STEADY: Simultaneous State Estimation and Dynamics Learning from
Indirect Observations

Jiayi Wei', Jarrett Holtz', Isil Dillig!, and Joydeep Biswas'

Abstract— Accurate kinodynamic models play a crucial role
in many robotics applications such as off-road navigation and
high-speed driving. Many state-of-the-art approaches for learn-
ing stochastic kinodynamic models, however, require precise
measurements of robot states as labeled input/output examples,
which can be hard to obtain in outdoor settings due to limited
sensor capabilities and the absence of ground truth. In this
work, we propose a new technique for learning neural stochastic
kinodynamic models from noisy and indirect observations by
performing simultaneous state estimation and dynamics learning.
The proposed technique iteratively improves the kinodynamic
model in an expectation-maximization loop, where the E Step
samples posterior state trajectories using particle filtering, and
the M Step updates the dynamics to be more consistent with the
sampled trajectories via stochastic gradient ascent. We evaluate
our approach on both simulation and real-world benchmarks
and compare it with several baseline techniques. Qur approach
not only achieves significantly higher accuracy but is also
more robust to observation noise, thereby showing promise for
boosting the performance of many other robotics applications.

1. INTRODUCTION

Stochastic kinodynamic models are widely used in
robotics applications such as state estimation, motion plan-
ning, and model-predictive control [1]. Such models are often
written by hand and rely on large prediction uncertainty
to compensate for model inaccuracy. However, in many
applications such as off-road navigation and high-speed
robotics, more accurate models can lead to better downstream
performance. For example, a learned neural kinodynamic
model can better capture nonlinear effects like friction and
saturation compared to a simple hand-written model. Prior
work has proposed using supervised learning to learn ODEs
for system dynamics [2], inertial and visual-inertial kin-
odynamic models [3], [4], [5], and kinodynamic steering
function [6]. However, such supervised learning approaches
require accurate measurements of robot states as labeled
input/output data, which may not be available in many
robotics applications due to limited sensing capabilities, such
as when trying to learn the kinodynamic response of an off-
road vehicle navigating at high speed in a dense forest.

In this work, we propose a new technique for learning
stochastic kinodynamic models in settings where accurate
state measurements are unavailable and we only have access
to noisy, indirect observations. At first glance, this appears to
be a chicken-and-egg problem because learning the dynamics
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requires estimating the state trajectories from observations,
whereas state estimation in turn requires access to an accurate
kinodynamic model. We solve this apparent predicament by
simultaneously estimating the robot states while also learning
the dynamics. Furthermore, our approach is data efficient and
can be applied in settings where it is only feasible to collect
training data from a few minutes of observation.

At the heart of our approach lies an expectation-
maximization (EM) [7] loop that iteratively improves the
neural kinodynamic model as well as our estimation of the
robot states. Because EM methods work well for optimiza-
tion problems with unobserved latent variables, this approach
is a good fit for our setting wherein we cannot directly
observe the robot states due to limited sensing capabilities.
Given a fixed set of observations, our algorithm, simultane-
ous STate Estimation And DYnamics learning (STEADY),
alternates between an E Step and an M Step, as illustrated
in Figure 1. At a high-level, the E Step estimates a posterior
probability density over trajectories by combining both the
current kinodynamic model and the imperfect sensor data.
Then, the M Step updates the kinodynamic model using
stochastic gradient ascent so that it becomes more consistent
with the trajectories estimated using the E Step.

Performing the E Step in our setting is challenging because
the posterior is defined on a high-dimensional time-series
distribution with no analytical solution, making the inference
problem computationally intractable. To make matters worse,
the E Step needs to be very fast because converging to a
good model often requires thousands of EM iterations. To
address these challenges, STEADY uses a particle filtering
approach [8] that approximates the trajectory distribution
in linear time and efficiently handles the underlying neural
kinodynamic model representation.

Performing the M Step also requires special care because
it can be very expensive to fully optimize the neural kin-
odynamic model in every M Step, and the approximations



made in the E Step also introduce Monte Carlo errors into
the optimization objective. To mitigate these issues, we apply
stochastic gradient ascent and only take a single gradient step
in each M Step. We also apply a momentum-based optimizer
like ADAM [9] to aggregate the gradient across multiple M
Steps in order to dampen the effect of the Monte Carlo errors.

