the centrality of ECM-NCC interactions in
138 governing appropriate EMT and NCC migration.

139

140

141 **3. Integrins as directors of NCC migration and survival**

142

143 The significance of integrins in NCC migration lies primarily upstream of the formation of focal
144 adhesion complexes, which allow NCC to apply the contractile force necessary to move through
145 the embryo. Integrin binding domains are found on Fibronectins, Laminins, and Collagens. At
146 sites where Integrin heterodimers bind to one of these ECM components, Focal Adhesion Kinase
147 (FAK) is recruited and activated to the intracellular domain of the activated Integrins. FAK further
148 initiates recruitment of accessory proteins and eventually the initiation of actin stress fibers
149 (Huttenlocher and Horwitz, 2011). By regulating the polarity of surface integrin localization, NCC
150 are capable of initiating actin polymerization in a directional manner. Directional and differential
151 actin recruitment applies a force at the cell membrane, propelling the cell forward and enabling
152 migration. While other regulatory and cues are mediated through integrin signaling, their function
153 as mediators of focal adhesion complex formation has been well established in NCC(Breau et al.,
154 2009; McKeown et al., 2013). As an illustrative example, within the context of the periocular NCCs
155 which give rise to the corneal endothelium and stroma, Integrin $\alpha 8\beta 1$ expressed by NCCs
156 interacts with Nephronectin in the ECM to facilitate migration into the eye (Ma et al., 2022).
157 Inhibition of either component reduced the capacity of NCC to populate the cornea. The failure of
158 periocular NCCs to migrate into the presumptive corneal stroma after Nephronectin- $\alpha 8\beta 1$
159 abrogation was further shown to be mediated through depletion of focal adhesions. Indeed,
160 considered here as a special case, Integrin mediated interactions with the ECM are fundamental
161 drivers of NCC migration.

162

163 Integrin signaling is also known to impact both cell proliferation and survival, but NCC cell
164 proliferation may be governed by a different mechanism (Lawson and Burridge, 2014; Moreno-

165 Layseca and Streuli, 2014; Pugacheva et al., 2006; Walker and Assoian, 2005). Integrin activation
166 at the cell membrane regulates cell proliferation by inciting a phosphorylation cascade, mediated
167 canonically by Erk signal transduction pathway. Ultimately, the phosphorylation cascade leads to
168 the activation of Cdk4/CyclinD1 complex, initiating G1/S progression during the cell cycle.
169 Interestingly however, NCC-specific depletion of Integrin $\alpha 4\beta 1$ signaling by antibody blockade in
170 chick embryos dramatically increased NCC cell death, but did not decrease the cell proliferation
171 rate as shown by TUNNEL and BrdU assays, respectively (Testaz and Duband, 2001). In partial
172 corroboration of these data, Cre knockout of *Integrin $\beta 1$* exhibited no change in proliferation rates
173 and did not demonstrate the same NCC-specific cell death in mouse NCC fated for the enteric
174 nervous system(Breau et al., 2006), which differs from Integrin $\alpha 4\beta 1$ functional depletion in chick.
175 Lastly, *Integrin $\alpha 5\beta 1$* null mice showed cranial NCC specific cell death(Goh et al., 1997). As such,
176 loss of Integrin signaling is not sufficient to decrease cell proliferation rates, but may be required
177 in some NCC populations for cell survival. Further work, including analysis of gain of integrin
178 function, is necessary to elucidate the precise role integrins may play specifically in directing NCC
179 proliferation.

180

181 Overall, multiple observations—the distinction in ECM composition in various embryonic regions,
182 diversity of integrin heterodimer subtypes (Takada et al., 2007), and regulation of cell surface
183 localization of integrin subtypes—brings to light the possibility of complex regulatory mechanisms
184 which may govern NCC development. Indeed, NCC migration, then, is directed not only by NCC-
185 autonomous expression of integrins, but also by the availability of their local ECM substrate.
186 Additionally, cell survival signaling in migrating NCCs may be facilitated by Integrins. In this way,
187 the Integrin-ECM interaction go beyond facilitating cell adhesion, but specifically directs cell
188 migration and survival in NCCs.

189

190

191 **4. Non-integrin ECM interactions with the microenvironment facilitate NCC migration**

192

193 Beyond Integrin-ECM interactions, NCC migration is guided by additional microenvironmental
194 cues. Protein-Protein interactions on the NCC surface between Eph-Ephrins and Semaphorins-
195 Neuropilins are non-permissive to cranial NCC migration (Davy et al., 2004; Kuriyama and Mayor,
196 2008; McLennan and Kulesa, 2007). Eph are a family of Tyrosine Kinase Receptors expressed
197 by cranial NCC and detect Ephrins, another class of membrane bound ligand proteins. In the

198 cranial domain, Ephrins are expressed by the mesenchyme that lies between each cranial NCC
199 stream into their respective pharyngeal arches (PAs), structures which make up much of the lower
200 cranial structures, and restricts the Eph-positive NCC into discrete migratory routes (Santiago and
201 Erickson, 2002). Homozygous knockout of *EphrinB2* leads to mislocalization of mouse cranial
202 NCC, however expression of the extracellular domain is sufficient to rescue proper NCC migration
203 and arch invasion(Adams et al., 2001), clearly demonstrating that *EphrinB2* functions as the
204 required ligand to direct cranial NCC infiltration. Similarly, the Neuropilin and Plexin family of cell
205 surface proteins heterodimerize to mediate NCC migration, where *Npn1* (*Neuropilin 1*) knockdown
206 by siRNA in chicken embryos prevented NCC from migrating completely into the 2nd PA
207 (McLennan and Kulesa, 2007). Semaphorins, the ligand for Neuropilin receptors, are secreted by
208 non-neural crest mesenchyme and are required for proper patterning of certain cranial NCC
209 populations (Lepore et al., 2006). Thus, Semaphorin-Neuropilins and Eph-Ephrin interactions
210 modulate NCC migration by altering the way NCC interact with their microenvironment. Together
211 with Integrin signaling, the layered regulation afforded by these cell surface mechanisms direct
212 NCC migration in a complex manner necessary to give rise to multiple and distinct NCC fates.

213

214

215 **5. Hox genes as potential regulators of NCC migration and proliferation**

216

217 The broad diversity of ECM constituents and NCC-localized cell surface receptors provides a
218 remarkable regulatory framework to regulate both EMT and migration throughout the vertebrate
219 embryo. The migratory routes chosen by NCC subpopulations are spatially separated along the
220 A-P axis, collinear, at least part, with the expression of Hox transcription factors. This ancient
221 family of genes shares a high degree of conservation in both function and organization between
222 diverse organismal lineages, from flies to fish, from mice to humans (**Figure 2**) (Mallo and Alonso,
223 2013). Primarily known for their role in establishing the A-P axis, select Hox family members have
224 been shown to play an integral function in tumor metastasis (Hong et al., 2015; Wu et al., 2006),
225 cell proliferation (Krosl et al., 1998; Lee et al., 2015), angiogenesis (Amali et al., 2013; Mace et
226 al., 2005), and pharyngeal arch formation (Trainor and Krumlauf, 2001), among other functions.
227 Hox transcription factors in mammals are organized into discrete paralogous clusters across four
228 chromosomes and are numbered according to their position in the cluster (**Figure 2**). Intriguingly,
229 Hox genes which occur earlier within the chromosome, that is to say with a Hox gene with a lower

230 number, are expressed more anteriorly, while later genes are expressed more distally from the
231 head.

