


made in the E Step also introduce Monte Carlo errors into

the optimization objective. To mitigate these issues, we apply

stochastic gradient ascent and only take a single gradient step

in each M Step. We also apply a momentum-based optimizer

like ADAM [9] to aggregate the gradient across multiple M

Steps in order to dampen the effect of the Monte Carlo errors.

We evaluate our proposed algorithm on both simulated

and real-world datasets. We compare STEADY with several

baseline approaches, including a recently developed learning

technique based on stochastic variational inference and a

hybrid approach that first performs state estimation and

then applies supervised learning. Our main results show that

STEADY consistently outperforms all other baselines and

achieves performance that is similar to directly learning from

the ground truth trajectories.

To summarize, we make the following contributions:

• We introduce simultaneous state estimation and dynam-

ics learning as a new way to learn stochastic kinody-

namic models for robotics applications and formulate

the corresponding mathematical objective.

• We present STEADY, an expectation-maximization-

style algorithm for solving the above problem by com-

bining particle filtering and stochastic gradient ascent.

• We provide a working, reusable implementation of

STEADY and experimentally demonstrate its superior

effectiveness over other baseline approaches.

II. PROBLEM FORMULATION

Given a system with state x and control inputs u, we are

interested in identifying the discrete-time forward kinody-

namic function f along with the zero-mean error distribution

Qǫ such that the state dynamics is given by

xt+1 = f(xt, ut) + ǫt, ǫt ∼ Qǫ(ǫ|xt) . (1)

Modeling 〈f,Qǫ〉 is a challenging problem: while physical

analysis can be used for simple kinematic systems such

as skid-steer robots [10], the physics of vehicle to ground

surface interactions (e.g., for high-speed off-road driving)

is poorly understood and must be learned directly from

empirically observed data. Given a dataset 〈x1:T , u1:T−1〉
of a sequence of controls u1:T−1 and the corresponding

trajectory x1:T , 〈f,Qǫ〉 can be learned via supervised learn-

ing [3]. The trajectories in such supervised learning settings

are either gathered using motion capture or using simultane-

ous localization and mapping (SLAM). However, collecting

accurate trajectories x1:T in challenging settings is infeasible

when motion capture is unavailable or when observations are

sparse or noisy such that SLAM-estimated trajectories are of

insufficient accuracy for learning 〈f,Qǫ〉.

Motivated by this problem, this work focuses on the

more realistic setting where we cannot directly observe the

states and have to instead rely on a noisy and indirect

observation sequence y1:T = (y1, . . . , yT ), which we assume

are generated via some known observation model

yt ∼ Qy(y| xt) , (2)

where each observation yt carries only partial information

about xt and can even be missing for certain time steps. As a

result, each observation yt alone is generally not sufficient for

uniquely determining the state xt, and there will, in fact, be

an infinite continuum of trajectories that are probabilistically

compatible with the observation sequence y1:T .

A common method for learning the dynamics under such

noisy observations is to formulate it as a maximum a

posteriori (MAP) estimation problem, where the goal is to

simultaneously find a single trajectory x1:T and a dynamical

model 〈f,Qǫ〉 such that they maximize the posterior density

P (x1:T |y1:T , u1:T−1) ∝ P (x1:T , y1:T |u1:T−1)

= Qx1
(x1)

T−1∏

t=1

Qǫ(xt+1 − f(xt, ut) |xt)

︸ ︷︷ ︸

P (x1:T |u1:T−1)

T∏

t=1

Qy(yt|xt)

︸ ︷︷ ︸

P (y1:T |x1:T )

(3)

where Qx1
is the distribution of the initial state. However,

this is an ill-formed objective for our setting since we

are also learning the error distribution Qǫ.
1 To avoid this

problem, we instead consider all possible trajectories that

are consistent with the observations (rather than a single

trajectory) and find a dynamical model that maximizes the

following marginalized observation likelihood [11].

P (y1:T |u1:T−1) =

∫

P (x1:T , y1:T |u1:T−1) dx1:T . (4)

This is a difficult optimization objective as it requires in-

tegrating the joint density over the trajectory space and

has no analytical form for nonlinear dynamical systems.

Prior works based on stochastic variational inference address

this challenge by optimizing a tractable lower bound of

(4) [12], [13]. Such a lower bound is obtained by simulta-

neously training an inference network in additional to the

dynamical model. The inference network is trained to fit

the posterior trajectory distribution P (x1:T |u1:T−1, y1:T ) and

can thus predict the state trajectories from just observations

and controls. However, as we will show in our evaluation,

when the observation model Qy is complex, predicting the

posterior distribution becomes a highly challenging task,

and the inference network often fails to learn an adequate

mapping, causing an inaccurate kinodynamic model to be

learned. Thus, we explore an alternative approach that does

not require training an inference network.

