

1 **Hybridization between closely related songbirds is related to human habitat disturbance**
2

3 **Running Title:** Chickadee disturbance-mediated hybridization
4

5 Authors: Kathryn C. Grabenstein ^a, Ken A. Otter ^b, Theresa M. Burg ^c, Scott A. Taylor ^a
6

7 ORCiDs
8

9 Kathryn C. Grabenstein: 0000-0003-4725-3008
10 Ken A. Otter: 0000-0003-2331-7900
11 Theresa M. Burg: 0000-0001-5096-3479
12 Scott A. Taylor: 0000-0001-9580-9125
13

14 ^a *Department of Ecology and Evolutionary Biology, University of Colorado Boulder, 1900
Pleasant St, Boulder, CO, U.S.A.*
15

16 ^b *Natural Resources and Environmental Studies, University of Northern British Columbia, 3333
University Way, Prince George BC, V2N 4Z9, Canada*
17

18 ^c *Department of Biological Sciences, University of Lethbridge, 4401 University Dr. W,
Lethbridge, AB, T1K 3M4, Canada*
19

20 Correspondence: K. C. Grabenstein, Department of Ecology and Evolutionary Biology,
21 University of Colorado Boulder, Boulder, CO 80309 U.S.A.
22

23 *E-mail address:* Kathryn.Gabenstein@colorado.edu (K. C. Grabenstein).
24

25 *Telephone:* [\(303\) 735-5227](tel:(303)735-5227)
26

27 **Abstract**

28 Human habitat disturbances can promote hybridization between closely related, but typically
29 reproductively isolated, species. We explored whether human habitat disturbances are related to
30 hybridization between two closely related songbirds, black-capped and mountain chickadees,
31 using both genomic and citizen science datasets. First, we genotyped 409 individuals from across
32 both species' ranges using reduced-representation genome sequencing and compared measures
33 of genetic admixture to a composite measure of human landscape disturbance. Then, using eBird
34 observations, we compared human landscape disturbance values for sites where phenotypically
35 diagnosed hybrids were observed to locations where either parental species was observed to
36 determine whether hybrid chickadees are reported in more disturbed areas. We found that
37 hybridization between black-capped and mountain chickadees positively correlates with human
38 habitat disturbances. From genomic data, we found that 1) hybrid index significantly increased
39 with habitat disturbance, 2) more hybrids were sampled in disturbed habitats, 3) mean hybrid
40 indexes were higher in disturbed habitats versus wild habitats, and 4) hybrids were detected in
41 habitats with significantly higher disturbance values than parentals. Using eBird data, we found
42 that both hybrid and black-capped chickadees were significantly more disturbance-associated
43 than mountain chickadees. Surprisingly, we found that nearly every black-capped chickadee we
44 sampled contained some proportion of hybrid ancestry, while we detected very few mountain
45 chickadee backcrosses. Our results highlight that hybridization between black-capped and
46 mountain chickadees is widespread, but initial hybridization is rare (few F1s were detected). We

47 conclude that human habitat disturbances can erode pre-zygotic reproductive barriers between
48 chickadees and that post-zygotic isolation is incomplete. Understanding what becomes of
49 recently hybridizing species following large-scale habitat disturbances is a new, but pressing,
50 consideration for successfully preserving genetic biodiversity in a rapidly changing world.

51

52 **Keywords:** chickadees, anthropogenic change, reproductive isolation, species barriers,
53 hybridization, habitat disturbances

54

55 **Introduction**

56 Humans are a dominant force on earth as they continue to transform landscapes by reducing,
57 homogenizing, and fragmenting habitats (Bürgi, Hersperger, & Schneeberger, 2005; Haddad et
58 al., 2015; Harden et al., 2014). While changes in species' distributions and abundances in human
59 altered habitats are well-documented (Devictor, Julliard, & Jiguet, 2008; Williams et al., 2010), a
60 growing body of literature implicates human habitat disturbances in driving hybridization
61 between naturally co-occurring, reproductively isolated species. Hybridization is the
62 interbreeding of closely related species to produce mixed-ancestry offspring (Harrison, 1990)
63 and has a variety of evolutionary outcomes, which can have positive or negative consequences
64 for biodiversity (Gompert & Buerkle, 2016). In some cases, hybridization may decrease
65 population viability and persistence if hybrid offspring are sterile or have reduced fitness
66 compared to non-hybrids (Todesco et al., 2016), as is often the case (Abbott, Barton, & Good,
67 2016). If hybridization is common and hybrids are fertile, populations might experience genetic
68 homogenization and a loss of rare genetic variants (Hasselman et al., 2014). Additionally, when
69 hybrids are fertile and breed successfully, alleles can introgress between species (Taylor, Larson,
70 & Harrison, 2015), which might be adaptive (Norris et al., 2015), and can increase the genetic
71 potential of populations (Shafer et al., 2015; Whiteley, Fitzpatrick, Funk, & Tallmon, 2015).
72 Regardless of the outcome, hybridization can have significant impacts on global biodiversity.

73 Increased hybridization and/or increased survival of hybrids in human modified habitats
74 was first hypothesized by Anderson (1948). Advances in whole genome sequencing technologies
75 have increased our ability to detect hybridization in wild populations of non-model organisms,
76 especially for later generation hybrids which are often phenotypically indistinguishable from
77 parental taxa (McFarlane & Pemberton, 2019). Using genomic tools, a growing body of work is

78 implicating human habitat disturbances in promoting hybridization (and/or increasing hybrid
79 fitness) between naturally co-occurring, closely related, but reproductively isolated species for a
80 wide variety of taxa (Grabenstein & Taylor, 2018). For our purposes, human habitat disturbance
81 refers to direct, physical habitat alterations to the environment caused by humans, such as land
82 clearing, water eutrophication, or noise pollution. This definition purposely excludes global
83 climate change and the introduction of non-native species, both of which can increase
84 hybridization and have been well-reviewed (Blois, Zarnetske, Fitzpatrick, & Finnegan, 2013;
85 Moran & Alexander, 2014). While an increasing number of studies have detected hybrids
86 following large-scale habitat disturbances in a wide variety of taxa (e.g., shrubs: Lamont et al.,
87 2003, fishes: Huuskonen et al., 2017, birds: Carantón-Ayala et al., 2018, reviewed in Grabenstein
88 & Taylor, 2018), comparatively few studies have intentionally been designed to explore the
89 relationship between human habitat disturbances and hybridization of closely-related taxa
90 (Ortego, Gugger, & Sork, 2016; Seehausen, Alphen, & Witte, 1997).

91 Most documented cases of disturbance-mediated hybridization appear to be *post hoc*
92 explanations for observations of hybrids in habitats where they were previously undetected,
93 rather than testing *a priori* expectations for the relationship between disturbance and
94 hybridization. For example, Crego-Prieto et al. (2012) found an increase in hybrid flatfish
95 following a major oil spill compared to hybrid numbers before the spill. Similarly, Lamb &
96 Aviset (1986) detected hybridization between tree frogs in ponds where mowing had removed
97 shoreline vegetation used for male vocalizations. These opportunistic, single site studies strongly
98 implicate disturbances in driving hybridization and/or altering hybrid fitness landscapes such that
99 hybrids survive long enough to be sampled but it is unclear how repeatable these patterns are
100 across species ranges. One notable example of a range-wide pattern of disturbance-mediated

101 hybridization comes from California oaks where Ortego et al. (2016) found an increase in the
102 rate of hybridization between two sister species relative to an increase in wildfire frequency
103 across the entirety of their ranges. Establishing strong correlations between human habitat
104 disturbances and hybridization based on robust *a priori* expectations is a critical next step before
105 we can begin to explore the mechanisms by which disturbance erodes species barriers.
106 Ultimately, understanding how rapid human landscape changes shift interspecific interactions
107 will advance our understanding of how humans impact biodiversity at the genetic level.

108 We sought to explore whether there is a significant relationship between human habitat
109 disturbances and hybridization between two closely related species of songbirds, black-capped
110 (*Poecile atricapillus*) and mountain (*P. gambeli*) chickadees. Black-capped and mountain
111 chickadees appear to hybridize primarily in human modified habitats based on 1) the distribution
112 of purported hybrid chickadee sightings in eBird (Fig. 1c) and 2) microsatellite genetic studies
113 examining chickadee admixture (Grava et al. 2012, Graham et al. 2021). However, explicit
114 genomic investigations into the extent of hybridization in this system, as well as the context of
115 hybridization, are lacking.

