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ABSTRACT

The outstanding properties of Gallium Nitride (GaN) have enabled considerable improvements in the performance of power devices
compared to traditional silicon technology, resulting in more efficient and highly compact power converters. GaN power technology has
rapidly developed and is expected to gain a significant market share in an increasing number of applications in the coming years. However,
despite the great progress, the performance of current GaN devices is still far from what the GaN material could potentially offer, and a
significant reduction of the device on-resistance for a certain blocking voltage is needed. Conventional GaN high-electron-mobility-transis-
tors are based on a single two-dimensional electron gas (2DEG) channel, whose trade-off between electron mobility and carrier density limits
the minimum achievable sheet resistance. To overcome such limitations, GaN power devices including multiple, vertically stacked 2DEG
channels have recently been proposed, showing much-reduced resistances and excellent voltage blocking capabilities for a wide range of volt-
age classes from 1 to 10kV. Such devices resulted in unprecedented high-power figures of merit and exceeded the SiC material limit, unveil-
ing the full potential of lateral GaN power devices. This Letter reviews the recent progress of GaN multi-channel power devices and explores
the promising perspective of the multi-channel platform for future power devices.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0086978

I. INTRODUCTION

Gallium Nitride (GaN) devices have shown outstanding potential
for power conversion applications, thanks to the excellent material
properties, such as the large critical electric field and high electron
mobility." * The use of GaN has enabled power devices with much-
improved performance compared to the best-in-class conventional Si
devices. Currently, the most common GaN power device architecture

with considerably lower sheet resistance (R,) should be demonstrated.
However, a significant decrease in Ry, is hindered by the trade-off
between the semiconductor mobility (x) and carrier density (N) in
conventional structures based on a single 2DEG channel.

A promising approach to address the N; vs p trade-off is the use
of multi-channel heterostructures,” '* in which several barrier/channel
layers are stacked to achieve multiple 2DEGs [Figs. 1(a)-1(c)]. The

is based on the lateral High-Electron-Mobility-Transistors (HEMTs),
which relies on the difference in polarization fields between GaN and
an Al,Ga; 4N barrier to form a high-mobility and large-density two-
dimensional electron gas (2DEG) channel. Despite the great potential
and recent progress of GaN power technology, the performance of
lateral GaN devices is still far from what the material could offer with
further improvements, requiring a significant reduction of the specific
on-resistance (Ron,sp) While maintaining high voltage blocking capa-
bility (defined by the breakdown voltage, VgR) in the off-state, which
is typically summarized by the Baliga’s figure of merit (FOM) as
Vi/ ROI\LSP.S‘6 To further reduce the device Ronsp, heterostructures

distribution of a large number of carriers in several high-mobility par-
allel channels enables increasing N, without degrading u and results in
a significant reduction in Ry, with respect to conventional single
quantum-well structures. However, increasing N results in a larger
negative threshold voltage (V) and reduces the Vg due to the more
difficult electric field management, which are major challenges for
power devices. In particular, common planar gating and field plate
(EP) techniques that are well adapted for single-channel structures no
longer work for high N; multi-channel structures, due to the more
challenging depletion of carriers in the multiple channels.”'”'” New
3D gate and field plate architectures have been successfully proposed
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FIG. 1. (a) Schematics and (b) TEM cross section of a multi-channel heterostruc-
ture and (c) corresponding band structure, and (d) Ns, mobility, and R, as a func-
tion of the number of channels in multi-channel structures. (e) Ns vs u for single-
and multi-channel (round points)'®"“"** heterostructures in the literature.
Reproduced with permission from Nela et al., Nat. Electron. 4, 284-290 (2021).
Copyright 2021 Springer Nature.

to solve these challenges.”'>'>'"""" Based on these concepts, power
devices realized on a multi-channel platform have shown excellent
potential with significantly improved performance compared to
single-channel devices.”'>'*'"?" In addition, multi-channel devices
have already successfully demonstrated key features for any power
device such as enhancement-mode operation,' "' large blocking
voltage capabilities with reduced leakage current,"'”"” and good sta-
bility during switching operation.'”'**" These results validate the
enormous potential of multi-channel GaN power devices as a viable
and promising solution for high-performance future power devices.
The goal of this Letter is to review the different architectures and solu-
tions for multi-channel devices proposed in the literature and to dis-
cuss the future perspective of this technology.

