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Abstract— Robots deployed in settings such as warehouses
and parking lots must cope with frequent and substantial
changes when localizing in their environments. While many
previous localization and mapping algorithms have explored
methods of identifying and focusing on long-term features to
handle change in such environments, we propose a different
approach — can a robot understand the distribution of movable
objects and relate it to observations of such objects to reason
about global localization? In this paper, we present probabilistic
object maps (POMs), which represent the distributions of
movable objects using pose-likelihood sample pairs derived
from prior trajectories through the environment and use a
Gaussian process classifier to generate the likelihood of an
object at a query pose. We also introduce POM-Localization,
which uses an observation model based on POMs to perform
inference on a factor graph for globally consistent long-term
localization. We present empirical results showing that POM-
Localization is indeed effective at producing globally consistent
localization estimates in challenging real-world environments
and that POM-Localization improves trajectory estimates even
when the POM is formed from partially incorrect data.

1. INTRODUCTION

Mobile robots deployed in real world environments with
humans frequently encounter changes due to movable ob-
jects. Since localization algorithms that assume the world is
static fare poorly in such dynamic environments, state-of-the-
art long-term localization approaches explicitly model mov-
able and moving objects in an attempt to improve robustness,
but come with several limitations. Some of these approaches
[1]-[5] attempt to discover which features persist over long
time scales and either discard the remaining features or keep
them only for short-term use. This reduces the information
available for localization, particularly when such movable
objects comprise a large portion of the scene, and can cause
the localization estimate to drift over time. Other meth-
ods [6]-[8] impose assumptions about the configurations or
movement patterns of objects that may not match the true
dynamics of the environment.

In many environments, movable objects tend to follow
patterns, with some areas more likely to contain objects than
others. Consider a parking lot like the one in Fig. la: the
scene contains many movable objects, and consequently, this
environment would challenge many localization algorithms.
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(a) Parking lot at three different times.
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(b) POM for the above parking configuration, with more frequently occupied
spots resulting in higher map values. An initial trajectory is shown in blue
with object detections in purple. POM-Localization optimizes the trajectory
(shown in red) so the corresponding object detections (shown in orange) is
consistent with regions of high probability in the POM.

Fig. 1: POM-Localization as applied to a parking lot.

There is no fixed set of configurations and the individual ob-
jects may not have consistent periodic movement. However,
such objects do follow a distribution that describes where
they are likely to occur and where they are less likely. This
holds true for other scenarios, such as pallets and boxes in
warehouses or furniture in home and office environments.
We posit that localization algorithms can utilize the dis-
tribution of movable objects to improve robustness in real
world environments. We introduce the concept of proba-
bilistic object maps (POMs) to model the likelihood of a
movable object of a given semantic class occurring at a
given pose and propose a method for POM representation.
The POM is formed in a data-driven manner from object
detections from past trajectories and uses Gaussian process
classification to generate likelihoods for new query poses. We
also introduce the POM-Localization algorithm, which uses
POMs to inform localization. The goal of POM-Localization
is to prevent significant drift in environments with a high
density of movable objects, rather than to improve average-
case performance. Given the current estimate for the robot’s
trajectory and the object detections from that trajectory,
POM-Localization calculates where objects would be in the
global frame and adds a cost based on the likelihood of



an object occurring at the pose, penalizing the trajectory
when objects would occur at unlikely poses. As shown in
Fig. 1b, this formulation is used to optimize the trajectory,
resulting in a sequence of poses that best aligns with current
object detections, odometry measurements, and the POMs.
We also provide a method for incrementally updating a POM
given a newly optimized trajectory with object detections.
We present experimental results on two different datasets to
highlight the performance of POM-Localization in changing
environments and to demonstrate the impact of our approach
given limited knowledge of the object distribution repre-
sented in the POM.

