


an object occurring at the pose, penalizing the trajectory

when objects would occur at unlikely poses. As shown in

Fig. 1b, this formulation is used to optimize the trajectory,

resulting in a sequence of poses that best aligns with current

object detections, odometry measurements, and the POMs.

We also provide a method for incrementally updating a POM

given a newly optimized trajectory with object detections.

We present experimental results on two different datasets to

highlight the performance of POM-Localization in changing

environments and to demonstrate the impact of our approach

given limited knowledge of the object distribution repre-

sented in the POM.

II. RELATED WORK

A. Semantic SLAM and Localization

Similar to our method, semantic landmark SLAM and

localization approaches rely on high-level semantic objects

rather than low-level features. Many approaches, like [9],

require data association by the feature extractor to associate

measurements to landmarks. This can be challenging, partic-

ularly in dynamic environments, and mistakes can degrade

results. Some methods try to improve robustness by shift-

ing responsibility for data association to the optimization,

allowing correspondence decisions to be updated as more

information is obtained. Bowman et al. [10] propose a

semantic SLAM approach that integrates data association

into the optimization using expectation maximization, while

[11] and [12] use factor graphs with novel factors that

handle data association. Like these approaches, our method

uses high-level semantic objects and does not require the

feature extractor to resolve data associations. However, our

approach avoids the correspondence problem altogether by

considering a distribution of objects rather than a discrete set

of landmarks. These approaches also differ from ours in that

they do not explicitly model changes in environments.

B. Localization and Mapping in Changing Environments

While many SLAM and localization approaches assume

objects in the scene are static, some methods explicitly model

moving and movable objects. Some simply filter movable

and/or moving objects from the data [1]. This improves ro-

bustness, but results in loss of information that could be valu-

able for localization. Others aim to understand which features

persist over long time scales, with remaining features either

discarded or kept only for short-term processing. [2] removes

old data that conflict with more recent information. [3] prob-

abilistically models feature persistence and [4] extends this

approach to consider relationships between features. Episodic

non-Markov Localization (EnML) [5] matches long-term

features to a map and uses short-term features for relative

corrections. Such methods require accurate data association

to ensure the correct features are discarded and do not obtain

global understanding from short-term features. In scenes

with few long-term features, this can lead to drift in the

localization estimate. Other approaches impose assumptions

about the patterns of movable objects. Such assumptions

include a limited range of possible configurations for regions

of the space [6] or that object movement conforms to some

periodicity [7] or transition function [8]. For scenarios such

as warehouses, parking lots, or areas with movable furniture,

these assumptions may not appropriately model the real

dynamics of the environment, and consequently, localization

performance could degrade.

C. Continuous Mapping

Appropriate map representations are critical to localiza-

tion and SLAM. Occupancy grids are commonly used, but

introduce errors from discretization. The fixed resolution of

occupancy grids is also poorly suited to variable density

data and continuous optimization techniques used in many

modern localization approaches. Recent works have explored

continuous map representations to avoid these shortcomings.

Hilbert maps [13] model the occupancy of an environment

by projecting data into a Hilbert space, while [14] uses

Bayesian Generalized kernel inference. In [15], occupancy

is estimated with Gaussian process classification, similar to

our approach to modeling object likelihood. These methods

have been extended to handle dynamic environments in [16]

and [17], but focus on observed motion, while the proposed

method also accommodates objects that move between robot

deployments. Further, all of these works focus on raw sensor

data and do not incorporate semantics.

III. MAPPING AND LOCALIZATION WITH

PROBABILISTIC OBJECT MAPS

We introduce the concept of probabilistic object maps

(POMs), a POM representation based on Gaussian process

classification (GPC), and the POM-Localization algorithm

that uses POMs to inform robot localization in environments

with movable objects. We also outline techniques to increase

the speed of POM evaluation and POM-Localization. Our

approach requires a set of initial trajectories with object

detections from which to bootstrap the POMs for each

environment. The POM-Localization algorithm also requires

odometry estimates from either wheel encoders, inertial

measurements, or visual odometry. To avoid assumptions

about periodicity, our POM representation does not model

temporal patterns.

