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Abstract

Emerging during embryogenesis, the neural crest are a migratory, transient population of
multipotent stem cell that differentiates into various cell types in vertebrates. Neural crest cells
arise along the anterior-posterior extent of the neural tube, delaminate and migrate along routes
to their final destinations. The factors that orchestrate how neural crest cells undergo delamination
and their subsequent sustained migration is not fully understood. This review provides a primer
about neural crest epithelial-to-mesenchymal transition (EMT), with a special emphasis on the
role of the Extracellular matrix (ECM), cellular effector proteins of EMT, and subsequent migration.
We also summarize published findings that link the expression of Hox transcription factors to EMT
and ECM modification, thereby implicating Hox factors in regulation of EMT and ECM remodeling

during neural crest cell ontogenesis.
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1. Introduction: Neural Crest Cell Development

Neural Crest Cells (NCCs) are a migratory and multipotent stem cell population common among
vertebrate species. These transient embryonic stem cells arise from the dorsal-most aspect of the
neural tube (Figure 1)—a transient embryonic structure fated to become the entire central
nervous system—and begin extensive and stereotypic migratory paths throughout the developing
mesendoderm. (Le Douarin, 1982; Le Douarin and Kalcheim, 1999; Saint-Jeannet, 2016). NCCs
contribute to numerous and diversely specialized tissues; including, for example, craniofacial
skeleton, corneal endothelium and stroma, auditory skeletal structures, sympathetic and sensory
neurons, enteric nervous system, several classes of pigment producing cells across species, as
well as many other tissues types(Jasrapuria-Agrawal and Lwigale, 2014; Lapedriza et al., 2014;
Matsuo et al., 1995; Prendergast and Raible, 2014). Indeed, the field has come to appreciate that
the spectacular diversity of structures formed by NCCs highlights their crucial role in vertebrate

development.

NCC ontogenesis occurs in four major stages: specification, delamination, migration, and
differentiation (Figure 1). NCCs first emerge at the dorsal aspect of the neural tube along the
majority of the anterior-posterior (A-P) axis of the elongating embryo in response to a mélange of
signaling factors; including, WNTs, BMPs, FGFs, Retinoic Acid, and TGFf signaling (Conlon,
1995; Goldstein et al., 2005; Hosokawa et al., 2010; Li et al., 2009). At the time of specification,
NCCs can be segregated into four major subpopulations which are collinear with their axial region
of origin; namely the cranial, vagal, trunk, and sacral (Bronner, 2012; Rothstein et al., 2018)
Shortly after their specification, NCCs delaminate from the neural tube and assume mesenchymal
character just prior to their emigration, a process known as epithelial-to-mesenchymal transition
(EMT)(Taneyhill and Padmanabhan, 2014). Following delamination, NCCs migrate along
stereotypic routes throughout the embryo, guided both by NCC-mesenchyme interactions and
chemotaxis. The migration paths of NCCs can be predicted by the axial region of origination—the
most anterior NCCs migrate rostrally to give rise to structures in the head, while more posterior
NCCs give rise to more posteriorly fate structures. Following arrival in the target tissue, NCCs

further undergo changes to assume their stably differentiated tissue types.
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As NCCs emigrate and migrate throughout the early vertebrate body, NCCs interact with, express,
and modify a diversity of extracellular matrix (ECM) constituents. The ECM itself is a diverse and
dynamic microenvironment comprised of hydrated scaffold proteins, polysaccharides, and
signaling molecules, which fundamentally provide structure and support for cell adhesion and
form in tissues (Frantz et al., 2010). Across a number of stem cell niches, the stem cell deposition
of and interaction with ECM defines a large number of their most important properties, such as
retention of stem state, survival, and onset of differentiation programs (Gattazzo et al., 2014).
Undeniably, NCC-ECM interactions are involved in EMT, migration, and differentiation in the
embryo, which are summarized here. Further, while tremendous research efforts have been made
toward elucidating biomechanical and cellular roles of NCC-ECM interactions, the question of
which transcriptional regulators directly regulate the expression of ECM and ECM-interacting
components in NCCs remains to be comprehensively addressed. Intriguingly, mounting evidence
exists which positions Hox transcription factors as potential modulators of both ECM constituent
proteins and cell-surface ECM-interaction components. Thus, we present a primer into the role of
the ECM in NCC development, as well as review the potential role of Hox transcription factors as

regulators of the NCC-ECM interactions.