II. RELATED WORK
A. Semantic SLAM and Localization

Similar to our method, semantic landmark SLAM and
localization approaches rely on high-level semantic objects
rather than low-level features. Many approaches, like [9],
require data association by the feature extractor to associate
measurements to landmarks. This can be challenging, partic-
ularly in dynamic environments, and mistakes can degrade
results. Some methods try to improve robustness by shift-
ing responsibility for data association to the optimization,
allowing correspondence decisions to be updated as more
information is obtained. Bowman et al. [10] propose a
semantic SLAM approach that integrates data association
into the optimization using expectation maximization, while
[11] and [12] use factor graphs with novel factors that
handle data association. Like these approaches, our method
uses high-level semantic objects and does not require the
feature extractor to resolve data associations. However, our
approach avoids the correspondence problem altogether by
considering a distribution of objects rather than a discrete set
of landmarks. These approaches also differ from ours in that
they do not explicitly model changes in environments.

B. Localization and Mapping in Changing Environments

While many SLAM and localization approaches assume
objects in the scene are static, some methods explicitly model
moving and movable objects. Some simply filter movable
and/or moving objects from the data [1]. This improves ro-
bustness, but results in loss of information that could be valu-
able for localization. Others aim to understand which features
persist over long time scales, with remaining features either
discarded or kept only for short-term processing. [2] removes
old data that conflict with more recent information. [3] prob-
abilistically models feature persistence and [4] extends this
approach to consider relationships between features. Episodic
non-Markov Localization (EnML) [5] matches long-term
features to a map and uses short-term features for relative
corrections. Such methods require accurate data association
to ensure the correct features are discarded and do not obtain
global understanding from short-term features. In scenes
with few long-term features, this can lead to drift in the
localization estimate. Other approaches impose assumptions
about the patterns of movable objects. Such assumptions
include a limited range of possible configurations for regions

of the space [6] or that object movement conforms to some
periodicity [7] or transition function [8]. For scenarios such
as warehouses, parking lots, or areas with movable furniture,
these assumptions may not appropriately model the real
dynamics of the environment, and consequently, localization
performance could degrade.

C. Continuous Mapping

Appropriate map representations are critical to localiza-
tion and SLAM. Occupancy grids are commonly used, but
introduce errors from discretization. The fixed resolution of
occupancy grids is also poorly suited to variable density
data and continuous optimization techniques used in many
modern localization approaches. Recent works have explored
continuous map representations to avoid these shortcomings.
Hilbert maps [13] model the occupancy of an environment
by projecting data into a Hilbert space, while [14] uses
Bayesian Generalized kernel inference. In [15], occupancy
is estimated with Gaussian process classification, similar to
our approach to modeling object likelihood. These methods
have been extended to handle dynamic environments in [16]
and [17], but focus on observed motion, while the proposed
method also accommodates objects that move between robot
deployments. Further, all of these works focus on raw sensor
data and do not incorporate semantics.

III. MAPPING AND LOCALIZATION WITH
PROBABILISTIC OBJECT MAPS

We introduce the concept of probabilistic object maps
(POMs), a POM representation based on Gaussian process
classification (GPC), and the POM-Localization algorithm
that uses POMs to inform robot localization in environments
with movable objects. We also outline techniques to increase
the speed of POM evaluation and POM-Localization. Our
approach requires a set of initial trajectories with object
detections from which to bootstrap the POMs for each
environment. The POM-Localization algorithm also requires
odometry estimates from either wheel encoders, inertial
measurements, or visual odometry. To avoid assumptions
about periodicity, our POM representation does not model
temporal patterns.

A. POM Evaluation using Gaussian Process Classification

The goal of a POM is to estimate the likelihood that
an object occurs at a given pose o*. For this, we utilize
a variant of GPC [18], chosen for its data-driven nature and
continuous differentiability. Further, this data-driven method
allows the POM to capture the distribution of errors arising
from observation noise. The POM estimates the distribution
p(c*=1|o*), where ¢* € {0,1} is a class label indicating
whether the pose is occupied by an object, with p(c*=1|0*)
evaluating to 1 when there should always be an object at
pose o* and 0 when there is never an object at the pose.

