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Abstract— Accurate control of robots at high speeds requires
a control system that can take into account the kinodynamic
interactions of the robot with the environment. Prior works
on learning inverse kinodynamic (IKD) models of robots have
shown success in capturing the complex kinodynamic effects.
However, the types of control problems these approaches can
be applied to are limited only to that of following pre-computed
kinodynamically feasible trajectories with a pre-determined
control objective. In this paper we present Optim-FKD, a new
formulation for accurate, high-speed robot control that makes
use of a learned forward kinodynamic (FKD) model and non-
linear least squares optimization. Optim-FKD can be used for
accurate, high speed control with arbitrary control objectives
that can be specified as non-linear least squares objectives.
Optim-FKD can solve for control objectives such as path fol-
lowing and time-optimal control in real time, without requiring
access to pre-computed kinodynamically feasible trajectories.
We empirically demonstrate these abilities of our approach
through experiments on a scale one-tenth autonomous car. Our
results show that Optim-FKD can follow desired trajectories
more accurately and can find better solutions to optimal control
problems than baseline approaches.

I. INTRODUCTION AND RELATED WORK

At moderate speeds, pure kinematic models or simple
model-based kinodynamic models are sufficient for point to
point motion control, for example, using model predictive
control [1]-[3]. Such simplified models assume that robots
only operate in a limited subspace of their entire state
space, such as low acceleration and speed, minimum wheel
slip, negligible tire deformation, and perfect non-holonomic
constraints.

However, real-world robotic missions may entail violations
of such over-simplified models [4]-[6]. For example, in
search and rescue missions where time is of the essence,
robots need to move as fast as possible in order to reach the
victims, potentially resulting in extensive side-ways slippage;
in unstructured outdoor environments, terrain characteristics
are not known a priori, and can cause inconsistent vehicle-
terrain interaction with the model simplified for homoge-
neous surfaces. All these real-world challenges motivate a
better kinodynamic model so that the control systems can
confidently extend the robot operational space into more
dynamic regimes in order to adapt to these real-world chal-
lenges.
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Considering the difficulty in hand-crafting such a model
that considers a variety of factors during real-world opera-
tion, roboticists have sought help from the machine learning
community [7]. End-to-end learning is the most straightfor-
ward way to encapsulate both the model and controller in
one function approximator and to train it with data, e.g.,
learning a neural network using imitation learning [8]-[15]
or reinforcement learning [16]-[19]. Despite serving as a
successful proof-of-concept, it has been reported that the
learned systems usually do not perform as well as their
classical counterparts [7]. Leaving both model learning and
controller learning to data, such end-to-end approaches suffer
from the common drawbacks of learning approaches in gen-
eral, such as high requirement on massive training data, poor
generalizability to unseen scenarios, and most importantly, a
lack of safety assurance for navigation, which is commonly
provided by classical planning and control algorithms.

To address such disadvantages of end-to-end learning, hy-
brid approaches have been introduced that leverage existing
robot planning and control methods. For example, Wigness
et al. [20] and Sikand et al. [21] used imitation learning to
learn a cost function for existing navigation controllers to
enable adaptive behaviors for semantics. Similar techniques
have been applied to learn socially compliant navigation
[22]-[24]. Xiao et al. [25] introduced Adaptive Planner
Parameter Learning, which learns to dynamically adjust
existing motion planners’ parameters to efficiently navigate
through different obstacle configurations using teleoperated
demonstration [26], corrective interventions [27], evaluative
feedback [28], and reinforcement learning [29]. These ap-
proaches focus on using machine learning to enable custom
behaviors, such as semantic awareness, social compliance,
or smooth obstacle-avoidance.

Machine learning has also been used for high-speed robot
control [12], [30], [31]. Model Predictive Path Integral
control [32] utilizes a classical sampling based controller in
an online learning fashion: it learns a sample distribution
during online deployment that is likely to generate good
samples [33]. However, it uses a simple unicycle forward
model to predict future path based on the samples and
compensates such an over-simplified model by a massive
number of samples evaluated in parallel on GPUs [34].
Brunnbauer et al. [35] reported that model-based deep re-
inforcement learning substantially outperforms model-free
agents with respect to performance, sample efficiency, suc-
cessful task completion, and generalization in autonomous
racing. Roboticists have also investigated accurate, high-



speed, off-road navigation on unstructured terrain [36] by
learning an inverse kinodynamic model conditioned on on-
board inertia observations.