A. POM Evaluation using Gaussian Process Classification

The goal of a POM is to estimate the likelihood that

an object occurs at a given pose o∗. For this, we utilize

a variant of GPC [18], chosen for its data-driven nature and

continuous differentiability. Further, this data-driven method

allows the POM to capture the distribution of errors arising

from observation noise. The POM estimates the distribution

p(c∗=1|o∗), where c∗ ∈ {0, 1} is a class label indicating

whether the pose is occupied by an object, with p(c∗=1|o∗)
evaluating to 1 when there should always be an object at

pose o∗ and 0 when there is never an object at the pose.

Let o1:M be the M sample inputs (object poses) for which

we have corresponding output values (object occurrence

likelihoods). GPC is closely related to Gaussian process

regression (GPR), with the primary difference that the output



range of GPR is unbounded, while the output range of GPC

is [0, 1]. Thus, GPC is a more appropriate function approx-

imator for a classification distribution. GPC transforms the

output a∗ ∈ (−∞,∞) of GPR using an activation function,

such as the logistic function, s(x) = 1

1+e−x . For a 3D query

pose o∗, this transformation via GPR and GPC is:

o∗ ∈ SE(3)
GPR
−−→ a ∈ (−∞,∞)

s
−→ t ∈ [0, 1] (1)

≡ o∗ ∈ SE(3)
GPC
−−→ t ∈ [0, 1]. (2)

Traditionally, GPC assumes training output values t1:M ∈
{0, 1} and requires approximations to map these to a1:M ∈
(−∞,∞) as used by the underlying GPR model. We instead

assume that we directly obtain sample values a1:M that are

used with GPR and detail this process in Section III-C. The

POM estimate p(c∗=1|o∗) is thus given by GPC as

p(c∗=1|o∗) =

∫

p(c∗=1|a∗)p(a∗|a1:M , o1:M , o∗)da∗. (3)

Based on GPR, p(a∗|a1:M , o1:M , o∗) is a normal distribution

having mean µ and variance σ2, with µ given by

µ = µ0 +KT
x K

−1

D (a− µ0), (4)

where µ0 is a prior mean in the range (−∞,∞), a− µ0 is

a vector of values a1:M less µ0,

KD =







k(o1, o1) . . . k(o1, oM )
... k(oi, oj)

...

k(oM , o1) . . . k(oM , oM )






, (5)

Kx =







k(o1, o
∗)

...

k(oM , o∗)






, (6)

and k(oi, oj) is a kernel function providing the similarity of

oi and oj . The calculation of σ2 is described in Section III-B.

p(c∗=1|a∗) is the logistic function, making p(c∗=1|o∗)
the convolution of a normal distribution and the logistic

function. We adapt the approximation from [18] for such

a convolution to incorporate the prior mean µ0, giving

p(c∗=1|o∗) ≈ s



µ0 +
µ− µ0
√

1 + πσ2

8



 . (7)

For POM evaluation, the kernel for computing µ is a

scaled product of a radial basis function (RBF) kernel

[18] on position and a periodic variant of an RBF kernel

on orientation. A prior for the likelihood of an object is

transformed from [0, 1] by the logit function to obtain µ0.

B. Uncertainty Estimation in POMs

Traditionally, GPR assumes that the output for a fixed

input is drawn from a normal distribution and the output

variance reflects the consistency of the samples near a

given input. However, in our case, consistent values are not

expected for each query input, so the traditional variance

provided by GPR would yield high variance even where

there are many samples and confidence in the distribution

should be high. Instead, predicting the likelihood of an object

occurrence is closer to predicting coin bias, where we have

a series of trials (past observations for poses) and we want

to know the likelihood of an event (object occurrence at the

given pose). Hence, we are computing σ2 using an approach

derived from the desired properties of the variance: more

sample inputs should result in lower variance and samples

that are closer to the query pose o∗ should result in lower

variance than the same number of more distant samples.

