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Abstract— In this paper, we introduce the concept of ob-

servability of selected state variables for systems that may not

be fully observable. For their estimation, we introduce and

exemplify a deep filter, which is a neural network specifically

designed for the estimation of selected state variables without

computing the trajectory of the entire system. The observability

definition is quantitative rather than a yes or no answer so that

one can compare the level of observability between different

sensor locations.

I. INTRODUCTION

In this paper, we study the observability and estimation
methods of selected state variables for systems that are not
necessarily observable. In control theory, the observability
is a widely used concept that defines the feasibility of
estimating the state, or initial state, of dynamical systems
based on their outputs. In this paper, we address the problem
of partial observability. If a system is not observable, is it
possible to take the advantage of its output to estimate a part
of the state variables? Even if a system is observable, is that
possible to estimate only the selected state variables without
using a full scale filter that estimates all variables in the state
space? The answer to these questions is important for various
reasons. The ever increasing complexity and dimension of
dynamical systems in science and engineering result in many
problems for which the system is either unobservable or com-
putationally too expensive to provide a real-time estimation
of the entire system states. Some examples of such systems
include numerical weather prediction and large swarms of
unmanned vehicles. In [10] and [14], for instance, deep
learning is applied to nowcasting, i.e., predicting the future
rainfall intensity in a local region over a relatively short
period of time without running a full-scale data assimilation
system. In [2], it is proved that partially estimating some
parameters in swarms of unmanned vehicles is possible when
the overall system is unobservable.

There is a huge literature on the theory of nonlinear
estimation and filtering. It is worth to note that deep learning
as a tool of nonlinear filtering, namely deep filter, is analyzed
in [15]. We adopt a similar approach in Section IV. Different
from the problem addressed in [15] where the system is
observable, we use deep filters to approximate a selected
individual variable in a system that may not be fully ob-
servable. Measuring observability quantitatively based on the
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observabililty Gramian is essential to the type of problems
studied in this paper. For related literature, the interested
readers are referred to [1], [2], [4], [5], [6], [7], [8], [9],
[11], [12], [13] and references therein.

In this paper, we introduce the concept of observability of
selected state variables. For their estimation, we introduce
and exemplify a deep filter, which is a neural network specif-
ically designed for the estimation of selected state variables
without computing the trajectory of the entire system.

II. OBSERVABILITY

Consider a discrete-time system

x(k + 1) = f(x(k)),
y(k) = h(x(k)),

(1)

where k � 0 is an integer and

x =
⇥
x1 x2 · · · xn

⇤| 2 Rn

y =
⇥
y1 y2 · · · ym

⇤| 2 Rm (2)

are the state and output variables, respectively. Given
y(0),y(1), · · · ,y(K), where K � 1 is an integer, we
define the observability of an individual state. Without loss
of generality, let us consider the observability of x1(K).
It is worth to note that we measure the observability of
the final state at k = K. However, similar ideas in this
section can be applied to the observability of the initial state
x1(0). In general, the quantitative measure of observability
has different value for the initial and final states. Following
the general definition of observability introduced in [5], we
define the observability of x1(K). Consider a trajectory,
{x(k); 0  k  K}. We want to define the observability
around this trajectory. Let {x̂(k); 0  k  K} denote a
trajectory close to {x(k)}. Define ⇢ using the following
constrained maximization,

⇢
2 = max

x̂(0),··· ,x̂(K)
{(x̂1(K)� x1(K))2}

subject to
x̂(k + 1) = f(x̂(k)), k = 0, 1, · · · ,K � 1
ŷ(k) = h(x̂(k)), k = 0, 1, · · · ,K
KX

k=0

kŷ(k)� y(k)k22  ✏
2

(3)

where ✏ > 0 is a constant representing the upper bound of
output variations and 0  ⇢  1 is called the ambiguity
in the estimation of x1(K). The ratio ⇢/✏ is called the
unobservability index, a term adopted from [9]. One can
use a different norm to define ⇢ in (3). However, adopting
the 2-norm makes it easy to approximate the unobservability
index using an observability Gramian. If the output variable
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represents the sensor information, then it has measurement
error. The true value of y(k) is unknown. What we know is
that the truth should be in a neighborhood of the measured
data. Therefore, we allow in (3) the output to take any value
in an ✏-neighborhood. The trajectory {x̂(k); 0  k  K}
in (3) that has the largest variation of |x̂1(K)� x1(K)| is
considered the worst possible estimation of x1(K) whose
output is within an ✏-neighborhood of the measured y. To
summarize, if the value of the unobservability index, ⇢/✏, is
small, then x1(K) is observable. More specifically, among all
approximate trajectories satisfying

PK
k=0 kŷ(k)� y(k)k22 

✏
2, the worse estimation error of x1(0) is ⇢. The range of the

unobservability index value for observable systems depends
on the scale of the uncertainties in y. In this paper, we use
this quantitative measure of observability to find individual
variables that can be estimated accurately and to compare
the observability between different sensor locations.