Leveraging a hybrid paradigm to address high-speed robot
control problems, our approach, which we call Optim-FKD,
falls into the model learning regime [37] and utilizes numer-
ical optimization to find optimal control sequences based on
the learned model in order to enable high-speed, accurate
robot motions. To be specific, we employ the direct modeling
paradigm [37] and learn a forward kinodynamics model to
be used in different downstream optimization tasks. The
contribution of this paper can be summarized as follows:

1) A novel formulation for robotic control using a learned
forward kinodynamic function and numerical optimiza-
tion. We demonstrate that this formulation is easily
extensible to a range of control tasks without requiring
the retraining of a new forward kinodynamic model.

2) A novel learning formulation that enables a highly
accurate forward kinodynamic model to be learned.

3) A detailed description of the system architecture re-
quired to enable the presented approach to run on real
robot hardware in real time.

4) Empirical results demonstrating that the presented ap-
proach outperforms baselines for various robot control
tasks.

II. MATHEMATICAL FORMULATION

High speed, accurate robot control as a problem can be
formulated in many different ways. Here we present two
different formulations of the problem, and show that each
formulation can be solved by the same class of solution,
namely a nonlinear least squares optimization that uses a
forward kinodynamic model.

A. Preliminaries

Let X represent the state space of the robot. X consists
of configuration space variables (such as position and orien-
tation) and dynamics variables (such as linear and angular
velocity). Let U represent the control space of the robot.
Consider a period of time of operation of the robot At.
It is assumed that controls are executed on the robot in a
piecewise constant manner. Let 7 be the duration for which
a particular constant control is executed. In the time period
of operation At, the robot will execute n = % constant
controls.

To model the response of the robot from the executed
controls, we introduce a state transition likelihood function
p: X xU"x X™ — [0,1]. p takes as input the initial
state of the robot xg € X, a length-n piecewise constant
control sequence ui.,, and a length-n state sequence ..
Each z; € z;., represents the state of the robot at time ¢ - 7.
The output of p is the probability that the state sequence 1.,
is observed after executing u;., beginning from xz.

We assume that the motion of the robot obeys the Markov
property, that is, the probability of reaching a state x;
depends only on the previous state x;_; and the constant con-
trol executed beginning at that previous state u;. This induces

a local state transition likelihood function p; (z;_1, u;, ;) for
every ¢ € 1..n. We can thus model p as

p(z0, Utim, T1:n) = Hpi(iﬂi—l,ui,ﬂfi) (1)
i=1

Equation 1 represents the probability that x1., is observed
after executing wuy., from zq. It is also useful to consider
what the maximum likelihood state sequence Zi., is after
executing 1., from zg.

T, = argmax p(To, Utin, T1:n) 2
T1:n
n

= argmapri(zi_l,ui,xi) (3)
Tin
Breaking down each generative probability p; into discrimi-
native probabilities,

pi(Ti—1,ui, 25) = plai|us, xi—1)p(@i—1|ug)p(u;)  (4)
= p(@;|wi, xi—1)p(xi—1)p(us) )

where 5 comes from the fact that the previous state x;_; is
independent from the next control. The p(x;—1) and p(u;)
terms can be dropped in equation 5 because when substituted
into equation 3 they will have no effect on the arg max.
What remains is p(x;|u;, 2;—1) which we assume follows
a normal distribution: p(xz;|u;, z;—1) ~ N(Ty,0.,). We
represent the maximum likelihood estimate of p(x;|u;, ;—1)
as the forward kinodynamic function 7 (u;, x;—1) = &;. With
this definition of 7, equation 3 can be rewritten as

T = (m(ur, 20),s oo, 7 (11, T 1) (6)

With these preliminaries we will now show that various
robot control problems can be expressed as nonlinear least
squares optimizations that use the forward kinodynamic
function .