III. THE STEADY ALGORITHM

We now present our approach, STEADY, for iteratively

maximizing the optimization objective (4).

A. Algorithm Overview

STEADY is an instance of the generalized Monte Carlo

expectation-maximization algorithm [14], where the E Step

1A simple way to see this is to consider the trivial solution xt ≡ 0 and
the corresponding (completely static) dynamics f . By reducing the variance
of Qǫ toward zero, this solution allows us to drive the Qǫ term in (3) to
an arbitrarily large value.



Algorithm 1 The STEADY Algorithm

Input: control sequence u1:T−1, observation sequence y1:T ,

observation model Qy , and initial state distribution Qx1
.

Output: θ, the weights of the kinodynamic model 〈f,Qǫ〉.

1: Randomly initialize θ such that f ≈ identity and Qǫ(·)

is sufficiently large.

2: while 〈f,Qǫ〉 has not overfitted do

3: Run particle filtering forward in time using Qy and

Qx1
to generate N particles at each time step.

4: Trace back M trajectories {xi
1:T }

M
i=1 s.t. (5) holds.

5: Estimate Φ̃(θ) using the trajectories according to (6).

6: Take a gradient step w.r.t. θ to maximize Φ̃(θ).

7: end while

relies on a Monte-Carlo objective and the M Step makes

incremental improvements to this objective. We summarize

STEADY in Algorithm 1 and elaborate on its key details in

later subsections.

At a high level, STEADY takes as input the control and

observation sequence and outputs the learned kinodynamic

model, 〈f,Qǫ〉, which is represented as a neural network

with parameters θ. The parameters θ are initialized such

that f is approximately the identity function and Qǫ has

large uncertainty (line 1 in Algorithm 1). This initialization

strategy ensures that the initial dynamics is stable and

that it can be corrected from observation data. Then, the

algorithm enters a loop (lines 2–6) in which the network

parameters θ are iteratively updated to be more consistent

with the observation. Specifically, lines 3-4 constitute the E

Step of the algorithm and estimate a posterior probability

density over trajectories through particle filtering (explained

in more detail later). Then, the M Step in lines 5-6 uses

the trajectories estimated in the E Step to update the neural

network parameters θ by taking a gradient step.

In more detail, the E Step of STEADY samples M

trajectories xi
1:T from the posterior:

xi
1:T ∼ P (x1:T | u1:T−1, y1:T ), i = 1 . . .M . (5)

Note that samples xi
1:T are complete state trajectories. While

we could, in principle, use factor graphs to approximate (5)

(by computing the full covariance around the MAP estimate

of x1:T ), doing so would be both prohibitively expensive [15]

and also inaccurate when the posterior is multi-modal. In-

stead, we choose to estimate the posterior using particle

filtering2, as described in more detail in Section III-C.2.

Given the trajectories obtained from the E Step, the M Step

of STEADY (lines 5-6 in Algorithm 1) applies stochastic

gradient ascent to adjust the model parameters θ in order to

2Compared to more recently developed nonlinear smoothing techniques
such as Forward Filtering/Back Simulation [16] or Particle Gibbs with

Ancestor Sampling [17], we use particle filtering since it has a better
asymptotic time complexity and can be implemented efficiently when using
the neural kinodynamic model.

improve the following objective:

Φ̃(θ) =
1

M

M∑

i=1

logPθ(x
i
1:T , y1:T |u1:T−1) , (6)

where we write Pθ to emphasize that the model can affect

Pθ(x
i
1:T , y1:T |u1:T−1) via Eq. (3). To reduce the impact of

sampling errors in the E Step, we do not run this optimization

to convergence but instead only take a single gradient step.

This design choice also reduces the computational overhead

of training the neural network in each M Step.

B. Improvement Guarantees

We now briefly explain why our proposed algorithm

maximizes the objective (4), borrowing standard assump-

tions/results from the Monte Carlo expectation-maximization

literature (e.g., see [14]).