Consequently, we estimate σ2 using the reciprocal of an

unnormalized kernel density estimator (KDE) [18], which

satisfies these conditions. Using this, σ2 is given by

σ2(o∗) =
1

KDE(o∗)
=

1
∑M

i=1
kσ(oi, o∗)

, (8)

where kσ has the same form as the kernel for computing µ.

C. Building Probabilistic Object Maps

To evaluate the likelihood of an object occurring at a given

pose using GPC, we need a set of samples 〈oi, ai〉i=1:M ,

where oi is a pose in the global frame and ai ∈ (−∞,∞)
represents the object likelihood at the pose based on past

trajectories. When the POM is initially created, we use a

set of registered trajectories and their object detections. To

capture where objects are both likely and unlikely, we obtain

{oi} from 1) observed object poses from the registered

trajectories as well as 2) poses where objects were not

observed, generated by sampling from the observed free

space around the robot. The next step is generating values ai
for each sample pose oi. Given a set of object detection poses

St = {stj} relative to the robot at time tj and corresponding

variances {σ2
tj
}, the value âi for a sample pose ôi relative

to the robot can be obtained using

âi = max
stj∈St

N (ôi|stj , σ
2
tj
). (9)

If there are no object detections, then âi is 0. We remap each

âi from [0,∞) to ai ∈ (−∞,∞) using a domain remapping

to match the expected input range of the logistic function.1

In our approach, a separate POM is created for each movable

object class (e.g. separate POMs for cars vs. bicycles).

D. POM-Localization

POM-Localization incorporates odometry and object de-

tections to estimate the belief over the robot’s trajectory. The

POM value for observed object poses is used to calculate

the observation likelihood. We introduce a POM observation

likelihood (POM-OL) that is general to several forms of

semantic object detections, such as those provided by object

pose detectors [19] and semantic segmentation [20]. POM-

OL requires the ability to draw object pose samples ôiks
∼

p(ôik |rik), where rik is relative object detection information.

We first present the POM-Localization algorithm, followed

by two such formulations of the POM-OL in Section III-E.

1The choice of the remapping function is not crucial, as long as it is a
monotonic injective mapping. We use ai= log(1− (1− exp(âi))

−1).



The belief over the robot poses x1:n is given by

Bel(x1:n) = p(x1:n|x0, s1:n, u1:n) (10)

∝
n
∏

i=1

Ni
∏

k=1

p(sik |xi)

n−1
∏

j=0

p(xj+1|xj , uj+1), (11)

where Ni is the number of detections of objects at pose

xi, sik is the kth object detection (k ∈ [1, Ni]) relative to

the robot at pose xi, and ui is the odometry measurement

from xi−1 to xi with covariance Σodom. sik is composed

of information about the object’s pose rik and classification

variable cik , and, as we do not consider negative information

about objects, cik=1 for all sik . Next, the observation

likelihood p(sik |xi) = p(rik , cik=1|xi) can be written as

p(sik |xi) = p(rik |xi, cik=1)p(cik=1|xi). (12)

To use the object likelihood in the belief, we marginalize

over the true object pose oik in the global frame. We can

express p(rik |xi, cik=1) in terms of oik as

p(rik |xi, cik=1)=

∫

oik

p(rik |oik , xi)p(oik |xi, cik=1)doik (13)

=

∫

oik

p(rik |oik , xi)p(cik=1|xi, oik)
p(oik |xi)

p(cik=1|xi)
doik . (14)

Since the existence of an object is independent of the robot’s

pose, i.e. p(oik |xi) = p(oik), combining (12) and (14) yields

p(sik |xi) =

∫

oik

p(rik |oik , xi)p(cik=1|oik)p(oik)doik . (15)

Substituting (15) into (11) gives an updated form for the

belief. We solve for the maximum likelihood estimate x∗

1:n

by minimizing the negative log likelihood of the belief:

− log(Bel(x1:n)) ∝
1

2

n−1
∑

j=0

||xj+1 ⊖ (xj ⊕ uj+1)||
2
Σodom

+

n
∑

i=1

Ni
∑

k=1

− log

∫

oik

p(rik |oik , xi)p(cik=1|oik)p(oik)doik . (16)

