Int. J. Human—Computer Studies 169 (2023) 102931

Contents lists available at ScienceDirect

Human-
Computer
Studies

International Journal of Human - Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

t.)

Check for

Advanced modeling method for quantifying cumulative subjective fatigue in [
mid-air interaction

Ana Villanueva ®!+*, Sujin Jang ¢!, Wolfgang Stuerzlinger ®, Satyajit Ambike ¢, Karthik Ramani

aSchool of Mechanical Engineering, Purdue University, West Lafayette, IN, USA

b School of Interactive Arts + Technology, Simon Fraser University, Vancouver, CA, Canada
¢ Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA

d Samsung Advanced Institute of Technology, Suwon-si, Gyeonggi-do, South Korea

ARTICLE INFO ABSTRACT

Keywords: Interaction in mid-air can be fatiguing. A model-based method to quantify cumulative subjective fatigue
Mid-air interaction for such interaction was recently introduced in HCI research. This model separates muscle units into three
Cumulative fatigue model states: active (M ,) fatigued (M) or rested (M) and defines transition rules between states. This method

Maximum arm strength

Brain effort demonstrated promising accuracy in predicting subjective fatigue accumulated in mid-air pointing tasks. In
rain effor

this paper, we introduce an improved model that additionally captures the variations of the maximum arm
strength based on arm postures and adds linearly-varying model parameters based on current muscle strength.
To validate the applicability and capabilities of the new model, we tested its performance in various mid-air
interaction conditions, including mid-air pointing/docking tasks, with shorter and longer rest and task periods,
and a long-term evaluation with individual participants. We present results from multiple cross-validations and
comparisons against the previous model and identify that our new model predicts fatigue more accurately. Our
modeling approach showed a 42.5% reduction in fatigue estimation error when the longitudinal experiment
data is used for an individual participant’s fatigue. Finally, we discuss the applicability and capabilities of our
new approach.

1. Introduction assess fatigue both in the workplace and in exergames, to avoid long-
term deficits such as WMSDs, evaluate novel interaction techniques,
Fatigue affects the force-production capacity of muscles, as well optimize user input positions and orientations, adjust the range of

as inter-joint and inter-muscular coordination. Arm fatigue has been motion, and avoid uncomfortable postures for the user.
cited as risk factor for work-related injury (Kinali et al., 2016). While Objective fatigue evaluations that measure physiological quantities
arm fatigue is associated with repetitive injury, the underlying mecha- such as muscle activation (Cifrek et al., 2009), heart rate (Segerstrom
nisms remain poorly understood. However, the advancement of math- and Nes, 2007), blood pressure (Sjggaard et al., 1988), and blood
ematical modeling may help in more accurately quantifying muscle oxygen level (Amann et al., 2006) require specialized equipment and

fatigue development (Looft et al., 2018). Recently, arm fatigue has interfere with the ongoing activity. Similarly, subjective fatigue mea-

become an important fa.ctor in the desigp of human—computer inter- surements like the Likert scale (Carifio and Perla, 2007), the NASA-
faces (HCI) (Bachynskyi et al., 2015; Hincapié-Ramos et al., 2014). TLX (Hart and Staveland, 1988), the VAS (visual analog signal) (Bijur
As AR/VR technologies such as Oculus (Anon, 2020d,b,c), Hololens et al, 2001), ratings of perceived exertion (RPE) (Borg, 1982), and
2 (Anon, 2020a), etc, become ubiquitous, HCI will require a compre- the Borg CR10 scales (Hincapié-Ramos et al., 2014; Jang et al., 2017)

hensive, robust, .and practical r.neth(.)d for predicting firm fatigue. A require repeated verbalization of fatigue levels and thus, interfere with
method that considers both physiological and psychological factors that . .
the ongoing activity.

contribute to fatigue (Enoka and Stuart, 1992) and assesses fatigue cy . . . .
. . . . . . Users of mid-air interface typically perceive accumulation of fatigue

without interference with the ongoing activity is required. Assessment . . . . . -
(i.e., feel the arm getting heavier) over time, and this perception

of subjective fatigue is important, as excess subjective fatigue in in- tively i t th . Furth biective
dustrial settings may be a biomarker of increased injury risk, and it rr}ay nega 1.ve y lm?ac i € us.er expetlence. urther, subjective fa-
tigue and its perceived intensity are influenced by the demand of

negatively impacts user experience in HCI (Hassenzahl and Tractinsky, , . i .
2006). An interference-free measurement method could be used to the task, the user’s physiological state, and the user’s history of
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movement choices (Jang et al., 2017). Although there are model-
based approaches that quantify cumulative fatigue based on physical
(e.g., forces, torques) or physiological (e.g., muscle activation, heart
rate) measurements (Xia and Law, 2008), there is relatively little work
done model-based estimation of subjective fatigue. Further, perceived
fatigue may vary during static or dynamic tasks. Law et al. (2010).
To address these gaps, we recently used the three-compartment muscle
(TCM) model (Xia and Law, 2008) and developed a method to predict
cumulative subjective fatigue for mid-air pointing tasks (Jang et al.,
2017). Once the estimation models are created through a calibration
process, our method estimates subjective fatigue using only remote
measurement of the movement kinematics, thereby eliminating any
interference with the ongoing activity. The method does not require
expensive equipment, and furthermore, allows the quantification of
cumulative fatigue by accounting for both task and rest periods, closely
mimicking natural behaviors.

This paper presents an improved version of our earlier model.
The enhancements include: (1) an improved estimation of maximal
shoulder torque; (2) incorporation of brain effort (BE) as a proxy for
subjective fatigue; (3) experimental validation of the improved model
on (a) more complex mid-air manual tasks, (b) tasks with varying
durations of rest/task periods, and personalized models for long-term
tasks performed over several days.

This model separates muscle units into three states: active (M ,),
fatigued (M), or rested (My), and defines transition rules between
states.