We evaluate our proposed algorithm on both simulated
and real-world datasets. We compare STEADY with several
baseline approaches, including a recently developed learning
technique based on stochastic variational inference and a
hybrid approach that first performs state estimation and
then applies supervised learning. Our main results show that
STEADY consistently outperforms all other baselines and
achieves performance that is similar to directly learning from
the ground truth trajectories.

To summarize, we make the following contributions:

o We introduce simultaneous state estimation and dynam-
ics learning as a new way to learn stochastic kinody-
namic models for robotics applications and formulate
the corresponding mathematical objective.

e We present STEADY, an expectation-maximization-
style algorithm for solving the above problem by com-
bining particle filtering and stochastic gradient ascent.

e We provide a working, reusable implementation of
STEADY and experimentally demonstrate its superior
effectiveness over other baseline approaches.

II. PROBLEM FORMULATION

Given a system with state x and control inputs u, we are
interested in identifying the discrete-time forward kinody-
namic function f along with the zero-mean error distribution
Q. such that the state dynamics is given by

€t ~ Qe(dxt) . (D

Modeling (f,Q.) is a challenging problem: while physical
analysis can be used for simple kinematic systems such
as skid-steer robots [10], the physics of vehicle to ground
surface interactions (e.g., for high-speed off-road driving)
is poorly understood and must be learned directly from
empirically observed data. Given a dataset (x1.p,u1.7-1)
of a sequence of controls wy.7—1 and the corresponding
trajectory 1.7, (f, Q) can be learned via supervised learn-
ing [3]. The trajectories in such supervised learning settings
are either gathered using motion capture or using simultane-
ous localization and mapping (SLAM). However, collecting
accurate trajectories x1.7 in challenging settings is infeasible
when motion capture is unavailable or when observations are
sparse or noisy such that SLAM-estimated trajectories are of
insufficient accuracy for learning (f, Q).

Motivated by this problem, this work focuses on the
more realistic setting where we cannot directly observe the
states and have to instead rely on a noisy and indirect
observation sequence y1.7 = (y1, - . ., yr), which we assume
are generated via some known observation model

ye ~ Qy(yl o) , (2)

i1 = f@e, ue) + &,

where each observation y, carries only partial information
about x; and can even be missing for certain time steps. As a
result, each observation y; alone is generally not sufficient for
uniquely determining the state x;, and there will, in fact, be
an infinite continuum of trajectories that are probabilistically
compatible with the observation sequence yj.7.

A common method for learning the dynamics under such
noisy observations is to formulate it as a maximum a
posteriori (MAP) estimation problem, where the goal is to
simultaneously find a single trajectory x1.7 and a dynamical
model (f, Q.) such that they maximize the posterior density

P(zy.7|y1r, u1.r—1) < P(z1.7, Y1.70|u1:7-1)

T-1 T
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P(yi.r|z1:7)
3)
where ()., is the distribution of the initial state. However,
this is an ill-formed objective for our setting since we
are also learning the error distribution Q..! To avoid this
problem, we instead consider all possible trajectories that
are consistent with the observations (rather than a single
trajectory) and find a dynamical model that maximizes the
following marginalized observation likelihood [11].

P(zi.r|uir—1)

P(yr.r|urr—1) = /P($1:T,y1:T|u1:T—1)d$1:T Y

This is a difficult optimization objective as it requires in-
tegrating the joint density over the trajectory space and
has no analytical form for nonlinear dynamical systems.
Prior works based on stochastic variational inference address
this challenge by optimizing a tractable lower bound of
(4) [12], [13]. Such a lower bound is obtained by simulta-
neously training an inference network in additional to the
dynamical model. The inference network is trained to fit
the posterior trajectory distribution P(x1.7|u1.7—1,y1.7) and
can thus predict the state trajectories from just observations
and controls. However, as we will show in our evaluation,
when the observation model @, is complex, predicting the
posterior distribution becomes a highly challenging task,
and the inference network often fails to learn an adequate
mapping, causing an inaccurate kinodynamic model to be
learned. Thus, we explore an alternative approach that does
not require training an inference network.