116 Black-capped and mountain chickadees are closely related songbirds, but not sister taxa,
117 that are estimated to have diverged from a common ancestor over 2 million years ago (Harris,
118 Carling, & Lovette, 2014) and exhibit strong genomic differentiation (average genome-wide FST
119 = 0.34, Grabenstein et al., *in review*). Historically, hybridization in this system was considered to
120 be rare (Howe, 1985; Hubbard, 1978; Martin & Martin, 1996), especially in comparison to the
121 well-studied and geographically extensive hybrid zone between black-capped and Carolina
122 chickadees (*P. carolinensis*) which extends across the entire band of these sister species' range
123 overlap, from Kansas to New Jersey, USA (Reudink et al. 2007). Both black-capped and

124 mountain chickadees are common, widespread North American songbirds with substantial areas
125 of range overlap throughout nearly all the Rocky Mountains (Fig. 1a). Where their ranges
126 overlap, the two species occupy different, but often neighboring forest types and are effectively
127 separated along elevational gradients (Hill & Lein, 1988). Mountain chickadees often occupy
128 higher-elevation coniferous forests, while black-capped chickadees are found in lower-elevation
129 mixed-wood forests; sympatry occurs at mid-elevation habitats in transitional forests. Both
130 species co-occur and breed sympatrically in these transition zones (Colorado, USA: Grabenstein
131 et al., *in review*; British Columbia, CA: Grava et al., 2012)

132 Hybridization between black-capped and mountain chickadees appears to occur in human
133 modified habitats, such as cities or logged forests, based on eBird sightings of purported hybrids
134 in and near urban centers (n = 271 from 1989-2021; eBird 2021; Fig. 1c) and two genetic studies
135 using microsatellite markers (Graham et al., 2021; Grava et al., 2012). Outside of these two
136 studies, hybridization between black-capped and mountain chickadees has been inferred from
137 records of birds with intermediate plumage characteristics. The species have similar plumage
138 patterns, with the main distinguishing characters being the white supercilium (i.e., eyebrow) of
139 mountain chickadees and the buffy sides and white edging on the wings of black-capped
140 chickadees (Feldmann et al. 2021; Fig. 1). Based on whole genome data from a confirmed F1
141 hybrid, F1 hybrids appear to have the buffy sides and white wing feather edging of black-capped
142 chickadees paired with a thinner supercilium than typical for mountain chickadees (Grabenstein
143 et al., *in review*; Fig. 1c). Chicks from the nest of the only known documented social pair
144 between a black-capped and mountain chickadee (i.e., presumably all F1s) had this same
145 intermediate phenotype (Martin and Martin, 1996). Thus, it is likely that all of the intermediate
146 birds reported in eBird are F1 hybrids rather than backcrosses. Although quantification of

147 plumage traits in suspected F1 hybrids are lacking, additional whole genome data from 477 birds
148 indicates that after an F1 backcrosses, the offspring look either like black-capped chickadees
149 (most common) or mountain chickadees (less common) (Grabenstein et al., *in review*).

150 eBird is an expansive online global database of bird observations that can be used to
151 explore species' distributions and abundances (Sullivan et al., 2009). eBird users have reported
152 likely F1 hybrids between black-capped and mountain chickadees (based on intermediate
153 plumage) across western North America (Fig. 1c; eBird 2021) primarily in and near cities despite
154 both parental species being common and widespread with substantial range overlap. This mosaic
155 distribution of hybrid black-capped and mountain chickadees suggests that hybridization in this
156 system is context dependent (i.e., occurs non-uniformly when the two species co-occur).

157 To assess whether hybridization between black-capped and mountain chickadees
158 correlates with human habitat disturbance at the continental scale, we compared human habitat
159 disturbance metrics to chickadee hybridization using two complementary datasets (genomic &
160 phenotypic) to characterize hybridization. For our genomic dataset, we genotyped 409 black-
161 capped and mountain chickadees from across both species' ranges using reduced-representation
162 genome sequencing and compared measures of genomic admixture to metrics of human
163 landscape disturbance. Our ddRAD approach increases our ability to confidently detect hybrids
164 because a greater number of loci (> 400) are generated compared to previous studies using only a
165 handful of microsatellite markers. For the phenotypic dataset, we used eBird reports of likely F1
166 hybrid chickadees across North America ($n = 271$) to compare metrics of human habitat
167 disturbances for locations of reported hybrids to those of both parental species ($n = 271$ for both
168 species) to test whether phenotypic hybrids are reported in more disturbed areas. Here, we
169 document widespread hybridization between black-capped and mountain chickadees across their

170 range overlap (i.e., not a single site of hybridization) and find that hybridization positively
171 correlates with human habitat disturbances.

172

173 **Materials and Methods**

174 *Genomic population sampling*

175 We sampled 196 phenotypic black-capped and 213 phenotypic mountain chickadees at 81 sites
176 from across most of their contemporary North American distributions over ten years (2008-2018)
177 during the May - August breeding season. We captured <10 birds at each site except one, which
178 we accounted for in downstream analyses. Chickadees of both species were captured using either
179 audio lures at mist-nets, baited Potter traps, or by hand at the nest. Birds were morphologically
180 identified as either parental taxon using well-established field characters (i.e., the white
181 supercilium diagnosed mountain chickadees and a black head and white wing bars were used to
182 identify black-capped chickadees; Fig. 1). No phenotypically intermediate individuals were
183 captured in any of the sampling bouts (i.e., intermediate phenotype individuals were not
184 purposely excluded from this study but appear to be rare). The lack of phenotypically
185 intermediate chickadees included in this study despite a broad geographic and temporal sampling
186 scheme highlights that initial hybridization (i.e., the production of F1s) is rare, which is further
187 supported by few records of intermediate birds prior to widely available eBird reports (Hubbard,
188 1978, Howe, 1985, Martin and Martin, 1996). Birds included in the genomic dataset were
189 sampled in three separate sampling bouts for single-species population genetic studies (Adams &
190 Burg, 2015; Bonderud et al., 2018; Grava et al., 2012). Because chickadees were haphazardly
191 sampled to describe single-species population genetic structure, and not for calculating measures
192 of hybrid ancestry, our sampling schematic is not biased towards overestimating hybridization by

193 focusing sampling on locations where we predicted hybridization is most likely to occur (a
194 prediction that we formed *after* the collection of the samples).

195 Birds were recorded as occurring either in sympatry or allopatry using current
196 distribution maps, eBird observations, and whether or not individuals of both species were
197 sighted and / or captured at a single site (Sullivan et al., 2009). If individuals from both species
198 were captured in a single location, we scored them as sympatric, regardless of distribution maps
199 or eBird data. This allowed for allopatry to occur within the range of overlap (i.e., at high
200 elevation sites where only mountain chickadees were sampled, or low elevation where only
201 black-capped chickadees were sampled). For each species, we included >10 individuals from
202 allopatric populations (mountain chickadees: n = 23 from California, USA; black-capped
203 chickadees: n = 11 Alaska, USA) to identify ancestry informative loci used to calculate hybrid
204 indexes (a measure of genomic admixture) and run simulations (to assign birds to genotypic
205 classes). Small blood samples (< 20 ul) were collected from the brachial vein and stored either as
206 whole blood in 2% lysis buffer, ethanol, or blood on filter paper stored in ethanol. We included
207 several pectoral tissue samples from the Smithsonian Museum and Berkeley Museum of
208 Vertebrate Zoology. Tissue samples were stored in ethanol. We recorded latitude and longitude
209 for capture location of all chickadees. All protocols were approved by University of Colorado
210 Boulder IACUC (2683) panel, UNBC ACUC (protocols 2004-07; A2008.0109.002; 2011.05;
211 2014.06 & 2017.01), and University of Lethbridge (protocols 1028 and 1504) animal care
212 committees and all methods in this study were performed in accordance with relevant guidelines,
213 permits, and regulations.

214

215 *Quantifying and extracting DNA*

216 Previous studies exploring hybridization between black-capped and mountain chickadees have
217 relied on intermediate plumage or several microsatellite markers to diagnose hybrids. To
218 examine hybridization between black-capped and mountain chickadees, we used a genomic
219 approach to generate hybrid indexes for 409 chickadees from across both species' ranges
220 (including areas of sympatry and allopatry) using reduced-representation sequencing. We
221 extracted DNA from either whole blood or tissue samples using salt-precipitation (Miller, Dykes,
222 & Polesky, 1988). Specifically, 40 μ l of the blood sample or ~2 g of tissue was added to 200 μ l
223 of homogenizing solution (0.4 M NaCl, 10 mM Tris–HCl pH 8.0, and 2 mM EDTA pH 8.0), 20
224 μ l of 20% SDS, and 10 μ l of Proteinase K (20 mg/mL). We vortexed samples and digested at 56
225 °C overnight. To breakdown cell components and draw off DNA-associated proteins, we
226 removed samples from the heat block, vortexed them, and added 150 μ l of 6 M NaCl salt
227 solution to each sample. We then vortexed samples for 30 seconds and centrifuged them for 30
228 min at 13300 rpm to spin down cell components. After centrifugation, we decanted the
229 supernatant into a clean, labeled 1.5 ml tube and added 2 μ l of Glycoblue™ (Thermo Fisher
230 Scientific Waltham, MA) to co-precipitate and stain the DNA. To precipitate the DNA from the
231 supernatant, we added 1000 μ l of cold 100% ETOH and incubated the samples in -20 °C for 15
232 min. After incubating the samples, we centrifuged them for 30 min at 13300 rpm to spin down
233 the precipitated DNA. We then decanted off the supernatant and added 1000 μ l room temp 70%
234 ETOH to wash the DNA and remove remaining salt. We repeated this wash step as needed until
235 no visible salt remained around the DNA pellet. After washing the DNA, we air-dried the pellets
236 for 10 min. Lastly, we resuspended the DNA pellet in 100 μ l of TE buffer (10 mM Tris, 1 mM
237 EDTA at pH 8-9) and incubated at 37 °C for 15 min. Samples were incubated at 4 °C overnight

238 to fully dissolve the DNA pellet. We quantified DNA concentrations using a Qubit 3.0
239 fluorometer (Invitrogen; Carlsbad, CA).