The TCM model provides a method that takes both physical and
subjective measurements (i.e., perception of muscle fatigue). It involves
non-linear differential equations to describe the flow between compart-
ments as the product of the constant parameters times the volume of
the compartment. However, the actual flow rate is not constant, but
inherently changing as a function of the compartments. Thus, the flow
rates could be different based on the current muscle capacity and task
load (Fuglevand et al., 1993). Further, Xia and Frey Law (Xia and Law,
2008) included brain effort (BE) into the TCM model as the represen-
tation of the central drive required to perform a task. The BE term
was adopted to quantify fatigue during dynamic load tasks. In prior
work, BE was used for physiological fatigue evaluation (e.g., reduc-
tion of muscle strength) but not for subjective fatigue quantification.
To capture the subjective and physiological changes in fatiguing and
resting rates, we expand the TCM model to include the BE term into
our approach. Subsequently, we expand the practicality of this model-
based approach by an improvement in fatigue estimation performance.
Moreover, we validate the applicability of our approach in various
interaction conditions and more complex tasks (i.e., situations beyond
a simple pointing task).

Maximum shoulder torque, which varies with joint angle and an-
gular velocity, is an important input to quantify fatigue status. The
TCM model assumes that maximum joint torque depends on individual
physical capabilities. For instance, the posture of the arm is also known
to affect the maximum shoulder torque (Coury et al.,, 1998). The
maximum power capacity of arm muscles when we stretch the arm
away from the body could be different from when we are at a natural
standing pose. Thus, we adopt Chaffin’s model of maximum shoulder
torque, which is based on elbow and shoulder angles (Chaffin et al.,
1999), to get posture-based maximum shoulder torque estimates.

Jang et al. (2017) validated the TCM model through a simple mid-
air pointing task under incremental subjective fatigue accumulation.
Their evaluation also did not consider task and rest periods of varying
length. For more general application scenarios and to validate the
applicability of the model-based approach in estimating subjective
fatigue, varying durations of task periods and rest should be taken into
account. Moreover, realistic mid-air interaction commonly includes not
only pointing tasks, but also more complex interaction, such as 3D
docking tasks, which combine rotation and translation (Vuibert et al.,
2015). In the work presented here, we design a series of experiments to
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further validate the feasibility of the model-based approach to fatigue
prediction for various interaction conditions. Also, we compare the
performance of our proposed fatigue model with exiting methods.

Our contributions include: (1) a specific maximum strength rep-
resentation compatible with the TCM fatigue modeling method that
includes posture-based maximum shoulder torque estimation; (2) con-
necting subjective fatigue and muscle fatigue without contact-based
measurement; (3) a reliable cumulative fatigue model based on brain
effort (BE); (4) an experimental validation of the estimation perfor-
mance of the modified model during a complex mid-air task, varying
durations of rest/task periods, and individual long-term task conditions;
(5) a 42.5% decrease in fatigue estimation error for individualized
fatigue modeling.

2. Related work

Our work broadly links to fatigue estimation methods, maximum
arm strength estimation, and arm fatigue in HCIL.

2.1. Objective and subjective fatigue evaluation

Objective fatigue evaluation methods involve direct measurements
of various physiological quantities, such as muscle activation (Cifrek
et al, 2009), heart rate (Segerstrom and Nes, 2007), blood pres-
sure (Sjogaard et al., 1988), and blood oxygen level (Amann et al.,
2006). However, these approaches require specialized, fully calibrated
equipment and are generally too invasive to be used as part of common
user interfaces. Subjective fatigue measurements include the Likert
scale (Carifio and Perla, 2007), the NASA-TLX (Hart and Staveland,
1988), the VAS (visual analog signal) (Bijur et al., 2001), and ratings of
perceived exertion (RPE) (Borg, 1982). In general, the Borg CR10 scales
have been preferred in HCI research, due to their strong correlation
with arm fatigue (Hincapié-Ramos et al., 2014; Jang et al., 2017), and
physiological measurements (e.g., electromyography) under light load
(or bare hand) interaction conditions (Oberg et al., 1994). Such subjec-
tive measurements provide critical assessments of the user experience
during interaction. However, these methods require repeated verbaliza-
tion of fatigue levels during interaction. Thus, direct measurements of
subjective fatigue could interfere with interaction tasks.

In contrast, our model-based approach does not require any expen-
sive set-up nor repeated measurements after we generate the estima-
tion models, which account for physical and subjective influences on
fatigue.

2.2. Modeling method to muscle fatigue quantification

The three-compartment muscle (TCM) model assumes muscle units
can be in either one of active (M,), fatigue (M), and rest (Mp)
states (Xia and Law, 2008). Recently, Jang et al. (2017) validated the
applicability of the TCM model in estimating cumulative subjective
fatigue based on movement kinematics.

The TCM model assumes constant parameters in the three differen-
tial equations, but the modeling of muscle responses requires nonlinear
approaches (Fuglevand et al.,, 1993). Sonne and Potvin (2016) pro-
posed a modification of the model based on a relationship between
fatigue/resting rate and target task load (Bigland-Ritchie et al., 1986).
However, their work targeted the quantification of fatigue level based
on a reduction in direct capacity measurements, such as grasping force
and torque. Other works (Frey-Law et al., 2021; Looft and Frey-Law,
2020; Rashedi and Nussbaum, 2015; Gede and Hubbard, 2014) have
also proposed modified models that evaluate what is lacking in the
original TCM model (e.g., how the number and placement of fatigue
data influences parameter identification), but they do not approach
modeling subjective fatigue with a non-contact approach. Thus, in line
with Sonne et al.’s work, we propose a modification of the TCM model
by assuming a linear relationship between fatigue/resting parameters
as a function of BE and the target load. In our experiments, we in-
vestigate the validity and applicability of the assumption in estimating
cumulative subjective fatigue.
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Fig. 1. Left: Overview of the three-compartment model (TCM), which represents the percentages of motor units that are at rest (My), active (M ,), and fatigue (M) states. F
and R represent the fatigue and recovery coefficients, and C(r) defines the muscle activation-deactivation drive. Right: Controller for pointing task and targets. (a): Oculus Touch
device used to control the pointer (green dot in (b)) and button (green circle in (a)) to indicate “selection”, (b): target circles (current target in red, inactive in gray) having equal
distance to each other. Target width is 10 cm and distance is 30 cm. The number indicates the selection order. Numbers were not visible to participants.