Let 0157 be the M sample inputs (object poses) for which
we have corresponding output values (object occurrence
likelihoods). GPC is closely related to Gaussian process
regression (GPR), with the primary difference that the output



range of GPR is unbounded, while the output range of GPC
is [0, 1]. Thus, GPC is a more appropriate function approx-
imator for a classification distribution. GPC transforms the
output a* € (—o0, 00) of GPR using an activation function,
such as the logistic function, s(z) = H—% For a 3D query
pose o*, this transformation via GPR and GPC is:

o € SE(3) R, a e (—o0,00) Bt [0,1] (1)
= o eSEB) LS teo,1). (2)

Traditionally, GPC assumes training output values t1.j; €
{0, 1} and requires approximations to map these to ay.ps €
(—00, 00) as used by the underlying GPR model. We instead
assume that we directly obtain sample values a;.p; that are
used with GPR and detail this process in Section III-C. The
POM estimate p(c*=1|o*) is thus given by GPC as

p(e*=1]0") = / p(e*=1la")p(a*[arar, 0131, 0 )da” . (3)

Based on GPR, p(a*|a1.pr, 0101, 0%) is a normal distribution
having mean . and variance o2, with u given by

p=po+ K Kp'(a— o), 4)

where o is a prior mean in the range (—o0, 00), a@ — pg is
a vector of values ay.ps less pg,

k(o1,01) k(o1,0n)
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and k(o0;,0;) is a kernel function providing the similarity of
o0; and o;. The calculation of o2 is described in Section III-B.

p(c*=1|a*) is the logistic function, making p(c*=1|o*)
the convolution of a normal distribution and the logistic
function. We adapt the approximation from [18] for such
a convolution to incorporate the prior mean pyg, giving
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For POM evaluation, the kernel for computing p is a
scaled product of a radial basis function (RBF) kernel
[18] on position and a periodic variant of an RBF kernel
on orientation. A prior for the likelihood of an object is
transformed from [0, 1] by the logit function to obtain py.

p(c*=1l0") = s (7

B. Uncertainty Estimation in POMs

Traditionally, GPR assumes that the output for a fixed
input is drawn from a normal distribution and the output
variance reflects the consistency of the samples near a
given input. However, in our case, consistent values are not
expected for each query input, so the traditional variance
provided by GPR would yield high variance even where
there are many samples and confidence in the distribution

should be high. Instead, predicting the likelihood of an object
occurrence is closer to predicting coin bias, where we have
a series of trials (past observations for poses) and we want
to know the likelihood of an event (object occurrence at the
given pose). Hence, we are computing o2 using an approach
derived from the desired properties of the variance: more
sample inputs should result in lower variance and samples
that are closer to the query pose o* should result in lower
variance than the same number of more distant samples.
Consequently, we estimate o2 using the reciprocal of an
unnormalized kernel density estimator (KDE) [18], which
satisfies these conditions. Using this, o2 is given by

1 1

KDE(o*) M k,(0;,0%) @

where k, has the same form as the kernel for computing .

a?(0%)

C. Building Probabilistic Object Maps

To evaluate the likelihood of an object occurring at a given
pose using GPC, we need a set of samples (0;,a;)i=1.0»
where o; is a pose in the global frame and a; € (—o0, c0)
represents the object likelihood at the pose based on past
trajectories. When the POM is initially created, we use a
set of registered trajectories and their object detections. To
capture where objects are both likely and unlikely, we obtain
{0;} from 1) observed object poses from the registered
trajectories as well as 2) poses where objects were not
observed, generated by sampling from the observed free
space around the robot. The next step is generating values a;
for each sample pose o;. Given a set of object detection poses
St = {4, } relative to the robot at time ¢; and corresponding
variances {afj}, the value a; for a sample pose 0; relative
to the robot can be obtained using

a; = mgfg( N (6ilst;,07,)- ©)
If there are no object detections, then a; is 0. We remap each
a; from [0, 00) to a; € (—o0, 00) using a domain remapping
to match the expected input range of the logistic function.!
In our approach, a separate POM is created for each movable
object class (e.g. separate POMs for cars vs. bicycles).