Consider a linear system,

x(k + 1) = Ax(k);
y(k) = Hx(k)

(4)

where A 2 Rn⇥n and H 2 Rm⇥n. Then (3) is equivalent to

⇢
2 = max

�x0

�x|
0F

|
F�x0,

subject to
�x|

0G�x0 = ✏
2
,

(5)

where �x0 represents x̂(0)� x(0) and

G =
KX

k=0

(A|)kH|
HA

k
,

F =
⇥
1 0 · · · 0

⇤
A

K
.

(6)

The computation of the unobservability index boils down to
numerically solving the constrained quadratic maximization
(5)-(6). The matrix G is, in fact, the observability Gramian,
a symmetric matrix that is used to measure observability
in control theory [4], [5]. For problems that have high
dimensions, numerically solving (5) is not straightforward
if the overall system is weakly observable or unobservable
because, in this case, the condition number of G can be very
large. Techniques of computational linear algebra have to be
applied when solving (5). Due to length limitations, these
techniques will be addressed in another paper.

For a nonlinear system, the computation is more difficult
because (3) is a nonconvex problem, which is not easy to
solve. On the other hand, we can approximate the observabil-
ity by solving (5) based on the linearization of the nonlinear
system along nominal trajectories. Specifically, G and F

can be computed empirically using the central difference
method. Let � > 0 be a small number. Around a trajectory
{x(k); 0  k  K}, we compute 2n trajectories

x±i(0) = x(0)± �ei,
x±i(k + 1) = f(x±i(k)), k = 0, 1, · · · ,K � 1
y±i(k) = h(x±i(k)), k = 0, 1, · · · ,K

(7)

for i = 1, 2, · · · , n, where ei is the ith unit vector in Rn.
Define

�
iy(k) = (y+i(k)� y�i(k))/(2�),

�y(k) =
⇥
�

1y(k) �
2y(k) · · · �

ny(k)
⇤
,

�
i
x1(K) = (x+i

1 (K)� x
�i
1 (K))/(2�).

(8)

Then, G and F are approximated by

G =
KX

k=0

�y(k)|�y(k),

F =
⇥
�

1
x1(K) �

2
x1(K) · · · �

n
x1(K)

⇤
(9)

In the following, the value of ⇢/✏ is approximated by solving
(5) using the empirical approximation of G and F in (9). This
approach avoids the requirement of solving the nonconvex
optimization problem (3).

III. ESTIMATING STATE VARIABLES OF UNOBSERVABLE
SYSTEMS

In this section, we use an example to illustrate the idea of
estimating a selected state variable when the overall system
is unobservable. Consider Burgers’ equation

@U(x, t)

@t
+ U(x, t)

@U(x, t)

@x
= 

@
2
U(x, t)

@x2
,

U(x, 0) = U0(x),
U(0, t) = 0, U(L, t) = 0.

(10)

where (x, t) 2 [0, L] ⇥ [0, T ]. The solution is approximated
by solving a finite dimensional discretized system. The
discretization is based on central difference in space and
4th order Runge-Kutta in time (see, for instance, [7]). Let
Nt > 0 and Nx > 0 be integers. The discretized trajectory
is represented as follows,

u(k) =
⇥
u1(k), u2(k), · · · , uNx�1(k)

⇤|
, (11)

for k = 0, 1, · · · , Nt. In (11), ui(k) represents U(x, t)
evaluated at the grid point (xi, tk), where

xi = i�x, i = 1, 2, · · · , Nx � 1
tk = k�t, k = 0, 1, · · · , Nt,

�x = L/Nx,

�t = T/Nt.

(12)

Note that the boundaries u0(k) = 0 and uNx(k) = 0 are
known. In this example, we set T = 5, L = 2⇡,  = 0.14,
Nx = 50 and Nt = 100. For the output, we assume that
sensors are located at x20, x21, x29 and x30, i.e.,

y(k) =
⇥
u20(k) u21(k) u29(k) u30(k)

⇤| (13)

For nonlinear systems, the observability depends on the
location of the trajectory. For analysis, we take a data-driven
approach. We randomly select 5, 000 initial states around
U(x, 0) = 0. Their empirical Gramians are computed using
(7)-(9) for K+1 = 10, i.e. measurements of 10 time steps of
y are used in the state estimation. The smallest eigenvalue of
G at the samples is shown in Figure 1. The eigenvalues are
small, all around 10�10. This implies that the observability
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Fig. 1. The minimum eigenvalue of the observability Gramian at 5, 000
sample points.

of the system is extremely weak, or the system is practically
unobservable.