III. THE STEADY ALGORITHM
We now present our approach, STEADY, for iteratively
maximizing the optimization objective (4).
A. Algorithm Overview

STEADY is an instance of the generalized Monte Carlo
expectation-maximization algorithm [14], where the E Step

A simple way to see this is to consider the trivial solution z; = 0 and
the corresponding (completely static) dynamics f. By reducing the variance
of Q¢ toward zero, this solution allows us to drive the Q. term in (3) to
an arbitrarily large value.



Algorithm 1 The STEADY Algorithm

Input: control sequence w;.7—1, observation sequence yi.r,
observation model @), and initial state distribution Q, .
Output: 0, the weights of the kinodynamic model (f, Q.).

1: Randomly initialize § such that f ~ identity and Q.(-)

is sufficiently large.

2: while (f, Q.) has not overfitted do

3: Run particle filtering forward in time using @, and
(., to generate N particles at each time step.

4 Trace back M trajectories {z%.7}M, s.t. (5) holds.

5: Estimate ®(6) using the trajectories according to (6).

6 Take a gradient step w.r.t. § to maximize ® ().

7: end while

relies on a Monte-Carlo objective and the M Step makes
incremental improvements to this objective. We summarize
STEADY in Algorithm 1 and elaborate on its key details in
later subsections.

At a high level, STEADY takes as input the control and
observation sequence and outputs the learned kinodynamic
model, (f,Q.), which is represented as a neural network
with parameters 6. The parameters 6 are initialized such
that f is approximately the identity function and (). has
large uncertainty (line 1 in Algorithm 1). This initialization
strategy ensures that the initial dynamics is stable and
that it can be corrected from observation data. Then, the
algorithm enters a loop (lines 2-6) in which the network
parameters 6 are iteratively updated to be more consistent
with the observation. Specifically, lines 3-4 constitute the E
Step of the algorithm and estimate a posterior probability
density over trajectories through particle filtering (explained
in more detail later). Then, the M Step in lines 5-6 uses
the trajectories estimated in the E Step to update the neural
network parameters 6 by taking a gradient step.

In more detail, the E Step of STEADY samples M
trajectories xi., from the posterior:

aip ~ Pleyrr| uir—1,yvr), i=1...M . (5

Note that samples x% 5. are complete state trajectories. While
we could, in principle, use factor graphs to approximate (5)
(by computing the full covariance around the MAP estimate
of x1.7), doing so would be both prohibitively expensive [15]
and also inaccurate when the posterior is multi-modal. In-
stead, we choose to estimate the posterior using particle
ﬁlteringz, as described in more detail in Section III-C.2.
Given the trajectories obtained from the E Step, the M Step
of STEADY (lines 5-6 in Algorithm 1) applies stochastic
gradient ascent to adjust the model parameters # in order to

2Compared to more recently developed nonlinear smoothing techniques
such as Forward Filtering/Back Simulation [16] or Particle Gibbs with
Ancestor Sampling [17], we use particle filtering since it has a better
asymptotic time complexity and can be implemented efficiently when using
the neural kinodynamic model.

improve the following objective:

M

®(0) = % Zlog Po(xy.7, yr.7|urr—1) (6)
i=1

where we write Py to emphasize that the model can affect

Py(z% 7, yr.1lur.r—1) via Eq. (3). To reduce the impact of

sampling errors in the E Step, we do not run this optimization

to convergence but instead only take a single gradient step.

This design choice also reduces the computational overhead

of training the neural network in each M Step.

B. Improvement Guarantees

We now briefly explain why our proposed algorithm
maximizes the objective (4), borrowing standard assump-
tions/results from the Monte Carlo expectation-maximization
literature (e.g., see [14]).