240

241 *Library preparation and genomic sequencing*

242 To generate genomic sequence data, we used double-digest restriction site-associated DNA
243 sequencing (ddRAD) following the protocol of Peterson, Weber, Kay, Fisher, & Hoekstra (2012)
244 with modifications as described in Thrasher, Butcher, Campagna, Webster, & Lovette (2018).

245 Because ddRAD digests DNA with two restriction enzymes, it is a cost-effective approach for
246 generating genomic sequences for large sample sizes of non-model organisms. For each sample,
247 we digested ~500 ng of DNA with the restriction enzymes *SbfI* and *MspI* (New England
248 BioLabs, Ipswich, Massachusetts, USA). The ends of the digested DNA were ligated to P1 and
249 P2 adaptors using T4 DNA Ligase (New England BioLabs). We ligated P1 adapters to 5' end of
250 digested DNA with a *SbfI* compatible overhang and an inline barcode (5-7 bp long) to identify
251 individual samples bioinformatically later in the analysis. We ligated P2 adaptors to the 3' end of
252 the digested DNA with a *MspI* compatible overhang. We pooled samples with unique P1
253 barcodes into 22 different indexing groups after digestion/ligation. To remove enzymes and
254 small DNA fragments, we purified DNA in each index group using 1.53 Agencourt AMPure XP
255 beads (Beckman Coulter, Pasadena, California, USA). To ensure the same loci are recovered in
256 all index groups, we size-selected fragments between 400 and 700 bp using Blue Pippin (Sage
257 Science, Beverly, Massachusetts, USA). To add the full Illumina TruSeq primer sequences and
258 unique indexing primers into each library, we performed a low cycle number PCR with Phusion
259 High-Fidelity DNA Polymerase (New England BioLabs) with the following thermocycling
260 profile: 98°C for 30 s followed by 11 cycles at 98°C for 5s, 60°C for 25s, and 72°C for 10s with

261 a final extension at 72°C for 5 min. We visualized amplified products on a 1% agarose gel and
262 performed a final 0.73 AMPure cleanup to eliminate DNA fragments smaller than 200 bp. We
263 visualized libraries on a fragment Bioanalyzer (Agilent Technologies, Santa Clara, California,
264 USA) to determine fragment size distribution. Finally, all 22 index groups were combined at
265 equimolar ratios and sequenced on one Illumina NextSeq 500 lane (single-end, 150 bp) at the
266 Cornell University Biotechnology Resource Center. Raw sequence data and associated metadata
267 are available at the sequence read archive.

268

269 *Quality control and filtering*

270 To demultiplex chickadee samples, we used the process_radtags command in STACKS 2.41
271 Catchen, Hohenlohe, Bassham, Amores, & Cresko (2013). After demultiplexing, we trimmed
272 and filtered sequence reads using a custom script. Specifically, we removed Illumina adapters
273 provided in the TruSeq3-PE.fa file using TrimmomaticSE (Bolger, Lohse, & Usadel, 2014).
274 First, we searched for seed matches allowing maximally one mismatch. Using a sliding window
275 trimming approach, we scanned sequence reads from the 5' end in 4 bp windows and removed
276 sequence reads when the average Phred quality score fell below 20. Finally, we dropped any
277 reads shorter than 36 bp long. We used fastqc (Andrews, 2010) to calculate quality scores. After
278 filtering, we aligned reads to a high-quality black-capped chickadee reference genome (Wagner,
279 Curry, Chen, Lovette, & Taylor, 2020) using bwa mem (Li, 2013) and a custom script to create a
280 sam file. We converted sam files to bam files using samtools (Li et al., 2009). Next, we used
281 Picard-tools (Broad Institute, 2019) to mark duplicates and add/replace read groups. Lastly, we
282 called variants based on a previously assembled black-capped chickadee reference genome
283 (Wagner et al., 2020) with bcftools (Narasimhan et al., 2016) and the mpileup command

284 resulting in 517,699 unique loci. After calling variants, we filtered out single nucleotide
285 polymorphisms (SNPs) with a Phred Score below 30, loci with a minor allele frequency less than
286 0.01 and 50% missingness, and loci with a maximum depth of 10x and a minimum depth of 1x.
287 To ensure we were only using informative alleles, we used VCFtools (Danecek et al., 2011) to
288 calculate the fixation index (F_{ST}), a measure of population differentiation, per SNP. F_{ST} ranges
289 from 0 - 1, and values closer to 1 indicate fixed allelic differences between populations, or
290 species in this case, at a given locus. After calculating F_{ST} for each SNP, we filtered SNPs to
291 retain loci with $F_{ST} > 0.80$ ($n = 443$) to improve our estimation of population differentiation and
292 hybrid indexes. After filtering SNPs, we converted our variant call format (vcf) file to
293 STRUCTURE format using PGD Spider version 2.1.1.5 (Lischer & Excoffier, 2012) for
294 downstream analyses. This VCF table is available on data dryad.

295

296 *Examining population genetic structure*

297 First, we used the program STRUCTURE 2.3.4 (Pritchard, Stephens, & Donnelly, 2000) to
298 assess the number of genetic clusters in our genomic dataset on a thinned SNP dataset after
299 pruning SNPs in linkage and retaining only ancestry informative markers ($n = 443$ SNPs). We
300 ran STRUCTURE for $K = 1, 2, & 3$ and, using a delta K approach, confirmed that the best
301 supported number of clusters was $K = 2$ (Supplementary Fig.1). We similarly explored
302 population structure using a principal component analysis (PCA) of genomic variation between
303 black-capped and mountain chickadees (Supplementary Fig. 2) using the same SNP dataset ($n =$
304 443 SNPs).

305

306 *Identifying hybrids from genomic data*

307 To identify hybrids in our genomic dataset, we first calculated hybrid indexes and heterozygosity
308 for all individuals using *gghybrid* (Bailey 2018) and a custom script (available on github),
309 respectively, then we used *NewHybrids* 1.1 Beta 3 (E. C. Anderson & Thompson, 2002)
310 following the approach of Shurtliff et al. (2014) to assign individuals to one of eight genotypic
311 classes (up to two generations of backcrosses). First, we calculated hybrid indexes (HI) for all
312 409 individuals using the R package *gghybrid* (Bailey, 2018). Hybrid index ranges from 0 - 1
313 with 0 indicative of one parental population (here, black-capped chickadees) and 1 representing
314 the other parental species (here, mountain chickadees). First generation hybrids (F1s) have a HI
315 of ~0.50. *gghybrid* calculates HI based on the method of Buerkle (2005), and uses Bayesian
316 Markov chain Monte Carlo to estimate what proportion of alleles originate from a predefined
317 parental population. We assigned parental populations as allopatric black-capped chickadees
318 from Alaska, USA (HI = 0) and allopatric mountain chickadees from California, USA (HI = 1).
319 We used the *esth* function with a burn-in of 3,000 iterations and 10,000 total iterations (i.e.,
320 default settings) to estimate hybrid indexes for all birds. We did not use fixed loci (e.g., $F_{ST} = 1$)
321 for estimating hybrid indexes because our reduced-representation approach did not capture
322 enough fixed alleles to inform HI estimation. We also followed the above approach of estimating
323 hybrid indexes using loci with $F_{ST} > 0.65$ ($n = 955$), which yielded similar results to using loci
324 with $F_{ST} > 0.80$ but had larger confidence intervals due to a greater amount of missing data. We
325 report HIs and confidence intervals generated from loci with $F_{ST} > 0.80$ (Supplementary Table 1
326 & Supplementary Fig. 3). After generating hybrid indexes, we re-scaled hybrid index from 0 -
327 0.5 using the equation, $g(x) = 0.5 - \text{abs}(x - 0.5)$ to facilitate downstream analyses so 0 = parental
328 individuals of both species and 0.5 = F1 hybrids.

329 Next, we calculated heterozygosity for all individuals using 443 loci and compared
330 heterozygosity to hybrid index for each individual. Parental genotypes are expected to have
331 scaled hybrid indexes close to 0 and low heterozygosity. First generation hybrids (F1s) should
332 have high heterozygosity (close to 1) and high scaled hybrid indexes (~ 0.5). In contrast, later
333 generation hybrids (F2s and backcrosses), should have lower heterozygosity and intermediate
334 scaled hybrid indexes.

335 Finally, we assigned birds to one of eight genotypic classes (up to two generations of
336 backcrossing in either direction) using NewHybrids 1.1 Beta 3. First, we further filtered our SNP
337 dataset to include ancestry informative loci and improve genotypic class assignment.
338 Specifically, we filtered our SNP set to include loci with $Fst > 0.90$ and minor allele frequency in
339 black-capped chickadees < 0.10 ($n = 123$) between our allopatric populations. Then we tested the
340 power of this subset of SNPs to identify hybrids by using NewHybrids to simulate 184 known-
341 hybrid individuals from a random subset of parental-type individuals (i.e., allopatric birds) and
342 examined their probability of assignment to genotypic classes. We simulated 50 parental
343 mountain chickadees, 44 black-capped chickadees, 15 F1s, 15 F2s, and then 15 of each direction
344 of backcross up to 2 generations of backcrosses (i.e., 15 BCCH_Bx, 15 MOCH_Bx, 15
345 BCCH.2_Bx, & 15 MOCH.2_Bx). All individuals in this simulated dataset had high probability
346 of assignment to genotypic classes in NewHybrids (p of $z > 0.95$; Supplementary Fig. 4) so we
347 used the same subset of 123 SNPs to assign all unknown (i.e., real) chickadees in our dataset ($n =$
348 409) to the same eight genotypic classes using NewHybrids using a cut-off p of $z > 0.80$ (e.g.,
349 parental black-capped chickadee, parental mountain chickadee, F1, F2, and each direction of
350 backcross up to two generations of backcrossing). Birds with p of $z < 0.80$ were not assigned to
351 any genotypic class ($n = 27$) and were dropped from downstream analyses (Table 1). For birds

352 that were successfully assigned to genotypic classes, we further categorized these birds as either
353 parentals or hybrids. Birds assigned to F1, F2, or any class of backcross were classified as
354 hybrids. Birds assigned to parental classes were considered parentals.