2. Neural crest EMT and migration are regulated through ECM interactions

EMT in the NCC is canonically marked by upregulation of the genes Snail1, Snail2 and Twist1,
which encode for transcription factors that globally regulate EMT. Each of these transcription
factors does so by controlling cellular programs and initiate NCC migration by repressing cell-cell
adhesion mediating proteins, such as E-cadherin (adherens junctions), Occludins (tight
junctions), and Desmoplakin (Desmosomes) (Ohkubo and Ozawa, 2003; Yang et al., 2010; Yook
et al., 2006). Additionally, EMT is marked by species-dependent switch in Cadherin composition
(Rogers et al., 2018), secretion of Fibronectin and Laminin, and reorganization of actin through
expression of Integrins (Henderson and Copp, 1997; Lamouille et al., 2014), all of which
coordinate active, directed cellular migration of NCC. Thus, through the loss of tight cell adhesion
and promotion of a more mesenchymal cell type, Snail1, Snail2, and Twist1 all initiate the dramatic

migratory phenotype intrinsic to NCC function.
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NCC remodeling of the ECM is a critical aspect of both NCCs undergoing EMT and throughout
NCC migration to target tissues. The function of the ECM as a director of NCC migration has
recently been thoroughly reviewed (Leonard and Taneyhill, 2020). Building upon this prior
summary, a hallmark of NCC migration is the upregulated expression and secretion of ECM
proteins, such as the Fibronectin family, which enables a more permissive microenvironment for
cell migration(Bilozur and Hay, 1988; Boucaut et al., 1984; Monier-Gavelle and Duband, 1997).
NCC interaction with secreted Fibronectin proteins is primarily mediated by the Integrin family of
transmembrane proteins, which promote cell adhesion, migration, actin polymerization, cell
proliferation, and cell survival(Huttenlocher and Horwitz, 2011; Zeltz and Gullberg, 2016).
Antibody blockade of Integrin signaling in vitro disrupts NCC ability to interact with fibronectin and
inhibits migration (Monier-Gavelle and Duband, 1997; Strachan and Condic, 2003). As such,
regulation of Integrin expression is critical to NCC migration. Additionally, not only are ECM
constituent proteins secreted by NCC, the existing ECM is proteolytically remodeled before and
during NCC migration, typically through secretion of matrix metalloproteinases (MMPs) (Small
and Crawford, 2016). Expression of certain MMPs, including ADAM13, MMP14, MMP16, and
MMP9, have been shown by either gain or loss of function in Xenopus and chick embryos to be
crucial for cranial NCC for migration (Alfandari et al., 2001; Garmon et al., 2018; Monsonego-
Ornan et al., 2012; Roth et al., 2017). MMPs themselves appear to play even more complex roles
in NCC EMT, beyond their catalytic function. Both MMP14 and MMP28 have been observed to
have nuclear localization, facilitated through either NCC-centric autocrine or paracrine signaling
paradigms, implying a more directed function of these MMPs in EMT progression (Andrieu et al.,
2020; Gouignard et al., 2021). Therefore, NCC modulation of ECM by direct contribution, as well
as active remodeling, supports a system where differential microenvironmental composition of

permissive and non-permissive substrates facilitate NCC migration and EMT.

While NCC do differentially secrete ECM proteins (Duband and Thiery, 1987; Leonard and
Taneyhill, 2020; Wang and Astrof, 2016), there is significant production of these components by
cells in the migratory environment of the neural tube, ectoderm, and somites (Copp et al., 2011;
Crawford et al., 2003; Latimer and Jessen, 2010). Importantly, while Laminins and Fibronectins
are expressed by a wide variety of cell types, specific isoforms of each protein are differentially
expressed throughout the developing embryo (Copp et al., 2011; Crawford et al., 2003). As Wang
and Astrof (2016) demonstrated, the NCC-autonomous expression of Fibronectin is necessary

for proper vagal NCC patterning in the heart. Further, antibody staining for Fibronectin expression
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shows NCC likely begin secreting Fibronectin following EMT (Newgreen and Thiery, 1980).
Laminins, which normally are expressed by cells adjacent to the basal laminae of a tissue, have
been shown to play a more important role in NCC differentiation than migration. So, while post-
EMT NCC may not upregulate Laminins at the time of EMT, Fibronectin is required as a substrate
for correct NCC migration and is expressed cell autonomously and in the surrounding
mesenchyme. Cumulatively, these findings highlight the centrality of ECM-NCC interactions in

governing appropriate EMT and NCC migration.