Denote the value of ¢ in the E Step as 0p. Since z¢ .,
are sampled from Py, (% 7 |y1.7), we can view the M Step
objective &)(9) in (6) as the Monte Carlo estimate of another
objective ®(0,0g), defined as

®(0,05) = /log Py(z1.7,y1:7) Po (1.7 |y1.7)dzr.p

= E [log Py(zi.p, yrrlurr—1)] = ®(0) (7)

o7
Taking the difference between ®(6,0g) and ®(0g,0F) ,
we then have

®(0,0r) — ®(0,0r)
- /1 Pa(x1:T|y1:T)P9(yl:T)
= og
Py, (x1.7)y1:7) Por, (v1:m

P, . .
/10 0(1‘1.T|y1.T)

Py (1. )dx
Py (z1.7|y1:7) o5 (T1:7|Y1:7)

] Py, (z1.7|yr.7)de

(negative KL divergence)
+ log Py(yr.7) — log Py, (y1.7)
S IOg P9(y1:T) - log PGE (yl:T) . (8)

This shows that any improvement on ®(6,0g) will be a
lower bound of the improvement on log Py(y;.7). Thus,
when our Monte Carlo estimate <i>(9) closely approximates
®(0,05)*, optimizing ®(6) also optimizes Py (yy.7), which
is the objective stated in (4).

C. Implementation

In this section, we describe the key design choices behind
our implementation of the STEADY algorithm.

1) Kinodynamic Model Architecture: In our implementa-
tion, we represent the kinodynamic model (f, Q) using the
neural architecture shown in Figure 2. This neural network
takes as input the current state and control in the local
reference frame and predicts the state derivative & (in the
same reference frame) using a diagonal normal distribution

3To ensure that the Monte Carlo estimate is a good approximation of
®(0,0E), recall that STEADY takes a single optimization step using a
momentum-based optimizer, which ensures that most Monte Carlo errors
can cancel out across M Steps.
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Fig. 2. Architecture of the dynamics network. x and w« are the current state
and control, and p; and o are the mean and variance of the predicted state
derivatives. All inputs/outputs are defined in local reference frames.

with mean p; and variance o;. We compute the mean p;
using a fully connected network with 64 ReLU activation
units and one hidden layer. We also add a skip connection
to make it easier for the network to learn the linear part of
the dynamics [18]. We compute the diagonal elements of the
covariance matrix using a simple linear layer followed by the
softplus activation softplus(z) = log(1 + exp(x)) to ensure
that the outputs are always positive.

2) Sampling Posterior Trajectories with Particle Filtering:
To sample posterior trajectories using a particle filter, we
first run the particle filter forward in time to obtain a
fixed number of particles for each time step. This process
involves alternating between the prediction and resampling
step. In each prediction step, new particles for the next time
step are sampled from P(x;11|x, us) by forward-simulating
the dynamical model. In each resampling step, we use the
observation model P(y;11|x:11) to teplicate those particles
that are more consistent with the new observation y;, and
discard those that are less so. Once we have obtained the
particles at the last time step, we randomly pick one of them
and trace its ancestral lineage back to the first time step
to obtain a complete state trajectory.* When the number of
particles is sufficiently large, this approach gives unbiased
samples from the posterior distribution [8]. In each E Step,
we tun the particle filter once to sample N particles at each
time step and reuse the particles to sample M trajectories.
To support efficient computation with the neural network,
we store all particles using the structure-of-arrays pattern
and perform all operations in batch.

3) Accelerating Learning by Flattening the E Step poste-
rior: Since the kinodynamic model is very inaccurate in the
early stages of training, we found that directly using the E
Step posterior P(x1.7|u1.7—1,y1.7) can cause all sampled
trajectories to concentrate around a single incorrect trajec-
tory, slowing down the learning process or even trapping the
optimizer in local optima. To mitigate this problem, we take
inspiration from simulated annealing and modify the E Step

4 Although particle filtering is prone to the path degeneration issue (where
most trajectories share the same ancestor due to excessive resampling), this
issue tends to get better as the dynamical model becomes more consistent
with the observations as training progresses. Empirically, we only observe
severe path degeneration in early stages of training, at which time even a
very noisy gradient of ®(8) is sufficient to push the parameters toward the
right direction.

to instead sample with a modified observation model

)wobs

Ye ~ Qy(y| Tt

3

where the parameter we),s € [0, 1] controls the importance of
the observations. During the course of the training, we lin-
early increase w,ps from O to 1. As shown in our evaluation
in Section I'V-C, this modification consistently improves the
training outcome.