Il. MULTI-CHANNEL HETEROSTRUCTURE DESIGN

A key feature of the multi-channel platform is the ability to sig-
nificantly increase the carrier concentration without degrading the
mobility. In conventional single-channel heterostructures, there is a
trade-off between N; and u since largely populated channels suffer
from increased carrier scattering,”” which reduces u and ultimately
limits the minimum achievable sheet resistance. By spreading a large
N; into several vertically stacked channels, this trade-off can be over-
come, which enables increasing N, without impacting the mobility
of the structure, thus achieving much reduced Ry, [Fig. 1(d)]. Several

PERSPECTIVE scitation.org/journal/apl

multi-channel structures based on this approach have been demon-
strated, clearly showing the potential of this technology to reach
unprecedented Ry, "> [Fig. 1(e)].

However, meticulous care should be taken in properly designing
the multi-channel heterostructure to achieve the desired sheet resis-
tance. In particular, several variables can be adjusted, including barrier
(#,) and channel (tg,) thicknesses, doping, and barrier material [Figs.
1(a) and 1(b)]. Two main requirements should be considered when
choosing the best set of variables, namely, populating all embedded
channels and minimizing the total thickness of the stack to facilitate
the fabrication of the device.

Different approaches have been proposed to address these chal-
lenges, i.e., undoped structures,'*** n-type doping of the barrier, >'*'”
and high-polarization barrier material compared to conventional
AlGaN (e.g., InAIN""" or AIN’), each of which presents advantages
and drawbacks.

The use of an intrinsic structure requires a clear understanding of
the polarization contribution at each barrier/channel interface and a
careful tuning of the GaN channel and barrier thickness to avoid
unpopulated buried channels.” However, multi-channel structures
based on this approach have been successfully demonstrated, showing
sheet resistances down to 58 Q/sq for a ten-channel structure.”” The
main advantage of such an approach is the absence of any dopants.
On the contrary, these structures typically require a thick structure,
with large periods (¢, + #,) ~ 80-100 nm. Such a thick stack, if several
channels are considered, poses challenges to the device fabrication,
especially in the case of tri-gate structures, due to the large aspect ratio
required.

An alternative strategy consists of doping the AlGaN bar-
rier.” 121151826 11 this case, the carrier concentration is determined
by the density of dopants introduced rather than by the polarization
contributions. This enables easier control of N and also a considerable
reduction of the required stack period, to only ~40 nm. For instance,
multi-channel heterostructures with Ry, of 83 Q/sq and a total thick-
ness of only 130 nm have been demonstrated by this method.”'” Yet,
this strategy involves the introduction of a large density of dopants in
the barrier, which may impact the blocking capabilities of the device.

Finally, a third approach is to employ materials with larger polar-
ization fields compared to conventional AlGaN as the barrier layer,
such as AIN or InAIN [Fig. 2(a)]. This can be applied both to doped
and undoped structures and enables achieving larger N, with a
reduced stack thickness” [Fig. 2(b)]. For instance, Ry, of only 37 Q/sq
has been demonstrated by a ten-channel undoped AIN/GaN hetero-
structure with a total stack thickness of ~500 nm.” Moreover, the use
of barrier material such as lattice-matched Ing ;7AIN enables, in princi-
ple, the growth of as many channels as desired'’ without issues regard-
ing strain relaxation or cracking, which can occur in case of large
stress is present in the structure.””’ The main challenge of such
approaches is to achieve large electron mobility and good control of
the growth quality in AIN and InAIN structures, which can be chal-
lenging by metalorganic chemical vapor deposition (MOCVD).
However, development in this field is ongoing, and multi-channel
structures based on lattice-matched materials, such as Ing;;AIN, have
a great potential to further increase the number of channels and
reduce the overall R,.