355

356 *Selecting phenotypic hybrids and parental chickadees from eBird*

357 For our phenotypic dataset, we downloaded all observations of phenotypic black-capped /
358 mountain chickadee hybrids (*Poecile gambeli* x *Poecile atricapillus*) from eBird from Jan 1989 –
359 Dec 2021 (n = 751). Next, we filtered these observations by unique combinations of locality and
360 date (month and year) to remove multiple sightings of the same bird. This yielded 271 unique
361 observations of phenotypic hybrids from across North America (Fig. 4a). Then, we downloaded
362 all observations of black-capped (n = 8,942,641) and mountain chickadees (n = 624,895) from
363 the same date range as the hybrid dataset (1989-2021). For each parental taxon, we similarly
364 filtered parental taxa observations to unique combinations of location and date to remove repeat
365 sightings. For black-capped chickadees, we restricted observations to western North America
366 (i.e., all observations west of 102° W) to match distributions of black-capped chickadee sightings
367 to those of hybrids and mountain chickadees. We did not geographically restrict observations for
368 mountain chickadees since their distribution is limited to western North America. Finally, we
369 randomly sampled 271 observations for each parental taxa from these filtered subsets (Fig. 4a &
370 Supplementary Fig. 5).

371

372 *Calculating human habitat disturbance*

373 To measure human landscape disturbances across the continental scale, we used the Global
374 Human Influence Index (Geographic) v2 dataset (1995-2004; WCS and Columbia University

375 2005). This dataset is a map of anthropogenic impacts on the environment in geographic
376 projection and is comprised of the Human Influence Index (HII) normalized by biome and realm.
377 The HII is a measure of habitat disturbance produced as a global dataset of 1-kilometer grid
378 cells, created from nine global data layers including human population pressure (population
379 density), human land use and infrastructure (built-up areas, nighttime lights, land use/land
380 cover), and human access (coastlines, roads, railroads, navigable rivers). Again, this metric
381 purposely excludes global climate change, and is a holistic metric of human habitat disturbances,
382 beyond land cover changes, to the physical environment. For both the genomic and phenotypic
383 dataset, we plotted the capture location of individuals on the Global Human Influence Index map
384 (Fig. 2a & Supplementary Fig. 5, respectively) and extracted Human Influence Index (HII)
385 values for each chickadee sampling location using R v.4.2.0 (R Development Core Team 2018).
386 The Human Influence Index (HII) ranges from 0 – 64 and creators of the dataset denote that HII
387 < 10 indicate wild habitats, whereas HII > 10 are disturbed habitats (WCS and Columbia
388 University 2005).

389 After calculating HII for each genotyped chickadee, we further classified chickadees
390 based on their capture location as either occurring in wild habitats ($HII \leq 10$) or disturbed
391 habitats ($HII > 10$). While most of the genotyped chickadees were adults and therefore captured
392 away from their natal nest, dispersal distances for both species of chickadees is small (< 2 km;
393 Weise and Meyer, 1979, Pravosudov et al., 2003). Given that the resolution of the Global Human
394 Influence Index is 1 km pixels, the calculated HII for each chickadee's sampling location is a
395 reasonable proxy for the HII of their natal site.

396

397 *Statistical Analyses*

398 We explored the relationship between landscape disturbance and chickadee hybridization using
399 both genomic and phenotypic datasets. For our genomic dataset, we first performed a generalized
400 additive mixed model to explore the relationship between HI and HII as continuous, rather than
401 categorical, variables. We then categorized both hybrid status and disturbance and used
402 parametric statistical tests to compare 1) the proportion of hybrids found in disturbed versus wild
403 habitats, 2) the mean hybrid index for chickadees sampled in wild versus disturbed habitats, and
404 lastly, 3) the average disturbance metric (HII) of sampling location for hybrids compared to
405 parentals. Finally, for our phenotypic dataset of hybrids, we used parametric tests to compare the
406 mean disturbance metric (HII) of hybrid sampling locations to the sampling locations of both
407 parental species.

408 For our genomic dataset, we used the package *mgcv* in R to construct a generalized
409 additive mixed model with a Gaussian distribution to explore whether human influence index
410 (HII) significantly predicts hybrid index (HI), while controlling for whether birds were sampled
411 in *Sympatry*. We also included both *Year* and *Site* as random effects to control for non-
412 independence both within sampling bouts and at single sites (i.e., to control for relatedness
413 among individuals at the same site). Specifically, we constructed the following model:

414

415 $\text{Hybrid Index} \sim s(\text{Human Influence Index}) * s(\text{Sympatry}) + (1|\text{Year}) + (1|\text{Site})$

416

417 Including both HII and whether birds were sampled in sympathy allows us to distinguish
418 whether disturbance, independent of sympathy, is correlated with hybrid index, or whether birds
419 only overlap in disturbed areas, and therefore can only hybridize in disturbed areas. We did not
420 use a linear model to explore the relationship between hybrid index and human influence index

421 because we do not expect the relationship between hybrid index and human habitat influence to
422 be linear. The ability of chickadees to survive and reproduce in heavily impacted habitats likely
423 declines after some critical threshold, reducing the opportunity for hybridization to occur at
424 maximum human influence index values (e.g., the center of an urban area).

425 Second, to test whether more hybrids (based on NewHybrids assignment) were detected
426 in disturbed habitats versus wild habitats, we used a two-proportion, right-tailed Z-test with a
427 Yates continuity correction. Then, we compared the average hybrid index for chickadees
428 sampled in disturbed habitats versus chickadees sampled in wild habitats using Welch's two-
429 sample t-test. To explore if parentals and hybrids cluster in landscapes with differing disturbance
430 values, we tested whether the average disturbance value (HII) of sampling location for hybrids
431 (based on NewHybrids assignment) was greater than parentals.

432 Finally, for our phenotypic dataset, we tested whether phenotypic hybrids from eBird are
433 observed in more disturbed habitats using a one-way ANOVA to explore the effect of species
434 (Hybrid v. *P. gambeli* v. *P. atricapillus*) on the HII of birds' sampling locations, followed by a
435 Tukey HSD test. As a caveat, the eBird data reported here was collected over 10 years (2011-
436 2021), however, our measure of habitat disturbance (HII) is a single aggregate from 1995-2004.
437 While we expect HII to increase through time, we are unable to test this relationship directly.
438 However, the single measure of HII used is still a reasonable proxy for comparing differences in
439 disturbance association between the two chickadee species and their hybrids.

440

441 **Results**

442 *Black-capped and mountain chickadees exhibit strong population structure*

443 We found that despite hybridizing throughout their ranges (Fig. 2b), black-capped and mountain
444 chickadees exhibit distinct population structure. PC1 clearly separates black-capped chickadees
445 from mountain chickadees (PC1 = 72.2%; Supplementary Fig. 2), and STRUCTURE results
446 indicate strong population genetic differentiation between the two species (K = 2; Supplementary
447 Fig. 1).

448

449 *Initial hybridization between black-capped and mountain chickadees is rare*

450 Using 443 highly differentiated loci ($F_{ST} > 0.80$), we calculated hybrid indexes and
451 heterozygosity for 409 chickadees. After scaling hybrid index from 0 – 0.5, hybrid index ranged
452 from 0.0 to 0.47 for phenotypic black-capped chickadees (i.e., birds scored as black-capped
453 chickadees in the hand) and 0.0 to 0.13 for phenotypic mountain chickadees (Fig. 3a).

454 Heterozygosity ranged from 0.13 to 0.83 for phenotypic black-capped chickadees and 0.0 to 0.23
455 for phenotypic mountain chickadees (Fig. 3a). Using NewHybrids and a subset of 123 SNPs, we
456 found that 43% of chickadees sampled had some proportion of hybrid ancestry: 160/375
457 sympatric chickadees were classified as one of the six hybrid genotypic classes (Table 1, Fig.
458 3b). For 53 of the 160 detected hybrids, we sampled parentals in the same sampling bout (i.e., in
459 same year and site). We were able to classify nearly all birds to one of the eight genotypic
460 classes (Table 1, Fig. 3b). We were unable to classify 27 birds to any genotypic class. All of the
461 birds not meeting our cut off for assignment were scored phenotypically as black-capped
462 chickadees, and all were split between parental black-capped chickadee and first/second
463 generation backcrosses. Thus, it is likely these birds are later generation black-capped chickadee
464 backcrosses, a pattern that is supported by whole genome data from a single sampling site
465 (Grabenstein et al., *in review*). We detected two likely F1s (Fig. 3). Both of these birds were

466 males (one adult & one Hatch Year) and both had black-capped phenotypes (i.e., lacked a
467 supercilium), as identified by trained researchers in the field.