Unscented Kalman filter (UKF) [3] is applied to the
system. Because the observability is extremely weak, we
do not expect an accurate estimation of all state variables.
In the simulation, we apply i.i.d. random noise to y. The
standard deviation is � = 0.028. Due to the extremely weak
observability, the filter cannot correct the initial estimation
error. One example is shown in Figure 2. The initial error in
the estimation of u12 cannot be corrected efficiently.

0 10 20 30 40 50 60 70 80 90 100
-0.2

-0.1

0

0.1

0.2

0.3

0.4

solid line: trajectory 
dotted line: estimated trajectory 

Fig. 2. The true value of u12(k) and its UKF estimation. The state u12(K)
is practically unobservable because ⇢/✏ = 1.1884⇥ 104.

Although the overall system is unobservable, some indi-
vidual state variables can still be reasonably observable under
the same output function (13). For example, by solving (5)
using the empirical Gramian (9), the unobservability index of
u25(K) is ⇢/✏ = 4.3702 if K+1 = 10 and ⇢/✏ = 0.7940 if
K+1 = 20. This is in sharp contrast to the unobservable state
u12(K) shown in Figure 2, for which ⇢/✏ = 1.1884 ⇥ 104.
What does this mean? Assume that the sensor error of each
measurement is 0.028. The total l2 norm of sensor error for
4⇥ 10 measurements (K + 1 = 10) is about kek2 = 0.1771
and kek2 = 0.2504 for 4⇥ 20 measurements (K + 1 = 20).
Multiplying kek2 by the value of ⇢/✏, it implies that the
worst error in the estimation of u25(K) is about 0.7740
when K +1 = 10 and 0.1988 when K +1 = 20. They may
not seem to be very small. But we would like to emphasize
that they are the worst possible error. An estimator, such as
UKF, that optimizes the estimation avoids the worst scenario.

In fact, the UKF estimation of u25(k) has a much smaller
error than the worst case. Shown in Figures 3-4 , the UKF
estimation of u25(k) converges to the true value quickly; the
initial error is reduced by more than 90% after k = 20 steps.
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solid line: trajectory 
dotted line: estimated trajectory 

Fig. 3. The true value of u25(k) in a trajectory and its UKF estimation.
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Fig. 4. The error of UKF estimation |û25(k)� u25(k)|.

IV. DEEP FILTER

A UKF filter estimates all state variables even if the goal
is to find an estimation of a single selected variable. This is
inefficient. In fact, for some high dimensional systems, a real-
time estimation of the entire system is simply impossible due
to the high computational load. In this section, we introduce
a deep filter. The method is based on deep learning. An
advantage of a deep filter is that the computation is focused
on the selected state variable to be estimated, without the
requirement of running a full scale filter that estimates all
state variables simultaneously. In [15], deep neural networks
are applied to approximate state variables based on the
output. In this section, we apply a similar idea. But different
from [15] where the system is observable, we use deep neural
networks to approximate an individual variable in a system
that may not be fully observable.

In this study, a feedforward neural network (Figure 5) is
a scalar-valued function, z 2 Rp ! u

NN 2 R

u
NN (z) = gM � gM�1 � · · · g1(z) (14)

where gk(z̄) = �(Wkz̄ + bk), z̄ is a vector (may have
different dimensions in different layers of the network), �

is a vector-valued activation function such as the hyperbolic
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tangent, the logistic or ReLU function. The input dimension,
p, depends on the dimension of y and the number of
measurements used in estimation. For example, if y 2 Rm

and if the estimation is based on the information {y(k); 0 
k  K}, then p = m(K + 1). The value of u

NN is an
approximation of an individual state variable of the system.
In the training process, we minimize the following loss
function

l(W,b) =
1

|Straining|
X

(z,u(z))2Straining

(uNN (z)� u(z))2,

(15)
where

Straining =

⇢
(z, u(z));

z is in a set of random
points in state space

�

(16)
The training is based on the BFGS algorithm to find the
parameters W and b that minimize l(W,b). For validation,
the accuracy of uNN (z) is evaluated using another data set,
Svalidation.