232

233 The close association between the A-P expression of Hox transcription factors and the stereotypic
234 paths chosen by NCCs during their development presents a tantalizing model where the cellular
235 signals which regulate NCC segregation into their terminal cell types may be rooted in
236 combinatorial Hox transcriptional regulation, which has long been under investigation (Parker et
237 al., 2014; Parker et al., 2018; Parker et al., 2019a; Trainor and Krumlauf, 2000; Trainor and
238 Krumlauf, 2001). Particular research efforts have been applied to discerning the role of Hox
239 expression within cranial neural crest, which contribute cell lineages to the lower jaw (Sandell and
240 Trainor, 2006). The earliest Hox expression in vertebrate systems, supported with evidence from
241 mouse, zebrafish, *Xenopus laevis*, and human organoids, is detectable along the level of the
242 hindbrain in the rhombomeres (r), the earliest segment of expression ranging from r2 to r3
243 depending on species specific contexts (Libby et al., 2021; McNulty et al., 2005; Schilling et al.,
244 2001; Wilkinson et al., 1989). Prior to the rhombomeric Hox expression domains, NCC patterning
245 in the anterior embryo is largely ruled by the non-Hox homeobox transcription factors *Gbx2*,
246 *Otx1/Otx2*, and *Emx1/Emx2*, as evidenced by data collected across multiple species (Byrd and
247 Meyers, 2005; Li et al., 2009; Matsuo et al., 1995; Roeseler et al., 2020; Steventon et al., 2012).
248 Within the Hox-positive domain, overlapping and combinatorial expression of Hox genes from
249 different clusters direct specific migration of NCCs into the correct PA. Disruptions in Hox gene
250 expression in facial patterning, such as mutations in *Hoxa2*, *Hoxb3*, and *Hoxb4*, results in either
251 the fate transformation or abrogation of cranial NCC migration into the PAs (Gendron-Maguire et
252 al., 1993; Kitazawa et al., 2015; Nolte et al., 2019; Simeone et al., 1991). In the case of *Hoxa2* in
253 particular, loss of function in a murine model converts the second-PA fate to mirror that of the first,
254 duplicating jaw and presumptive auditory structures (Gendron-Maguire et al., 1993). Ectopic
255 *Hoxa2* expression in chick conversely abolished first-PA structure, the formation of which requires
256 Hox-negative NCC contribution (Gavalas et al., 2003). Together, these experiments demonstrate
257 the important and conserved role of anteriorly expressed Hox transcription factors in formation of
258 cranial NCC derived tissues.

259

260 Due perhaps to the robust nature of Hox-related phenotypes which are manifest at later
261 developmental stages, the functional role of Hox transcription factors in earlier NCC
262 developmental programs, such as during EMT and specification, has been less well

263 characterized. Aligning with a previously posited hypothesis published in Taniguchi, 2014, below
264 we highlight that Hox regulation on NCCs appears to be mediated at least in part by regulation of
265 reciprocal ECM interactions.

266

267 As previously noted, ECM interactions are foundational drivers of early NCC development.
268 Importantly for this discussion, expression of several of the ECM modulators and components
269 discussed previously are known to be influenced by *Hox* gene expression. Wu et al. (2006) found
270 that *Hoxb7* overexpression in breast cancer cell lines lead to downregulation of *E-cadherin* and
271 *Claudin* expression, which correlated with increased EMT in tumor cells. Contextualizing this
272 finding with respect to NCCs, suppressed expression of *Claudin-1* in chick NCCs is known to
273 increase NCC emigration from the neural tube (Fishwick et al., 2012) and both *Claudin-1* and
274 *Hoxb7* are proximally expressed at early embryonic stages (Bell et al., 2004; Darnell et al., 2007;
275 Simard et al., 2005). Further, *Hoxa2* in chick NCC promotes EMT through the repression of
276 *Cadherin-6b* (Gouti et al., 2011), while mouse *Hoxa1* activates *Cadherin-6b* expression in a
277 transient manner (Inoue et al., 1997). Hox control of Integrin expression is supported by the
278 observation that *Hoxd3* upregulates *Integrin β3* expression in human umbilical vein endothelial
279 cells (Boudreau et al., 1997) which has been shown to increase NCC migratory phenotype
280 (Boudreau et al., 1997; Monier-Gavelle and Duband, 1997). Additionally, Integrin heterodimers
281 $\alpha V\beta 3$ and $\alpha 5\beta 1$, are both under direct regulation of *Hoxd3* as identified in a number of cancer
282 types (Boudreau and Varner, 2004).

283

284 Reciprocally to direct Hox transcriptional regulation of ECM components, signaling induced by
285 ECM may also impact the expression of Hox genes themselves. *Integrin α5β1* null mice showed
286 a decrease in *Hoxb9* expression along the posterior aspect of the embryo (Goh et al., 1997).
287 Notably, in the same *Integrin α5β1* null mice, anterior expression of *Hoxb-1*, *Hoxb-4*, and *Hoxb-5*
288 were all reportedly similar to wild type mice (Goh et al., 1997). Moreover, both Eph and
289 Neuropilin, whose expression are essential to segregating NCC migration into discrete streams
290 (Kuriyama and Mayor, 2008), are likely to be differentially expressed under combinatorial control
291 by *Hoxd4* and *Hoxb4* expression, at least in part (Prin et al., 2014).