Denote the value of θ in the E Step as θE . Since xi
1:T

are sampled from PθE (x
i
1:T |y1:T ), we can view the M Step

objective Φ̃(θ) in (6) as the Monte Carlo estimate of another

objective Φ(θ, θE), defined as

Φ(θ, θE) =

∫

logPθ(x1:T , y1:T )PθE (x1:T |y1:T )dx1:T

= E
xi

1:T

[
logPθ(x

i
1:T , y1:T |u1:T−1)

]
≈ Φ̃(θ) (7)

Taking the difference between Φ(θ, θE) and Φ(θE , θE) ,

we then have

Φ(θ, θE)− Φ(θE , θE)

=

∫

log
Pθ(x1:T |y1:T )Pθ(y1:T )

PθE (x1:T |y1:T )PθE (y1:T )
PθE (x1:T |y1:T )dx

=

∫

log
Pθ(x1:T |y1:T )

PθE (x1:T |y1:T )
PθE (x1:T |y1:T )dx

︸ ︷︷ ︸

(negative KL divergence)

+ logPθ(y1:T )− logPθE (y1:T )

≤ logPθ(y1:T )− logPθE (y1:T ) . (8)

This shows that any improvement on Φ(θ, θE) will be a

lower bound of the improvement on logPθ(y1:T ). Thus,

when our Monte Carlo estimate Φ̃(θ) closely approximates

Φ(θ, θE)
3, optimizing Φ̃(θ) also optimizes Pθ(y1:T ), which

is the objective stated in (4).

C. Implementation

In this section, we describe the key design choices behind

our implementation of the STEADY algorithm.

1) Kinodynamic Model Architecture: In our implementa-

tion, we represent the kinodynamic model 〈f,Qǫ〉 using the

neural architecture shown in Figure 2. This neural network

takes as input the current state and control in the local

reference frame and predicts the state derivative ẋ (in the

same reference frame) using a diagonal normal distribution

3To ensure that the Monte Carlo estimate is a good approximation of
Φ(θ, θE), recall that STEADY takes a single optimization step using a
momentum-based optimizer, which ensures that most Monte Carlo errors
can cancel out across M Steps.





does account for air friction; (2) it compensates for model

inaccuracy by using a disturbance variance that is twice the

ground truth. For the Truck dataset, the hand-written model

is the classical kinematic model that assumes bounded for-

ward acceleration and no sliding along the lateral direction.

• FitHand: This baseline first performs state estimation

using particle filtering with the hand-written model. It then

applies supervised learning to fit an updated model to the

estimated trajectories. This method can be viewed as a

simplified version of STEADY that performs both state

estimation and learning but without embedding them in

the EM loop.

• FitTV: This baseline performs supervised learning without

relying on any motion model. In particular, it first estimates

the most likely pose at each time step using only the

observation model and then applies total variation regu-

larization [21], [22] to estimate the (de-noised) velocities.

This baseline is relevant for exploring the impact of an

explicit motion model on performing state estimation.

• SVI: This baseline learns a kinodynamic model using

stochastic variational inference, as described in [12]. To

adapt this approach to our setting, we replace the GRU-

like dynamics network proposed in [12] with the neural

architecture described in Section III-C.1.

• FitTruth: As an upper bound on the learning performance,

we also report the results of applying supervised learning

directly on ground truth states.

3) Hyperparameters: In the following experiments, we

use at most 40,000 EM steps, leveraging the validation set to

early-stop the training (according to the estimated marginal

observation density P (y1:T )). In our E Step implementation,

we use N = 20, 000 particles and sample M = 10 trajecto-

ries. When the training data contains multiple trajectories, we

only use the subset from a single trajectory in each E Step.

In our M Step implementation, we use the ADAM optimizer

with a fixed learning rate of 10−4 and all other parameters

set to their default values. We also normalize the loss by

dividing it by the length of the trajectory.

B. Main Results

In this section, we report the results of our empirical com-

parison between STEADY and the five baselines described

earlier. Specifically, we evaluate the (learned) model’s per-

formance in terms of state estimation (Table I) and forward

prediction error (Table II). Both metrics measure the root-

mean-square error (RMSE) between the poses obtained by

the model and the ground truth.6 We run each baseline 3

times and report the best performance on the test set.

As shown in Table I and II, STEADY consistently outper-

forms all other baselines (excluding FitTruth) on all datasets

6We compute the state estimation error using the posterior trajectories
obtained from particle filtering and reduce the observation frequency from
10Hz (at training time) to 1Hz (at test time) to make the effect of the
kinodynamic model more salient. We compute the forward prediction error
by taking each state from the ground truth trajectories as the initial state,
running the learned model forward for 10 time steps (using the recorded
controls only), and measuring the RMSE between the predicted final pose
and the ground truth.