The integral above is intractable, so we approximate it

by sampling. Noting that the relative pose detection rik is

independent of xi conditioned on the relative object pose

ôik = oik ⊖ xi, and applying Bayes’ rule, we replace

p(rik |oik , xi) with p(ôik |rik) to yield

∫

oik

p(rik |oik , xi)p(cik=1|oik)p(oik)doik ∝

∫

oik

p(ôik |rik)p(cik=1|oik)p(oik)doik . (17)

As noted above, we assume that our observation model sup-

ports drawing samples from p(ôik |rik). We can thus approx-

imate the integral using importance sampling by drawing Ns

samples ôiks from p(ôiks|rik), obtaining the corresponding

global frame pose oiks from the sample using oiks=xi⊕ôiks,

and then summing. With normalization constant η1, this gives
∫

oik

p(rik |oik , xi)p(cik=1|oik)p(oik)doik ≈

η1

Ns

Ns
∑

s=1

p(ciks=1|oiks)p(oiks). (18)

We assume p(oik) is uniform, so we can replace this by

a normalization constant η2

η1

, yielding

1

Ns

Ns
∑

s=1

p(ciks=1|oiks)p(oiks)≈
η2

Ns

Ns
∑

s=1

p(ciks=1|oiks). (19)

Since the normalization constant is independent of the

trajectory, we drop η2. Combining (16), (18) and (19) gives

− log(Bel(x1:n)) ∝
1

2

n−1
∑

j=0

||xj+1 ⊖ (xj ⊕ uj+1)||
2
Σodom

+

n
∑

i=1

Ni
∑

k=1

− log

(

1

Ns

Ns
∑

s=1

p(ciks=1|oiks)

)

. (20)

With this formulation and the POM to provide object

likelihoods p(ciks=1|oiks), a nonlinear optimizer, such as

[21], can be used to find the trajectory x1:n that best aligns

with the movable object observations and odometry.

E. Observation Models

The first observation model uses a relative pose mea-

surement of the object for each observation rik . For this

model, we assume p(rik |ôik) is a normal distribution. Since

this is symmetric with respect to rik and ôik , we can thus

sample object poses via the normal distribution. The second

observation model uses semantically-labeled points relative

to the robot’s sensor for each observation rik . In this model,

we approximate p(ôik |rik) as a histogram over the space

of object poses. The value for each bin in the histogram is

computed using a method based on the generalized Hough

transform [22], enabling generated samples to be robust to

partial observations. We assume a fixed shape and size for

each class of object. Sensor noise is accounted for by adding

Gaussian noise to each observed point. Given the observed

points, we sample points along the object’s surface where

each of the observed points could occur. From these sampled

points, we compute the object’s pose in the sensor frame and

add a vote for the corresponding bin. To discard outliers, bins

with values less than a specified threshold are discarded. The

remaining candidate poses are randomly sampled to generate

object pose samples to evaluate with the POM.

F. Updating the POM Based on New Trajectories

We can update the POM to incorporate information from

a newly optimized trajectory to better capture the true

distribution of objects in the environment. We generate new

sample poses and values using the same process outlined in

Section III-C with the sampled object poses based on object

observations {sik}, robot fields of view, and optimized poses







(a) POM-Localization with object detections (b) EnML (c) Cartographer (d) LeGO-LOAM

Fig. 4: Plots of trajectories through UT Austin Lot 53 as estimated by the approaches with highlighted blue/green waypoints. Performance
of an approach is good when all estimates for a given waypoint are colocated. POM-Localization results are overlayed on a satellite view
and shown with aggregated object poses from all trajectories.

the distance of each estimate from the centroid. Similarly,

the orientation consistency is measured by computing the

mean orientation estimate for each waypoint and the distance

of each estimate from the corresponding mean orientation.