D. POM-Localization

POM-Localization incorporates odometry and object de-
tections to estimate the belief over the robot’s trajectory. The
POM value for observed object poses is used to calculate
the observation likelihood. We introduce a POM observation
likelihood (POM-OL) that is general to several forms of
semantic object detections, such as those provided by object
pose detectors [19] and semantic segmentation [20]. POM-
OL requires the ability to draw object pose samples 0;,  ~
p(0i, |71, ), Where 7, is relative object detection information.
We first present the POM-Localization algorithm, followed
by two such formulations of the POM-OL in Section III-E.

The choice of the remapping function is not crucial, as long as it is a
monotonic injective mapping. We use a;=log(1 — (1 — exp(a;))~1).



The belief over the robot poses 1., is given by

Bel(xl:n) :p(xl:n|z0a51:nyul:n) (10)
n N; n—1

N H HP(&'J%‘) H p(zjq1lzj, uj1), (A1)
i=1k=1 j=0

where N; is the number of detections of objects at pose
x;, 8;, 1is the kth object detection (k € [1, N;]) relative to
the robot at pose x;, and u; is the odometry measurement
from x;,_; to x; with covariance Xogom. Si, 1S composed
of information about the object’s pose r;, and classification
variable ¢;, , and, as we do not consider negative information
about objects, ¢;, =1 for all s; . Next, the observation
likelihood p(s;, |zi) = p(r4,, i, =1|z;) can be written as

p(si|@i) = p(riy |z, ¢, =1)p(ei,=1lz;).  (12)
To use the object likelihood in the belief, we marginalize
over the true object pose o0;, in the global frame. We can
express p(r;, |2, ¢;,=1) in terms of o;, as

p(ﬁ'k|$ivcik:1):/17(7’ik|0ik,wi)p(OikWhCik:l)dOik (13)

ik

P05, | T4
_/p(rikOik7xi)p(cik_1|xi70ik)lj(c<)€|)doik' (14)

i i =1 |z)
Since the existence of an object is independent of the robot’s
pose, i.e. p(o;, |x;) = p(0;, ), combining (12) and (14) yields

p(sik:|xi) = /p(’rik|Oik7xi)p(cik:]"Oik)p(oik)doik' (15)

k

Substituting (15) into (11) gives an updated form for the
belief. We solve for the maximum likelihood estimate z7.,,
by minimizing the negative log likelihood of the belief:

n—1

3 D lzji © (25 @ w3+
=0

—log(Bel(z1.,))

Z log/ (ri, |04, i) p(ciy=1]0i, )p(0i), )dos, . (16)

i=1 k=1 ik

N;

The integral above is intractable, so we approximate it
by sampling. Noting that the relative pose detection r;, is
independent of z; conditioned on the relative object pose
0i, = 0;, © x;, and applying Bayes’ rule, we replace
(13, |0, , ;) with p(é;, |r;,.) to yield

/ P(riy |03, 22)p(cs, =103, (03, )dos, o

Oik

/p(éikIm)p(cik=1|0ik)p(0ik)d0ik- a7
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As noted above, we assume that our observation model sup-
ports drawing samples from p(9;, |r;, ). We can thus approx-
imate the integral using importance sampling by drawing N,
samples 0;, s from p(6;,s|rs, ), obtaining the corresponding

global frame pose o;, s from the sample using 0;, s=x; B 0;, s,
and then summing. With normalization constant 71, this gives

/ p(rs 030 2:)p(s, =1]05, )p(03, )dos, ~

O,k

N,
]7371 > pleis=1]oi,)p(0i,s). (18
S s=1

We assume p(o0;, ) is uniform, so we can replace this b
k
a normalization constant "—f, yielding