B. Objective 1: Path Following

The problem we consider here is that of following a
predefined path as closely as possible. This problem becomes
noteworthy at high speeds where accurate control of the robot
becomes increasingly more difficult.

We are given z7.,, which describes a path to follow.
Following this path as closely as possible amounts to solving

* *
Uy = argmaxp(xmul:nvxl:n) (7)
Ul:n
From equation 6, this is equivalent to solving
* . * — 2
Uy = argm1n||x1:n _ml:nHQ (8)
Ul:n
This is a nonlinear least squares formulation where each T; €

Z1., is determined from the forward kinodynamic function
.

C. Objective 2: Optimal Connectivity

Another variant of the robot control problem that we
consider is traversing from a start state x; to a goal state
2 in as little time as possible. Problems of this type appear



frequently in optimal sampling-based motion planning where
algorithms like RRT* [38] and BIT* [39] require a steering
function that can time-optimally connect arbitrary states.
Consider the maximum likelihood state sequence Z7.,
from earlier. If we wanted the final state of the robot to be
as close as possible to the goal state xy, we would optimize
Ui, = argmin |lzy — T,|[3 ©)
Ul:in
This formulation however keeps the time that the goal state
xy is reached fixed. Specifically, the state Z,, is reached after
time n - 7. To also minimize the time taken to reach the goal,
n is introduced as an optimization parameter. This results in
the objective function
Ui, = argmin ||y — T3+ (a(n-7)*  (10)
UL:n N
where « is a scaling parameter that trades off time to reach
the goal and the distance to the goal. Like the path following
formulation, this formulation is a nonlinear least squares
optimization where 7, is determined from the forward
kinodynamic function 7.

III. FORWARD KINODYNAMIC MODEL LEARNING

In this section we present how the forward kinodynamic
model 7 is learned. Since 7 is an integral component to the
nonlinear least squares optimizations introduced earlier, it is
key that m models the true forward kinodynamics effectively.
We learn 7 for a scale one-tenth autonomous robot car.

A. Dataset Generation

The FKD model 7 is trained in a supervised manner, and
thus needs a dataset to learn from. We obtain this dataset
by teleoperating the robot at various speeds and recording at
every timestep the state estimates of the robot and the joy-
sticked control commands. This results in a dataset D of tra-
jectories T, ..., T,,, where each trajectory T; € D is a tuple
of the form (v, (t),vy(t),w(t), z(t),y(t),0(t),d(t),¥(t)).
Here, v, (t) is the velocity in the z-direction, v, (t) is the
velocity in the y-direction, w(t) is the angular velocity, x(t)
is the z-position, y(t) is the y-position, 0(¢) is the orientation,
o(t) is the commanded forward velocity, and (t) is the
commanded angular velocity. All of these functions are time-
dependent and are defined in the domain [0, t(f’)] where tgf)
is the termination time for trajectory 7;.

B. Learning Formulation

The formulation presented earlier for 7 maps an initial
state of the robot and a constant control to the most likely
next state of the robot. Learning this exact formulation, while
in theory would work fine, in practice does not yield good
performing FKD models. This is because the model is tasked
with predicting the state after 7 units of time, which in most
cases is very close to the current state since 7 is selected to
be small. This means the model can get away with simply
predicting the current state without incurring much loss. In
order to ensure the model’s predictions are of high quality,

the model needs to learn to model the state of the robot after
a time period much greater than 7.

We achieve this longer prediction horizon by training 7 in
a recurrent fashion. Simply increasing 7 would not suffice
since that would forego the fine-grained prediction capa-
bilities of the model. The basic structure of the recurrence
formulation is as follows. The model predicts the next state
x; = 7(u;, x;—1). For timestep i + 1, instead of being given
access to the ground truth value of z;, the model uses its
previous prediction as the starting state: ;11 = m(u;q1, T;).
This process continues for the number of timesteps in the
prediction horizon.

