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Abstract— Accurate control of robots at high speeds requires
a control system that can take into account the kinodynamic
interactions of the robot with the environment. Prior works
on learning inverse kinodynamic (IKD) models of robots have
shown success in capturing the complex kinodynamic effects.
However, the types of control problems these approaches can
be applied to are limited only to that of following pre-computed
kinodynamically feasible trajectories with a pre-determined
control objective. In this paper we present Optim-FKD, a new
formulation for accurate, high-speed robot control that makes
use of a learned forward kinodynamic (FKD) model and non-
linear least squares optimization. Optim-FKD can be used for
accurate, high speed control with arbitrary control objectives
that can be specified as non-linear least squares objectives.
Optim-FKD can solve for control objectives such as path fol-
lowing and time-optimal control in real time, without requiring
access to pre-computed kinodynamically feasible trajectories.
We empirically demonstrate these abilities of our approach
through experiments on a scale one-tenth autonomous car. Our
results show that Optim-FKD can follow desired trajectories
more accurately and can find better solutions to optimal control
problems than baseline approaches.

I. INTRODUCTION AND RELATED WORK

At moderate speeds, pure kinematic models or simple

model-based kinodynamic models are sufficient for point to

point motion control, for example, using model predictive

control [1]–[3]. Such simplified models assume that robots

only operate in a limited subspace of their entire state

space, such as low acceleration and speed, minimum wheel

slip, negligible tire deformation, and perfect non-holonomic

constraints.

However, real-world robotic missions may entail violations

of such over-simplified models [4]–[6]. For example, in

search and rescue missions where time is of the essence,

robots need to move as fast as possible in order to reach the

victims, potentially resulting in extensive side-ways slippage;

in unstructured outdoor environments, terrain characteristics

are not known a priori, and can cause inconsistent vehicle-

terrain interaction with the model simplified for homoge-

neous surfaces. All these real-world challenges motivate a

better kinodynamic model so that the control systems can

confidently extend the robot operational space into more

dynamic regimes in order to adapt to these real-world chal-

lenges.
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Considering the difficulty in hand-crafting such a model

that considers a variety of factors during real-world opera-

tion, roboticists have sought help from the machine learning

community [7]. End-to-end learning is the most straightfor-

ward way to encapsulate both the model and controller in

one function approximator and to train it with data, e.g.,

learning a neural network using imitation learning [8]–[15]

or reinforcement learning [16]–[19]. Despite serving as a

successful proof-of-concept, it has been reported that the

learned systems usually do not perform as well as their

classical counterparts [7]. Leaving both model learning and

controller learning to data, such end-to-end approaches suffer

from the common drawbacks of learning approaches in gen-

eral, such as high requirement on massive training data, poor

generalizability to unseen scenarios, and most importantly, a

lack of safety assurance for navigation, which is commonly

provided by classical planning and control algorithms.

To address such disadvantages of end-to-end learning, hy-

brid approaches have been introduced that leverage existing

robot planning and control methods. For example, Wigness

et al. [20] and Sikand et al. [21] used imitation learning to

learn a cost function for existing navigation controllers to

enable adaptive behaviors for semantics. Similar techniques

have been applied to learn socially compliant navigation

[22]–[24]. Xiao et al. [25] introduced Adaptive Planner

Parameter Learning, which learns to dynamically adjust

existing motion planners’ parameters to efficiently navigate

through different obstacle configurations using teleoperated

demonstration [26], corrective interventions [27], evaluative

feedback [28], and reinforcement learning [29]. These ap-

proaches focus on using machine learning to enable custom

behaviors, such as semantic awareness, social compliance,

or smooth obstacle-avoidance.

Machine learning has also been used for high-speed robot

control [12], [30], [31]. Model Predictive Path Integral

control [32] utilizes a classical sampling based controller in

an online learning fashion: it learns a sample distribution

during online deployment that is likely to generate good

samples [33]. However, it uses a simple unicycle forward

model to predict future path based on the samples and

compensates such an over-simplified model by a massive

number of samples evaluated in parallel on GPUs [34].

Brunnbauer et al. [35] reported that model-based deep re-

inforcement learning substantially outperforms model-free

agents with respect to performance, sample efficiency, suc-

cessful task completion, and generalization in autonomous

racing. Roboticists have also investigated accurate, high-



speed, off-road navigation on unstructured terrain [36] by

learning an inverse kinodynamic model conditioned on on-

board inertia observations.

Leveraging a hybrid paradigm to address high-speed robot

control problems, our approach, which we call Optim-FKD,

falls into the model learning regime [37] and utilizes numer-

ical optimization to find optimal control sequences based on

the learned model in order to enable high-speed, accurate

robot motions. To be specific, we employ the direct modeling

paradigm [37] and learn a forward kinodynamics model to

be used in different downstream optimization tasks. The

contribution of this paper can be summarized as follows:

1) A novel formulation for robotic control using a learned

forward kinodynamic function and numerical optimiza-

tion. We demonstrate that this formulation is easily

extensible to a range of control tasks without requiring

the retraining of a new forward kinodynamic model.