3. Integrins as directors of NCC migration and survival

The significance of integrins in NCC migration lies primarily upstream of the formation of focal
adhesion complexes, which allow NCC to apply the contractile force necessary to move through
the embryo. Integrin binding domains are found on Fibronectins, Laminins, and Collagens. At
sites where Integrin heterodimers bind to one of these ECM components, Focal Adhesion Kinase
(FAK) is recruited and activated to the intracellular domain of the activated Integrins. FAK further
initiates recruitment of accessory proteins and eventually the initiation of actin stress fibers
(Huttenlocher and Horwitz, 2011). By regulating the polarity of surface integrin localization, NCC
are capable of initiating actin polymerization in a directional manner. Directional and differential
actin recruitment applies a force at the cell membrane, propelling the cell forward and enabling
migration. While other regulatory and cues are mediated through integrin signaling, their function
as mediators of focal adhesion complex formation has been well established in NCC(Breau et al.,
2009; Mckeown et al., 2013). As an illustrative example, within the context of the periocular NCCs
which give rise to the corneal endothelium and stroma, Integrin a8B1 expressed by NCCs
interacts with Nephronectin in the ECM to facilitate migration into the eye (Ma et al., 2022).
Inhibition of either component reduced the capacity of NCC to populate the cornea. The failure of
periocular NCCs to migrate into the presumptive corneal stroma after Nephronectin-a831
abrogation was further shown to be mediated through depletion of focal adhesions. Indeed,
considered here as a special case, Integrin mediated interactions with the ECM are fundamental

drivers of NCC migration.

Integrin signaling is also known to impact both cell proliferation and survival, but NCC cell

proliferation may be governed by a different mechanism (Lawson and Burridge, 2014; Moreno-
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Layseca and Streuli, 2014; Pugacheva et al., 2006; Walker and Assoian, 2005). Integrin activation
at the cell membrane regulates cell proliferation by inciting a phosphorylation cascade, mediated
canonically by Erk signal transduction pathway. Ultimately, the phosphorylation cascade leads to
the activation of Cdk4/CyclinD1 complex, initiating G1/S progression during the cell cycle.
Interestingly however, NCC-specific depletion of Integrin a4p1 signaling by antibody blockade in
chick embryos dramatically increased NCC cell death, but did not decrease the cell proliferation
rate as shown by TUNNEL and BrdU assays, respectively (Testaz and Duband, 2001). In partial
corroboration of these data, Cre knockout of Integrin 81 exhibited no change in proliferation rates
and did not demonstrate the same NCC-specific cell death in mouse NCC fated for the enteric
nervous system(Breau et al., 2006), which differs from Integrin a41 functional depletion in chick.
Lastly, Integrin a581 null mice showed cranial NCC specific cell death(Goh et al., 1997). As such,
loss of Integrin signaling is not sufficient to decrease cell proliferation rates, but may be required
in some NCC populations for cell survival. Further work, including analysis of gain of integrin
function, is necessary to elucidate the precise role integrins may play specifically in directing NCC

proliferation.

Overall, multiple observations—the distinction in ECM composition in various embryonic regions,
diversity of integrin heterodimer subtypes (Takada et al., 2007), and regulation of cell surface
localization of integrin subtypes—brings to light the possibility of complex regulatory mechanisms
which may govern NCC development. Indeed, NCC migration, then, is directed not only by NCC-
autonomous expression of integrins, but also by the availability of their local ECM substrate.
Additionally, cell survival signaling in migrating NCCs may be facilitated by Integrins. In this way,
the Integrin-ECM interaction go beyond facilitating cell adhesion, but specifically directs cell

migration and survival in NCCs.

4. Non-integrin ECM interactions with the microenvironment facilitate NCC migration

Beyond Integrin-ECM interactions, NCC migration is guided by additional microenvironmental
cues. Protein-Protein interactions on the NCC surface between Eph-Ephrins and Semaphorins-
Neuropilins are non-permissive to cranial NCC migration (Davy et al., 2004; Kuriyama and Mayor,
2008; McLennan and Kulesa, 2007). Eph are a family of Tyrosine Kinase Receptors expressed