292

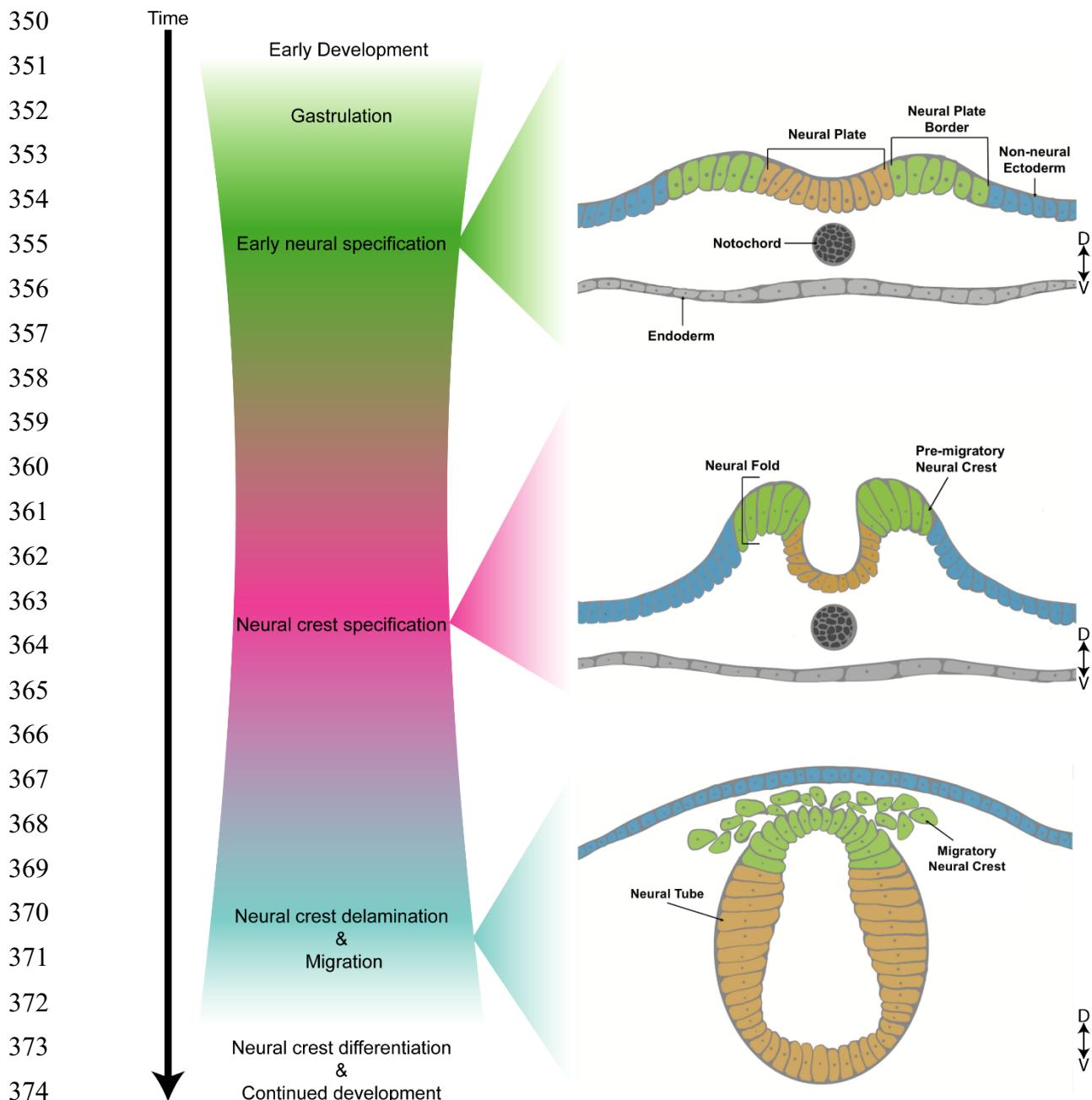
293 Each of the above-described examples contribute to a model in which Hox transcription factors
294 may directly regulate NCC EMT and migration through transcriptional control of ECM and ECM
295 components. Hence, the role Hox transcription factors play in NCC development may be

296 intrinsically tied to transcriptional regulation of NCC microenvironmental interactions, which
297 involves both interaction with and modulation of ECM components. Several NCC cell-autonomous
298 regulatory targets have been summarized here, namely those in the Integrin, Ephrin, and
299 Neuropilin families. These data would position Hox genes as potent drivers of early NCC
300 developmental programs, expanding on previous models focused on Hox regulation on later fate
301 acquisition in NCCs.

302

303 Beyond EMT and migration, the NCC proliferation rate appears to be at least partially integrin
304 independent (Goh et al., 1997; Testaz and Duband, 2001), which may indicate an alternate
305 mechanism for NCC cell cycle regulation by Hox factors. Supporting a model where *Hox* genes
306 regulate cell cycle progression, *Hoxb7*-driven *ex vivo* cultured tumors were highly proliferative
307 when transplanted into immunodeficient mice (Wu et al., 2006). Furthermore, the hyper-
308 proliferative nature of T47D and MCF7 breast cancer cell lines has also been attributed to altered
309 *Hoxb5* expression, as both gain and loss of function respectively increased or decreased cancer
310 cell proliferation rate (Lee et al., 2015). In fact, a novel binding site for a HoxA9-dependant
311 transcriptional complex was shown to be upstream of the Cyclin-dependent Kinase Inhibitors
312 *Cdkn2a/b*, the repression of which allows for G1 initiation (Collins et al., 2014). The conserved
313 role of direct Hox activation of cell cycle gene expression is supported by experiments in *C.*
314 *elegans* involving the *Hox* ortholog *lin-39* as an upstream activator for *cdk-4* and *cye-1* (cyclin E)
315 (Roiz et al., 2016). Indeed, while the possibility remains for NCC cell cycle control via Integrin
316 signaling, there is a growing body of evidence for direct regulation of expression of cell cycle
317 regulatory genes in NCC by Hox transcription factors.

318


319 Because of the nested expression domains of the *Hox* genes in the NCC, a complex “*Hox* code”
320 emerges as a likely mechanism for directing NCC migration towards a correct target tissue. A
321 combination of active *Hox* gene expression modules label various NCC subpopulations along the
322 anterior-posterior axis. Studying these combinations, however, is partially complicated due to
323 functional redundancy of many proximally expressed and true paralogous *Hox* genes (Boucherat
324 et al., 2013; Horan et al., 1995; Hunter and Prince, 2002; Jarinova et al., 2008). Despite this
325 possibility for redundancy, much of what is known regarding *Hox* function is derived from
326 experiments involving loss of a single gene. A chief challenge in determining a mechanism
327 underlying the NCC-ECM-Hox axis will be elucidating not only the impact of individual Hox
328 perturbation on the NCC-ECM interactions, but also, perhaps more importantly, how combinations

329 of Hox genes work in concert to direct the same interactions. Consideration of combinatorial Hox
330 codes are already shedding refreshing light on other developmental contexts (Alberstat et al.,
331 2022; Parker et al., 2019b; Yamada et al., 2021), which if applied to NCC promises a tantalizing
332 prospect of a mechanism for NCC subtypes selection through discrete activation of ECM-
333 interaction modules.