468

469 *Hybridization correlates with human habitat disturbances*

470 We explored whether human habitat disturbances correlated with chickadee hybridization using
471 a generalized additive model. We found that chickadee hybrid indexes were significantly higher
472 in more disturbed habitats: HI significantly increased with HII ($\beta = 0.0028$, SE = 0.00074, $P <<$
473 0.001). Neither *Sympatry* ($\beta = 0.10$, SE = 0.12, $P = 0.39$), *Sympatry*HII* ($\beta = -0.00017$, SE =
474 0.0032, $P = 0.96$), nor *Year* (HII: $\beta = 0.00031$, $P = 0.55$) significantly predicted hybrid index
475 (Fig. 2c). We did detect a significant effect of (1|Site) on hybrid index: (1|Site) (edf =
476 38.35, $P << 0.001$) because 81 sites were included in our analyses. We found that with an
477 increase of 1 HII, our model predicted an increase of 0.0028 in HI (i.e., a significant, but small in
478 magnitude, effect).

479 We used a two-sample, right-tailed Z-test to further explore this positive correlation. We
480 found that significantly more hybrids were sampled in disturbed habitats versus wild habitats
481 (HII ≤ 10 indicate wild habitats, HII > 10 are disturbed habitats; $\chi^2 = 20.91$, df = 1, p-value <
482 0.0001). We identified 98 hybrid chickadees in disturbed habitats out of 187 birds sampled
483 (98/187 = 52.4%) versus 62 hybrid chickadees out of 211 sampled birds in wild habitats (62/211
484 = 29.3%). Additionally, we found that the average hybrid index of birds in disturbed habitats (HI
485 = 0.17 ± 0.13 ; n = 187) was significantly higher than the average hybrid index of birds in wild
486 habitats (HI = 0.09 ± 0.12 ; n = 211; t = 5.17, df = 373.63, p-value < 0.0001; Fig. 2c).

487 Lastly, the average disturbance value (HII) for hybrids (hybrid HII = 21.01 ± 15.48 ; n =
488 160) was significantly higher compared to the average disturbance value (HII) for parentals
489 (parental HII = 12.13 ± 9.26 ; n = 210) ($t = -6.41$, df = 241.92; p-value < 0.001).

490

491 *Black-capped chickadees and hybrids are more disturbance-associated than mountain*
492 *chickadees*

493 From eBird, we found significant differences in habitat disturbance values for the report
494 locations of black-capped, mountain, and hybrid chickadees (ANOVA: $F_{2,398} = 80.47$, P <
495 0.0001; Fig. 4b). Post hoc Tukey tests showed that disturbance values for locations of phenotypic
496 hybrids (mean HII for hybrids = 38.53) were significantly higher than for mountain chickadee
497 reports (mean HII *P. gambeli* = 24.28; P < 0.001), but not significantly different from black-
498 capped chickadee reports (mean HII *P. atricapillus* = 39.54; P = 0.38). Similarly, we found that
499 the mean disturbance values for black-capped chickadees were significantly higher than the
500 mean disturbance values for mountain chickadee reports (P < 0.001).

501

502 **Discussion**

503 We found that black-capped and mountain chickadees hybridize across their range, and that
504 hybridization is correlated with human habitat disturbances. Initial hybridization (i.e., production
505 of F1s) is rare, and the F1s that are produced appear to predominantly backcross with black-
506 capped chickadees, which produces cryptic later generation hybrids. Surprisingly, we found that
507 nearly every black-capped chickadee we sampled contained some proportion of hybrid ancestry,
508 indicating that post-zygotic isolation between black-capped and mountain chickadees is
509 incomplete. Our results are concerning because we do not understand the long-term

510 consequences of hybridization for these songbirds. Understanding what becomes of recently
511 hybridizing species following large-scale habitat disturbances is a new, but pressing,
512 consideration for successfully preserving biodiversity in a rapidly changing world.

513 We found a significant positive correlation between chickadee hybridization and human
514 habitat disturbances. Importantly, we controlled for sympatry in this analysis and found no
515 significant relationship between either sympatry and hybrid index, or disturbance*sympatry and
516 hybrid index, highlighting that overlap between the two species is not restricted to disturbed
517 habitats. Similarly, after categorizing birds as hybrid or parental and their sampling locations as
518 either wild or disturbed, we found that birds in disturbed habitats had a higher mean HI
519 compared to birds from wild habitats. Interestingly, this pattern does not appear to be driven by a
520 few, rare F1s with high HIs sampled in disturbed habitats. Instead, we found more later-
521 generation hybrids (with smaller HIs) in disturbed habitats. Further, from our genomic dataset,
522 we found that hybrids were sampled in significantly more disturbed areas than parentals. From
523 our analysis of eBird data, we found that mountain chickadees are reported in significantly less
524 disturbed habitats than both hybrids and black-capped chickadees. Given that chickadees are
525 resident songbirds with small dispersal distances (< 2 km), it is likely that both hybrids and
526 black-capped chickadees are sired (and then reside) in disturbed habitats, rather than dispersing
527 into them from neighboring rural areas. Together, these complementary datasets suggest that
528 hybridization either occurs more readily in urban areas, hybrids are better able to survive in
529 disturbed areas, or both. The possibility that human disturbance facilitates black-capped
530 chickadee population expansion and increased interactions with mountains chickadees is
531 intriguing and will be further investigated.

532 We identified 160 chickadees as hybrids out of 375 sympatric chickadees. The majority
533 of hybrids identified were black-capped chickadee backcrosses: either first-generation
534 backcrosses ($n = 43$) or second-generation backcrosses ($n = 109$), with comparatively few
535 mountain chickadee backcrosses (second-generation mountain chickadee backcrosses: $n = 6$),
536 F1s ($n = 2$) or F2s ($n = 1$) detected. This highlights that while production of F1s is rare, hybrids
537 are able to survive and reproduce, at least to some degree. F1s also appear to predominantly
538 backcross with black-capped chickadees rather than mountain chickadees. Whether this pattern is
539 due to differential population sizes in urban areas (i.e., larger populations of urban black-capped
540 chickadees), F1 preference for black-capped chickadees, or due to genetic incompatibilities that
541 produce lethal combinations when F1s backcross with mountain chickadees remains unclear.
542 Interestingly, 129/271 of the unique eBird hybrid sightings recorded hybrid chickadees
543 associating with only black-capped chickadees (eBird 2021). In contrast, there were 22 records
544 of eBird-reported hybrids observed with only mountain chickadees. In 69 observations, hybrids
545 were reported in mixed species flocks with both black-capped and mountain chickadees, and in
546 51 instances, hybrids were not reported with either species. This pattern of phenotypic hybrids
547 associating with black-capped chickadees matches our genetic data, which indicate repeated, and
548 generally unidirectional, backcrossing between F1s and black-capped chickadees.

549 Historically, hybridization between black-capped and mountain chickadees has been
550 considered rare but this is likely because hybrids beyond the F1 generation cannot be identified
551 using phenotype alone. Surprisingly, our data suggest that many sympatric black-capped
552 chickadees in disturbed habitats contain some proportion of hybrid ancestry though they lack
553 intermediate phenotypes. Genotyped hybrid individuals were classified as black-capped or
554 mountain chickadees rather than hybrids using phenotype by trained researchers in the field (i.e.,

555 hybrids were not recognized as hybrids in the hand). For example, both possible F1s from this
556 study were not recognized as hybrids in the hand. Despite many continental records of
557 phenotypically intermediate individuals (n = 271; eBird 2021), we captured no birds with
558 intermediate phenotype and therefore included none in our genomic analyses. While this
559 potentially leads us to underestimate the extent of hybridization in this system, it is more likely
560 that our lack of phenotypically intermediate individuals highlights the rarity of the production of
561 F1 hybrids. This makes our finding of extensive hybrid ancestry in black-capped chickadees
562 more surprising: despite rare initial hybridization there are lasting signatures of admixture in
563 many sympatric chickadee populations. Hybridization between black-capped and mountain
564 chickadees is likely much more common than previously thought, especially if most later
565 generation hybrids are cryptic and do not have intermediate phenotypes, as our data suggests.
566 Ultimately, assessments of the directionality of hybridization, frequency distribution of various
567 hybrid classes, as well as the genetic architecture of hybrid phenotypes are lacking and should be
568 a focus for future work.

569 While robust quantifications of the relative strength of pre- and post-zygotic isolating
570 barriers between black-capped and mountain chickadees are lacking, the two species appear to
571 have multiple pre-zygotic reproductive isolating barriers, including ecological differentiation in
572 physical, behavioral, and temporal isolation. In sympatry, the two species occupy different, but
573 often neighboring, habitats and are effectively separated along elevational gradients. In areas of
574 sympatry compared to allopatry, mountain chickadees, the subordinate species, appear to have
575 evolved character displacement. Mountain chickadees in sympatry with more dominant black-
576 capped chickadees have shifted their song frequency and chorusing behavior (Grava et al., 2013;
577 Lohr, 2008) compared to mountain chickadees in allopatry and breed later in areas of sympatry

578 compared to neighboring sympatric black-capped chickadees (Freshwater, Ghalambor, & Martin,
579 2014). It is these prezygotic barriers that appear to break down in human modified habitats.