���
���
���

,QSXWV 3UHGLFWLRQ

+LGGHQ�OD\HUV

zz u

Fig. 5. A feedforward neural network

Let us consider the discretized Burgers’ equation in Sec-
tion III as an illustrative example. We solve the equation
using random initial conditions to generate data. Then a
neural network is trained so that it can estimate u25(K)
based on the sequence of outputs {y(k); 0  k  K}.
The data sets, Straining and Svalidation, are generated using
trajectories from random initial states in the following form

ui(0) =
NFX

j=0

✓
↵j cos

✓
2⇡j

L
xi

◆
+ �j sin

✓
2⇡j

L
xi

◆◆

i = 1, 2, · · · , Nx � 1
(17)

subjecting to
P

↵j = 0 to satisfy the boundary condition (we
simply set ↵NF = �

P
j<NF

↵j ). The parameters ↵j ⇠
N(0,�) and �j ⇠ N(0,�) are i.i.d. random variables. In
this example, NF = 3, � = 0.3 and K + 1 = 10. For each
data point in Straining and Svalidation, z is the vector in
Rm(K+1) obtained by reshaping {y(k); 0  k  K}. For
each random initial condition and its trajectory, three data
points are generated based on {y(s+k); 0  k  K}, where
s = 0 and random integers s1 and s2. For each data point,
u(z) is assigned the corresponding value of u25(s+K). The
size of the data sets is

|Straining| = |Svalidation| = 3⇥ 104. (18)

In the validation, the error of uNN
25 is measured by the root-

mean-square error (RMSE)
vuut

X

(z,u(z))2Svalidation

(uNN (z)� u(z))2

|Svalidation| (19)

Two sets of sensor locations are used,

Case 1 : y(k) =
⇥
u20(k) u21(k) u29(k) u30(k)

⇤|

Case 2 : y(k) =
⇥
u18(k) u19(k) u30(k) u31(k)

⇤|
.

(20)
Using the first set of sensor locations (Case 1), the averaged
observability index of u25 over the validation data set is
⇢/✏ = 4.05. For Case 2, the number is 43.18, which indicates
that the observability is weaker than Case 1. The trained
neural networks have eight layers and 32 neurons in each
layer. The activation function is the hyperbolic tangent. An
i.i.d. Gaussian noise is added to y. The standard deviation
is 0.028, which is about 5% of the averaged range of
{u25(k); 0  k  K} in the data. The RMSE of u

NN is
shown in Table I. When there is no sensor noise in y, the
accuracy of both cases are similar. However, in the presence
of sensor noise, the RMSE in Case 1, that has a higher
observability, is significantly smaller than Case 2. A sample
trajectory is shown in Figures 6 and 7 for Case 1 and Case 2,
respectively. The neural network approximation using sensor
locations in Case 2 (dotted line in Figure 7) has larger error
than Case 1 in Figure 6 when k  30, the transition phase
when the trajectory approaches an equilibrium. The trained
neural network, or the deep filter, provides the approximated
trajectory of u25(k) without the need of computing other
state variables in R49.

TABLE I
RMSE OF uNN

25

⇢/✏ RMSE
Sensor location noise free 0.0056

Case 1 4.05 with noise 0.0225
Sensor location noise free 0.0066

Case 2 43.18 with noise 0.0801

10 20 30 40 50 60 70 80 90 100 110
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0
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1

solid line: trajectory 
dotted line: estimated trajectory 

Fig. 6. A trajectory and its neural network estimation - Case 1
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Fig. 7. A trajectory and its neural network estimation - Case 2

V. CONCLUSIONS

In control theory, the definition of observability based
on the observability matrix rank condition is a yes or no
answer rather than a quantitative measure. In addition, this
definition is about the observability of the overall system
state, not applicable to individual state variables. For high
dimensional problems, the classical definition of observabil-
ity does not serve the purpose when estimating the entire
system trajectory is either impossible or unnecessary. In this
paper, we introduce a quantitative measure of observability
for selected state variables. For their estimation, we introduce
and exemplify a deep filter, which is a neural network specif-
ically designed for the estimation of selected state variables
without computing the trajectory of the entire system. From
the examples, both estimations from UKF and deep filter
agree with the measure of observability, i.e., the sensor
locations that have higher observability (or lower value of
the unobservability index) result in more accurate estimation.
For future research, more questions are raised than what
answered in this paper such as more testing examples that
have higher dimensions, finding efficient numerical methods
for the quadratic maximization problem that defines the
unobservability index, improving the training process for
the deep filter, and applying the idea to numerical weather
prediction including nowcasting of selected local areas.
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