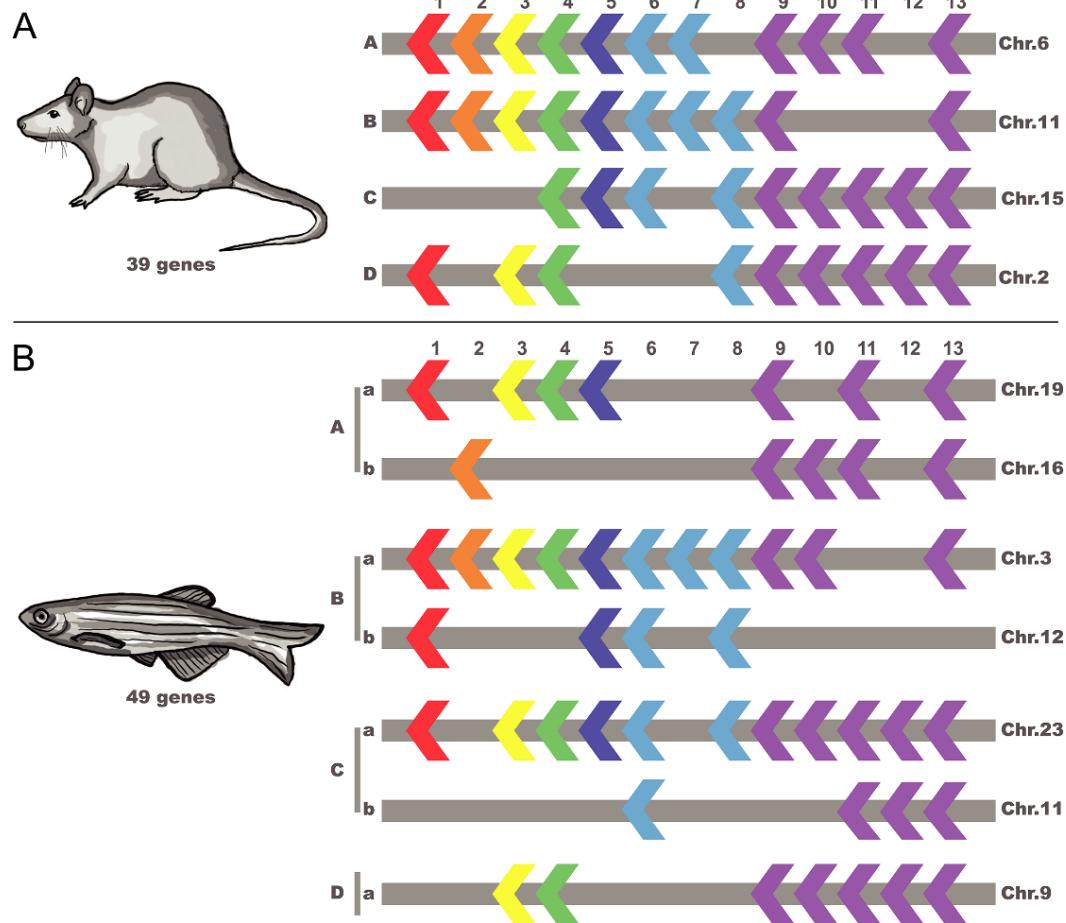
334

335 As reviewed in this manuscript, *Hox* genes can be modeled as regulators of the NCC
336 microenvironment, which includes control of both the contribution to ECM dynamics, as well as
337 the NCC-ECM interactions used during migration. These data, collectively, begin to describe a
338 putative mechanism of action for Hox regulation of cranial NCC (**Figure 3**); combinatorial Hox
339 expression in NCC controls delamination/migration by differentially regulating cell surface
340 receptors and ECM modulation. Putatively, regulation may include the direct transcriptional
341 control of NCC-autonomous ECM interaction molecules expression, such as Integrins and
342 Ephrins. Additionally, NCC cell cycle progression appears to be under direct Hox influence for
343 certain NCC populations. The involvement of Hox regulation on ECM composition is an emerging
344 topic and is an exciting area for further exploration (Akin and Nazarali, 2005; Boudreau and
345 Bissell, 1998; Taniguchi, 2014). Significantly, these results suggest an intrinsic connection
346 between ECM composition, Hox expression, and NCC EMT/migration, which warrants further
347 investigation in other NCC populations beyond the cranial NCC.

348

349 **Figure 1**

375


Figure 1. Generalized schematic of the stages of neural crest cell (NCC) development. NCCs are first specified following gastrulation in bilateral stripes in border adjacent to the neural plate. These neural plate boarder cells will undergo a dramatic morphogenic rearrangement, which varies from species to species, to fold inward to and reside toward the dorsal aspect of the neural tube. During and immediately after this morphogenesis, the now specified NCCs will undergo an epithelial-to-mesenchymal transition to complete delamination, and begin stereotypical migratory journeys toward specific tissues throughout the embryo. Upon arriving in this target tissues, NCCs switch on diverse tissue dependent gene regulatory programs to differentiate into a multitude of tissue lineages.

376
377
378
379

380 Figure 2

381

382

400 **Figure 2. Schematic of the chromosomal organization of murine and zebrafish Hox gene**
401 **clusters.** (A) Hox genes in mice are arranged on four chromosomes with each paralogy group (PG)

402 bearing a label A-D. PGs are defined by sequence similarity. As such, *Hoxa1*, *Hoxb1*, and *Hoxd1* all

403 are members of PG1. The most 5' (left) Hox genes are expressed more anteriorly. (B) In zebrafish, due

404 to a teleost-specific whole genome duplication event, PGs A-C are duplicated across an additional 3

405 chromosomes. It should be noted that even with this duplication, there is a high degree of conservation

406 of synteny, order, and representation across both species.

407

408

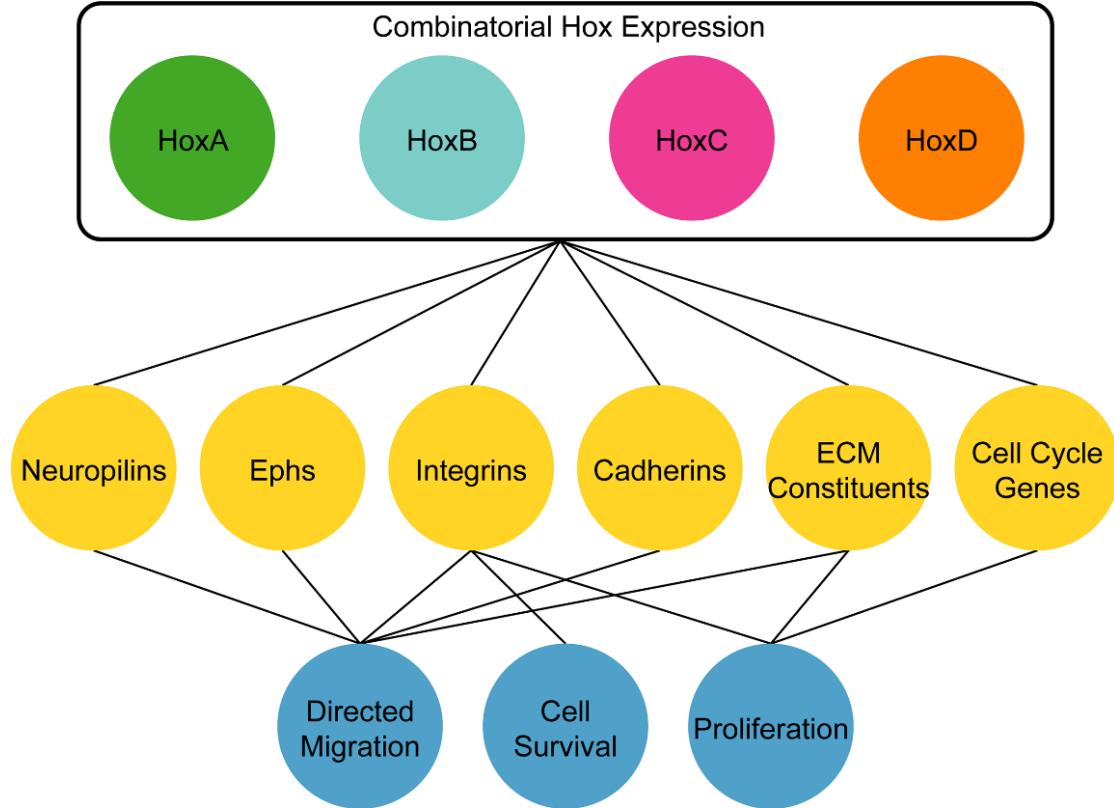
409

410

411 Figure 3

412

413


Combinatorial Hox Expression

414

415

416

417

Figure 3. Model of Combinatorial Hox regulation of NCC microenvironment and cell cycle. Different combinations and expression levels of nested Hox genes, for example shown here from paralogy group A-D, leads to different combinations of cell surface protein which allow for differential NCC migratory behavior. The putative combinatorial “Hox code” may work in concert with differentiation gene networks to determine the final cell type contribution for each NCC subpopulation.