7217 Czks—1|ozks O’LkS ZP Czks—1|ozks> (19)

Since the normalization constant is independent of the
trajectory, we drop 772. Combining (16), (18) and (19) gives

n—1
—log(Bel(z1.,)) x 3 Z [lzj11 6 (z; & Uj+1)||220dom+
=0
n N; 1 N
szlog (N ZP(CiksHOiks)) . (20)
i=1 k=1 § s=1

With this formulation and the POM to provide object
likelihoods p(c;, s=1]0;,s), a nonlinear optimizer, such as
[21], can be used to find the trajectory x;., that best aligns
with the movable object observations and odometry.

E. Observation Models

The first observation model uses a relative pose mea-
surement of the object for each observation r;, . For this
model, we assume p(r;, |6;,) is a normal distribution. Since
this is symmetric with respect to r;, and 0;,, we can thus
sample object poses via the normal distribution. The second
observation model uses semantically-labeled points relative
to the robot’s sensor for each observation 7;, . In this model,
we approximate p(o;,|r;, ) as a histogram over the space
of object poses. The value for each bin in the histogram is
computed using a method based on the generalized Hough
transform [22], enabling generated samples to be robust to
partial observations. We assume a fixed shape and size for
each class of object. Sensor noise is accounted for by adding
Gaussian noise to each observed point. Given the observed
points, we sample points along the object’s surface where
each of the observed points could occur. From these sampled
points, we compute the object’s pose in the sensor frame and
add a vote for the corresponding bin. To discard outliers, bins
with values less than a specified threshold are discarded. The
remaining candidate poses are randomly sampled to generate
object pose samples to evaluate with the POM.

F. Updating the POM Based on New Trajectories

We can update the POM to incorporate information from
a newly optimized trajectory to better capture the true
distribution of objects in the environment. We generate new
sample poses and values using the same process outlined in
Section ITI-C with the sampled object poses based on object
observations {s;, }, robot fields of view, and optimized poses



Z1., from the new trajectory. These new samples are added
to the existing samples to form the updated POM, which can
be used to optimize subsequent trajectories.

G. Optimization for Computational Efficiency

As Gaussian processes are computationally expensive, we
employ a number of mechanisms to make the speed of
this approach tractable. The first is limiting the samples
used to compute ;2 and o2 in the POM evaluation to those
within a radius of the query pose. We do this by storing the
sample poses and values in a KD-tree [23] and constructing
a POM at the beginning of each optimization cycle with only
samples around the initial estimate for the object pose. Using
a subset of the sample poses and outputs when evaluating
the POM also reduces the computation time. Let r; be the
fraction of the samples to use and M be the full number
of samples. We adjust the POM evaluation by modifying
(8) to sum instead over N = ry;M random samples and
compensate for subsampling by multiplying the full equation
by rs. We can also scale the computational power needed by
modifying the number of samples N, used to approximate
the marginalization over object poses. Lastly, using only a
subset of the object detections and optimizing over a window
of only the most recent nodes in the trajectory improves
computation time.

IV. EXPERIMENTAL RESULTS

We present results from two sets of experiments® that
evaluate POM-Localization’s ability to 1) accurately estimate
trajectories when knowledge of the distribution of movable
objects is limited and the correctness of the POM is varied,
and 2) ensure consistency in global localization over long
time scales in environments with movable objects. We also
provide qualitative results for a trajectory in a parking lot
using semantically-labeled points. In these experiments, we
focus on lidar-based approaches, as the increased field of
view and sensor range associated with lidar are important
for localization in changing environments.

A. Observation Models

These experiments use the two observation models de-
scribed above. For results using the Hough transform-based
model, we approximate cars as 2D rectangles the size of
a Toyota Camry. We generate votes for object poses from
line segments connecting neighboring points by choosing a
random location on the rectangle where the line segment
would fall. Examples of observed points and corresponding
generated samples are shown in Fig. 2.