2.3. Maximum arm strength estimation

Enoka and Stuart (1992) defined fatigue as a reduction of muscle
strength relative to the maximal value. Thus, any reliable arm fatigue
evaluation requires an individual’s maximum arm strength defined as
the maximum voluntary contraction (MVC). In biomechanics research,
specialized test rigs have been commonly used for measuring MVC in
torque or force units (Hayes et al., 2002; Roy et al., 2011). However,
these methods are expensive and impractical to be used in many user
interfaces. In recent years, Jang et al. (2017) proposed a simple but ef-
fective method to estimate the maximum shoulder strength through an
isometric load task. Although this method showed a strong correlation
with traditional contact-based measurements, it ignores the variation of
arm strength based on the arm posture. Yet, it is well known that the
arm strength varies based on the person’s posture (Coury et al., 1998).
Based on previous work, we use Chaffin’s strength model (Chaffin et al.,
1999) for biomechanically reliable fatigue estimation, which estimates
the maximal shoulder torque (MVC) based on elbow and shoulder joint
angles as well as biological sex.

2.4. Arm fatigue evaluation in HCI

Recently, researchers investigated arm fatigue and its quantification
in HCI. Bachynskyi et al. (2014) introduced a biomechanical simu-
lation method to estimate muscle activations. Consumed Endurance
(CE) (Hincapié-Ramos et al., 2014) is a fatigue metric that showed a
strong correlation with subjective fatigue measures, more specifically,
Borg ratings (Borg, 1982). These methods were used to study the
impact of arm fatigue in mid-air (Hincapié-Ramos et al., 2014) and
various touch interface designs (Bachynskyi et al., 2015). However,
these approaches cannot quantify the effect of rest on the accumulation
of fatigue. Moreover, prior methods ignored individual differences in
arm strength.

Jang et al. (2017) proposed a model-based method, based on the
TCM model, to capture the effect of rest on cumulative subjective
fatigue based on individual arm strength. This method was validated
in a simple pointing task under incremental fatiguing condition. Also,
this method assumes constant fatiguing and resting rates. However,
the rate of muscle fatiguing and relaxation could decrease or increase
based on task types and current exertion level (Enoka and Stuart,
1992). To further improve the physiological fidelity of the model-based
method, we modified the fatigue model parameters by defining a linear
relationship between current muscular capacity and fatigue parameters.
We also designed experiments to test the applicability and capabilities
of our new approach.

3. Quantifying cumulative fatigue

In this section, we describe our new, modified cumulative fatigue
model and maximum arm strength estimation method.

3.1. Modified three-compartment fatigue model

The three-compartment muscle (TCM) model (Fig. 1) assumes motor
units can be in either one of active (M), fatigue (M), and rest (My)
states (see Xia and Law (2008), Frey-Law et al. (2012), Jang et al.
(2017) for more details). Each compartment of motor states is expressed
as a percentage of maximum voluntary contraction (% of MVC). The
sum of each compartment is 100%, as our muscle motor unit quantity
does not suddenly change during tasks. Since motor-unit recruitment is
binary, this means that a motor unit is either contracted or it is not. For
a MVC task, all motor units are contracted and for a sub-maximal task,
fewer motor units are contracted. The transition among motor units is
defined as:

aMpy COO+RxM
=— *
dt F
aM, CH—-F«M
= -_— *
dt A
dMp
T =F*xMy,—Rx% Mg,

where F and R defines the rate of motor state transitions activation—
fatigue and fatigue-rest. C(¢) is motor unit activation function defined
as:

Lp(TL-M,) if My <TL,Mg>TL-M,
C(t)y=4 LpMg if My <TL, Mg <TL-M,
Li(TL-M,) if M,>TL

TL is the target load defined as a torque ratio [T, ep/Tnax] *
100(%), L, is the force development rate, and Ly is the relaxation
factor. The last two parameters are set to 10 based on the sensitivity
analysis by Frey-Law et al. (2012). Residual capacity (RC) indicates the
current muscle strength, which is defined as:

RC = M, + Mg =100% — My

Based on the residual capacity, Xia and Law (2008) proposed a Brain
effort (BE) term that defines the required central “drive” to perform a
task:

BE = TL/RC % 100% if TL < RC
T 100% if TL > RC

where BE can be related with participant’s subjective fatigue. The
BE ranges between 0 and 0.638. Sonne and Potvin (2016) proposed
a modified TCM model (graded motor unit, GMU) to evaluate fatigue
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based on physical measurements, e.g., reduction in maximum grasping
force, by assuming a linear relationship between the fatiguing rate F
and BE: F = F, + BE where F, is a constant value. They proposed
a modified resting rate R as: R = R, * BE % Mp % (a« — BE)/a,
where « is a threshold of 63.8%. In our preliminary evaluation of
this model in estimating cumulative subjective fatigue, GMU showed
lower estimation accuracy than the TCM model (RMSE-GMU = 2.03,
RMSE-TCM = 1.80). The threshold value is derived from physiological
muscle measurements (i.e., electromyography) under an isometric load
condition (i.e., fixed load). To the best of our knowledge, we are not
aware of work supporting such a threshold value in subjective fatigue
evaluation. Also, our experimental condition does not involve constant
but dynamically changing arm movements. Based on this observation,
we investigated a modified model (LIN) based on the linear definition
of the fatiguing/resting rates (F, R) as a function of BE and target load:

F =F, « BE +F,
R=R,* BE+R,

where F; and R, are constants defining the effect of BE on the rates and
F, and R, are constants defining the rates when BE is zero (i.e., resting
condition, TL = 0%).