428

429

430

431

432

433

434

435

436

437 **Acknowledgements**

438 We acknowledge funding from Cancer Prevention and Research Institute of Texas (CPRIT)
439 Recruitment of First-Time Tenure Track Faculty Members (CPRIT-RR170062), from NSF
440 CAREER Award (1942019) and National Institutes of Health DK124804 awarded to R.A.U. We
441 thank Jessa Westheimer and Ashley Tsang for assistance with figure designs.

442

443 **Conflict of Interest**

444 R.A.U. is a coauthor of the manuscript and an editor of *Differentiation* and was not involved in the
445 handling of the peer review process of this submission.

446

447

448 **References Cited**

449

450 **Adams, R. H., Diella, F., Hennig, S., Helmbacher, F., Deutsch, U. and Klein, R.** (2001). The
451 Cytoplasmic Domain of the Ligand EphrinB2 Is Required for Vascular Morphogenesis but
452 Not Cranial Neural Crest Migration. *Cell* **104**, 57–69.

453 **Akin, Z. N. and Nazarali, A. J.** (2005). Hox Genes and Their Candidate Downstream Targets in
454 the Developing Central Nervous System. *Cell. Mol. Neurobiol.* **25**, 697–741.

455 **Alberstat, E. J., Chung, K., Sun, D. A., Ray, S. and Patel, N. H.** (2022). Combinatorial
456 interactions of Hox genes establish appendage diversity of the amphipod crustacean
457 *Parhyale hawaiensis*. *bioRxiv* 2022.03.25.485717.

458 **Alfandari, D., Cousin, H., Gaultier, A., Smith, K., White, J. M., Darribère, T. and DeSimone,
459 D. W.** (2001). Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell
460 migration. *Curr. Biol.* **11**, 918–930.

461 **Amali, A. A., Sie, L., Winkler, C. and Featherstone, M.** (2013). Zebrafish *hoxd4a* Acts
462 Upstream of *meis1.1* to Direct Vasculogenesis, Angiogenesis and Hematopoiesis. *PLoS
463 One* **8**.

464 **Andrieu, C., Montigny, A., Bibonne, A., Despin-Guitard, E., Alfandari, D. and Théveneau,
465 E. T.** (2020). MMP14 is required for delamination of chick neural crest cells independently
466 of its catalytic activity. *Biorxiv* **11**.

467 **Bell, G. W., Yatskievych, T. A. and Antin, P. B.** (2004). GEISHA, a Whole-Mount in Situ
468 Hybridization Gene Expression Screen in Chicken Embryos. *Dev. Dyn.* **229**, 677–687.

469 **Bilozur, M. E. and Hay, E. D.** (1988). Neural crest migration in 3D extracellular matrix utilizes
470 laminin, fibronectin, or collagen. *Dev. Biol.* **125**, 19–33.

471 **Boucaut, J.-C., Darribf, T., Poole, T. J., Aoyama, H., Yamada, K. M. and Thiery, J. P.**
472 (1984). Biologically Active Synthetic Peptides as Probes of Embryonic Development: A
473 Competitive Peptide Inhibitor of Fibronectin Function Inhibits Gastrulation in Amphibian
474 Embryos and Neural Crest Cell Migration in Avian Embryos. *J. Cell Biol.* **99**, 1822–1830.

475 **Boucherat, O., Montaron, S., Bérubé-Simard, F.-A., Aubin, J., Philippidou, P., Wellik, D.**
476 **M., Dasen, J. S. and Jeannotte, L.** (2013). Partial functional redundancy between Hoxa5
477 and Hoxb5 paralog genes during lung morphogenesis. *Am J Physiol Lung Cell Mol Physiol*
478 **304**, 817–830.

479 **Boudreau, N. and Bissell, M. J.** (1998). Extracellular matrix signaling: integration of form and
480 function in normal and malignant cells. *Curr. Opin. Cell Biol.* **10**, 640–646.

481 **Boudreau, N. J. and Varner, J. A.** (2004). The Homeobox Transcription Factor Hox D3
482 Promotes Integrin α 5 β 1 Expression and Function during Angiogenesis. *J. Biol. Chem.*
483 **279**, 4862–4868.

484 **Boudreau, N., Andrews, C., Srebrow, A., Ravanpay, A. and Cheresh, D. A.** (1997). Induction
485 of the Angiogenic Phenotype by Hox D3. *J. Cell Biol.* **139**, 257–264.

486 **Breau, M. A., Pietri, T., Eder, O., Blanche, M., Brakebusch, C., Fässler, R., Thiery, J. P. and**
487 **Dufour, S.** (2006). Lack of 1 integrins in enteric neural crest cells leads to a Hirschsprung-
488 like phenotype. *Development* **133**, 1725–1734.

489 **Breau, M. A., Dahmani, A., Broders-Bondon, F., Thiery, J. P. and Dufour, S.** (2009). Beta1
490 integrins are required for the invasion of the caecum and proximal hindgut by enteric neural
491 crest cells. *Development* **136**, 2791–2801.

492 **Bronner, M. E.** (2012). Formation and migration of neural crest cells in the vertebrate embryo.
493 *Histochem. Cell Biol.* **138**, 179–186.

494 **Byrd, N. A. and Meyers, E. N.** (2005). Loss of Gbx2 results in neural crest cell patterning and
495 pharyngeal arch artery defects in the mouse embryo. *Dev. Biol.* **284**, 233–245.

496 **Collins, C., Wang, J., Miao, H., Bronstein, J., Nawer, H., Xu, T., Figueroa, M., Muntean, A.**
497 **G. and Hess, J. L.** (2014). C/EBP α is an essential collaborator in Hoxa9/Meis1-mediated
498 leukemogenesis. *Proc. Natl. Acad. Sci.* **111**, 9899–9904.

499 **Conlon, R. A.** (1995). Retinoic acid and pattern formation in vertebrates. *Trends Genet.* **11**,

500 314–319.

501 **Copp, A. J., Carvalho, R., Wallace, A., Sorokin, L., Sasaki, T., Greene, N. D. E. and Ybot-**
502 **Gonzalez, P.** (2011). Regional differences in the expression of laminin isoforms during
503 mouse neural tube development. *Matrix Biol.*

504 **Crawford, B. D., Henry, C. A., Clason, T. A., Becker, A. L. and Hille, M. B.** (2003). Activity
505 and Distribution of Paxillin, Focal Adhesion Kinase, and Cadherin Indicate Cooperative
506 Roles during Zebrafish Morphogenesis. *Mol. Biol. Cell* **14**, 3065–3081.