We show the results of POM-Localization compared to esti-

mates from wheel odometry, Cartographer [27] (a commonly

used mapping and localization package), LeGO-LOAM [25]

without use of an inertial measurement unit (IMU), and

EnML [5]. Cartographer built a map during a single run and

used this map in localization mode for the remainder of the

trajectories, while EnML matches long-term features to a

manually-created map and uses short-term features for local

matching. It should be noted that the map and point clouds

used by EnML are higher fidelity than the object detections

and POM used by POM-Localization.

Fig. 3 shows the cumulative distribution functions (CDFs)

for the position and orientation estimate consistency. For both

position and orientation, POM-Localization significantly out-

performs raw wheel odometry, Cartographer, and LeGO-

LOAM. EnML has slightly better average-case performance;

this is expected, as the higher-fidelity data used by EnML en-

ables a higher-precision result. However, POM-Localization

has better or comparable worst-case performance: a greater

portion of the orientation estimates are within 15 degrees of

the mean for POM-Localization as compared to EnML and

no position estimate from POM-Localization deviates more

than 5.5 meters from its waypoint centroid. The trajectories

and waypoints estimated by POM-Localization, EnML, Car-

tographer, and LeGO-LOAM are shown in Fig. 4. These plots

support the conclusions drawn from Fig. 3; the estimates

from LeGO-LOAM and Cartographer drift substantially after

the initial segment of the trajectory, while POM-Localization

results in slightly greater spread for the waypoint estimates

than EnML, but unlike EnML, has no trajectory estimates

that diverge significantly. Fig. 4a also shows that the object

pose estimates align with the true parking spots and with

each other over time.

Fig. 5: POM-Localization optimized trajectory (red) vs. odometry
estimate (blue), with semantic point observations in orange, and
POM in greyscale. Inlay shows alignment of semantic point obser-
vations of cars and the alignment with the POM.

D. Parking Lot Localization With Labeled Points

Fig. 5 shows a trajectory before and after optimization us-

ing POM-Localization with semantically-labeled lidar points

for car clusters. The trajectory from odometry is shown in

blue and the optimized trajectory is shown in red. Object

observations for cars are semantically-labeled clusters of

points from a 3D point cloud obtained using a heuristic-

based segmentation algorithm, which can be found in our

repository.2 This algorithm uses PCL [28] for clustering

and returns clusters that match expected properties of cars.

The background of the figure shows a discretized version

of the POM, with areas likely to have cars in black and

those unlikely to have cars in white. The semantically-labeled

points, transformed using the robot pose estimates, are shown

in orange. The car segmentation algorithm gives several

false positive detections resulting from other objects in the

environment and cars in motion are also observed. Despite



this, POM-Localization is able to optimize the trajectory so

that the stationary cars line up with peaks in the POM. There

is some variation in the resulting pose of each car. However,

this is to be expected: the POM is not sharply peaked, so

that it can accommodate variations in parked car poses over

time, and POM-Localization works without performing data

association between sensor data across timesteps. The opti-

mized trajectory begins and ends at approximately the same

pose, showing that POM-Localization successfully corrected

drift from odometry.

V. CONCLUSION AND FUTURE WORK

This paper presents probabilistic object maps to model the

distribution of movable objects in an environment. We also

introduce POM-Localization to incorporate object detections

and corresponding POMs to achieve globally consistent

localization in changing environments, thus enhancing the

ability of robots to perform autonomously.

There are a number of interesting areas for future explo-

ration. Though our enhancements improved speed, investiga-

tion of other approximations may further reduce computation

time. Future improvements could also include modifying our

model to work with monocular visual detectors. Additionally,

the POM-Localization observation factors could be inte-

grated into an approach with other factors, such as short-term

features or loop closures, allowing the combined approach

to gain the benefits of all such factors. We would also like to

explore use of the Generalized Hough transform [22] with

a more complex shape model or learned method similar

to VoteNet [29] to propose occulsion-tolerant object pose

samples for more complex models. If the object periodicity

is known, time could be incorporated into the GPC kernel to

model temporal patterns. Finally, POMs could be applied to

other problems such as navigation to avoid likely occupied

areas or finding objects in home environments.
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