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[12]–[15]. In this paradigm, the desired navigation behavior is

first demonstrated by an agent such as a human, the recording

of which is then utilized by an imitation learning algorithm

to imitate. This intuitive way of teaching a task to a robot

is also easy for non-expert humans since it only requires

providing demonstrations, instead of defining the rules of

the task itself, which may be hard to explicitly define for

social navigation. Motivated by recent successes of imitation

learning in robot navigation, we posit that one way to enable

autonomous agents to navigate socially is through learning

from human demonstrations of socially compliant navigation

behavior. However, there is a lack of large-scale datasets

containing socially compliant navigation demonstrations in the

wild that can be utilized for imitation learning.

To fill this gap, in this work, we introduce a dataset of

demonstrations for socially compliant robot navigation in the

wild. Our dataset contains 8.7 hours of human-teleoperated,

socially compliant, navigation demonstrations, specifically,

Velodyne lidar scans, joystick commands, odometry, camera

visuals, and 6D inertial (IMU) information collected on two

morphologically different mobile robots—a Clearpath Jackal

and a Boston Dynamics Spot—within the University of Texas

at Austin university campus. Comprising 25 miles in total

of 138 trajectories, Socially CompliAnt Navigation Dataset

(SCAND) is publicly released1 and also contains labeled tags

of naturally occurring social interactions with every trajectory.

Additionally, we demonstrate the utility of the dataset for

studying questions relevant to social navigation. We first

show that there exists more than one strategy for an agent

to navigate with social compliance, as it is possible for a

classifier to differentiate between driving approaches of two

different human demonstrators with an accuracy of 74.48%.

Secondly, we also show that with SCAND, it is possible to

learn socially compliant local and global navigation policies

through imitation learning.

II. RELATED WORK

In this section, we review related literature with a focus on

learning-based approaches for social navigation. We addition-

ally survey relevant datasets for robot navigation and contrast

their contributions with this work.

A. Learning for Robot Navigation

Recently, several algorithms have emerged that show the

potential of applying learning to address challenges in robot

navigation [2]. Broadly speaking, in the robot navigation

literature, learning-based approaches have been shown to be

successful in problems such as adaptive planner parameter

learning [16], overcoming viewpoint invariance in demonstra-

tions [13], and end-to-end learning for autonomous driving

[14], [17], [18]. Specifically in applying imitation learning for

social navigation, the work by Tai et al. [19] is the closest

to our work. They provide a simulation framework in gazebo

along with a dataset generated using the same where virtual

human agents navigate following the social force model [1].

1www.cs.utexas.edu/∼xiao/SCAND/SCAND.html

They additionally train a social navigation policy using the

Generative Adversarial Imitation Learning algorithm assuming

the social force model as the “expert” demonstrator and show

a successful deployment of the learned policy in the real-

world on a turtle bot robot. While their work has shown

that imitation learning can be applied to address the social

navigation problem, they do so assuming the social force

model in simulation as the “expert” demonstration. While

simulated environments enable fast and safe data collection

for online learning, they lack the naturally occurring social

interactions seen in the wild. Also, as we show in section IV,

there can be more than one strategy for an agent to navigate

socially in a scene, which is not considered in their work.

Other learning paradigms such as Reinforcement Learning

(RL) have also been applied to address the social navigation

problem. Everett et al. [4] present CA-DRL, a multi-agent

collision avoidance algorithm learned using RL. While this

work shows impressive real-world results, their approach is

limited to specific social scenarios and requires simulating

these scenarios for the online learning algorithm to learn

episodically. Kretzschmar et al. [20] use Inverse Reinforce-

ment Learning to learn cost functions for a socially compliant

navigation policy. Similar to our work, they utilize human

demonstrations of the social navigation task, however, they do

so utilizing a small-scale, one-hour-long dataset. In this work,

we contribute a large-scale dataset of robot social navigation

demonstrations comprising multi-modal real-world data over

multiple hours, both indoors and outdoors, on two different

robots. Additionally, we train an imitation learning algorithm

to show it is possible to learn socially compliant global and

local navigation policies using our dataset.

B. Datasets for Social Navigation

Over the last decade, datasets containing robots navigating

in both simulated and real-world environments have been

useful for a wide variety of research areas, such as tracking

groups of people [9], [25], [26], human trajectory prediction

[27], navigation [28], robot localization [21], [29], [30] and

collision risk assessment [31].

1) Simulated Datasets for Social Navigation: Social en-

vironments in simulation can provide researchers with fast

data collection on social navigation [10], [19], [32], [33].

Moreover, such simulated environments can be generated with

a specified number of elements: the number and locations of

the humans, the structure of the room, the number of objects,

and the interactions between people and between objects and

people [11]. While simulated platforms provide these benefits,

they are limited in that they lack the natural, real-world

interactions that are experienced by humans. Datasets that

capture real-world robot navigation data in the wild provide

researchers with more naturally occurring scenarios [21]–[24].

Additionally, datasets collected in the wild provide sensory

data for these scenarios which can be then used for perceptual

tasks related to navigation [34].