This simple recurrent approach has a few limitations
however. The base timestep duration 7 is selected to be small
so as to capture minute changes in the state of the robot. In
our experiments we set 7 to 0.05 seconds. For the model to
predict the state of the robot after time ¢ eq, t";"“ forward
passes through the model are needed. In our experiments, we
set tpred to 3.0 seconds, requiring 60 forward passes through
the model. Since 7 is to be used in a real-time optimization
framework, the number of forward passes through 7 need to
be limited to maintain computational efficiency. We achieve
this by introducing a model prediction time ¢,,04e1. The FKD
model 7, in one forward pass, outputs the next t‘“;del states
given the next tm"% controls. It also takes in as input the
previous tmo% states, enabling recurrence. In our experi-
ments tyode1 Was set to 0.5 seconds. This approach enables
both computational efficiency and fine-grained prediction.

Having motivated the model formulation, we now present
the learning objective. For each trajectory 7T; in our dataset
D, we evenly sample k starting times (t1,...,¢x) from the
range [tmodel, ty) — tprea]. For each starting time ¢, €
(t1,...,tx), we will use the model to predict the states at
times t,+b7 forb € [0,1, ..., t"T“’] For brevity, let S, be the
state variables v (t), vy(t), w(t), z(t),y(t), and §(t) sampled
evenly with spacing 7 from the time period [ta, ta 4 tmodell-
Additionally let M;, be the control variables 6(¢) and (t)
sampled in the same manner. The model 7 takes in as input
M;, and S, 4,,..,., and produces as output S;,. S;, differs
from S;, in that the former is the model’s prediction whereas
the latter is the ground truth. Taking everything into account,
we obtain the following learning objective

a

t
pred -1

model

t
arg@min Z Z Z ||7T<§ta+tmodel'(i71)7
i=0

Ti€D to€(t1y..osts)

2

My, tictmoae) = Stati-tmoaal |2

) 1

where © is the parameter set of m and S, _; =
St —t for the case ¢ = 0.

model

model
IV. OPTIMIZATION SYSTEM ARCHITECTURE

Here we describe the system architecture of the proposed
approach. We discuss how to integrate the optimization
procedure and calls to the FKD model in a manner that
enables real-time control on real robot hardware. Figure 1
shows a block diagram of the system components. There are
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Fig. 1: System architecture block diagram.

four key components that all operate asynchronously: the
state estimator, optimizer, updater, and executor.

A. State Estimator

In order for a predefined path to be followed accurately or
for a goal state to be reached as fast as possible, accurate state
estimates of the robot are essential. These state estimates
define the robot’s position, orientation, velocity, and angular
velocity with respect to some coordinate frame. The state
estimates themselves can come from a variety of sources
such as a LIDAR based localization algorithm or visual
odometry. It is assumed that there exists some delay ¢
between the actual, real-world state of the robot and what
the state estimator outputs. The state estimator operates
asynchronously, continuously updating a fixed sized buffer
of the most recent state estimates. It is critical that each
state estimate in the buffer is timestamped.

B. Optimizer

The optimizer begins by obtaining from the state buffer
the most recent estimated state of the robot £. This state will
be used as the start state in the optimization procedure. Now,
depending on the optimization objective, different steps must
be taken. For the path following objective, it is critical to first
localize the robot on the map that the robot is desired to
follow. Let P be the path that the robot is assigned to follow
at speed vgesired- I consists of a series of robot positions
x,y,0 ordered in increasing order by which each position
is to be reached by the robot. Each optimization will plan
the next At controls for the robot. To do this, the goal state
g € P the robot needs to reach after time At needs to be
determined. Localizing the robot in P amounts to finding
the position s € P that minimizes ||¢ — s||3. ¢ can then
be obtained by computing ¢ = P ~> Ugesirea - At where
the a ~~ b operator looks ahead in P from position a by b
distance.

Next, the optimizer must prepare the input required by
the forward kinodynamic model, namely the past ¢,,,q.] Units
time of robot state information. This is done by running time
synchronization on the states in the state buffer by making
use of the states’ timestamps to sample tm’% evenly spaced
states. Finally the optimization procedure is called, which
internally will optimize over the next At of controls by

NVIDIA
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Fig. 2: UT-Automata F1Tenth Robot Car

making ; Az . calls to the FKD model. The result ©* along
with £ is stored in a concurrency-safe data structure. Note
that the optimization horizon At differs from the prediction

horizon #;,;¢q in equation 11.