3.1.1. Model fitting

We used the optimization toolbox in MATLAB to optimize the TCM
model and to find the model parameters (F and R) in mid-air inter-
action. To find the rate parameters F,, F;, R,, and R, for an optimal
model performance in estimating cumulative subjective fatigue, we
formalized an error function as:

\j z ;[rp(MF(t)) - BOP

participant to F; € [Fsy, Fs,l, F, € [Fby, Fb,l, Ry € [Rsyy, Rsyl,
and R, € [Rby,Rb,]. In the above equation, » is the number of
fitting data points, M (i) is the fatigue level estimation, and B(i) is the
Borg scale rating. Based on prior work (Jang et al., 2017; Morishita
et al., 2014), the scaling function ¢(x) is defined as: ¢(x) = 0.0875 =
x. Due to the discontinuity in the model functions, finding optimal
parameters, F,, F,, R, R, is non-trivial. We identified them with the
“pattern match” function in the Matlab optimization toolbox with
a maximum of 5 x 10° iterations. The optimal F and R parameters
values for the shoulder joint region from the pattern search stage
were identified as those producing the least amount of error across
optimization intensities compared to the criterion intensity-endurance
time relationships. We define the upper and lower bound of the rate
parameters as Fs;, = Rs;, = —1.0, Fs,, = Rs,;, = 1.0, Fb,, = Rb;, =
0.001, Rb,, = 0.0182 =+ 100, and Fb,, = 0.00168 = 100 following the
conditions used for the TCM model (Jang et al., 2017). When the effect
of BE is minimal (e.g., F; = 0, R; = 0), we assume that our proposed
LIN model behaves similar to the TCM model. Thus, in defining the
initial rate parameters, we first compute the optimal parameters (Fr¢y,
Rycpy) of the TCM model. Then, the initial parameters of the LIN model
were set as: F; o= R, =0, F, = Frcyy, and Ry g = Rycpy-

minimize
Fy.Fy,Rg, Ry

3.2. Max shoulder torque estimation based on arm postures

In computing the shoulder torque (T), we used the biomechanical
arm analysis implementation® provided by Jang et al. (2017). Based
on the torque measurements (averaged torque) and the isometric load
endurance task (endurance time), we could estimate each individual’s
maximum shoulder torque (Jang et al., 2017). However, this method
cannot capture the variance of the maximum torque based on the
arm posture (Coury et al., 1998). To address this issue, we adopted

2 https://github.com/CDesignGitHub/Cumulative-Arm-Fatigue_CHI-2017.
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Chaffin’s model of arm strength (Chaffin et al., 1999). Chaffin’s strength
model improves the estimation performance of shoulder torque. We
will explain this further in the discussion section. In this model, the
maximum shoulder torque value is estimated based on the shoulder and
elbow angles as well as a biological sex parameter:

Ty = (227.338 + 0.525a, — 0.296,) X G4

where a, = shoulder flex angle, a, = 180° - elbow flex angle. We
used a; = 90°, and a, = 180°, which describe the arm posture used
in the isometric load task (see below). The biological sex adjustment
parameter is defined as G,;;;, = 0.1495 (female), and 0.2845 (male).

4. Methods

4.1. Participants

Twenty six right-handed participants (18 males; 25.5 + 4.58 yrs.;
71.8 + 2.27 kg; hand length 20.3 + 2.26 cm; lower arm length =
27.4 + 3.28 cm; upper arm length = 35.6 + 2.66 cm) volunteered in
three experiments. Participants reported no musculoskeletal disorder
or neurological disease. There were three experiments and they had a
total of 20, 12, and 6 participants, respectively. The 12 participants
in the second experiment were recruited from the first experiment.
All participants provided written informed consent approved by the
Institutional Review Board of Purdue University.

4.2. Equipment

We used a Microsoft Kinect sensor v2 with its corresponding soft-
ware development kit (SDK) to track arm kinematics. We obtained
joint torques from the camera data using inverse kinematic computa-
tions (Jang et al.,, 2017). We also used a moving-average filter (15th
order) to smooth the joint-torque trajectories. Data was sampled at
50 Hz using a desktop computer with a Core i7 4.00 GHz CPU, 64 GB
RAM, and an NVIDIA GTX 1080 GPU. A projector displayed the user
interface on a 1.6 X 0.95 meter screen placed 3 meters in front of the
participant, at roughly the participants’ eye level. The Kinect camera
was located between the participant and the screen; it was 1 meter
in front of the screen and 1 meter above the floor, so that it did not
interfere with the participant’s view of the screen.

Participants interacted with virtual targets projected on the screen
using the Oculus Touch (Anon, 2020d) motion tracked controllers. A
virtual pointer (green dot in Fig. 1a), mapped to the position of the
controller held in the participant’s dominant right hand, was used to
either point to targets, or virtually grasp and move objects projected
on the screen. Vertical and horizontal movement of the pointer were
controlled by vertical and medial-lateral movements of the controller,
respectively.

4.3. Experimental tasks

Participants first performed an isometric load task, and then per-
formed one of three types of tasks.

4.3.1. Isometric load task

To measure the maximum shoulder torque of each participant, we
followed the indirect measurement method proposed by Jang et al.
(2017). In this task, participants flexed the right shoulder to about 90°
relative to the frontal plane and held a weight in their hand (2.27 kg for
males and 1.36 kg for females) till volitional failure. Participants used
visual feedback on the current and desired arm positions to maintain
the required horizontal position of the arm.
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Fig. 2. Docking task interface. (a): “cursor” chair in the center of room (not clutched) and the “target” object to the right, (b): 3D pointer (green dot) “touches” the cursor chair,
(c): the cursor chair is clutched to the pointer, (d): the cursor chair is docked to the target.

4.3.2. Mid-air pointing task

We adopted the mid-air pointing task used by Jang et al. (2017).
To start each trial, the participant stood in front of the screen with
their right shoulder flexed in front of them at 90°, and the elbow
fully extended, and with the Oculus controller in their hand. On the
screen, the participant saw one circular target (10 cm diameter) and
a smaller green cursor (4.8 cm diameter) which indicated the current
position of the Oculus controller. The participant was instructed to
control the position of the green cursor by altering their shoulder joint
angles, while maintaining full elbow extension. The resulting vertical
and horizontal movement of the hand-held controller was mapped to
the movement of the cursor on the screen.