B. Accuracy Given Limited Object Distribution Knowledge

We aim to understand how quality of data used to form
the POM impacts trajectory estimates when we have not
captured the full distribution of objects and we assume low
confidence in our map, which would occur when we have not

2The code for POM-Localization and our experiments is available
at https://github.com/ut-amrl/pom_localization and uses
[21] for optimization.

C ¥

Fig. 2: Examples of observed point clusters and generated object
pose samples. True object poses are shown in pink.

collected sufficient past trajectories to converge to the true
distribution. To do so, we measure accuracy using absolute
trajectory error (ATE) on 10 sequences from the KITTI
dataset [24] and compare against the output of LeGO-LOAM
[25], a state-of-the-art lidar-inertial odometry and mapping
algorithm. Though our method supports 3D, we use a 2D
projection for these experiments to match the 2D projec-
tion used for object observations. The trajectory estimates
of LeGO-LOAM serve as our odometry constraints. We
demonstrate our approach using both semantically-labeled
points and object poses. In both cases, data is derived
from “car” instances in the SemanticKITTI dataset [26],
which contains labels for lidar scan points in the KITTI
benchmark (sequence 01 was excluded due to lack of “car”
observations). The labeled points come directly from the
dataset and object detections are created by transforming
the global pose of each object into the frame in which the
instance was observed.

To assess the impact of the correctness of the POM, we
test five different configurations. In all cases, we generate
the POM from a single simulated past trajectory, and thus
have low confidence in our distribution to emulate the range
of performance when bootstrapping the POM from one or
few observed past trajectories. The initial step in creating
the POM is generating poses where cars occurred in the
past trajectory: X% of simulated car poses for the first
four configurations are obtained by selecting poses from
the current trajectory’s observed cars and adding a small
amount of Gaussian noise (0.4 m), with the remaining
Y% randomly placed in the environment. As X increases,
the correctness of the POM increases. We chose X from
{0, 20, 50, 80, 100} in our experiments, and these are denoted
“POM-Localization (X-Y)” in Table L. In the last configura-
tion, POM-Localization (100*-0), the POM is created from
the same car poses that were used to generate the detections
without any added noise, simulating perfect knowledge of
the distribution and a deterministic environment in which
movable objects are always at the same poses. In all cases,
once the simulated car poses are selected, we generate the
POM following the steps in section III-C, with the ground
truth trajectory as the prior trajectory, the relative poses
of nearby simulated cars with added noise as past object
detections, and a fixed-radius region around the trajectory
poses as the free space for obtaining off-detection samples.

Table I shows the ATE for LeGO-LOAM and our approach
with the five configurations using object detections and
semantic segmentation. When the POMs are completely
misaligned with the observations as in POM-Localization (0-



KITTI Sequence Number 00 02 03 04 05 06 07 08 09 10

LeGO-LOAM 27.12 163055 351 411 797 119 076 11344 648 1.76
POM-Localization (0-100)  29.46 1630.55 351 411 797 080 076 11344 648 1.76

Object POM-Local%zat%on (20-80) 2293 1630.55 355 411 183 037 020 11344 648 1.76
Detections POM-Localization (50-50) 1.73 132219 139 406 195 0.08 0.03 10686 0.80 0.33
POM-Localization (80-20) 1.50 133274 089 410 171 009 004 11342 081 1.06
POM-Localization (100*-0) 1.59 133348 0.82 4.04 018 0.04 0.04 97.58 023 0.17
POM-Localization (0-100)  37.37 155324 352 411 543 163 079 11150 978 3.23

Semantic POM-Localization (20-80) 6.30 1570.66 322 409 114 028 022 9724 1.08 197
Segmentation POM-Localization (50-50) 0.37 120331 200 4.06 227 024 0.06 9143 0.80 0.96
POM-Localization (80-20) 0.31 1408.15 0.88 409 160 0.17 0.07 69.33  0.60 0.79
POM-Localization (100"-0) 0.28 141772 0.85 4.06 130 015 0.05 36.51 045 0.60

TABLE I: Absolute Trajectory Error (m) on KITTI dataset sequences for LeGO-LOAM and POM-Localization using observation models

for object detections and semantic segmentation.