TABLE I

STATE ESTIMATION PERFORMANCE COMPARISONS

Location Error (m) Angular Error (rad)
Hov Hov+ Truck Hov Hov+ Truck

Hand 1.168 1.145 0.554 0.574 0.532 0.103
FitHand 0.505 0.491 0.446 0.040 0.037 0.087
FitTV 1.381 1.355 0.504 0.144 0.092 0.108
SVI 0.637 0.366 0.432 0.050 0.038 0.090
STEADY 0.375 0.346 0.258 0.033 0.031 0.063

FitTruth 0.368 0.314 0.238 0.035 0.030 0.063

TABLE II

FORWARD PREDICTION PERFORMANCE COMPARISONS

Location Error (m) Angular Error (rad)
Hov Hov+ Truck Hov Hov+ Truck

Hand 0.058 0.059 0.472 0.025 0.024 0.151
FitHand 0.050 0.051 0.373 0.033 0.030 0.107
FitTV 0.131 0.147 0.461 0.089 0.087 0.213
SVI 0.088 0.046 0.229 0.036 0.025 0.080
STEADY 0.042 0.038 0.200 0.013 0.013 0.079

FitTruth 0.031 0.027 0.174 0.017 0.012 0.085

under both metrics. Furthermore, STEADY in many cases

achieves a performance level that is very similar to FitTruth.

Comparing the performance of Hand and FitHand, we see

that learning from the data generated by a hand-written

model can lead to performance improvement; however, the

performance of FitHand is still considerably worse than that

of STEADY. Comparing FitTV and FitHand, we observe

that FitHand performs better than FitTV, which suggests that

learning with an inaccurate motion model is still better than

without one. Finally, the SVI approach is more data-hungry

and only gets close to STEADY’s performance on the data-

rich Hov+ dataset.

To qualitatively validate our results, we also visualize the

posterior velocities in Figure 3 for FitHand and STEADY.

As shown in this figure, STEADY is able to closely track the

overall trends in the lateral motion (show in orange), whereas

FitHand’s lateral prediction is much more uncertain and

resembles white noise. This is consistent with our intuition

that using a flawed hand-written model (which assumes no

lateral sliding) can introduce biases to the training data and

subsequently lead to worse performance.

C. Impact of Observation Noise

In this section, we perform an evaluation to assess the

impact of observation noise on both STEADY and the base-

lines. Additionally, we also consider an ablation of STEADY

called STEADY- that does not utilize the E Step flattening

modification proposed in Section III-C.3. To perform this

evaluation, we vary the magnitude of the angular noise in

the Truck dataset between 1.25 and 20 degrees. We run each

approach 3 times (except for SVI, which we only run once

due to its much longer training time) and report the forward

prediction error in Figure 4. Overall, these results follow the





opaque, high-dimensional latent spaces, ours are defined in

terms of low-dimensional, physically grounded states. An

alternative method to handle partial state observability is by

applying the Koopman Operator Theory, as done in [24] to

learn deterministic dynamical models of soft-body robots.

However, this approach is only applicable when there is

little noise in the observations. Finally, [25] learns stochastic

dynamical models for hierarchical planning of manipulation

tasks, and, similar to [23], it also performs learning in a

high-dimensional latent state space.

Learning Stochastic Dynamical Systems. Outside the

field of robotics, there is a rich literature on data-driven

identification of stochastic dynamical systems. Prior ap-

proaches can be divided into two main categories: those

based on expectation-maximization (EM) v.s. those based

on stochastic variational inference (SVI). The EM category

includes the pioneer work of [26], which parameterizes the

dynamics as radial basis function approximators and uses

Extended Kalman Smoothing for the E Step. More recent

work includes [27], which implements the E Step using

particle smoothing, and [11], which focuses on learning

partial differential equations to model the geophysical flow

dynamics. As for the SVI category, one representative ap-

proach is the one proposed in [12], upon which our SVI

baseline is based. More recent work [13] also applies SVI

to learning chaotic dynamical systems in more data-rich

settings.

VI. CONCLUSION AND FUTURE WORK

We introduced the simultaneous state estimation and dy-

namics learning problem for learning kinodynamic models

from noisy and indirect data. Our key idea is to iteratively

improve both the state estimation and the learned kinody-

namic model using the expectation-maximization framework.

Our approach is simple to implement, works for real-world

robots, and outperforms existing approaches.

In the future, we plan to extend our approach to more

challenging settings such as simultaneous SLAM and dy-

namics learning. We also plan to explore ways to learn

interpretable dynamical models by combining ideas from

program synthesis and symbolic regression.
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