2) A novel learning formulation that enables a highly

accurate forward kinodynamic model to be learned.

3) A detailed description of the system architecture re-

quired to enable the presented approach to run on real

robot hardware in real time.

4) Empirical results demonstrating that the presented ap-

proach outperforms baselines for various robot control

tasks.

II. MATHEMATICAL FORMULATION

High speed, accurate robot control as a problem can be

formulated in many different ways. Here we present two

different formulations of the problem, and show that each

formulation can be solved by the same class of solution,

namely a nonlinear least squares optimization that uses a

forward kinodynamic model.

A. Preliminaries

Let X represent the state space of the robot. X consists

of configuration space variables (such as position and orien-

tation) and dynamics variables (such as linear and angular

velocity). Let U represent the control space of the robot.

Consider a period of time of operation of the robot ∆t.
It is assumed that controls are executed on the robot in a

piecewise constant manner. Let τ be the duration for which

a particular constant control is executed. In the time period

of operation ∆t, the robot will execute n = ∆t
τ

constant

controls.

To model the response of the robot from the executed

controls, we introduce a state transition likelihood function

ρ : X × Un × Xn → [0, 1]. ρ takes as input the initial

state of the robot x0 ∈ X , a length-n piecewise constant

control sequence u1:n, and a length-n state sequence x1:n.

Each xi ∈ x1:n represents the state of the robot at time i · τ .

The output of ρ is the probability that the state sequence x1:n
is observed after executing u1:n beginning from x0.

We assume that the motion of the robot obeys the Markov

property, that is, the probability of reaching a state xi
depends only on the previous state xi−1 and the constant con-

trol executed beginning at that previous state ui. This induces

a local state transition likelihood function ρi(xi−1, ui, xi) for

every i ∈ 1...n. We can thus model ρ as

ρ(x0, u1:n, x1:n) =

n∏

i=1

ρi(xi−1, ui, xi) (1)

Equation 1 represents the probability that x1:n is observed

after executing u1:n from x0. It is also useful to consider

what the maximum likelihood state sequence x̂1:n is after

executing u1:n from x0.

x̂1:n = argmax
x1:n

ρ(x0, u1:n, x1:n) (2)

= argmax
x1:n

n∏

i=1

ρi(xi−1, ui, xi) (3)

Breaking down each generative probability ρi into discrimi-

native probabilities,

ρi(xi−1, ui, xi) = p(xi|ui, xi−1)p(xi−1|ui)p(ui) (4)

= p(xi|ui, xi−1)p(xi−1)p(ui) (5)

where 5 comes from the fact that the previous state xi−1 is

independent from the next control. The p(xi−1) and p(ui)
terms can be dropped in equation 5 because when substituted

into equation 3 they will have no effect on the arg max.

What remains is p(xi|ui, xi−1) which we assume follows

a normal distribution: p(xi|ui, xi−1) ∼ N (x̄i, σxi
). We

represent the maximum likelihood estimate of p(xi|ui, xi−1)
as the forward kinodynamic function π(ui, xi−1) = x̄i. With

this definition of π, equation 3 can be rewritten as

x̂1:n = (π(u1, x0), ..., π(un, x̂n−1)) (6)

With these preliminaries we will now show that various

robot control problems can be expressed as nonlinear least

squares optimizations that use the forward kinodynamic

function π.

B. Objective 1: Path Following

The problem we consider here is that of following a

predefined path as closely as possible. This problem becomes

noteworthy at high speeds where accurate control of the robot

becomes increasingly more difficult.

We are given x∗1:n which describes a path to follow.

Following this path as closely as possible amounts to solving

u∗1:n = argmax
u1:n

ρ(x0, u1:n, x
∗

1:n) (7)

From equation 6, this is equivalent to solving

u∗1:n = argmin
u1:n

||x∗1:n − x̂1:n||
2
2 (8)

This is a nonlinear least squares formulation where each x̂i ∈
x̂1:n is determined from the forward kinodynamic function

π.

C. Objective 2: Optimal Connectivity

Another variant of the robot control problem that we

consider is traversing from a start state xi to a goal state

xf in as little time as possible. Problems of this type appear



frequently in optimal sampling-based motion planning where

algorithms like RRT* [38] and BIT* [39] require a steering

function that can time-optimally connect arbitrary states.

Consider the maximum likelihood state sequence x̂1:n
from earlier. If we wanted the final state of the robot to be

as close as possible to the goal state xf , we would optimize

u∗1:n = argmin
u1:n

||xf − x̂n||
2
2 (9)

This formulation however keeps the time that the goal state

xf is reached fixed. Specifically, the state x̂n is reached after

time n ·τ . To also minimize the time taken to reach the goal,

n is introduced as an optimization parameter. This results in

the objective function

u∗1:n, n
∗ = argmin

u1:n,n
||xf − x̂n||

2
2 + (α(n · τ))2 (10)

where α is a scaling parameter that trades off time to reach

the goal and the distance to the goal. Like the path following

formulation, this formulation is a nonlinear least squares

optimization where x̂n is determined from the forward

kinodynamic function π.