There were nine targets, arranged along the circumference of a
circle (30 cm radius; Fig. 1b). When the participant’s shoulder was
flexed at 90 °, the cursor appeared at the center of the this circle.
During the pointing trials, one target appeared on the screen at a
time. The participant rotated their shoulder to place the cursor into the
target, and then pressed a button on the controller to indicate that they
had matched the presented target. The current target then disappeared
and another target appeared. The participant rotated their shoulder to
place the cursor within the new target. This sequence continued for
a pre-determined duration. The sequence of target presentation was
pseudo-randomized such that the index of difficulty of each movement
was consistent at 2.18. The participant matched all the presented target
without lowering their arm between trials, and maintained the elbow
at full extension throughout.

4.3.3. Mid-air docking task

To validate our model in a more complex task involving translation
and rotational movements of the arm and the object, participants were
given a mid-air docking task in a rich virtual environment (Fig. 2). The
environment minimizes ambiguity in the orientation by using a chair
object instead of circles as the target and the cursor.

In each trial, a “cursor” chair appeared at the center of the room
with neutral orientation (Fig. 2), and simultaneously, a “target” chair
appeared at a different location and orientation. The participant moved
their arm so that the controller (green dot in Fig. 2a) aligned with
the cursor, and then pressed a trigger on the controller to “grab”
the cursor chair. Participants then moved the cursor chair to a target
chair through a combination of rotations and translations and aligned
or docked the cursor with the target. Each trial was completed after
the participant successfully aligned the cursor chair with the target

chair within a threshold for rotation (5 deg) and translation (3 cm).
We provided auditory (beep sound) and visual (color change of target
chair) feedback to indicate a successful docking, at which point, the
participant released the trigger on the controller, signifying the end of
the trial. Then, the current cursor and target chairs disappeared; a new
cursor chair appeared at the same location as before, and a new target
chair appeared at a different location and orientation. The participant
moved their arm to grab the next cursor chair, without lowering the
arm, and proceeded to dock the cursor with the new target. The target
chairs were displayed at a randomly generated pose, but had the same
amount of distance (30 cm) and rotation (45 deg) from the starting pose
of the cursor chair. The starting position and orientation of the cursor
chair was identical for all trials. We used our pilot data to determine
the upper bounds of the range of motion of the target chair (i.e., 30 cm
and 45°) such that participants experienced fatigue, but were not so
exhausted as to be unable to complete the experiment. Participants
were instructed to maintain the elbow at full extension throughout this
task.

This task was performed in discrete blocks, separated by rest inter-
vals. The durations of the task and rest blocks were pre-defined, and
they were altered across the three experiments (see below). For any
task block, the timer began when the pointer came into contact with
the first cursor chair, and the rest block began immediately after the
end of the preceding task block. The total time of the docking task for
experiments 2 and 3 was 685 s for each set, including both rest and
task periods. Our pilot study confirmed that the participants found the
docking task easy to learn and uncomplicated after an appropriate time
of practice (i.e., 5 min).

4.4. Procedure

We first measured body segment parameters, including total weight,
height, upper arm (shoulder to elbow), lower arm (elbow to wrist),
and hand (wrist to middle finger tip) lengths. The measurements were
used to obtain the inertial properties of each segment (De Leva, 1996),
which were then to used to estimate shoulder torques via inverse
dynamics (Jang et al., 2017).

Each participant started with a practice session and then performed
the isometric load task, followed by both the pointing and docking tasks
in experiment 1, or, in experiment 2 and 3, only the docking task.
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Fig. 3. Randomized experimental protocol of pointing/docking task. For the shorter duration experiment, a task block was one minute, followed by either one of 5/10/15/20 s
of rest. For longer durations, an experiment block consisted of either one of 100/120/140/160 s of task, followed by either one of 10/15/20/120 s of rest.

Table 1
Borg CR10 scales with verbal anchoring.
Score Definition Note
0 Nothing At All No arm fatigue
0.5 Very, Very Weak Just noticeable
1 Very Weak As taking a short walk
2 Weak Light
3 Moderate Somewhat but Not Hard to Go on
4 Somewhat Heavy
5 Heavy Tiring, Not Terribly Hard to Go on
6
7 Very Strong Strenuous. Really Push Hard to Go on
8
9
10 Extremely Strong Extremely strenuous. Worst ever experienced

4.4.1. Estimating maximum shoulder torque

For the isometric load task, we recorded the endurance time as
the elapsed time from the beginning of the task till volitional failure,
when the participant could no longer hold the weight in their out-
stretched dominant arm. The participants could see the Borg CR-10
scale (Table 1) at the side of screen, so that they could refer to the rating
scale during the task. Participants were asked to report their subjective
fatigue level using Borg ratings every 20 s. This task provides a good
first-hand experience to participants in using Borg ratings (Jang et al.,
2017), which facilitates its use in the subsequent tasks. The isometric
task was followed by a mandatory 30-minute rest period to ensure
sufficient recovery and minimal effect of this task on the subsequent
tasks. Then, participants proceeded to either one of three experiments.

4.4.2. Experiment 1: Comparing mid-air pointing and docking tasks

The purpose of experiment 1 was to validate the fatigue modeling
approach of Jang et al. (2017) for more complex 3D interaction tasks,
such as 3D docking. The other goal was to evaluate the generalizability
of the model-based approach across different task types. For these
reasons, this experiment consisted of two 3D interaction tasks: mid-air
pointing and docking.

Participants had five minutes of mandatory practice for each task,
or continued practice until they exhibited confidence in performing the
tasks. The experimenter instructed participants to hit/dock as many
as targets as possible. To follow the guidelines of Fitts’ Law stud-
ies (Soukoreff and MacKenzie, 2004), instructions to strive for optimal
performance, i.e. to ‘hit as many targets as possible while staying
accurate’, contributed to keep each participant motivated. Once the
participant was familiar with the tasks, they took a 15-minute manda-
tory break prior to the main tasks. Our pilot studies confirmed that
these practice and rest duration were sufficient for minimizing potential
learning effects and after-practice fatigue inference.