2) Real-world Datasets for Robot Navigation: In addition

to simulated datasets, several real-world datasets for long-

term robot navigation in human environments have also been
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Dataset # Traj. Dist. (Km) Dur. (min) Sensors Nav. method # Robots Location

CoBot
[21]

1082 131 15600
2D Range Scanner, RGB-D Camera, Wheel

Odometry
Autonomous 2

Indoors +
Outdoors

L-CAS
[22]

3 N/A 49 3D LiDAR Teleoperated 1 Indoors

NCLT
[23]

27 147.4 2094
3D LiDAR, RGB Camera, IMU, Wheel

Odometry, GPS
Teleoperated 1

Indoors +
Outdoors

FLOBOT
[24]

6 N/A 27.5
3D LiDAR, RGB-D camera, Stereo Camera,

2D LiDAR, OEM incremental measuring
wheel encoder, IMU

Autonomous 1 Indoors

JRDB [8] 54 N/A 64
3D LiDAR, 2D LiDAR, Omnidirectional
Stereo Suite, RGB camera, RGB-D stereo

camera, 6D IMU
Teleoperated 1

Indoors +
Outdoors

THÖR [9] 600 N/A 60
3D LiDAR, Motion capture system,

Eye-tracking Glasses
Autonomous 1 Indoors

SCAND 138 40 522
3D LiDAR, RGB-D Camera, Monocular

Camera, Stereo Camera, Wheel Odometry,
Visual Odometry

Teleoperated 2
Indoors +
Outdoors

TABLE I: Comparison of real-world datasets for robot navigation.

made available over the last decade. In the CoBots dataset

[21], two CoBots we deployed indoors autonomously using a

topological graph planner and collected more than 130 km

worth of laser scans, odometry, and localization data over

1082 deployments. Similarly, the L-CAS [22], FLOBOT [24],

JRDB [8] and NCLT [23] datasets contain LiDAR scans,

RGBD visuals, GPS, and IMU data collected independently

on different robots, addressing perception-related challenges

to long-term robot navigation. In all these different datasets,

the robots were deployed in a public environment, such as

a restaurant or a university campus, and teleoperated by a

human as opposed to being autonomous, but these teleoper-

ated demonstrations are not explicitly socially compliant. The

JRDB social navigation dataset [8] is the closest to our work,

but it is smaller in scale, containing only 64 minutes worth of

data from 54 indoor and outdoor trajectories. While the focus

of the JRDB dataset is to solve perception-related challenges

such as human tracking and detection in social navigation,

the focus of the SCAND dataset in this work is to address the

“navigation” sub-component of social navigation. The THÖR

dataset [9] provides motion trajectories of both robots and

humans using tracking helmets. However, this is smaller in

scale since it contains only one hour’s worth of data. Also,

the data is collected indoors in an 8.4x18.8m laboratory room

with an orchestrated social navigation scenario for the human

agents in the scene and a socially unaware, pre-defined path for

the robot—adjusting neither its speed nor trajectory to account

for surrounding people. Existing real-world datasets for robot

navigation are summarized in Table I.

While previous datasets collected with robots and humans

have proven to be useful to study localization, perception, and

other navigation-related challenges, they lack demonstration

information in the form of motion commands and navigation

strategies in different social scenarios that could help us

understand socially compliant robot navigation in the presence

of other autonomous agents. The SCAND dataset introduced in

this work addresses this gap and provides rich human demon-

stration information in the form of joystick commands and

multi-modal robot sensor data in different, naturally occurring

social scenarios. SCAND also contains labeled tags of twelve

different social interactions that occurred along the path. Also,

since robots of different morphologies and capabilities could

navigate differently and induce different social interactions,

SCAND also includes data from two different robots. For exam-

ple, the legged Spot, capable of climbing stairs could choose

to prefer the stairs along its path while navigating whereas the

wheeled Jackal might choose a ramp to navigate. The other

datasets use only one robot to collect data (the Cobots dataset

[21] uses two robots but they are morphologically the same).

Using two morphologically different robots makes SCAND

useful to investigate social navigation in robots with different

morphologies (wheeled vs. legged).

III. DATA COLLECTION PROCEDURE

In this section, we first describe the data collection proce-

dure used in SCAND and outline the sensor-suite present on

both robots. We then describe the labeled annotations of social

interactions provided with every trajectory.

A. Collecting Data

To collect multi-modal, socially compliant demonstra-

tion data for robot navigation, four human demonstrators—

including the first two authors of this work—navigate the robot

by teleoperation using a joystick. We collected data within the

UT Austin university campus, with the demographics of the

humans in the scene comprised mostly of students, faculty,

and other campus denizens. For each of the 138 trajectories in

SCAND, the human demonstrator walks behind the robot at all

times, maintaining on average two meters distance. The human

demonstrator does not explicitly interact with the crowd in the

scene. Unlike other datasets for social navigation [9], we do

not restrict data collection to a controlled, indoor environment

or orchestrate a social scenario for data collection. Instead,

similar to the JRDB dataset [8], we perform data collection in

the wild in both indoor and outdoor environments. The two
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