III. FORWARD KINODYNAMIC MODEL LEARNING

In this section we present how the forward kinodynamic

model π is learned. Since π is an integral component to the

nonlinear least squares optimizations introduced earlier, it is

key that π models the true forward kinodynamics effectively.

We learn π for a scale one-tenth autonomous robot car.

A. Dataset Generation

The FKD model π is trained in a supervised manner, and

thus needs a dataset to learn from. We obtain this dataset

by teleoperating the robot at various speeds and recording at

every timestep the state estimates of the robot and the joy-

sticked control commands. This results in a dataset D of tra-

jectories T1, ..., Tm where each trajectory Ti ∈ D is a tuple

of the form (vx(t), vy(t), ω(t), x(t), y(t), θ(t), δ(t), ψ(t)).
Here, vx(t) is the velocity in the x-direction, vy(t) is the

velocity in the y-direction, ω(t) is the angular velocity, x(t)
is the x-position, y(t) is the y-position, θ(t) is the orientation,

δ(t) is the commanded forward velocity, and ψ(t) is the

commanded angular velocity. All of these functions are time-

dependent and are defined in the domain [0, t
(i)
f ] where t

(i)
f

is the termination time for trajectory Ti.

B. Learning Formulation

The formulation presented earlier for π maps an initial

state of the robot and a constant control to the most likely

next state of the robot. Learning this exact formulation, while

in theory would work fine, in practice does not yield good

performing FKD models. This is because the model is tasked

with predicting the state after τ units of time, which in most

cases is very close to the current state since τ is selected to

be small. This means the model can get away with simply

predicting the current state without incurring much loss. In

order to ensure the model’s predictions are of high quality,

the model needs to learn to model the state of the robot after

a time period much greater than τ .

We achieve this longer prediction horizon by training π in

a recurrent fashion. Simply increasing τ would not suffice

since that would forego the fine-grained prediction capa-

bilities of the model. The basic structure of the recurrence

formulation is as follows. The model predicts the next state

xi = π(ui, xi−1). For timestep i+ 1, instead of being given

access to the ground truth value of xi, the model uses its

previous prediction as the starting state: xi+1 = π(ui+1, xi).
This process continues for the number of timesteps in the

prediction horizon.

This simple recurrent approach has a few limitations

however. The base timestep duration τ is selected to be small

so as to capture minute changes in the state of the robot. In

our experiments we set τ to 0.05 seconds. For the model to

predict the state of the robot after time tpred,
tpred
τ

forward

passes through the model are needed. In our experiments, we

set tpred to 3.0 seconds, requiring 60 forward passes through

the model. Since π is to be used in a real-time optimization

framework, the number of forward passes through π need to

be limited to maintain computational efficiency. We achieve

this by introducing a model prediction time tmodel. The FKD

model π, in one forward pass, outputs the next tmodel

τ
states

given the next tmodel

τ
controls. It also takes in as input the

previous tmodel

τ
states, enabling recurrence. In our experi-

ments tmodel was set to 0.5 seconds. This approach enables

both computational efficiency and fine-grained prediction.

Having motivated the model formulation, we now present

the learning objective. For each trajectory Ti in our dataset

D, we evenly sample k starting times (t1, ..., tk) from the

range [tmodel, t
(i)
f − tpred]. For each starting time ta ∈

(t1, ..., tk), we will use the model to predict the states at

times ta+bτ for b ∈ [0, 1, ...,
tpred
τ

]. For brevity, let Sta be the

state variables vx(t), vy(t), ω(t), x(t), y(t), and θ(t) sampled

evenly with spacing τ from the time period [ta, ta+ tmodel].
Additionally let Mta be the control variables δ(t) and ψ(t)
sampled in the same manner. The model π takes in as input

Mta and Sta−tmodel
and produces as output S̃ta . S̃ta differs

from Sta in that the former is the model’s prediction whereas

the latter is the ground truth. Taking everything into account,

we obtain the following learning objective

argmin
Θ

∑

Ti∈D

∑

ta∈(t1,...,tk)

tpred

tmodel
−1∑

i=0

||π(S̃ta+tmodel·(i−1),

Mta+i·tmodel
)− Sta+i·tmodel

||22
(11)

where Θ is the parameter set of π and S̃ta−tmodel
=

Sta−tmodel
for the case i = 0.

IV. OPTIMIZATION SYSTEM ARCHITECTURE

Here we describe the system architecture of the proposed

approach. We discuss how to integrate the optimization

procedure and calls to the FKD model in a manner that

enables real-time control on real robot hardware. Figure 1

shows a block diagram of the system components. There are
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