C. Updater

The main role of the updater is dealing with latencies
that are characterstic of real robot systems. We consider the
two most impactful latencies: €, the previously introduced
latency in the state estimators measurements, and ~y;, the
time required for optimization ¢ to complete. Since ~; is
different for every run of the optimizer, it needs to first be
computed. This is done by computing the difference between
the current system time and the timestamp of £ that was used
as the starting state of the optimization procedure. The first
~; + € time units of controls are discarded from u*, and the
remainder replaces the contents of the control buffer.

D. Executor

Finally, the executor asynchronously executes the com-
mands stored in the control queue one at a time on the robot.
If the forward kinodynamic model 7 had been learned well,
the evolution of the state of the robot after executing the
controls will closely match the predicted state sequence by
the model, meaning the controls output by the optimization
procedure are the desired ones.

V. EXPERIMENTS

To evaluate the performance of our proposed Optim-
FKD approach, we perform two sets of experiments, each
involving a different variant of the robot control problem.
We demonstrate the ability of Optim-FKD to successfully
complete both, and show improved performance over an
optimization-free, IKD model baseline.

A. Experimental Setup

The robot platform used for our experimentation is the
UT-Automata Fltenth Car depicted in figure 2. We make
use of the car’s Intel Realsense T265 tracking camera for
localization and its Nvidia Jetson TX2 for compute.

We consider two different experimental setups, each in-
volving a different form of the robot control problem and
thus a different optimization objective. For the first task we



¥ (m)
|

y(m)

(a) Optim-FKD on rounded rectan-

gle (b) IKD on rounded rectangle

-4 -3 =2 A 0 1 2 3 4 -6 -4 -2 o 2 4
x (m) X (m)

(c) Optim-FKD on figure 8 (d) IKD on figure 8

Fig. 3: Superposition of execution traces of both the Optim-FKD and IKD algorithms running at different speeds on the
rounded rectangle and figure 8 paths. In (a) and (c), which correspond to Optim-FKD, the execution trace matches the
desired path (black) very closely. In contrast, there are significant errors in the baseline IKD model shown in (b) and (d).

1.2:4
—— Optim-FKD
— |KD

1.0 1

o
o
L

Hausdorff Distance (m)
o o
IS o

2.00 225 250 275 3.00

Speed (m/s)

125 .1.50 1.75

1.00

(a) Rounded rectangle path

0.8 —— Optim-FKD

— IKD
0.7

0.6 4

0.5 1

0.4 7

0.3

Hausdorff Distance (m)

0.2 4

2.00 2.25

Speed (m/s)

1.75

1.50

(b) Figure 8 path
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average is computed for five rollouts.

consider having the robot follow two different predefined
paths as accurately as possible at speeds varying from
1.0 m/s to 3.0 m/s. This task corresponds to the optimiza-
tion objective presented in equation 8. For the second task
we have the robot traverse from an initial starting state to
a goal state in as little time as possible, without explicitly
constraining which path it needs to take to get to the goal
state. This task corresponds to the optimization objective
presented in equation 10.

The baseline algorithm we consider for all of these ex-
periments is an inverse kinodynamic model. In contrary to
the forward kinodynamic model, which maps a sequence
of controls to the most likely next sequence of states, the
inverse kinodynamic model attempts to infer what controls
led to a particular state sequence. To ensure fairness in the
comparison, the underlying neural network used in both
the FKD and IKD models was identical, with the same
architecture (6 layers, 256 neurons per layer) and activations
(ReLLU); the dataset that both were trained on was identical;
and finally the number of iterations each was trained for was
identical.

B. Experiment 1: Path Following

Here we assess the control capabilities of the Optim-FKD
model on the task of accurately following a path. Figure
3 shows a visualization in black of the two paths used:
a rounded rectangle path and a figure 8 path. Both paths
were generated by joysticking the robot at a slow speed
and recording only the position estimates. Each algorithm
is assessed on how accurately it can follow the paths both at
slower and higher speeds. For each speed, five full traversals
through the desired path are completed. We measure an
algorithm’s ability to closely follow a path at a particular
speed by computing the Hausdorff distance between the
executed path and the desired path.