100), estimates are comparable to the LeGO-LOAM results.
For the results using object detections, estimates for all
but one sequence have the same or lower error and the
remaining estimate having only 8.6% higher ATE than the
LeGO-LOAM result. For the semantic segmentation results,
estimates for four sequences have somewhat worse error for
the completely misaligned POM configuration. However, it is
unlikely in practice that all observations in a given trajectory
will be completely disjoint from past data. This can also be
mitigated by placing higher weight on odometry; however,
we aimed to balance the worst-case and best-case perfor-
mances. As POM correctness increases, results generally
improve, with the ATE of most trajectories generated using
the POM created from perfect knowledge substantially lower
than the ATE for LeGO-LOAM estimates. In most cases,
even a half-correct map substantially improves the trajectory
estimates. The only sequences for which our approach does
not substantially improve upon LeGO-LOAM are 02, 04 and
08. In all of these sequences, there were trajectory segments
that simultaneously had substantial odometry error and few
or no object detections, and, as odometry is weighted highly
relative to object detections, the drift was not corrected and
persisted for the remainder of the trajectories.

C. Consistency Over Trajectories in Changing Environments

To understand our approach’s ability to produce consistent
localization estimates over long time scales in changing envi-
ronments, we collected eight trajectories over four days in a
UT Austin campus parking lot using a Clearpath Jackal with
a Velodyne VLP-16 Lidar. In each trajectory, the robot started
and ended at the same location and visited 32 waypoints
consistent across all trajectories, while the segments between
the waypoints varied. The trajectories had an average length
of 372 meters and an average duration of 26 minutes. The
percent of mapped parking spots occupied by cars ranged
from 11% to 92%, with an average of 60%.

Data used for these experiments were collected in 2D.
Odometry constraints are obtained from wheel odometry
and object detections are derived from human-provided
annotations of point clouds. The POM is generated from
a manually-created map of parking spots to demonstrate
resilience to deviations from the true car distribution and
to eliminate the quality of the localization algorithm used to
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Fig. 3: Position and orientation consistency across approaches. An
optimal algorithm would quickly rise to 1.

bootstrap the POM as a variable in the results. We simulate
five possible parking configurations by randomly selecting
70% of the parking spots to be occupied and placing cars
according to a normal distribution around each selected
spot. Samples to form the POM are created by simulat-
ing trajectories through each of the parking configurations,
transforming the object poses to the frame of each node,
and adding Gaussian noise to simulate noisy detection in
past trajectories. Off-detection sample poses are drawn from
within a radius around nodes in each simulated trajectory.
We assess performance by measuring consistency of way-
point estimates over the eight trajectories. Position estimate
consistency is evaluated by calculating the centroid of all
estimates for each waypoint across all trajectories and finding



(a) POM-Localization with object detections (b) EnML

(c) Cartographer (d) LeGO-LOAM

Fig. 4: Plots of trajectories through UT Austin Lot 53 as estimated by the approaches with highlighted blue/green waypoints. Performance
of an approach is good when all estimates for a given waypoint are colocated. POM-Localization results are overlayed on a satellite view

and shown with aggregated object poses from all trajectories.

the distance of each estimate from the centroid. Similarly,
the orientation consistency is measured by computing the
mean orientation estimate for each waypoint and the distance
of each estimate from the corresponding mean orientation.
We show the results of POM-Localization compared to esti-
mates from wheel odometry, Cartographer [27] (a commonly
used mapping and localization package), LeGO-LOAM [25]
without use of an inertial measurement unit (IMU), and
EnML [5]. Cartographer built a map during a single run and
used this map in localization mode for the remainder of the
trajectories, while EnML matches long-term features to a
manually-created map and uses short-term features for local
matching. It should be noted that the map and point clouds
used by EnML are higher fidelity than the object detections
and POM used by POM-Localization.