4) Code availability: Our implementation is written in
Julia [19] and is built on top of the Flux machine learning
library [20]. We publish our code on Github.

IV. EVALUATION

In this section, we first describe our experimental setup
and then present the results to answer: (1) Can STEADY
achieve better performance compared to relevant baselines?
(2) How do various factors and design choices affect the
performance of STEADY?

A. Experimental Setup

Before presenting our empirical results, we first discuss
the benchmarks and baselines used in the evaluation as well
as other relevant experimental details.

1) Benchmarks: We perform our evaluation on the follow-
ing datasets, which consist of both simulated and real-world
data:

« Hov is a dataset that we create by simulating a hovercraft
moving on a 2D plane with nonlinear air resistance. We
control the hovercraft by adjusting the thrust of its pro-
pellers and simulate 16, 32, and 32 trajectories for training,
validation, and testing, respectively. Each trajectory is 10
seconds long.

« Hov+ is a data-rich variant of Hov that contains 10 times
more training trajectories.

e Truck is a real-world dataset obtained by tele-operating
a scale 1/5, four-wheel drive, Ackermann steering vehicle
that we call the AlphaTruck. We divide the collected data
into 10-second trajectories and use about 2 minutes of data
each for training, validation, and testing.

For all three datasets, we represent the robot state using

6 variables (i.e, 3 variables for the 2D pose and the other

3 for the velocities). We use simulated observations to

control the effects of observation noise. We generate these

observations from the ground-truth states using a landmark-
based, bearing-only observation model. For each benchmark,
we randomly place 4 landmarks and measured their relative
angles w.r.t. the robot’s pose at every time step. We also add

a small amount of Gaussian noise (o = 5°) to the measured

angles to simulate sensor noise.

2) Baseline approaches: We compare STEADY with the
following baselines:

« Hand: This baseline involves hand-written kinodynamic
models customized for each of the three datasets. Specif-
ically, for the Hov datasets, the hand-written model is
the ground-truth dynamics with two modifications: (1) it

SRepository: https://github.com/MrVPlusOne/STEADY



does account for air friction; (2) it compensates for model
inaccuracy by using a disturbance variance that is twice the
ground truth. For the Truck dataset, the hand-written model
is the classical kinematic model that assumes bounded for-
ward acceleration and no sliding along the lateral direction.

o FitHand: This baseline first performs state estimation
using particle filtering with the hand-written model. It then
applies supervised learning to fit an updated model to the
estimated trajectories. This method can be viewed as a
simplified version of STEADY that performs both state
estimation and learning but without embedding them in
the EM loop.

o FitTV: This baseline performs supervised learning without
relying on any motion model. In particular, it first estimates
the most likely pose at each time step using only the
observation model and then applies total variation regu-
larization [21], [22] to estimate the (de-noised) velocities.
This baseline is relevant for exploring the impact of an
explicit motion model on performing state estimation.

e SVI: This baseline learns a kinodynamic model using
stochastic variational inference, as described in [12]. To
adapt this approach to our setting, we replace the GRU-
like dynamics network proposed in [12] with the neural
architecture described in Section III-C.1.

« FitTruth: As an upper bound on the learning performance,
we also report the results of applying supervised learning
directly on ground truth states.

3) Hyperparameters: In the following experiments, we
use at most 40,000 EM steps, leveraging the validation set to
early-stop the training (according to the estimated marginal
observation density P(y1.7)). In our E Step implementation,
we use N = 20,000 particles and sample M = 10 trajecto-
ries. When the training data contains multiple trajectories, we
only use the subset from a single trajectory in each E Step.
In our M Step implementation, we use the ADAM optimizer
with a fixed learning rate of 10~* and all other parameters
set to their default values. We also normalize the loss by
dividing it by the length of the trajectory.

B. Main Results

In this section, we report the results of our empirical com-
parison between STEADY and the five baselines described
earlier. Specifically, we evaluate the (learned) model’s per-
formance in terms of state estimation (Table I) and forward
prediction error (Table II). Both metrics measure the root-
mean-square error (RMSE) between the poses obtained by
the model and the ground truth.® We run each baseline 3
times and report the best performance on the test set.