580 Nearly every black-capped chickadee we sampled had genomic evidence of
581 hybridization, indicating incomplete post-zygotic isolation between the black-capped and
582 mountain chickadees. Given that black-capped and mountain chickadees are not sister taxa, this
583 is somewhat surprising; however, similar patterns have been found in other systems (e.g.,
584 Kuhlwilm et al., 2016). The degree of genetic differentiation between the two species is
585 significant (genome-wide $F_{ST} = 0.34$) and it is probable that genetic incompatibilities reduce
586 hybrid fitness (e.g., Price and Bouvier, 2002) such that hybrids do not persist well in the
587 population or that certain crosses are sterile or inviable. Previous work has documented reduced
588 body condition (calculated using scaled morphology) for sympatric black-capped and mountain
589 chickadees, thought to be driven by cryptic, low fitness hybrids (Grabenstein et al., 2022).
590 Specific intrinsic incompatibilities between black-capped and mountain chickadees have not yet
591 been investigated, but may include breakdowns in metabolic and cognitive function as is the case
592 for other hybridizing chickadees (Taylor et al., 2014; Wagner et al., 2020). Indeed, fatty acid
593 synthesis pathways differ significantly between black-capped and mountain chickadees (S.
594 Taylor, unpublished data). Ultimately, understanding the long-term outcomes of recent, and
595 potentially novel, hybridization due to human habitat disturbances is an outstanding question and
596 should be prioritized given the rapid rate of global change.

597 Disturbance-mediated hybridization is being documented at an increasing frequency;
598 however, little is known about how human habitat disturbances drive hybridization and what
599 becomes of hybridizing populations in the long term. While experimental explorations are
600 lacking, human habitat disturbances appear to promote hybridization by three potential, non-

601 mutually exclusive mechanisms: (1) bringing formerly isolated (ecologically and/or temporally)
602 species together by reducing habitat structure and/or by altering phenology, (2) impeding the
603 ability of naturally co-existing species to discriminate between conspecifics and heterospecifics
604 by visual, chemical, and acoustic interference, and/or (3) creating novel environments with
605 reduced selection against hybrids such that they survive and are detected in populations
606 (Grabenstein & Taylor, 2018). We hypothesize that human-mediated disturbances bring formerly
607 ecologically isolated black-capped and mountain chickadees together in artificially extended
608 transitional forest habitat. In most western urban areas, where hybrids appear to be produced and
609 persist, humans have cultivated an artificial mosaic of native and non-native deciduous trees
610 alongside native conifers (Ma et al., 2020). Based on disturbance values from eBird reports, we
611 found that black-capped chickadees appear to be more human-associated than mountain
612 chickadees. It is possible that large urban populations of black-capped chickadees that rely on
613 planted deciduous trees in locations that would otherwise be unsuitable for black-capped
614 chickadees (e.g., the high plains of Colorado) might promote hybridization by increasing contact
615 between black-capped and mountain chickadees at range edges. We found that hybrids reported
616 in eBird are found in highly disturbed habitats, but that these disturbance values do not
617 significantly differ from black-capped chickadees, suggesting that hybridization is likely
618 occurring in disturbed habitats since dispersal distance for both chickadee species is limited. The
619 fact that both hybrid and black-capped chickadees are found in more disturbed habitats than
620 mountain chickadees, implicates urban areas as playing a role in hybridization, potentially by
621 artificially increasing black-capped populations in urban areas, reducing selection against
622 hybrids via supplemental feeding (i.e., urban feeders), or a combination of both mechanisms.

623

624 *Conclusions*

625 We found that black-capped and mountain chickadees hybridize across their range and that
626 hybridization in this system is significantly correlated with human habitat disturbance. The
627 majority of published studies have quantified human-mediated hybridization at small spatial
628 scales, often in a single city or field site, and have suggested disturbance as a post-hoc
629 explanation for increased and/or novel hybridization. We cannot predict what becomes of
630 hybridizing species following human habitat disturbances or if the most likely long-term
631 outcomes (e.g., adaptive introgression, species collapse, stable hybrid zone) differ from those in
632 more classic hybrid zones. Regardless, hybridization because of human habitat disturbances will
633 impact biodiversity and population persistence with accelerating global change by either
634 reducing genetic diversity or increasing adaptive potential. Understanding the causes and
635 consequences of disturbance-mediated hybridization is of utmost importance for conserving
636 biodiversity in a rapidly changing world.

637

638 **Acknowledgements**

639 This research was supported by U.S. National Science Foundation Grants awarded to K.C.G.
640 (NSF GRFP, DGE 1650115) and S.A.T (NSF IOS-1754898 and DEB-1928891) and by grants
641 awarded to K.A.O. by NSERC DG and UNBC and funds to T.M.B. from NSERC DG, Alberta
642 Innovates, and Alberta Conservation Association. G. Semenov provided critical insights for
643 genomic analyses and E. Anderson greatly helped with running NewHybrids. We would like to
644 thank the Taylor Lab for comments that greatly improved this manuscript. We are indebted to the
645 field technicians, and undergraduate and graduate students that participated in collecting samples
646 from chickadees across North America. We would like to thank B. Butcher, S. Kaiser, I. Lovette
647 for facilitating the genomic sequencing for this project. Thanks to the USNM and the Museum of
648 Vertebrate Zoology, University of California, Berkeley for lending tissue samples for this
649 project.

650

651 **Literature Cited**

652 Abbott, R. J., Barton, N. H., & Good, J. M. (2016). Genomics of hybridization and its
653 evolutionary consequences. *Molecular Ecology*, 25(11), 2325–2332.
654 <https://doi.org/10.1111/mec.13685>

655 Adams, R. V., & Burg, T. M. (2015). Influence of ecological and geological features on
656 rangewide patterns of genetic structure in a widespread passerine. *Heredity*, 114(2), 143–

657 154. <https://doi.org/10.1038/hdy.2014.64>

658 Anderson, E. (1948). Hybridization of the Habitat. *Evolution*, 2(1), 1–9.
659 <https://doi.org/10.1111/j.1558-5646.1948.tb02726.x>

660 Anderson, E. C., & Thompson, E. A. (2002). A Model-Based Method for Identifying Species
661 Hybrids Using Multilocus Genetic Data. *Genetics*, 160(3), 1217–1229.
662 <https://doi.org/10.1093/GENETICS/160.3.1217>

663 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.

664 Bailey, R. (2018). gghybrid: Evolutionary analysis of hybrids and hybrid zones.

665 Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C., & Finnegan, S. (2013). Climate change and the
666 past, present, and future of biotic interactions. *Science (New York, N.Y.)*, 341(6145), 499–
667 504. <https://doi.org/10.1126/science.1237184>

668 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina
669 sequence data. *Bioinformatics*, 30(15), 2114–2120.
670 <https://doi.org/10.1093/bioinformatics/btu170>

671 Bonderud, E. S., Otter, K. A., Burg, T. M., Marini, K. L. D., & Reudink, M. W. (2018). Patterns
672 of extra-pair paternity in mountain chickadees. *Ethology*, 124(6), 378–386.
673 <https://doi.org/10.1111/eth.12747>

674 Broad Institute. (2019). Picard Tools.

675 Buerkle, C. A. (2005). Maximum-likelihood estimation of a hybrid index based on molecular
676 markers. *Molecular Ecology Notes*, 5(3), 684–687. <https://doi.org/10.1111/j.1471-8286.2005.01011.x>

677 Bürgi, M., Hersperger, A. M., & Schneeberger, N. (2005). Driving forces of landscape change -
678 current and new directions. *Landscape Ecology 2004* 19:8, 19(8), 857–868.
679 <https://doi.org/10.1007/S10980-005-0245-3>

680 Carantón-Ayala, D., Avendaño, J. E., & Cadena, C. D. (2018). Hybridization in brushfinches
681 (Atlapetes, Emberizidae) from the southeast Andes of Colombia: a consequence of habitat
682 disturbance? *Journal of Ornithology* 2018 159:3, 159(3), 713–722.
683 <https://doi.org/10.1007/S10336-018-1544-1>

684 Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: an
685 analysis tool set for population genomics. *Molecular Ecology*, 22(11), 3124–3140.
686 <https://doi.org/10.1111/mec.12354>

687 Crego-Prieto, V., Martinez, J. L., Roca, A., Garcia-Vazquez, E., & Gross, B. (2012).
688 Interspecific Hybridization Increased in Congeneric Flatfishes after the Prestige Oil Spill.
689 *PLoS ONE*, 7(4), e34485. <https://doi.org/10.1371/journal.pone.0034485>

690 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., ... Durbin, R.
691 (2011). The variant call format and VCFtools. *Bioinformatics*, 27(15), 2156–2158.
692 <https://doi.org/10.1093/bioinformatics/btr330>

693 Devictor, V., Julliard, R., & Jiguet, F. (2008). Distribution of specialist and generalist species
694 along spatial gradients of habitat disturbance and fragmentation. *Oikos*, 117(4), 507–514.
695 <https://doi.org/10.1111/J.0030-1299.2008.16215.X>

696 Feldmann, K. B., Grabenstein, K. C., & Taylor, S. A. (2021). Achromatic plumage variation
697 between and within hybridizing Black-capped and Mountain chickadees. *Journal of Field
698 Ornithology*, 92(2), 184–202. <https://doi.org/10.1111/JFO.12368>

699 Freshwater, C., Ghalambor, C. K., & Martin, P. R. (2014). Repeated patterns of trait divergence
700 between closely related dominant and subordinate bird species. *Ecology*, 95(8), 2334–2345.
701 <https://doi.org/10.1890/13-2016.1>