by cranial NCC and detect Ephrins, another class of membrane bound ligand proteins. In the
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cranial domain, Ephrins are expressed by the mesenchyme that lies between each cranial NCC
stream into their respective pharyngeal arches (PAs), structures which make up much of the lower
cranial structures, and restricts the Eph-positive NCC into discrete migratory routes (Santiago and
Erickson, 2002). Homozygous knockout of EphrinB2 leads to mislocalization of mouse cranial
NCC, however expression of the extracellular domain is sufficient to rescue proper NCC migration
and arch invasion(Adams et al., 2001), clearly demonstrating that EphrinB2 functions as the
required ligand to direct cranial NCC infiltration. Similarly, the Neuropilin and Plexin family of cell
surface proteins heterodimerize to mediate NCC migration, where Npn1 (Neuropilin 1) knockdown
by siRNA in chicken embryos prevented NCC from migrating completely into the 2nd PA
(McLennan and Kulesa, 2007). Semaphorins, the ligand for Neuropilin receptors, are secreted by
non-neural crest mesenchyme and are required for proper pattering of certain cranial NCC
populations (Lepore et al., 2006). Thus, Semaphorin-Neuropilins and Eph-Ephrin interactions
modulate NCC migration by altering the way NCC interact with their microenvironment. Together
with Integrin signaling, the layered regulation afforded by these cell surface mechanisms direct

NCC migration in a complex manner necessary to give rise to multiple and distinct NCC fates.

5. Hox genes as potential regulators of NCC migration and proliferation

The broad diversity of ECM constituents and NCC-localized cell surface receptors provides a
remarkable regulatory framework to regulate both EMT and migration throughout the vertebrate
embryo. The migratory routes chosen by NCC subpopulations are spatially separated along the
A-P axis, collinear, at least part, with the expression of Hox transcription factors. This ancient
family of genes shares a high degree of conservation in both function and organization between
diverse organismal lineages, from flies to fish, from mice to humans (Figure 2) (Mallo and Alonso,
2013). Primarily known for their role in establishing the A-P axis, select Hox family members have
been shown to play an integral function in tumor metastasis (Hong et al., 2015; Wu et al., 2006),
cell proliferation (Krosl et al., 1998; Lee et al., 2015), angiogenesis (Amali et al., 2013; Mace et
al., 2005), and pharyngeal arch formation (Trainor and Krumlauf, 2001), among other functions.
Hox transcription factors in mammals are organized into discrete paralogous clusters across four
chromosomes and are numbered according to their position in the cluster (Figure 2). Intriguingly,

Hox genes which occur earlier within the chromosome, that is to say with a Hox gene with a lower
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number, are expressed more anteriorly, while later genes are expressed more distally from the
head.

The close association between the A-P expression of Hox transcription factors and the stereotypic
paths chosen by NCCs during their development presents a tantalizing model where the cellular
signals which regulate NCC segregation into their terminal cell types may be rooted in
combinatorial Hox transcriptional regulation, which has long been under investigation (Parker et
al., 2014; Parker et al., 2018; Parker et al., 2019a; Trainor and Krumlauf, 2000; Trainor and
Krumlauf, 2001). Particular research efforts have been applied to discerning the role of Hox
expression within cranial neural crest, which contribute cell lineages to the lower jaw (Sandell and
Trainor, 2006). The earliest Hox expression in vertebrate systems, supported with evidence from
mouse, zebrafish, Xenopus laevis, and human organoids, is detectable along the level of the
hindbrain in the rhombomeres (r), the earliest segment of expression ranging from r2 to r3
depending on species specific contexts (Libby et al., 2021; McNulty et al., 2005; Schilling et al.,
2001; Wilkinson et al., 1989). Prior to the rhombomeric Hox expression domains, NCC patterning
in the anterior embryo is largely ruled by the non-Hox homeobox transcription factors Gbx2,
Otx1/0tx2, and Emx1/Emx2, as evidenced by data collected across multiple species (Byrd and
Meyers, 2005; Li et al., 2009; Matsuo et al., 1995; Roeseler et al., 2020; Steventon et al., 2012).
Within the Hox-positive domain, overlapping and combinatorial expression of Hox genes from
different clusters direct specific migration of NCCs into the correct PA. Disruptions in Hox gene
expression in facial patterning, such as mutations in Hoxa2, Hoxb3, and Hoxb4, results in either
the fate transformation or abrogation of cranial NCC migration into the PAs (Gendron-Maguire et
al., 1993; Kitazawa et al., 2015; Nolte et al., 2019; Simeone et al., 1991). In the case of Hoxa2in
particular, loss of function in a murine model converts the second-PA fate to mirror that of the first,
duplicating jaw and presumptive auditory structures (Gendron-Maguire et al., 1993). Ectopic
HoxaZ2 expression in chick conversely abolished first-PA structure, the formation of which requires
Hox-negative NCC contribution (Gavalas et al., 2003). Together, these experiments demonstrate
the important and conserved role of anteriorly expressed Hox transcription factors in formation of

cranial NCC derived tissues.