507 **Darnell, D. K., Kaur, S., Stanislaw, S., Davey, S., Konieczka, J. H., Yatskievych, T. A. and**
508 **Antin, P. B.** (2007). GEISHA: an in situ hybridization gene expression resource for the
509 chicken embryo. *Cytogenet. Genome Res.* **117**, 30–35.

510 **Davy, A., Aubin, J. E. and Soriano, P.** (2004). Ephrin-B1 forward and reverse signaling are
511 required during mouse development. *Genes Dev.* **18**, 572–583.

512 **Duband, J.-L. and Thiery, J. P.** (1987). Distribution of laminin and collagens during avian
513 neural crest development. *Development* **101**, 461–478.

514 **Fishwick, K. J., Neiderer, T. E., Jhingory, S., Bronner, M. E. and Taneyhill, L. A.** (2012).
515 The tight junction protein claudin-1 influences cranial neural crest cell emigration. *Mech.*
516 *Dev.* **129**, 275–283.

517 **Frantz, C., Stewart, K. M. and Weaver, V. M.** (2010). The extracellular matrix at a glance. *J.*
518 *Cell Sci.* **123**, 4195–4200.

519 **Garmon, T., Wittling, M. and Nie, S.** (2018). MMP14 Regulates Cranial Neural Crest Epithelial-
520 to-Mesenchymal Transition and Migration.

521 **Gattazzo, F., Urciuolo, A. and Bonaldo, P.** (2014). Extracellular matrix: A dynamic
522 microenvironment for stem cell niche. *Biochim. Biophys. Acta - Gen. Subj.* **1840**, 2506–
523 2519.

524 **Gavalas, A., Ruhrberg, C., Live, J., Henderson, C. E. and Krumlauf, R.** (2003). Neuronal
525 defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions
526 among these Hox genes. *Development* **130**, 5663–5679.

527 **Gendron-Maguire, M., Mallo, M., Zhang, M. and Gridley, T.** (1993). Hoxa-2 Mutant Mice
528 Exhibit Homeotic Transformation of Skeletal Elements Derived from Cranial Neural Crest.
529 *Cell* **75**, 1317–1331.

530 **Goh, K. L., Yang, J. T. and Hynes, R. O.** (1997). Mesodermal defects and cranial neural crest
531 apoptosis in a5 integrin-null embryos. *Development* **124**, 4309–4319.

532 **Goldstein, A. M., Brewer, K. C., Doyle, A. M., Nagy, N. and Roberts, D. J.** (2005). BMP

533 signaling is necessary for neural crest cell migration and ganglion formation in the enteric
534 nervous system. *Mech. Dev.* **122**, 821–833.

535 **Gouignard, N., Bibonne, A., Mata, J. F., Bajanca, F., Berki, B., Barriga, E. H., Saint-**
536 **Jeannet, J.-P. and Theveneau, E.** (2021). Paracrine regulation of neural crest EMT by
537 placodal MMP28. *bioRxiv* 2020.11.19.389544.

538 **Gouti, M., Briscoe, J. and Gavalas, A.** (2011). Anterior hox genes interact with components of
539 the neural crest specification network to induce neural crest fates. *Stem Cells* **29**, 858–870.

540 **Henderson, D. J. and Copp, A. J.** (1997). Role of the extracellular matrix in neural crest cell
541 migration. *J. Anat.* **191**, 507–515.

542 **Hong, C.-S., Jeong, O., Piao, Z., Guo, C., Jung, M.-R., Choi, C. and Park, Y.-K.** (2015).
543 HOXB5 induces invasion and migration through direct transcriptional up-regulation of β -
544 catenin in human gastric carcinoma. *Biochem. J* **472**, 393–403.

545 **Horan, G. S. B., Kovács, E. N., Behringer, R. R. and Featherstone, M. S.** (1995). Mutations
546 in Paralogous Hox Genes Result in Overlapping Homeotic Transformations of the Axial
547 Skeleton: Evidence for Unique and Redundant Function. *Dev. Biol.* **169**, 359–372.

548 **Hosokawa, R., Oka, K., Yamaza, T., Iwata, J., Urata, M., Xu, X., Bringas, P., Nonaka, K. and**
549 **Chai, Y.** (2010). TGF- β mediated FGF10 signaling in cranial neural crest cells controls
550 development of myogenic progenitor cells through tissue–tissue interactions during tongue
551 morphogenesis. *Dev. Biol.* **341**, 186–195.

552 **Hunter, M. P. and Prince, V. E.** (2002). Zebrafish Hox parologue group 2 genes function
553 redundantly as selector genes to pattern the second pharyngeal arch. *Dev. Biol.* **247**, 367–
554 389.

555 **Huttenlocher, A. and Horwitz, A. R.** (2011). Integrins in cell migration. *Cold Spring Harb.*
556 *Perspect. Biol.* **3**, a005074.

557 **Inoue, T., Chisaka, O., Matsunami, H. and Takeichi, M.** (1997). Cadherin-6 Expression
558 Transiently Delineates Specific Rhombomeres, Other Neural Tube Subdivisions, and
559 Neural Crest Subpopulations in Mouse Embryos. *Dev. Biol.* **183**, 183–194.

560 **Jarinova, O., Hatch, G., Poitras, L., Prudhomme, C., Grzyb, M., Aubin, J., Bérubé-Simard,**
561 **F.-A., Jeannotte, L. and Ekker, M.** (2008). Functional resolution of duplicated hoxb5
562 genes in teleosts. *Development* **135**, 3543–53.

563 **Jasrapuria-Agrawal, S. and Lwigale, P. Y.** (2014). Neural Crest Cells in Ocular Development.
564 In *Neural Crest Cells: Evolution, Development and Disease*, pp. 313–333. Elsevier Inc.

565 **Kitazawa, T., Fujisawa, K., Narboux-Nême, N., Arima, Y., Kawamura, Y., Inoue, T., Wada,**

566 **Y., Kohro, T., Aburatani, H., Kodama, T., et al.** (2015). Distinct effects of Hoxa2
567 overexpression in cranial neural crest populations reveal that the mammalian
568 hyomandibular-ceratohyal boundary maps within the styloid process. *Dev. Biol.* **402**, 162–
569 174.

570 **Krosl, J., Baban, S., Krosl, G., Rozenfeld, S., Largman, C. and Sauvageau, G.** (1998).
571 Cellular proliferation and transformation induced by HOXB4 and HOXB3 proteins involves
572 cooperation with PBX1. *Oncogene* **16**, 3403–3412.

573 **Kuriyama, S. and Mayor, R.** (2008). Molecular analysis of neural crest migration. *Philos. Trans. R. Soc. B* **363**, 1349–1362.

575 **Lamouille, S., Xu, J. and Derynck, R.** (2014). Molecular mechanisms of epithelial–
576 mesenchymal transition. *Nat. Publ. Gr.* **15**, 178–196.