Subsequently, participants performed the pointing and docking
tasks. We randomized the order of the tasks across participants. Each
task had four one-minute blocks during which the trials were adminis-
tered, and each task block was followed by either one of 5, 10, 15 or
20 s of rest (Fig. 3). Throughout the task, participants provided their
perceived Borg ratings every 20 s. Participants were given a 15-minute
rest period between the pointing and docking tasks to ensure adequate
recovery.

4.4.3. Experiment 2: Mid-air docking for varying task and rest durations

The purpose of experiment 2 was to validate the model with various
durations of tasks and rests. Instead of a monotonous increase of fatigue
level (experiment 1), we intended to evaluate the model performance
when both increases and decreases of fatigue appear in the Borg
recordings of participants.

We recruited 12 participants from experiment 1 on a separate
day, more than a week afterwards, so that we could minimize any
confounding factors from the prior experiment. Participants had the
same training session as in experiment 1, followed by two sessions
of mid-air docking tasks. Each session had randomly alternating task
blocks of 100, 120, 140 and 160 s. Each task block was followed by
either one of 10, 15, 20 and 120 s rest.

4.4.4. Experiment 3: Individualized fatigue modeling

In our third experiment, similar to experiment 2, we evaluated our
model with longer periods of task and rests. However, to validate that
our model was also accurate for multiple recordings of each participant,
participants performed mid-air docking tasks over a 7-day period. In
this experiment, each participant performed the isometric task daily,
followed by two sets of the docking task with alternating task and rest
periods.

5. Results

In this section, we first show the variations of the Borg ratings in
the experiments. Second, we present multiple cross-validations of inter-
action types and duration. We also evaluate our model-based approach
across multiple trials from single users. Lastly, we draw comparisons
between our new modeling method and an existing one (Jang et al.,
2017) in each experiment.

5.1. Borg CR10 scale ratings across participants

Fig. 4(a) and (b) show the average Borg ratings of 20 and 12 par-
ticipants during experiment 1 and 2, respectively. Although there was
variability in the ratings across participants, the trend is similar across
tasks. The rating increases linearly while performing the tasks and
decreases linearly during rest periods, particularly during the longest
rest period (120 s) where the rating decreases close to a 0 rating. We
measured Borg ratings before and after each rest period. The average
Borg rating for all participants in experiment 1 was 3.23 (SD = 1.28,
Range = [0,8]), while the average rating for overlapping participants
of experiments 1 and 2 was very similar, 3.45 (SD = 1.16, Range =
[0,7]). Fig. 4(c) shows the variation of the Borg ratings in Experiment
3. This experiment used multiple recordings on the same participants
(N = 6), with an average rating of 2.90 (SD = 0.90, Range = [0,8]).

5.2. Cross-validation of pointing and docking tasks

To investigate the applicability of the model for complex inter-
action tasks (i.e., beyond a simple pointing task), we performed a
cross-validation test where the model is optimized with either the
pointing or docking task. Then, we tested the model on the data set
of the other task condition (Pointing < Docking). Fig. 5 (Left) shows
the cross-validation results over all participant data in experiment 1.
The mean of root-mean-squared error (RMSE) during pointing tasks
(Docking — Pointing) was 1.43 (SD = 0.644), while the mean RMSE
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Fig. 4. Borg ratings of participants in all experiments. (a): Borg ratings by 20 participants during mid-air pointing (blue line) and docking (red line) tasks in experiment 1 (shorter
task durations), (b): Borg ratings by 12 participants during mid-air docking tasks (blue: set 1, red: set 2) in experiment 2 (longer task durations), (c): Borg CR10 ratings by 6
participants during mid-air docking tasks for longer task duration in experiment 3. Each participant (indicated with different colors) repeated the experiment across 7 days.
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Fig. 5. Left: Results of the cross-validation between pointing and docking tasks. Blue line indicates the RMSE of the model optimized using the pointing task data set. Red line
indicates the RMSE of the model optimized using the docking task data set. Right: Results of the cross-validation between shorter (Exp.1) and longer (Exp.2) durations of task/rest.
Red line indicates the RMSE of the model optimized using experiment 1 data. Blue line indicates the RMSE of model optimized using experiment 2 data.
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Fig. 6. Results of the leave-one-out cross validation of models using all participant data
(generalized model) and the data of each participant (individualized model) in terms
of RMSE for experiment 3. Green triangles: generalized TCM model, Red diamonds:
generalized LIN, Purple squares: individualized TCM model, Blue circles: individualized
LIN model.

during docking tasks (Pointing — Docking) was 1.39 (SD = 0.598). A
paired-sample t-test showed no significant difference between Pointing
and Docking tasks (t(39) = 0.932, p = 0.357). Thus, we conclude
that the complex task condition, i.e., docking task involving pointing,
translating, and rotating, does not affect the estimation performance of
the model.

5.3. Cross-validation of longer and shorter task periods

To evaluate the validity of the model for different interaction du-
rations, we performed a cross-validation between shorter (experiment
1) and longer (experiment 2) durations of docking task. Fig. 5 (Right)
shows the evaluation of performance between Experiments 1 and 2.

Mean RMSE in experiment 1 (experiment 2 — experiment 1) was
1.30 (SD = 0.45) and mean RMSE during experiment 2 (experiment
1 — experiment 2) was 1.33 (SD = 0.36). A paired-sample t-test showed
no significant difference in model estimation performance between
experiment 1 and 2 (t(23)=-0.28, p = 0.782). Thus, we conclude that
the duration of intermittent task and rest does not affect the estimation
performance of the model.

5.4. Evaluating generalized and individualized models

To investigate the estimation performance of the model in a longi-
tudinal experiment with single participants, we compared estimation
performance between the individualized and generalized models. To
assess the predictive performance of our model, we used a leave-one-
out (LOO) cross-validation. With this, one dataset is excluded from
optimizing the model, and then, that previously excluded dataset is
used to test the model. Then this procedure is repeated in turn for every
other dataset. We assume that the RMSE measured for each model
is independent from each other when a single dataset is eliminated
from the optimization. We obtained generalized models (M,,,) from
the entire data collected from experiment 3, while we generated indi-
vidual models using the data set recorded from each participant (M;,,).
Results showed a RMSE of M,,, = 2.0 (SD = 0.586) and M,,, = 1.25
(SD = 0.315). A paired sample t-test showed a significant difference
between the individualized and the generalized model (t(79) = 6.87,
p = 0.000). Fig. 6 further shows a comparison of our new model and
the existing method (TCM (Jang et al., 2017)) for both individualized
and generalized optimization. Our new modeling method (LIN) with
individualized optimization showed consistently improved estimation
accuracy. We conclude that our individualized model shows better
estimation performance than a generalized model.