Fig. 3 shows the cumulative distribution functions (CDFs)
for the position and orientation estimate consistency. For both
position and orientation, POM-Localization significantly out-
performs raw wheel odometry, Cartographer, and LeGO-
LOAM. EnML has slightly better average-case performance;
this is expected, as the higher-fidelity data used by EnML en-
ables a higher-precision result. However, POM-Localization
has better or comparable worst-case performance: a greater
portion of the orientation estimates are within 15 degrees of
the mean for POM-Localization as compared to EnML and
no position estimate from POM-Localization deviates more
than 5.5 meters from its waypoint centroid. The trajectories
and waypoints estimated by POM-Localization, EnML, Car-
tographer, and LeGO-LOAM are shown in Fig. 4. These plots
support the conclusions drawn from Fig. 3; the estimates
from LeGO-LOAM and Cartographer drift substantially after
the initial segment of the trajectory, while POM-Localization
results in slightly greater spread for the waypoint estimates
than EnML, but unlike EnML, has no trajectory estimates
that diverge significantly. Fig. 4a also shows that the object
pose estimates align with the true parking spots and with
each other over time.

Fig. 5: POM-Localization optimized trajectory (red) vs. odometry
estimate (blue), with semantic point observations in orange, and
POM in greyscale. Inlay shows alignment of semantic point obser-
vations of cars and the alignment with the POM.

D. Parking Lot Localization With Labeled Points

Fig. 5 shows a trajectory before and after optimization us-
ing POM-Localization with semantically-labeled lidar points
for car clusters. The trajectory from odometry is shown in
blue and the optimized trajectory is shown in red. Object
observations for cars are semantically-labeled clusters of
points from a 3D point cloud obtained using a heuristic-
based segmentation algorithm, which can be found in our
repository.2 This algorithm uses PCL [28] for clustering
and returns clusters that match expected properties of cars.
The background of the figure shows a discretized version
of the POM, with areas likely to have cars in black and
those unlikely to have cars in white. The semantically-labeled
points, transformed using the robot pose estimates, are shown
in orange. The car segmentation algorithm gives several
false positive detections resulting from other objects in the
environment and cars in motion are also observed. Despite



this, POM-Localization is able to optimize the trajectory so
that the stationary cars line up with peaks in the POM. There
is some variation in the resulting pose of each car. However,
this is to be expected: the POM is not sharply peaked, so
that it can accommodate variations in parked car poses over
time, and POM-Localization works without performing data
association between sensor data across timesteps. The opti-
mized trajectory begins and ends at approximately the same
pose, showing that POM-Localization successfully corrected
drift from odometry.

V. CONCLUSION AND FUTURE WORK

This paper presents probabilistic object maps to model the
distribution of movable objects in an environment. We also
introduce POM-Localization to incorporate object detections
and corresponding POMs to achieve globally consistent
localization in changing environments, thus enhancing the
ability of robots to perform autonomously.

There are a number of interesting areas for future explo-
ration. Though our enhancements improved speed, investiga-
tion of other approximations may further reduce computation
time. Future improvements could also include modifying our
model to work with monocular visual detectors. Additionally,
the POM-Localization observation factors could be inte-
grated into an approach with other factors, such as short-term
features or loop closures, allowing the combined approach
to gain the benefits of all such factors. We would also like to
explore use of the Generalized Hough transform [22] with
a more complex shape model or learned method similar
to VoteNet [29] to propose occulsion-tolerant object pose
samples for more complex models. If the object periodicity
is known, time could be incorporated into the GPC kernel to
model temporal patterns. Finally, POMs could be applied to
other problems such as navigation to avoid likely occupied
areas or finding objects in home environments.
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