As shown in Table I and II, STEADY consistently outper-
forms all other baselines (excluding FitTruth) on all datasets

5We compute the state estimation error using the posterior trajectories
obtained from particle filtering and reduce the observation frequency from
10Hz (at training time) to 1Hz (at test time) to make the effect of the
kinodynamic model more salient. We compute the forward prediction error
by taking each state from the ground truth trajectories as the initial state,
running the learned model forward for 10 time steps (using the recorded
controls only), and measuring the RMSE between the predicted final pose
and the ground truth.

TABLE I
STATE ESTIMATION PERFORMANCE COMPARISONS

Location Error (m) Angular Error (rad)
Hov  Hov+ Truck | Hov  Hov+ Truck
Hand 1.168 1.145 0.554 | 0.574 0.532 0.103
FitHand 0.505 0.491 0.446 | 0.040 0.037 0.087
FitTV 1.381 1.355 0.504 | 0.144 0.092 0.108
SVI 0.637 0366 0.432 | 0.050 0.038 0.090
STEADY | 0.375 0.346 0.258 | 0.033 0.031 0.063
FitTruth \ 0.368 0.314 0.238 \ 0.035 0.030 0.063
TABLE II

FORWARD PREDICTION PERFORMANCE COMPARISONS

Location Error (m) Angular Error (rad)

Hov  Hov+ Truck | Hovn  Hov+ Truck
Hand 0.058 0.059 0472 | 0.025 0.024 0.151
FitHand 0.050 0.051 0.373 | 0.033 0.030 0.107
FitTV 0.131 0.147 0.461 | 0.089 0.087 0.213
SVI 0.088 0.046 0.229 | 0.036 0.025 0.080
STEADY | 0.042 0.038 0.200 | 0.013 0.013 0.079
FitTruth \ 0.031 0.027 0.174 \ 0.017 0.012 0.085

under both metrics. Furthermore, STEADY in many cases
achieves a performance level that is very similar to FitTruth.
Comparing the performance of Hand and FitHand, we see
that learning from the data generated by a hand-written
model can lead to performance improvement; however, the
performance of FitHand is still considerably worse than that
of STEADY. Comparing FitTV and FitHand, we observe
that FitHand performs better than FitTV, which suggests that
learning with an inaccurate motion model is still better than
without one. Finally, the SVI approach is more data-hungry
and only gets close to STEADY’s performance on the data-
rich Hov+ dataset.

To qualitatively validate our results, we also visualize the
posterior velocities in Figure 3 for FitHand and STEADY.
As shown in this figure, STEADY is able to closely track the
overall trends in the lateral motion (show in orange), whereas
FitHand’s lateral prediction is much more uncertain and
resembles white noise. This is consistent with our intuition
that using a flawed hand-written model (which assumes no
lateral sliding) can introduce biases to the training data and
subsequently lead to worse performance.

C. Impact of Observation Noise

In this section, we perform an evaluation to assess the
impact of observation noise on both STEADY and the base-
lines. Additionally, we also consider an ablation of STEADY
called STEADY- that does not utilize the E Step flattening
modification proposed in Section III-C.3. To perform this
evaluation, we vary the magnitude of the angular noise in
the Truck dataset between 1.25 and 20 degrees. We run each
approach 3 times (except for SVI, which we only run once
due to its much longer training time) and report the forward
prediction error in Figure 4. Overall, these results follow the



longitudinal velocity (median) .
STEADY —— longitudinal velocity (truth) FitHand
lateral velocity (median)
251 lateral velocity (truth)
20 20} _
@ e R R S P AL
€ 1504 o 1544 =t
= = G
z Sl b s Y
S 10| —— 1.0 =
Ke]
L os5f 05
0.0 - 0.0 -
=05 -0.5 - : . . .
2 4 6 8 10 2 4 6 8 10
Time (s) Time (s)

Fig. 3.

Posterior velocity visualization. We show the posterior quality of STEADY (left) and FitHand (right) on one test trajectory from the Truck dataset.