577 **Lapedriza, A., Petratou, K. and Kelsh, R. N.** (2014). Neural Crest Cells and Pigmentation. In
578 *Neural Crest Cells: Evolution, Development and Disease*, pp. 287–311.

579 **Latimer, A. and Jessen, J. R.** (2010). Extracellular matrix assembly and organization during
580 zebrafish gastrulation. *Matrix Biol.* **29**, 89–96.

581 **Lawson, C. D. and Burridge, K.** (2014). The on-off relationship of Rho and Rac during integrin-
582 mediated adhesion and cell migration. *Small GTPases* **5**, e27958.

583 **Le Douarin, N. M.** (1982). *The Neural Crest*. Cambridge: Cambridge University Press.

584 **Le Douarin, N. and Kalcheim, C.** (1999). *The Neural Crest*. 2nd ed. Cambridge University
585 Press.

586 **Lee, J.-Y., Hur, H., Yun, H. J., Kim, Y., Yang, S., Kim, S. II and Kim, M. H.** (2015). HOXB5
587 Promotes the Proliferation and Invasion of Breast Cancer Cells. *Int. J. Biol. Sci.* **11**, 701–
588 711.

589 **Leonard, C. E. and Taneyhill, L. A.** (2020). The road best traveled: Neural crest migration
590 upon the extracellular matrix. *Semin. Cell Dev. Biol.* **100**, 177–185.

591 **Lepore, J. J., Mericko, P. A., Cheng, L., Lu, M. M., Morrisey, E. E. and Parmacek, M. S.**
592 (2006). GATA-6 regulates semaphorin 3C and is required in cardiac neural crest for
593 cardiovascular morphogenesis. *J. Clin. Invest.* **116**, 929–939.

594 **Li, B., Kuriyama, S., Moreno, M. and Mayor, R.** (2009). The posteriorizing gene Gbx2 is a
595 direct target of Wnt signalling and the earliest factor in neural crest induction. *Development*
596 **136**, 3267–3278.

597 **Libby, A. R. G., Joy, D. A., Elder, N. H., Bulger, E. A., Krakora, M. Z., Gaylord, E. A.,**
598 **Mendoza-Camacho, F., Butts, J. C. and McDevitt, T. C.** (2021). Axial elongation of

599 caudalized human organoids mimics aspects of neural tube development. *Dev.* **148**,
600 **Ma, J., Bi, L., Spurlin, J. and Lwigale, P.** (2022). Nephronectin-integrin α 8 signaling is
601 required for proper migration of periocular neural crest cells during chick corneal
602 development. *Elife* **11**,
603 **Mace, K. A., Hansen, S. L., Myers, C., Young, D. M. and Boudreau, N.** (2005). HOXA3
604 induces cell migration in endothelial and epithelial cells promoting angiogenesis and wound
605 repair. *J. Cell Sci.* **118**, 2567–2577.
606 **Mallo, M. and Alonso, C. R.** (2013). The regulation of Hox gene expression during animal
607 development. *Development* **140**, 3951–3963.
608 **Matsuo, I., Kuratani, S., Kimura, C., Takeda, N. and Aizawa, S.** (1995). Mouse Otx2 functions
609 in the formation and patterning of rostral head. *Genes Dev.* **9**, 2646–2658.
610 **McKeown, S. J., Wallace, A. S. and Anderson, R. B.** (2013). Expression and function of cell
611 adhesion molecules during neural crest migration. *Dev. Biol.* **373**, 244–257.
612 **McLennan, R. and Kulesa, P. M.** (2007). In vivo analysis reveals a critical role for neuropilin-1
613 in cranial neural crest cell migration in chick. *Dev. Biol.* **301**, 227–239.
614 **McNulty, C. L., Peres, J. N., Bardine, N., van den Akker, W. M. R. and Durston, A. J.** (2005).
615 Knockdown of the complete Hox paralogous group 1 leads to dramatic hindbrain and
616 neural crest defects. *Development* **132**, 2861–2871.
617 **Monier-Gavelle, F. and Duband, J.-L.** (1997). Cross Talk between Adhesion Molecules:
618 Control of N-cadherin Activity by Intracellular Signals Elicited by 1 and 3 Integrins in
619 Migrating Neural Crest Cells. *J. Cell Biol.* **137**, 1663–1681.
620 **Monsonego-Ornan, E., Kosonovsky, J., Bar, A., Roth, L., Fraggi-Rankis, V., Sims, S.,
621 Kohl, A. and Sela-Donenfeld, D.** (2012). Matrix metalloproteinase 9/gelatinase B is
622 required for neural crest cell migration. *Dev. Biol.* **364**, 162–177.
623 **Moreno-Layseca, P. and Streuli, C. H.** (2014). Signalling pathways linking integrins with cell
624 cycle progression. *Matrix Biol.* **34**, 144–153.
625 **Newgreen, D. and Thiery, J.-P.** (1980). Cell and Tissue Research Fibronectin in Early Avian
626 Embryos: Synthesis and Distribution Along the Migration Pathways of Neural Crest Cells.
627 *Cell Tissue Res* **211**, 269–291.
628 **Nolte, C., De Kumar, B. and Krumlauf, R.** (2019). Hox genes: Downstream “effectors” of
629 retinoic acid signaling in vertebrate embryogenesis. *genesis* e23306.
630 **Ohkubo, T. and Ozawa, M.** (2003). The transcription factor Snail downregulates the tight
631 junction components independently of E-cadherin downregulation. *J. Cell Sci.* **117**, 1675–

632 1685.

633 **Parker, H. J., Bronner, M. E. and Krumlauf, R.** (2014). Hox regulatory network of hindbrain
634 segmentation is conserved to the base of vertebrates. *Nature*.

635 **Parker, H. J., Pushel, I. and Krumlauf, R.** (2018). Coupling the roles of Hox genes to
636 regulatory networks patterning cranial neural crest. *Dev. Biol.* **444**, S67–S78.

637 **Parker, H. J., De Kumar, B., Green, S. A., Prummel, K. D., Hess, C., Kaufman, C. K.,**
638 **Mosimann, C., Wiedemann, L. M., Bronner, M. E. and Krumlauf, R.** (2019a). A Hox-
639 TALE regulatory circuit for neural crest patterning is conserved across vertebrates. *Nat.*
640 *Commun.* **10**, 1182.

641 **Parker, H. J., Bronner, M. E. and Krumlauf, R.** (2019b). An atlas of anterior hox gene
642 expression in the embryonic sea lamprey head: Hox-code evolution in vertebrates. *Dev.*
643 *Biol.* **453**, 19–33.

644 **Prendergast, A. and Raible, D. W.** (2014). Neural Crest Cells and Peripheral Nervous System
645 Development. In *Neural Crest Cells: Evolution, Development and Disease*, pp. 255–286.
646 Elsevier Inc.

647 **Prin, F., Perpente, P., Itaski, N. and Gould, A. P.** (2014). Hox proteins drive cell segregation
648 and non-autonomous apical remodelling during hindbrain segmentation. *Development* **141**,
649 1492–1502.