Overall, multi-channel structures provide a large number of vari-
ables that can be adjusted to achieve optimal features for specific
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FIG. 2. (a) Minimum channel thickness for intrinsic structures depending on the
polarization difference between GaN and barrier material. (b) Rs, as a function of
the total channel stack thickness for multi-channel structures without doping,'*'%**
with doping,"®“® and with AIN or InAIN barrier.”'*%¢

applications, offering a complete set of tools to the device designer. All
of these several different strategies presented in the literature have
shown the great potential of the multi-channel platform to signifi-
cantly reduce the sheet resistance without sacrificing the mobility, thus
resulting in a promising platform for high-performance power
devices.

11l. MULTI-CHANNEL CONTROL AND V7 ENGINEERING

The much-improved conductivity enabled by the multi-channel
platform would be of little value if it could not be controlled and mod-
ulated. However, the multi-channel 3D structure requires new
approaches to achieve proper control of all of the embedded channels.
In particular, conventional planar gates are not able to deplete all
embedded channels simultaneously due to the electric field shielding
from the topmost channels and the large separation between the gate
electrode and the bottom 2DEG channels. Multi-channel devices
based on planar gates have shown very negative threshold voltages
[Fig. 3(a)] and breakdown of the gate stack even before turning off all
multiple channels, depending on the specific heterostructure. Yet, the
ability to control all of the channels and to tune the device Vryy is cru-
cial both to achieve high ON/OFF ratio transistors, ideally with
enhancement-mode (E-mode) operation, and to properly design field
plates to manage the high electric fields.

Under this point of view, the use of tri-gate architectures,””' " in
which the gate region is nanostructured in nanowires conformably
covered by a gate metal [inset in Fig. 3(a)], has shown excellent poten-
tial to tune Vg also in multi-channel devices, for both RF® and power
applications. "> The tri-gate structure around the multi-channel
nanowires offers a superior electrostatic control, thanks to its 3D
architecture, which enables simultaneous side-gate control of all of the
embedded channels.

This results in a shift of the threshold voltage toward less negative
values and in an improved ON/OFF ratio as the width of the nanowire
is reduced and the capacitive coupling through the tri-gate sidewalls
increases”' " [Fig. 3(a)]. Such an approach can even be used to
achieve positive Vg and E-mode operation [Fig. 3(b)], which is fun-
damental for any power transistor to ensure fail-safe operation. As
shown in Ref. 15, when the nanowire width is reduced to a few tens of
nanometers, the carrier depletion from the nanowire sidewalls
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15nm. (c) Vry vs Ron benchmark for single- and multi-channel E-mode HEMTs.
Reproduced with permission from Nela et al., Nat. Electron. 4(4), 284-290 (2021).
Copyright 2021 Springer Nature.

becomes dominant, resulting in fully depleted nanowires below
~30nm, despite the very large N, of the multi-channel structure (3.9
x 10" cm™? for this heterostructure). Based on this approach and a
large work function gate metal,” full E-mode devices with Vig of
1.8V from linear extrapolation (0.85V at 1 tA/mm) have been dem-
onstrated, showing the feasibility of E-mode multi-channel devices'”
[Fig. 3(b)]. In addition, excellent Vry; stability both at high tempera-
tures and during switching operation has been presented for these
devices, proving the robustness of such an approach.'””' Multi-
channel nanowires have also been shown to maintain large mobility
even for small widths of a few tens of nanometers,"” which ensures
minor degradation of the device’s on-state performance. Thanks to the
much reduced multi-channel sheet resistance, E-mode devices based
on this approach have resulted in on-resistance (Ron) of only 3.2
Qmm for Lgp of 10 um, corresponding to an unprecedented low
Ronsp of 0.46 mQ cm?, which represents a significant advance com-
pared to single-channel devices present in the literature and leads to a
considerable improvement of the Roy vs Vg trade-off [Fig. 3(c)].