702

703 Gompert, Z., & Buerkle, C. A. (2016). What, if anything, are hybrids: enduring truths and
704 challenges associated with population structure and gene flow. *Evolutionary Applications*,
705 9(7), 909–923. <https://doi.org/10.1111/EVA.12380>

706 Grabenstein, K. C., Otter, K. A., Burg, T. M., & Taylor, S. A. (2022). Sympatry leads to reduced
707 body condition in chickadees that occasionally hybridize. *Ecology and Evolution*, 12(4).
708 <https://doi.org/10.1002/ECE3.8756>

709 Grabenstein, K. C., & Taylor, S. A. (2018). Breaking Barriers: Causes, Consequences, and
710 Experimental Utility of Human-Mediated Hybridization. *Trends in Ecology & Evolution*,
711 33(3), 198–212. <https://doi.org/10.1016/J.TREE.2017.12.008>

712 Graham, B. A., Gazeley, I., Otter, K. A., & Burg, T. (2021). Do phylogeny and habitat influence
713 admixture among four North American chickadee (family: Paridae) species? *Journal of*
714 *Avian Biology*, 52(5). <https://doi.org/10.1111/JAV.02695>

715 Grava, A., Grava, T., Didier, R., Lait, L. A., Dosso, J., Koran, E., ... Otter, K. A. (2012).
716 Interspecific dominance relationships and hybridization between black-capped and
717 mountain chickadees. *Behavioral Ecology*, 23(3), 566–572.
718 <https://doi.org/10.1093/beheco/arr229>

719 Grava, Angélique, Otter, K. A., Grava, T., LaZerte, S. E., Poesel, A., & Rush, A. C. (2013).
720 Character displacement in dawn chorusing behaviour of sympatric mountain and black-
721 capped chickadees. *Animal Behaviour*, 86(1), 177–187.
722 <https://doi.org/10.1016/J.ANBEHAV.2013.05.009>

723 Haddad, N. M., Brudvig, L. a., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., ...
724 Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth's
725 ecosystems. *Science Advances*, 1(2), 1–9. <https://doi.org/10.1126/sciadv.1500052>

726 Harden, C. P., Chin, A., English, M. R., Fu, R., Galvin, K. A., Gerlak, A. K., ... Wohl, E. E.
727 (2014). Understanding human-landscape interactions in the “anthropocene.” *Environmental*
728 *Management*, 53(1), 4–13. <https://doi.org/10.1007/S00267-013-0082-0/FIGURES/1>

729 Harris, R. B., Carling, M. D., & Lovette, I. J. (2014). The influence of sampling design on
730 species tree inference: a new relationship for the New World Chickadees (Aves: Poecile).
731 *Evolution*, 68(2), 501–513. <https://doi.org/10.1111/evo.12280>

732 Harrison, R. G. (1990). Hybrid zones: windows on evolutionary process. *Oxford Surveys in*
733 *Evolutionary Biology*, 7, 69–128.

734 Hasselman, D. J., Argo, E. E., McBride, M. C., Bentzen, P., Schultz, T. F., Perez-Umphrey, A.
735 A., & Palkovacs, E. P. (2014). Human disturbance causes the formation of a hybrid swarm
736 between two naturally sympatric fish species. *Molecular Ecology*, 23(5), 1137–1152.
737 <https://doi.org/10.1111/mec.12674>

738 Hill, B. G., & Lein, M. R. (1988). Ecological Relations of Sympatric Black-Capped and
739 Mountain Chickadees in Southwestern. *The Condor*, 90(4), 875–884. Retrieved from
740 <http://www.jstor.org/stable/1368845>

741 Howe, W. H. (1985). *Hybridization in black-capped (Parus atricapillus) and mountain (P.
742 gambeli) chickadees in the Middle Rio Grande Valley of New Mexico*. University of New
743 Mexico.

744 Hubbard, J. P. (1978). A possible hybrid chickadee from New Mexico. *New Mexico*
745 *Ornithological Society Bulletin*, 6(4), 34–35. Retrieved from <http://www.nmbirds.org/wp-content/uploads/2017/10/NMOS-bulletin-vol6no4-1978.pdf>

746 Huuskonen, H., Shikano, T., Mehtätalo, L., Kettunen, J., Eronen, R., Toivainen, A., &
747 Kekäläinen, J. (2017). Anthropogenic environmental changes induce introgression in

749 sympatric whitefish ecotypes. *Biological Journal of the Linnean Society*, 121(3), 613–626.
750 <https://doi.org/10.1093/biolinnean/blx010>

751 Kuhlwilm, M., Gronau, I., Hubisz, M. J., De Filippo, C., Prado-Martinez, J., Kircher, M., ...
752 Castellano, S. (2016). Ancient gene flow from early modern humans into Eastern
753 Neanderthals. *Nature*, 530, 429–433. <https://doi.org/10.1038/nature16544>

754 Lamb, T., & Avise, J. C. (1986). Directional introgression of mitochondrial DNA in a hybrid
755 population of tree frogs: The influence of mating behavior (interspecific
756 hybridization/restriction enzymes/Hyla). *Evolution*, 83, 2526–2530.

757 Lamont, B. B., He, T., Enright, N. J., Krauss, S. L., & Miller, B. P. (2003). Anthropogenic
758 disturbance promotes hybridization between Banksia species by altering their biology.
759 *Journal of Evolutionary Biology*, 16(4), 551–557. <https://doi.org/10.1046/j.1420-9101.2003.00548.x>

760 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... Durbin, R. (2009). The
761 Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16), 2078–2079.
762 <https://doi.org/10.1093/bioinformatics/btp352>

763 Li, Heng. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-
764 MEM. Retrieved from <http://arxiv.org/abs/1303.3997>

765 Lischer, H. E. L., & Excoffier, L. (2012). PGDSpider: an automated data conversion tool for
766 connecting population genetics and genomics programs. *Bioinformatics*, 28(2), 298–299.
767 <https://doi.org/10.1093/bioinformatics/btr642>

768 Lohr, B. (2008). Pitch-related cues in the songs of sympatric mountain and black-capped
769 chickadees. *Behavioural Processes*, 77(2), 156–165.
770 <https://doi.org/10.1016/j.beproc.2007.11.003>

771 Ma, B., Hauer, R. J., Wei, H., Koeser, A. K., Peterson, W., Simons, K., ... Xu, C. (2020). An
772 Assessment of Street Tree Diversity: Findings and Implications in the United States. *Urban
773 Forestry & Urban Greening*, 56, 126826. <https://doi.org/10.1016/J.UFUG.2020.126826>

774 Martin, S., & Martin, K. (1996). Hybridization between a Mountain Chickadee and Black-
775 capped Chickadee in Colorado. *The Colorado Field Ornithologists' Quarterly*, 30(2), 60–
776 67.

777 McFarlane, S. E., & Pemberton, J. M. (2019). Detecting the True Extent of Introgression during
778 Anthropogenic Hybridization. *Trends in Ecology & Evolution*, 34(4), 315–326.
779 <https://doi.org/10.1016/J.TREE.2018.12.013>

780 Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for
781 extracting DNA from human nucleated cells. *Nucleic Acids Research*, 16(3), 1215–1215.
782 <https://doi.org/10.1093/NAR/16.3.1215>

783 Moran, E. V., & Alexander, J. M. (2014). Evolutionary responses to global change: lessons from
784 invasive species. *Ecology Letters*, 17(5), 637–649. <https://doi.org/10.1111/ele.12262>

785 Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., & Durbin, R. (2016).
786 BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-
787 generation sequencing data. *Bioinformatics*, 32(11), 1749–1751.
788 <https://doi.org/10.1093/bioinformatics/btw044>

789 Norris, L. C., Main, B. J., Lee, Y., Collier, T. C., Fofana, A., Cornel, A. J., & Lanzaro, G. C.
790 (2015). Adaptive introgression in an African malaria mosquito coincident with the increased
791 usage of insecticide-treated bed nets. *Proceedings of the National Academy of Sciences*,
792 112(3), 815–820. <https://doi.org/10.1073/pnas.1418892112>

793 Ortego, J., Gugger, P. F., & Sork, V. L. (2016). Impacts of human-induced environmental
794

795 disturbances on hybridization between two ecologically differentiated Californian oak
796 species. *New Phytologist*, 1–14. <https://doi.org/10.1111/nph.14182>

797 Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra, H. E. (2012). Double digest
798 RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and
799 non-model species. *PLoS ONE*, 7(5). <https://doi.org/10.1371/journal.pone.0037135>

800 Pravosudov, V. V., Mendoza, S. P., & Clayton, N. S. (2003). The relationship between
801 dominance, corticosterone, memory, and food caching in mountain chickadees (*Poecile*
802 *gambeli*). *Hormones and Behavior*, 44(2), 93–102. [https://doi.org/10.1016/S0018-506X\(03\)00119-3](https://doi.org/10.1016/S0018-506X(03)00119-3)

803 Price, T. D., & Bouvier, M. M. (2002). The evolution of F1 postzygotic incompatibilities in
804 birds. *Evolution*, 56(10), 2083–2089. <https://doi.org/10.1111/J.0014-3820.2002.TB00133.X>

805 Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using
806 Multilocus Genotype Data. *Genetics*, 155(2). Retrieved from
807 <http://www.genetics.org/content/155/2/945>

808 R Development Core Team. (2017). R: A language and environment for statistical computing,
809 reference index version 3.4.3. Vienna, Austria: R Foundation for Statistical Computing.