Both the longitudinal and lateral velocities are measured in the robot’s local reference.
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Fig. 4. How observation noise affects forward prediction error. All
learning-based approaches are trained on the Truck dataset using the
bearing-only observation model.

expected relationship between noise and model performance:
in general, all approaches (except Hand and FitTruth, which
do not use the observations for training) tend to get worse as
the magnitude of noise increases. However, the performance
impact on STEADY is relatively small, demonstrating its
robustness to observation noise, and it is also the only
approach whose performance converges to that of FitTruth on
low-noise settings. We can also see that STEADY- performs
significantly worse than STEADY when the noise is low,
suggesting that the E Step flattening modification is crucial
for stable training under a sharp posterior.

D. Impact of Particle Quantity

In this section, we report the results of an experiment that
is designed to evaluate the impact of the particles used in the
E Step, which is one of the most important hyper-parameters
underlying the STEADY implementation. To this end, we
vary the number of particles used for the Truck dataset
from 200 to 200, 000 and plot the validation set performance
against training time in Figure 5.

The results of this experiment demonstrate the known
trade-off between state estimation accuracy and computa-
tional cost. With more particles, the estimated gradient in
the M Step has higher quality and hence leads to faster
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Fig.5. How the number of particles in the E Step affects the learning speed
and accuracy of STEADY. Using 20K particles leads to fastest training in
terms of running time, but all four settings eventually converge to similar
levels of performance.

learning in terms of training steps. However, more particles
also incur a longer running time. Overall, we find that the
sweet spot in our setting lies somewhere between 2000
and 20,000 particles. Another interesting finding from this
experiment is that, no matter how many particles are used, all
configurations eventually converge to a similar performance
before starting to overfit, suggesting that overfitting might be
the dominating factor here (compared to Monte Carlo error).

V. RELATED WORK

In this section, we survey robotics literature on learning
dynamical models and then review techniques for learning
stochastic dynamical systems in a more general context.
Dynamics Learning in Robotics. Most recent publications
on robot dynamics learning target different settings than the
one we consider here. For example, [3] aims to learn inverse
kinematic models in a deterministic setting and assumes the
training data consist of directly observed, accurate robot
states, whereas we focus on learning forward dynamical
models from noisy and indirect observations. [23] focuses
on learning the interaction between multiple objects and
also assumes the underlying dynamics are deterministic.
That work also differs from ours in how the state space
is represented: while their learned dynamics operate in



opaque, high-dimensional latent spaces, ours are defined in
terms of low-dimensional, physically grounded states. An
alternative method to handle partial state observability is by
applying the Koopman Operator Theory, as done in [24] to
learn deterministic dynamical models of soft-body robots.
However, this approach is only applicable when there is
little noise in the observations. Finally, [25] learns stochastic
dynamical models for hierarchical planning of manipulation
tasks, and, similar to [23], it also performs learning in a
high-dimensional latent state space.

Learning Stochastic Dynamical Systems. Outside the
field of robotics, there is a rich literature on data-driven
identification of stochastic dynamical systems. Prior ap-
proaches can be divided into two main categories: those
based on expectation-maximization (EM) v.s. those based
on stochastic variational inference (SVI). The EM category
includes the pioneer work of [26], which parameterizes the
dynamics as radial basis function approximators and uses
Extended Kalman Smoothing for the E Step. More recent
work includes [27], which implements the E Step using
particle smoothing, and [11], which focuses on learning
partial differential equations to model the geophysical flow
dynamics. As for the SVI category, one representative ap-
proach is the one proposed in [12], upon which our SVI
baseline is based. More recent work [13] also applies SVI
to learning chaotic dynamical systems in more data-rich
settings.

VI. CONCLUSION AND FUTURE WORK

We introduced the simultaneous state estimation and dy-
namics learning problem for learning kinodynamic models
from noisy and indirect data. Our key idea is to iteratively
improve both the state estimation and the learned kinody-
namic model using the expectation-maximization framework.
Our approach is simple to implement, works for real-world
robots, and outperforms existing approaches.

In the future, we plan to extend our approach to more
challenging settings such as simultaneous SLAM and dy-
namics learning. We also plan to explore ways to learn
interpretable dynamical models by combining ideas from
program synthesis and symbolic regression.
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