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Abstract— One of the key challenges in high-speed off-road
navigation on ground vehicles is that the kinodynamics of the
vehicle-terrain interaction can differ dramatically depending on
the terrain. Previous approaches to addressing this challenge
have considered learning an inverse kinodynamics (IKD) model,
conditioned on inertial information of the vehicle to sense the
kinodynamic interactions. In this paper, we hypothesize that to
enable accurate high-speed off-road navigation using a learned
IKD model, in addition to inertial information from the past,
one must also anticipate the kinodynamic interactions of the
vehicle with the terrain in the future. To this end, we introduce
Visual-Inertial Inverse Kinodynamics (VI-IKD), a novel learning
based IKD model that is conditioned on visual information from
a terrain patch ahead of the robot in addition to past inertial
information, enabling it to anticipate kinodynamic interactions
in the future. We validate the effectiveness of VI-IKD in accurate
high-speed off-road navigation experimentally on a scale 1/5
UT-AlphaTruck off-road autonomous vehicle in both indoor
and outdoor environments and show that compared to other
state-of-the-art approaches, VI-IKD enables more accurate and
robust off-road navigation on a variety of different terrains at
speeds of up to 3.5m/s.

I. INTRODUCTION

Constraining wheeled mobile robot navigation to struc-

tured environments and low speeds allows roboticists to use

simplified assumptions about the robot’s dynamics. Most

state-of-the-art classical autonomous navigation systems [1],

[2] incorporate motion planners that model a complex kino-

dynamic system such as a wheeled mobile robot using sim-

plified kinematic models, often ignoring dynamic effects like

slippage and wheel suspension. In addition to kinodynamic

effects, delays caused by actuation latency inherent in the

vehicle’s hardware are often ignored. While ignoring such

effects at low speeds may be acceptable, the combination of

actuation latency coupled with kinodynamic responses due

to vehicle-terrain interaction can have a magnified effect on

the state of a vehicle when travelling at high speeds, and can

be catastrophic (e.g., cause collisions) if not accounted for

by the controller.

While accurate mathematical modelling of such effects is

difficult [3]–[5], recent learning-based approaches to robot
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navigation have shown promising results in modelling the

kinodynamic effects utilizing information from the Inertial

Measurement Unit (IMU) to sense the vehicle-terrain interac-

tion. Xiao et al. [6] introduce a learned inverse kinodynamics

model (IKD) that enables a ground vehicle to sense the terrain

and adaptively navigate at high speeds. This learned IKD

model (henceforth called IMU-IKD) utilizes inertial sensors

on a vehicle to sense the vehicle-terrain interactions and takes

a data-driven approach to model the kinodynamic effects

experienced by the vehicle on different terrains. However, an

inertial sensor is limited in its capability: it can only sense

interactions with terrain after the vehicle has driven over it.

During high speed navigation, latency inherent in the hard-

ware of a vehicle causes actuation commands to be executed

at a future world position. Thus, when traversing between

terrain types, it is important for the vehicle to proactively

adjust its controls based on the terrain it is about to encounter

in the future, not just the terrain it is currently driving

over. A model relying on inertial information alone cannot

foresee the kinodynamic response at this future position.

Unlike an inertial sensor, a visual sensor from an egocentric

viewpoint enables perception of the world ahead, providing

information about the terrain the vehicle will interact with

in the future. We therefore hypothesize that in addition to

inertial information from the past, conditioning a learned

IKD model on the visual information of the terrain ahead

will improve the vehicle’s capability to accurately navigate

at high speeds.

Towards this end, in this paper, we present Visual-Inertial

Inverse Kinodynamics (VI-IKD), a novel, computationally

tractable learning-based approach for incorporating visual in-

formation into an inverse kinodynamic model. VI-IKD condi-

tions the IKD model on—in addition to inertial information—

a visual patch of terrain in the future, by sub-sampling an

image captured from a forward-facing camera and extracting

only the region where the next actuation command will be

executed, considering actuation delays. Specifically, VI-IKD

learns a viewpoint-invariant representation of visual terrain

patches combined with inertial information captured by an

on-board IMU to learn a terrain cognizant IKD model. The

resultant IKD model is capable of anticipating the effect

of terrain on the robot’s dynamics and proactively adapts

controls to accurately track planned trajectories on varying

types of terrain.

We evaluate the performance of VI-IKD on a scale 1/5

Ackermann-drive vehicle in challenging indoor and outdoor

real-world environments with varying types of terrain and



demonstrate that it can accurately navigate the robot at high

speeds of up to 3.5m/s, resulting in improved success rates

on the task of reference trajectory following, compared to

state-of-the-art approaches.

II. RELATED WORK

In this section, we first review related literature on clas-

sical methods for wheeled robot navigation in the presence

of wheel slippage. We then survey related learning-based

approaches for off-road robot navigation.