650 **Pugacheva, E. N., Roegiers, F. and Golemis, E. A.** (2006). Interdependence of cell
651 attachment and cell cycle signaling. *Curr. Opin. Cell Biol.* **18**, 507–515.

652 **Roeseler, D. A., Strader, L., Anderson, M. J. and Waters, S. T.** (2020). Gbx2 Is Required for
653 the Migration and Survival of a Subpopulation of Trigeminal Cranial Neural Crest Cells. *J.*
654 *Dev. Biol.* *2020, Vol. 8, Page 33* **8**, 33.

655 **Rogers, C. D., Sorrells, L. K. and Bronner, M. E.** (2018). A catenin-dependent balance
656 between N-cadherin and E-cadherin controls neuroectodermal cell fate choices. *Mech.*
657 *Dev.* **152**, 44–56.

658 **Roiz, D., Escobar-Restrepo, J. M., Leu, P. and Hajnal, A.** (2016). The *C. elegans* hox gene
659 lin-39 controls cell cycle progression during vulval development. *Dev. Biol.* **418**, 124–134.

660 **Roth, L., Kalev-Altman, R., Monsonego-Ornan, E. and Sela-Donenfeld, D.** (2017). A new
661 role of the membrane-type matrix metalloproteinase 16 (MMP16/MT3-MMP) in neural crest
662 cell migration. *Int. J. Dev. Biol.* **61**, 245–256.

663 **Rothstein, M., Bhattacharya, D. and Simoes-Costa, M.** (2018). The molecular basis of neural
664 crest axial identity. *Dev. Biol.* **444**, S170–S180.

665 **Saint-Jeannet, J.-P.** (2016). *Neural Crest Induction and Differentiation*.

666 **Sandell, L. L. and Trainor, P. A.** (2006). Neural crest cell plasticity: Size matters. In *Advances*
667 *in Experimental Medicine and Biology*, pp. 78–95. Springer New York.

668 **Santiago, A. and Erickson, C. A.** (2002). Ephrin ligands and neural crest cell migration.
669 *Development* **129**, 3621–3632.

670 **Schilling, T. F., Prince, V. and Ingham, P. W.** (2001). Plasticity in zebrafish hox expression in
671 the hindbrain and cranial neural crest. *Dev. Biol.* **231**, 201–216.

672 **Simard, A., Di Pietro, E. and Ryan, A. K.** (2005). Gene expression pattern of Claudin-1 during
673 chick embryogenesis. *Gene Expr. Patterns* **5**, 553–560.

674 **Simeone, A., Acampora, D., Nigro, V., Faiella, A., D'Esposito, M., Stornaiuolo, A., Mavilio,
675 F. and Boncinelli, E.** (1991). Differential regulation by retinoic acid of the homeobox genes
676 of the four HOX loci in human embryonal carcinoma cells. *Mech. Dev.* **33**, 215–227.

677 **Small, C. D. and Crawford, B. D.** (2016). Matrix metalloproteinases in neural development: a
678 phylogenetically diverse perspective. *Neural Regen. Res.* **11**, 357–362.

679 **Steventon, B., Mayor, R. and Streit, A.** (2012). Mutual repression between Gbx2 and Otx2 in
680 sensory placodes reveals a general mechanism for ectodermal patterning. *Dev. Biol.* **367**,
681 55–65.

682 **Strachan, L. . and Condic, M. .** (2003). Neural crest motility and integrin regulation are distinct
683 in cranial and trunk populations. *Dev. Biol.* **259**, 288–302.

684 **Takada, Y., Ye, X. and Simon, S.** (2007). The integrins. *Genome Biol.* **8**, 1–9.

685 **Taneyhill, L. A. and Padmanabhan, R.** (2014). The Cell Biology of Neural Crest Cell
686 Delamination and EMT. In *Neural Crest Cells: Evolution, Development and Disease*, pp.
687 51–72. Elsevier Inc.

688 **Taniguchi, Y.** (2014). Hox Transcription Factors: Modulators of Cell-Cell and Cell-Extracellular
689 Matrix Adhesion. *Biomed Res. Int.* **2014**, 591374.

690 **Testaz, S. and Duband, J.-L.** (2001). Central role of the $\alpha 4\beta 1$ integrin in the coordination of
691 avian truncal neural crest cell adhesion, migration, and survival. *Dev. Dyn.* **222**, 127–140.

692 **Trainor, P. A. and Krumlauf, R.** (2000). Patterning the Cranial Neural Crest: hindbrain
693 segmentation and hox gene plasticity. *Nat. Rev. Neurosci.* **1**, 116–124.

694 **Trainor, P. A. and Krumlauf, R.** (2001). Hox genes, neural crest cells and branchial arch
695 patterning. *Curr. Opin. Cell Biol.* **13**, 698–705.

696 **Walker, J. L. and Assoian, R. K.** (2005). Integrin-dependent signal transduction regulating
697 cyclin D1 expression and G1 phase cell cycle progression. *Cancer Metastasis Rev.* **24**,

698 383–393.

699 **Wang, X. and Astrof, S.** (2016). Neural crest cell-autonomous roles of fibronectin in
700 cardiovascular development. *Development* **143**, 88–100.

701 **Wilkinson, D. G., Bhatt, S., Cook, M., Boncinelli, E. and Krumlauf, R.** (1989). Segmental
702 expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain.
703 *Nature* **341**, 405–409.

704 **Wu, X., Chen, H., Parker, B., Rubin, E., Zhu, T., Lee, J. S., Argani, P. and Sukumar, S.**
705 (2006). HOXB7, a Homeodomain Protein, Is Overexpressed in Breast Cancer and Confers
706 Epithelial-Mesenchymal Transition. *Cancer Res* **66**, 9527–9561.

707 **Yamada, K., Maeno, A., Araki, S., Kikuchi, M., Suzuki, M., Ishizaka, M., Satoh, K., Akama,**
708 **Kawabe, Y., Suzuki, K., et al.** (2021). *An atlas of seven zebrafish hox cluster mutants*
709 *provides insights into sub/neofunctionalization of vertebrate hox clusters*.

710 **Yang, M.-H., Shin-Shian Hsu, D., Wang, H.-W., Wang, H.-J., Lan, H.-Y., Yang, W.-H.,**
711 **Huang, C.-H., Kao, S.-Y., Tzeng, C.-H., Tai, S.-K., et al.** (2010). Bmi1 is essential in
712 Twist1-induced epithelial–mesenchymal transition. *Nat. Publ. Gr.* **12**, 982–992.

713 **Yook, J. I., Li, X.-Y., Ota, I., Hu, C., Kim, H. S., Kim, N. H., Cha, S. Y., Ryu, J. K., Choi, Y. J.,**
714 **Kim, J., et al.** (2006). A Wnt-Axin2-GSK3 β cascade regulates Snail1 activity in breast
715 cancer cells. *Nat. Cell Biol.* **8**, 1398–1406.

716 **Zeltz, C. and Gullberg, D.** (2016). The integrin-collagen connection - a glue for tissue repair? *J.*
717 *Cell Sci.* **129**, 1284.

718

719

720