Due perhaps to the robust nature of Hox-related phenotypes which are manifest at later
developmental stages, the functional role of Hox transcription factors in earlier NCC

developmental programs, such as during EMT and specification, has been less well
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characterized. Aligning with a previously posited hypothesis published in Taniguchi, 2014, below
we highlight that Hox regulation on NCCs appears to be mediated at least in part by regulation of

reciprocal ECM interactions.

As previously noted, ECM interactions are foundational drivers of early NCC development.
Importantly for this discussion, expression of several of the ECM modulators and components
discussed previously are known to be influenced by Hox gene expression. Wu et al. (2006) found
that Hoxb7 overexpression in breast cancer cell lines lead to downregulation of E-cadherin and
Claudin expression, which correlated with increased EMT in tumor cells. Contextualizing this
finding with respect to NCCs, suppressed expression of Claudin-1 in chick NCCs is known to
increase NCC emigration from the neural tube (Fishwick et al., 2012) and both Claudin-1 and
Hoxb7 are proximally expressed at early embryonic stages (Bell et al., 2004; Darnell et al., 2007;
Simard et al., 2005). Further, Hoxa2 in chick NCC promotes EMT through the repression of
Cadherin-6b (Gouti et al., 2011), while mouse Hoxa1l activates Cadherin-6b expression in a
transient manner (Inoue et al., 1997). Hox control of Integrin expression is supported by the
observation that Hoxd3 upregulates Integrin B3 expression in human umbilical vein endothelial
cells (Boudreau et al., 1997) which has been shown to increase NCC migratory phenotype
(Boudreau et al., 1997; Monier-Gavelle and Duband, 1997). Additionally, Integrin heterodimers
aVpB3 and a5B1, are both under direct regulation of Hoxd3 as identified in a number of cancer

types (Boudreau and Varner, 2004).

Reciprocally to direct Hox transcriptional regulation of ECM components, signaling induced by
ECM may also impact the expression of Hox genes themselves. Integrin a561 null mice showed
a decrease in Hoxb9 expression along the posterior aspect of the embryo (Goh et al., 1997).
Notably, in the same Integrin a5B1 null mice, anterior expression of Hoxb-1, Hoxb-4, and Hoxb-
5 were all reportedly similar to wild type mice (Goh et al., 1997). Moreover, both Eph and
Neuropilin, whose expression are essential to segregating NCC migration into discrete streams
(Kuriyama and Mayor, 2008), are likely to be differentially expressed under combinatorial control

by Hoxd4 and Hoxb4 expression, at least in part (Prin et al., 2014).

Each of the above-described examples contribute to a model in which Hox transcription factors
may directly regulate NCC EMT and migration through transcriptional control of ECM and ECM

components. Hence, the role Hox transcription factors play in NCC development may be
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intrinsically tied to transcriptional regulation of NCC microenvironmental interactions, which
involves both interaction with and modulation of ECM components. Several NCC cell-autonomous
regulatory targets have been summarized here, namely those in the Integrin, Ephrin, and
Neuropilin families. These data would position Hox genes as potent drivers of early NCC
developmental programs, expanding on previous models focused on Hox regulation on later fate

acquisition in NCCs.

Beyond EMT and migration, the NCC proliferation rate appears to be at least partially integrin
independent (Goh et al.,, 1997; Testaz and Duband, 2001), which may indicate an alternate
mechanism for NCC cell cycle regulation by Hox factors. Supporting a model where Hox genes
regulate cell cycle progression, Hoxb7-driven ex vivo cultured tumors were highly proliferative
when transplanted into immunodeficient mice (Wu et al., 2006). Furthermore, the hyper-
proliferative nature of T47D and MCF7 breast cancer cell lines has also been attributed to altered
Hoxb5 expression, as both gain and loss of function respectively increased or decreased cancer
cell proliferation rate (Lee et al., 2015). In fact, a novel binding site for a HoxA9-dependant
transcriptional complex was shown to be upstream of the Cyclin-dependent Kinase Inhibitors
Cdkn2a/b, the repression of which allows for G1 initiation (Collins et al., 2014). The conserved
role of direct Hox activation of cell cycle gene expression is supported by experiments in C.
elegans involving the Hox ortholog /lin-39 as an upstream activator for cdk-4 and cye-1 (cyclin E)
(Roiz et al., 2016). Indeed, while the possibility remains for NCC cell cycle control via Integrin
signaling, there is a growing body of evidence for direct regulation of expression of cell cycle

regulatory genes in NCC by Hox transcription factors.