A. Physics-Based Kinodynamic Models

There exists a plethora of research on empirically derived

physics-based dynamic and kinodynamic models for wheeled

mobile robots that predict the effects of wheel slippage [7]–

[9]. Seegmiller et al. [7] propose a parametric kinodynamic

model to predict the residual velocity of the robot with

respect to the output of a pure kinematic model, given the

velocity of the robot and the estimated centrifugal forces.

Rabiee et al. [8] incorporate an empirical wheel-terrain

interaction model into the forward kinematic model of skid-

steer robots. All of these approaches include a calibration

phase that is performed separately for each discrete type of

terrain. During inference, these methods rely on perception

modules to classify the terrain into pre-specified classes using

IMU and camera data [10], [11] in order to switch between

different terrain-dependent parameter sets.

B. Error Modelling and Reactive Control

In off-road unstructured environments, the terrain tra-

versed by the robot cannot be easily delineated into large

uniform regions. Instead, there exist frequent transitions

between terrain types, e.g. small patches of grass or loose

leaves on dirt, such that different robot wheels can be in

contact with patches of terrain with significantly different

characteristics. Xiao et al. [6] treat terrain characteristics

in a continuous manner and learn an inverse-kinodynamic

model that uses a history of IMU data along with the robot’s

current and desired state to issue control commands. They

demonstrate that this approach enables the robot to accurately

navigate at high speeds on unstructured terrain without an

explicit enumeration of terrain types. Another line of work

that does not require enumeration of terrain types is closed-

loop motion control for trajectory following in the presence

of slip [12]–[14]. Koppel et al. [15] learn a statistical model

for terrain disturbance using control and visual information.

Ostafew et al. [14] learn a non-parametric disturbance model

online to compensate for slippage that is estimated using

visual odometry. These methods are inherently reactive to the

sensed changes in terrain characteristics, and therefore only

target low-speed navigation applications such as planetary

exploration rovers. In high-speed navigation, however, the

effect of motion control loop delay on trajectory tracking

accuracy is significant, as the robot displacement during the

period of a control loop is considerable. Sensory information

from cameras and LiDAR reveals a great deal about the

characteristics of terrain, and can be leveraged to anticipate

its effects on the robot’s dynamics. While researchers have

recently started to incorporate visual information into gait

planners for legged-robots [16], wheeled mobile robot mo-

tion planners that use visual information have been mostly

limited to end-to-end learning solutions.

C. Learning for Off-Road Navigation

With the initial success of applying machine learning

techniques to mobile robot navigation instead of explicitly

modeling the environment and designing complex navigation

systems [17]–[29], roboticists have also applied learning

for off-road navigation. Pan et al. [30] propose an end-

to-end learning solution that uses camera and odometry

data to navigate a high-speed robot on a race track. While

such learning-based solutions are appealing for their ability

address perception, planning, and control together in a single

model, they require large amounts of training data and

struggle to generalize to new environments. Siva et al. [31]

enhance ground maneuverability consistency on complex off-

road terrain by learning offset behaviors in a self-supervised

fashion to compensate for the inconsistency between the

actual and expected behaviors without requiring the explicit

modeling of various confounding factors. Other prior works

in the literature have taken a hybrid approach, e.g., learning

from visual information for slip-aware robot navigation to

estimate the traversal cost of different regions of terrain [29],

[32], [33]. Angelova et al. [33] propose a non-parametric

method for learning to predict slip on patches of terrain given

the appearance and geometric properties perceived by stereo-

vision. The resultant information is used to inform the robot

to avoid challenging terrain types. Our work, however, seeks

to learn to navigate the robot on such challenging terrain as

it is unavoidable in unstructured off-road environments.

Our approach is similar to the approach by Xiao et al. [6]

in that we learn an inverse kinodynamic model for motion

planning without enumerating discrete types of terrain, but

we incorporate visual information as well as IMU data in a

computationally tractable manner to anticipate the effects of

future terrain on the robot’s dynamics, making our approach

significantly more responsive to variations in terrain charac-

teristics and robust to the effects of actuation latency during

high-speed maneuvers.

III. METHOD

In this section we discuss the formulation of the navigation

problem and our novel Visual-Inertial Inverse Kinodynamic

(VI-IKD) approach.

A. Problem Formulation

The goal of a navigation planner is to incorporate both

global and local information to identify a sequence of actions

to take a robot from its current state x0 to a target state

xn which it attempts to reach as efficiently and safely as

possible. For simplicity of notation, we will treat the robot’s

traversal through the environment as a sequence of timesteps,

which can be arbitrarily small. The planned sequence of

states {x0, x1, ..., xn} is referred to as the navigation plan.





egocentric view of the terrain the robot is approaching. The

patch of terrain under the robot at any point in time can be

extracted from previous camera images with knowledge of

the pose information of the robot between frames.