An alternative approach to achieve multi-channel E-Mode
HEMTs has been recently proposed by employing an integrated
Cascode structure. As shown in Figs. 4(a)-4(c), this Multi-Channel
Monolithic-Cascode HEMT (MC*-HEMT) monolithically integrates a
low-voltage (LV), normally-off HEMT based on a single 2DEG chan-
nel, and a high-voltage (HV), normally-on HEMT based on stacked
2DEG multi-channel.”’ A plurality of Ohmic vias functions as the
effective drain for the single-channel LV-HEMT and the source for
the multi-channel HV-HEMT. The HV-HEMT gate is connected to
the LV-HEMT source, forming a cascode, ie., a configuration that
employs the LV device for the gate control of the HV device.”* A gate
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Reproduced with permission from Xiao et al., in I[EDM Technical Digest (2021), p.
5.5. Copyright 2021 |EEE.

recess is implemented in LV-HEMT to realize the normally off opera-
tion [Fig. 4(d)]. This MC*HEMT can exploit the low sheet resistance
of multi-channels, realize a normally off gate control, and completely
shield the gate region from the high electric field. Note that, in addi-
tion to Ohmic vias, the LV- and HV-HEMTS could be also connected
through a regrown n-GaN contact or AIGaN/GaN channel at the side-
wall. Future work is needed to explore these variations in the intercon-
nect design.

As compared to the fin-gate counterparts,”” this integrated
cascode structure obviates the need for the sub-micron lithography at
a price of the additional on-resistance from the LV-HEMT. Hence, the
MC*-HEMT is particularly attractive for multi-kilovolts devices. The
MC?-HEMTs show a threshold voltage of over 1.5V at 1 mA/mm and
a low Rongp of 40 mQ cm? for a gate—drain distance for the HV-
HEMT (L%’[DC ) of 103 um (which corresponds to a Vg over 10kV).

IV. OFF-STATE ELECTRIC FIELD MANAGEMENT

In addition to small Roy and E-mode operation, power devices
need to ensure high Vgg by properly managing the large off-state elec-
tric fields. Efficient field management is even more important for lat-
eral multi-channel devices due to the large N, and the highly
conductive structure. The 3D structure and enhanced carrier concen-
tration of the multi-channel platform require novel strategies to this
end since conventional FPs are typically not suitable for multi-channel
devices. Indeed, as shown in Fig. 3(a), devices with a planar gate elec-
trode either show very negative Vyyy or break before even being
depleting all channels,"” depending on the specific multi-channel het-
erostructure. For this reason, a conventional, oxide-based, planar FP is
often not effective in protecting the gate/anode electrode and results in
an early breakdown of the device. An effective strategy that has been

PERSPECTIVE scitation.org/journal/apl

proposed to address this issue is the use of tri-gate and slanted tri-gate
FPs’> [Fig. 5(a)]. By tuning the width of the nanowire, the Vipy of
the tri-gate FP can be shifted to smaller, less negative values [Fig. 3(a)],
which avoids any breakdown of the FP stack and more effectively pro-
tects the gate electrode. Moreover, by designing a nanowire with a
slanted profile, which can be easily achieved in a single lithographic
step, the threshold voltage of the tri-gate FP can be gradually
increased, greatly improving the electric field distribution [Fig. 5(b)].
Multi-channel devices on GaN-on-silicon substrates based on this
approach have shown greatly improved Vgg up to 1300V compared
to planar FPs, along with low leakage current, well below 1 A/mm for
Lgp of 10 um [Fig. 5(c)], leading to state-of-the-art high-power figures
of merit of 4.6 GW cm ™~ for D-mode devices and 3.8 GW cm ™ for E-
mode devices.