810 Reudink, M. W., Mech, S. G., Mullen, S. P., & Curry, R. L. (2007). Structure and dynamics of
811 the hybrid zone between black-capped chickadee (*Poecile atricapillus*) and Carolina
812 chickadee (*P. carolinensis*) in southeastern Pennsylvania. *The Auk*, 124(2), 463.
813 [https://doi.org/10.1642/0004-8038\(2007\)124\[463:SADOTH\]2.0.CO;2](https://doi.org/10.1642/0004-8038(2007)124[463:SADOTH]2.0.CO;2)

814 Seehausen, O., Alphen, J. J. M. van, & Witte, F. (1997). Cichlid Fish Diversity Threatened by
815 Eutrophication That Curbs Sexual Selection. *Science*, 277, 1808–1811.

816 Shafer, A. B. A., Wolf, J. B. W., Alves, P. C., Bergstr??m, L., Bruford, M. W., Br??nnstr??m, I.,
817 ... Zieli??ski, P. (2015). Genomics and the challenging translation into conservation
818 practice. *Trends in Ecology and Evolution*. <https://doi.org/10.1016/j.tree.2014.11.009>

819 Shurtliff, Q. R., Murphy, P. J., & Matocq, M. D. (2014). Ecological Segregation in a small
820 mammal hybrid zone: habitat-specific mating opportunities and selection against hybrids
821 restrict gene flow on a fine spatial scale. *Evolution*, 68(3), 729–742.
822 <https://doi.org/10.1111/EVO.12299>

823 Sullivan, B. L., Wood, C. L., Iliff, M. J., Bonney, R. E., Fink, D., & Kelling, S. (2009a). eBird:
824 A citizen-based bird observation network in the biological sciences. *Biological
825 Conservation*, 142(10), 2282–2292. <https://doi.org/10.1016/J.BIOCON.2009.05.006>

826 Sullivan, B. L., Wood, C. L., Iliff, M. J., Bonney, R. E., Fink, D., & Kelling, S. (2009b). eBird:
827 A citizen-based bird observation network in the biological sciences. *Biological
828 Conservation*, 142(10), 2282–2292. <https://doi.org/10.1016/J.BIOCON.2009.05.006>

829 Taylor, S. A., Curry, R. L., White, T. A., Ferretti, V., & Lovette, I. (2014). Spatiotemporally
830 consistent genomic signatures of reproductive isolation in a moving hybrid zone. *Evolution*,
831 68(11), 3066–3081. <https://doi.org/10.1111/evo.12510>

832 Taylor, S. A., Larson, E. L., & Harrison, R. G. (2015). Hybrid zones: Windows on climate
833 change. *Trends in Ecology and Evolution*. <https://doi.org/10.1016/j.tree.2015.04.010>

834 Thrasher, D. J., Butcher, B. G., Campagna, L., Webster, M. S., & Lovette, I. J. (2018). Double-
835 digest RAD sequencing outperforms microsatellite loci at assigning paternity and estimating
836 relatedness: A proof of concept in a highly promiscuous bird. *Molecular Ecology
837 Resources*, 18(5), 953–965. <https://doi.org/10.1111/1755-0998.12771>

838 Todesco, M., Pascual, M. A., Owens, G. L., Ostevik, K. L., Moyers, B. T., H??bner, S., ...
839 Rieseberg, L. H. (2016). Hybridization and extinction. *Evolutionary Applications*, 9(7),

840

841 892–908. <https://doi.org/10.1111/eva.12367>

842 Wagner, D. N., Curry, R. L., Chen, N., Lovette, I. J., & Taylor, S. A. (2020). Genomic regions
843 underlying metabolic and neuronal signaling pathways are temporally consistent in a
844 moving avian hybrid zone. *Evolution*, 74(7), 1498–1513. <https://doi.org/10.1111/evo.13970>

845 WCS, W. C. S.-, & University, C. for I. E. S. I. N.-C.-C. (2005). Last of the Wild Project,
846 Version 2, 2005 (LWP-2): Global Human Influence Index (HII) Dataset (Geographic).
847 Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Retrieved
848 from <https://doi.org/10.7927/H4BP00QC>

849 Weise, C. M., & Meyer, J. R. (1979). Juvenile dispersal and development of site-fidelity in the
850 black-capped chickadee. *The American Naturalist*, 96, 40–55. Retrieved from
851 <https://sora.unm.edu/sites/default/files/journals/auk/v096n01/p0040-p0055.pdf>

852 Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C., & Tallmon, D. A. (2015). Genetic rescue to the
853 rescue. *Trends in Ecology & Evolution*, 30, 42–49.
854 <https://doi.org/10.1016/j.tree.2014.10.009>

855 Williams, N. M., Crone, E. E., Roulston, T. H., Minckley, R. L., Packer, L., & Potts, S. G.
856 (2010). Ecological and life-history traits predict bee species responses to environmental
857 disturbances. *Biological Conservation*, 143(10), 2280–2291.
858 <https://doi.org/10.1016/J.BIOCON.2010.03.024>

859

860

861 **Tables**

862

863 **Table 1. Summary of each genotypic class and their associated genomic metrics.** Genotypic
 864 classes are: parental black-capped chickadee (BCCH), parental mountain chickadee (MOCH),
 865 first generation hybrid (F1), second generation hybrid (F2), first generation black-capped
 866 chickadee backcrosses (BCCH_BX), first generation mountain chickadee backcross
 867 (MOCH_BX), second generation black-capped chickadee backcross (BCCH.2_BX), & second
 868 generation mountain chickadee backcross (MOCH.2_BX).

HYBRID CLASS	N	MEAN HYBRID INDEX ± SD (UNSCALED)	MEAN HETEROZYGOSITY ± SD
BCCH	5	0.10 ± 0.02	0.22 ± 0.03
MOCH	205	0.98 ± 0.02	0.03 ± 0.03
F1	2	0.48 ± 0.06	0.79 ± 0.05
F2	1	0.44	0.63
BCCH_BX	43	0.29 ± 0.04	0.56 ± 0.07
MOCH_BX	0	NA	NA
BCCH.2_BX	109	0.18 ± 0.04	0.33 ± 0.07
MOCH.2_BX	6	0.90 ± 0.04	0.21 ± 0.03
UNASSIGNABLE	27	0.26 ± 0.11	0.37 ± 0.12

869

870 **Figure Legends**
871 Figure 1. **Geographic context of study.** (a) Range distribution of black-capped (pink) and
872 mountain chickadees (blue), highlighting substantial area of range overlap (purple). Map created
873 by Daniel Jackson. (b) Sampling schematic of black-capped (pink) and mountain chickadees
874 (blue) included in the study. (c) Locations of all eBird sightings of reported hybrids (purple)
875 from 1989-2021. Hybrids are classified by intermediate plumage (photo inset C; eBird): namely,
876 buffy sides and white wing bars of black-capped chickadees (middle left) paired with smaller-
877 than typical white eyebrow of mountain chickadees (bottom left). Chickadee illustrations by
878 Jessica French. Map lines delineate study areas and do not necessarily depict accepted national
879 boundaries.
880
881 Figure 2. **Human habitat disturbance and chickadee hybridization are positively correlated.**
882 (a) Map of Human Influence Index (0-64) with sampling locations of chickadees (black crosses).
883 (b) Map of all sampled chickadees colored by hybrid indexes from 0 (white) to 0.5 (dark purple).
884 Insert (upper right) shows only hybrids. (c) Chickadee hybrid index significantly increases with
885 human influence index. Points represent individual chickadees. Green dashed line denotes 'wild'
886 habitat cut-off (HII = 10). Blue Trendline with shaded 95% confidence interval show prediction
887 from generalized additive model. (d) More hybrids sampled in disturbed habitats. Mean of
888 hybrid index are significantly higher in disturbed habitats (orange) compared to wild habitats
889 (green).
890
891 Figure 3. **Many, late-generation black-capped chickadees identified.** (a) Heterozygosity
892 plotted against hybrid index for black-capped (pink) and mountain chickadees (blue). Allopatric
893 populations for black-capped chickadees shown in dark pink. Allopatric mountain chickadees
894 shown in dark blue. (b) Assignment probabilities for chickadees to genotypic classes: parental
895 black-capped chickadee (pink), parental mountain chickadee (blue), first generation hybrids
896 (purple), second generation hybrids (dark purple), first generation mountain chickadee
897 backcrosses (medium blue), first generation black-capped chickadee backcrosses (medium pink),
898 second generation mountain chickadee backcrosses (dark blue) & second generation black-
899 capped chickadee backcrosses (dark pink). * indicates allopatric populations.
900
901 Figure 4. **Hybrid and black-capped chickadees are more disturbance-associated than**
902 **mountain chickadees.** (a) Maps of eBird report locations for subset of black-capped chickadees
903 (top, pink), all unique phenotypic hybrids reported to eBird (middle, purple), and subset of
904 mountain chickadees (bottom, blue). (b) Mean disturbance values for reports of both phenotypic
905 hybrids from ebird (purple; mean Hybrid HII = 38.53) and black-capped chickadees (mean *P.*
906 *atricapillus* HII = 39.54; pink) were significantly higher than for mountain chickadee reports
907 (mean *P. gambeli* HII = 24.28; blue). No significant difference between hybrid and black-capped
908 chickadee HII. Dashed green line (HII = 10) indicates wild (below line) v. disturbed (above line)
909 habitat.
910
911
912
913