For a particular timestep t, a set of captured camera images

I , a set of IMU measurements S, and recent odometry

measurements O, we seek to find λt, the visual information

relevant to the robot’s current navigation command. To this

end, we define a patch extraction operator P : {I, S,O} → Λ
which extracts patches of visual information λt ∈ Λ of a

terrain ahead, from recorded history of observations where

the next actuation command will be executed. This operator

takes as input a camera image ip ∈ I from some timestep

p < t. This camera image is projected to a birds-eye view

(BEV) îp using a homography transform H derived from

the static extrinsic camera calibration and sp, the inertial

data of the robot at time p. We compute the homography

transform H in real-time considering the inertial data from

the robot due to significant roll-pitch motion experienced

during high-speed maneuvers. After this transformation, a

fixed distance in BEV projected pixel-space corresponds to a

fixed distance in the real world along the ground plane. Once

this is done, the robot’s real-time recent history of odometry

estimates O is used to determine the robot’s location relative

to the location from which the image was captured. Finally,

the robot’s current odometry information ot ∈ O is used to

predict the future location, x̃t, of the robot in the bird’s eye

view image plane, where the robot will be at the time when

its next issued command will be executed. Note that for a

command issued at time t and robot state xt, the command

will be executed on the robotic platform at a slightly later

state x̃t due to actuation latency on a real robot platform. The

patch λ is then defined as the region of the image around

location x̃t, and is extracted from îp. This patch extraction

process is shown in Fig. 1. The patches extracted from this

process are significantly smaller than a full camera image,

enabling VI-IKD to run in real-time.

During the training step, VI-IKD uses all observations from

different viewpoints of the same consistent location to learn a

viewpoint invariant visual representation of that location. By

repeating this procedure for different locations in the world,

we ensure that VI-IKD is viewpoint-invariant – that is, it is

invariant to observations of the same location irrespective

of image variations due to differing observing poses. This

procedure also provides robustness to image aberrations and

distortion due to artifacts such as motion blur.

C. Learning Visual-Inertial Inverse Kinodynamics

To train the VI-IKD module, we collect a set of human

demonstrations D in an open environment by teleoperating

the vehicle with a joystick. For each demonstration d ∈ D,

we track joystick commands U , inertial data S, odometry

data O, and image data I , and we record the observed

sequence of robot states Xobs. We then generate training

samples of the form 〈xt+1, xt, O
h
t , S

h
t , it, ut〉, where xt+1 ∈

Xobs is the desired robot state, xt ∈ Xobs is the preceding

state, Sh
t ⊂ S is the recent inertial history of the robot,

Oh
t ⊂ O is the recent history of odometry measurements,

ip ∈ I : p < t is a recent camera image, and ut ∈ U is the

command which transitions the robot from state xt to xt+1.

Because we are recording actual observations, these samples

encode the true kinodynamic response of the robot, and we

know f−1(xt, xt+1, w) = ut. Given our patch extraction

operator P , our training loss then seeks to find parameters θ
which minimize

argmin
θ

∑
||ut − fVI

θ (xt, xt+1, S
h
t , P (ip, S

h
t , O

h
t ))||. (5)

This learning objective enforces that the VI-IKD-generated

control for reaching state xt+1 from xt matches the controls

that were actually executed to effect that change. Note

that in this formulation, for each xt, we frequently have

multiple different preceding states from which visual in-

formation ip can be extracted, as each traversed patch of

terrain may appear in multiple preceding image frames. In

these situations, we replicate this for each available choice

of ip ∈ I from which a patch can be extracted, which

helps ensure that regardless of the viewpoint, we learn the

same mapping of visual information to predicted command.

Regularizing the training process with terrain patches from a

consistent location on the ground, but as seen from different

viewpoints at different times provides viewpoint invariance

in the learned visual representations. In the event where there

is no patch information available for a sample, we provide a

vector of zeros as the visual representation to the IKD model.

D. Implementation Details

The Visual Inverse Kinodynamic Module fVI
θ consists of

a visual encoder (2-layer convolutional neural network with

a kernel size of 3 and stride of 2), an IMU encoder (3-

layer Multi-Layer Perceptron (MLP) with skip connections

and hidden layers of size 256), and a final shared 3-layer

MLP with skip connections and hidden layers of size 256. To

ensure fair comparison, the baseline IMU-IKD algorithm uses

the same network architecture for the IMU encoder and the

IKD network. The network architecture along with the inputs

during training time are shown in Fig. 2. The visual encoder

was run off-board at inference time using a GPU-enabled

laptop (Nvidia RTX 2060). We regularize the training by

randomly sampling a visual terrain patch for a data sample

〈xt+1, xt, O
h
t , S

h
t , it, ut〉 from a set of visual terrain patches

of the same unique location sub-sampled from observations

recorded at previous timesteps. We maintain a buffer of 30

past images to perform patch extraction. The terrain patches

are RGB images of fixed size 64-by-64. This patch size was

chosen to maximize visual information while ensuring the

VI-IKD model can run at 40hz on the GPU with PyTorch

and CUDA acceleration.

IV. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the Visual-Inertial Inverse

Kinodynamic (VI-IKD) model in accurately tracking a tra-

jectory at high speeds, we performed a series of experiments

in a controlled indoor environment and an unstructured

outdoor environment with different terrains. In this section,
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