5.5. Comparison of modeling methods

To compare the estimation performance of our model with the
existing one (the TCM-based model (Jang et al., 2017)), we used four
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Fig. 7. Comparisons of the leave-one-out cross-validation results of the models in each experiment (experiment 1, 2 & 3). RMSE of estimation performance of four modeling
methods are presented. Green triangles: TCM model w/o Chaffin’s strength model, Red diamonds: LIN model w/o Chaffin’s model, Purple squares: TCM w/ Chaffin’s model, Blue

circles: LIN model w/ Chaffin’s model.

Table 2
Comparison of the estimation performance of four different fatigue quantification
methods, for all investigated combination of fatigue models (LIN vs. TCM, with or
without Chaffin’s model). The estimation errors (RMSE) are measured in Borg ratings
(0~10).

Experiment 1 Experiment 2 Experiment 3

TCM w/o Chaffin 1.42 1.90 1.60
Lin w/o Chaffin 1.33 1.78 1.59
TCM w/ Chaffin 1.34 1.73 1.60
LIN w/ Chaffin 0.88 1.26 1.25

modeling methods to estimate the subjective fatigue in each experi-
ment. The four models include (1) TCM without Chaffin’s model, (2)
TCM with Chaffin’s model, (3) LIN without Chaffin’s model, and (4)
LIN with Chaffin’s model (ours). These four models were separately
optimized using the dataset for each experiment, experiment 1, 2
and 3. We followed the leave-one-out (LOO) cross-validation approach
described in the prior section to test the robustness of each model in
estimating fatigue of an unseen data set. In particular, in experiment 3,
we performed LOO cross-validation within each participant’s dataset to
compare the model performance for estimating individual fatigue data
in a longitudinal task period. In Table 2, the average RMSE of the Borg
ratings for each fatigue modeling method is shown. Fig. 7 shows each
model’s estimation performance in terms of RMSE for each experiment.
Overall, the LIN fatigue model combined with Chaffin’s arm strength
model consistently showed the best performance relative to the other
methods. To further investigate the statistical difference among the
RMSE results of the four modeling approaches, we performed a one-
way ANOVA with a Tukey post-hoc test on the RMSE errors from the
LOO cross-validation for each experiment. Results showed that only LIN
with Chaffin’s strength model has a statistically significant difference
relative to the other three modeling methods (p < 0.0005). The other
three methods are not significantly different from each other (p > 0.8).

5.5.1. Model parameters

The optimal parameters of our approach (LIN with Chaffin’s model)
are F, = —0.043 (SD = 0.011), F, = 0.040 (SD = 0.0035), R, = 0.0 (SD =
0.0), R, = 0.0046 (SD = 0.00097) in experiment 1; and F, = —0.040 (SD
= 0.0075), F, = 0.035 (SD = 0.0015), R, = 0.0 (SD = 0.0), R, = 0.0046
(SD = 0.00040) in experiment 2. From the LOO cross-validation within
each participant’s data in experiment 3, we found the best performance
model parameters and the overall range as F; = 0.15 (Range = [-0.045,
0.25]), F, = 0.018 (Range = [0.0010, 0.055]), R, = —0.031 (Range = [-
0.051, 0.01), R, = 0.016 (Range = [0.0052, 0.22]). Experiments 1 and
2 yielded similar optimal model parameters and they vary relatively
less than the parameters from experiment 3. Also, as R, is zero, the
effect of Brain Effort (BE) on the rest rate was minimal. In contrast,

the optimal parameters varied in experiment 3 across participants. This
indicates that the inter-individual difference in fatigue and rest rates
are well reflected in the optimal parameters through the individualized
modeling approach.

6. Discussion

The purpose of our setup that uses a Kinect to quantify subjective
fatigue was to reduce the necessity for expensive or invasive equipment,
such as dynamometers or EMG recordings. With our setup, our results
showed the validity of our new model for quantifying cumulative
subjective fatigue in various interaction conditions, including complex
(i.e., mid-air docking task) and dynamic ones (i.e., varied rest/task
periods).

6.1. Generalizability of the model

Our multiple cross-validations showed that the estimation perfor-
mance of our model is not affected by task types (simple vs. complex
tasks) nor periods (shorter vs. longer task and/or rest). These cross-
validations simulated challenging estimation tasks where the model
is optimized using a dataset from either one of two different task
conditions, and then tested on the unseen data. The results imply the
generalizability of our model to varying interaction conditions. For
example, we can generate our model from an exemplar task condition
and then use the model in other interaction conditions without having
to expect a severe degradation of model performance.

6.2. Improved performance in estimating subjective fatigue

In comparing our new fatigue model (LIN) with an existing one
(TCM (Jang et al., 2017)), we observed that the LIN model alone does
not show a statistical improvement over the TCM model. Yet, we go
beyond a simple a addition of Chaffin’s model to estimate maximum
shoulder torque. When our LIN model is combined with Chaffin’s
strength model (Chaffin et al., 1999), we see that the estimation
performance is significantly improved, with 31% less error on average
in all experiments. In Fig. 4, we showed the large variations in the
Borg ratings across participants. Given the variability and uncertain
of subjective fatigue, estimating its accumulation during mid-air in-
teraction is a challenging task. More specifically, it is challenging to
predict how users subjectively experience their fatigue level during mid-
air interaction. Thus, our improvement is an important stepping stone
to accurately quantifying subjective user experience during mid-air
interaction.
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6.3. Individualized fatigue modeling

Our modeling approach showed an additional 42.5% reduction in
fatigue estimation error when the longitudinal experiment data in ex-
periment 3 is used for an individual participant’s fatigue quantification
rather than for all participants’. Individualized modeling accounts for
the Borg ratings indicated by each participant, and thus it eliminates
the variability in the fatigue perception across participants. We envision
that the subjective fatigue ratings could be periodically captured while
users perform mid-air interaction. Then, such information could be
used to further inform the model as the capture of multiple ratings
across time would reduce the variability in the model. This will fur-
ther enhance the performance for estimating an individual’s subjective
fatigue at a given time.