Figure 4 shows the evaluation of the Hausdorff distance
metric for (a) the rounded rectangle path and (b) the figure 8
path. We can see that Optim-FKD produces execution traces
that are significantly closer to the desired trajectories than
the IKD model. For both paths, the Optim-FKD algorithm
is strictly under 0.2m Hausdorff distance, while the IKD
algorithm is strictly greater than 0.2m. Figure 3 provides a
visual argument for these results: in (a) and (c) the executed
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path hugs the desired path much more closely than in (b)
and (d). For both algorithms and across both paths, we
observe that increases in velocity tend to result in higher
Hausdorff distances. This phenomenon is expected, since
at high velocities the kinodynamic responses of the robot
with respect to the terrain become more pronounced, making
accurate control more difficult.

We posit that the better performance of the Optim-FKD
approach is explained by an inherent advantage in FKD
models over IKD models: better sample efficiency. Most
robots where kinodynamic interactions with the environment
are important are underactuated, i.e., the dimensionality of
the control space is smaller than that of the state space.
For a FKD model and an IKD model trained on the same
dataset, the FKD model will learn a mapping from a lower
dimensional space (the control space) to a higher dimensional
space (the state space), whereas the IKD model learns the
opposite mapping. Because of the control space’s lower
dimensionality, the training dataset will contain a larger
fraction of the possible model inputs than the training dataset
for the IKD model. This means that for the same amount of
training data, the FKD model is exposed during training to a
higher percentage of its input space than the FKD model. It
follows that the FKD model is more reliable in estimating the
effects of controls than the IKD model is in explaining what
controls led to a particular state sequence. The optimization
is able to leverage this improved prediction performance
and can deal with cases where the IKD model would be
in unknown territory. This argument is thus one of sample
efficiency, with the FKD model better able to make use of
its training dataset than the IKD model.

C. Experiment 2: Optimal Connectivity

With this experiment we demonstrate the improved gen-
eralizability of the Optim-FKD approach over the IKD

approach. As demonstrated in section II-C, the optimal
connectivity problem can be solved by Optim-FKD simply
by altering the optimization objective. However, to solve
the same problem with the IKD approach would necessarily
involve the retraining of a new IKD model. This is because
the IKD model has a fixed prediction horizon. Given a nearby
state, it can output what controls to execute during this
prediction horizon to reach that state. However in the general
optimal connectivity problem, it may be possible that the goal
state cannot be reached within the IKD model’s prediction
horizon, simply because it is too far away. Thus multiple
evaluations of the IKD model would be necessary. But to
do any one evaluation, the IKD model must know what the
desired state is at time equal to its prediction horizon. This
effectively means that the IKD model needs to be supplied
with so called racing lines, i.e., the optimal path to take to
reach the goal state.

It’s more than likely that the provided racing lines are
suboptimal, and in this experiment we demonstrate just that.
Figure 5 depicts the problem of traversing from position
(0,0) to (—5,0) in as little time as possible. This traversal
cannot be done in the IKD model’s prediction horizon, and so
racing lines shown in yellow must be provided by a human.
The IKD model then attempts to trace the racing line as fast
as possible shown in green. In contrast Optim-FKD simply
runs the optimization described in equation 10, and is thus
not dependent on racing lines nor requires a new FKD model
to be trained. The robot is able to execute the path in blue
in 6.34 s whereas it takes 7.20 s for the robot to execute
the path in green. Thus the Optim-FKD approach was able
to find a more optimal path than the human provided one.
Inspecting the blue path more reveals that because of the
wide turn, it was able to traverse upwards of 3 - whereas
the maximum speed of the robot traversing the green path
was 2.67.

V1. CONCLUSION

In this work we presented Optim-FKD, a new algorithmic
technique for accurate, high-speed robot control. We showed
that solutions to various formulations of the robot control
problem can be naturally expressed as a nonlinear least
squares optimization with a FKD model. We demonstrate
how such an FKD model can be learned effectively and
integrated with the optimization on real robot hardware.
Finally we evaluate our proposed approach on two robotic
control tasks at high speeds and show that it outperforms the
baseline.
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