Because of the nested expression domains of the Hox genes in the NCC, a complex “Hox code”
emerges as a likely mechanism for directing NCC migration towards a correct target tissue. A
combination of active Hox gene expression modules label various NCC subpopulations along the
anterior-posterior axis. Studying these combinations, however, is partially complicated due to
functional redundancy of many proximally expressed and true paralogous Hox genes (Boucherat
et al., 2013; Horan et al., 1995; Hunter and Prince, 2002; Jarinova et al., 2008). Despite this
possibility for redundancy, much of what is known regarding Hox function is derived from
experiments involving loss of a single gene. A chief challenge in determining a mechanism
underlying the NCC-ECM-Hox axis will be elucidating not only the impact of individual Hox

perturbation on the NCC-ECM interactions, but also, perhaps more importantly, how combinations
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of Hox genes work in concert to direct the same interactions. Consideration of combinatorial Hox
codes are already shedding refreshing light on other developmental contexts (Alberstat et al.,
2022; Parker et al., 2019b; Yamada et al., 2021), which if applied to NCC promises a tantalizing
prospect of a mechanism for NCC subtypes selection through discrete activation of ECM-

interaction modules.

As reviewed in this manuscript, Hox genes can be modeled as regulators of the NCC
microenvironment, which includes control of both the contribution to ECM dynamics, as well as
the NCC-ECM interactions used during migration. These data, collectively, begin to describe a
putative mechanism of action for Hox regulation of cranial NCC (Figure 3); combinatorial Hox
expression in NCC controls delamination/migration by differentially regulating cell surface
receptors and ECM modulation. Putatively, regulation may include the direct transcriptional
control of NCC-autonomous ECM interaction molecules expression, such as Integrins and
Ephrins. Additionally, NCC cell cycle progression appears to be under direct Hox influence for
certain NCC populations. The involvement of Hox regulation on ECM composition is an emerging
topic and is an exciting area for further exploration (Akin and Nazarali, 2005; Boudreau and
Bissell, 1998; Taniguchi, 2014). Significantly, these results suggest an intrinsic connection
between ECM composition, Hox expression, and NCC EMT/migration, which warrants further

investigation in other NCC populations beyond the cranial NCC.
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Figure 1
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Figure 1. Generalized schematic of the stages of neural crest cell (NCC) development. NCCs are
first specified following gastrulation in bilateral stripes in border adjacent to the neural plate. These
neural plate boarder cells will undergo a dramatic morphogenic rearrangement, which various species
to species, to fold inward to and reside toward the dorsal aspect of the neural tube. During and
immediately after this morphogenesis, the now specified NCCs will undergo an epithelial-to-
mesenchymal transition to complete delamination, and begin stereotypic migratory journeys toward
specific tissues throughout the embryo. Upon arriving in this target tissues, NCCs switch on diverse
tissue dependent gene regulatory programs to differentiate into a multitude of tissue lineages.
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Figure 2. Schematic of the chromosomal organization of murine and zebrafish Hox gene
clusters. (A) Hox genes in mice are arranged on four chromosomes with each paralogy group (PG)
bearing a label A-D. PGs are defined by sequence similarity. As such, Hoxa1, Hoxb1, and Hoxd1 all
are members of PG1. The most 5’ (left) Hox genes are expressed more anteriorly. (B) In zebrafish, due
to a teleost-specific whole genome duplication event, PGs A-C are duplicated across an additional 3
chromosomes. It should be noted that even with this duplication, there is a high degree of conservation
of synteny, order, and representation across both species.
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Figure 3. Model of Combinatorial Hox regulation of NCC microenvironment and cell cycle.
Different combinations and expression levels of nested Hox genes, for example shown here from
paralogy group A-D, leads to different combinations of cell surface protein which allow for differential
NCC migratory behavior. The putative combinatorial “Hox code” may work in concert with differentiation
gene networks to determine the final cell type contribution for each NCC subpopulation.
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