6.4. Model parameters

Although we did not expect the negative optimal value of F, for
Exp. 1 and Exp. 2, this may have occurred to deal with the challenging
optimization problem for a general model over 20 and 12 participants’
subjective fatigue in Exp. 1 and 2, respectively. For instance, the BE
ranged between 0 and 0.638, which defines the range of F in between
0.0142 and 0.040. Thus, F always shows a higher rate compared
to R (0.0046). This means that increased BE still contributes to a
higher rate of fatigue than recovery rate. In Exp. 3, we observed
more understandable parameter optimization results where positive F,
and negative R, values are achieved. We showed that inter-individual
differences in fatigue and rest rates are well reflected in the optimal
parameters through the individualized modeling approach.

From these observations, we may conclude that constructing a
generalized subjective fatigue model from non-contact information is
quite challenging and may not lead to understandable model optimiza-
tion results (although the accuracy appears to be slightly enhanced as
shown in Table 2). The best way to take advantage of our model is to
parameterize individualized subjective fatigue as demonstrated in Exp.
3, which shows about 42.5% improvement over a single generalized
model (see Figs. 6 and 7 (Right)).

Then, the optimal parameters for Exp. 3 can be also used to ex-
plain how our approach is different from a modified TCM model. For
instance, Looft et al. provided modifications to the TCM model that
substantially improved model predictions when intermittent tasks were
involved (Looft et al., 2018; Looft and Frey-Law, 2020). However,
when BE is 0, our model behaves similarly to this modified TCM as
R becomes the max. When BE is not zero, the modified TCM becomes
identical to the original TCM model. However, our approach features
variable recovery rating R with respect to BE. This makes our modeling
method superior to the original TCM (see Table 2 and Fig. 6) and may
conceptually surpass the modified TCM. That said, the original TCM
model is superior to other approaches when not accounting for the
angle and velocity relationships on strength. In future work, we will
generalize other modified models to handle our use case.

6.5. Simple and effective personalization in HCI scenarios

Our results showed an improvement in estimating an individual’s
subjective fatigue using only a camera-based skeleton tracking system
instead of invasive and expensive tools that are impractical within
HCIL In Kinect-based mid-air applications which can be adapted to
each user’s strength (e.g., exergames, at-home therapy), designers may
enable users to calibrate the system with their own optimal ranges
of motion, resting times, input positions, which involve significant
physiological and psychological factors. Designers can also fit this
approach to more complex scenarios by fitting the model parameters.
Designers can run the model in any Kinect-based system as long as
they collect a user’s joint torque and Borg ratings corresponding data.
Additionally, quantifying subjective fatigue could be used to develop
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guidelines for collaborative work involving human-robot interaction,
in which human exhaustion can be relieved by a robot. For instance,
our model could be used to design industrial ergonomics and systems
in order to protect industrial workers’ health. Similarly, as technologies
such as VR/AR as introduced in industry for upskilling and training
purposes, our model can be useful to investigate human motion and
fatigue in various training scenarios.

7. Limitations

Our model demonstrated promising results and estimation perfor-
mance; however, we identified some limitations that go beyond the
scope of this work, but that could be addressed in future work in
this area. For example, we recognize that while our model measures
elbow and shoulder torque, we have not validated the applicability
of our model with varying grasping forces (i.e., the user holding a
heavy object). While the weight of a controller (~0.169 kg) was a factor
considered in the model, we have not validated our model for heavier
objects, which will need higher grasping force. We also acknowledge
that our participant pool is limited. Another limitation is that task
difficulty and movement size (translation and rotation) were relatively
limited. These bounds were established based on our pilot studies to
avoid extreme exhaustion from our participants, so they could finish
the experiment. To further validate the model, more challenging and
dynamics tasks could be designed and tested.

8. Future work

Our model enables a variety of applications, also because the end
effector (i.e., the controller weight) can be added as a factor when
estimating shoulder torque into the model. An interesting direction will
be to validate our model using different weights in the hand. Likewise,
we plan to test on a participant pool with larger variability.

We also plan to validate our model for more dynamic and larger-
range motions in the future. Another important direction will be to
implement our model within real world applications.

Our future work might also include using our proposed model
to quantify fatigue in other areas of the human body, particularly
the upper body. Another interesting future direction is investigating
and improving the efficiency of the heuristic pattern search for the
discontinuous functions during our parameter optimization. We also
plan to investigate the relationship between task accuracy and fatigue
perception. Finally, we will release our model to the public so that it
can be further validated and improved upon.

9. Conclusion

We presented an improved fatigue modeling method that incor-
porates the linear relationship between fatiguing/resting rates and
brain effort (BE). We also incorporated a maximum arm strength
model (Chaffin et al., 1999) into the model. Our new model showed
significantly better estimation performance than previous work (Jang
et al., 2017). Statistical analyses revealed that our model perfor-
mance is not affected by conditions such as complexity of tasks and
rest/interaction durations. Also, our results reveal that a personalized
model can quantify an individual’s subjective fatigue better than a
general model. We investigated the relationship between the fatigu-
ing/resting rate and the current muscular effort. Prior work had used
constant rate parameters for this relationship (Jang et al., 2017). In
the work presented here we showed that a linearly varying rela-
tionship significantly improved fatigue estimation performance. Our
proposed method further generalizes and validates the applicability of
the model-based fatigue estimation method.

We believe that improving and applying such a fatigue model for
a variety of HCI scenarios, including mid-air tasks in AR and VR,
will further validate the model-based approach, and will ultimately
strengthen design guidelines targeted at minimizing fatigue during
prolonged use of mid-air user interfaces.
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