In addition to the excellent dc performance, multi-channel devi-
ces can also achieve promising switching behavior with reduced cur-
rent collapse, which is fundamental for any power device. By properly
passivating the nanowire sidewalls with a conformal Si;N, layer (left
inset in Fig. 6), multi-channel devices with reduced dynamic on-
resistance (Ronayn) Were demonstrated, up to large off-state stress vol-
tages18 (Fig. 6). A similar increase in Ron,gyn compared to reference
single-channel devices was achieved based on academic processes'®
(Fig. 6), which suggests that further reduction of the current collapse
in multi-channel devices down to the level of current commercial
HEMTs is possible by optimizing the process and passivation layer.
While further work is required to investigate the exact impact of the C-
doped GaN buffer on Ron,ayn in multi-channel devices, some consider-
ations can be drawn. On the one hand, multi-channel heterostructures
can be grown employing the same buffer layer as for conventional
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FIG. 5. (a) Schematics of a multi-channel device with a slanted tri-gate field plate.
(b) Vg as a function of the heterostructure sheet resistance for devices with con-
ventional planar FPs, tri-gate FP, and slanted tri-gate FP. (c) Off-state current as a
function of the drain voltage for an E-mode multi-channel device based on a tri-gate
architecture. Reproduced with permission from Nela ef al, Nat. Electron. 4(4),
284-290 (2021). Copyright 2021 Springer Nature.
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single-channel power devices, which enables adopting the same strate-
gies to reduce the impact of the C-doped buffer on Rongyn. " On the
other hand, as shown in Fig. 3(a), a planar gate electrode is not effective
in modulating all of the embedded channels. For the same reason, one
could expect that the impact of the back-gating mechanism from the
C-doped buffer would mainly affect the 2DEG concentration of the
bottom channel without reducing significantly the upper 2DEGs, thus
resulting in a milder impact on Ron,gyn compared to single-channel
devices.

Alternative strategies to manage the off-state field have also been
proposed based on a p-type material acting as a field plate. Inspired by
the efficacy of using p—n junctions for E-field management in vertical
devices, e.g., Junction Barrier Schottky (JBS) diodes’*” and JFETSs,""**
an alternative edge termination for multi-channel devices using the
epitaxial p-GaN has been proposed [Fig. 7(a)]."° Benefited from the
vertical depletion enabled by the p-n junction, the E-field lines spread
out, and their distribution becomes more uniform. The peak E-field is
moved from the Schottky contact to the p-GaN edge, thereby shielding
the Schottky contact from the high electric field. Meanwhile, the
p-GaN compensates for the 2DEG charges near the contact, further
reducing the E-field gradient. This p-GaN termination is compatible
with the p-gate HEMT foundry process and can potentially allow the
hole injection, and thus, high device robustness.”

In addition to suppressing the E-field crowding at the device
edge, improving the average E-field in the lateral “drift region” is also
critical to upscaling Vpg. Super-junction and reduced-surface-field
(RESURF) structures have been employed in conventional single-
channel power devices to reduce net charges and E-field gradients.” A
p-GaN RESUREF structure of a similar nature has been proposed for
the multi-channel wafers comprising net donors,'” as shown in Fig.
7(b). As compared to the p-GaN termination, this RESURF layer
extends to near the cathode, and its acceptor charges balance the net
donor charges in the multi-channel at high voltage.'” This charge bal-
ance can be experimentally realized by controlling the p-GaN thick-
ness. This RESURF design has enabled a doubling of the average
lateral E-field. The multi-channel Schottky barrier diodes (SBDs) on
GaN-on-sapphire substrates, with a 123-um anode-to-cathode
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FIG. 7. Schematic of multi-channel diodes with (a) p-GaN edge termination and (b)
p-GaN RESURF structure. (c) Off-state |-V characteristics of the MC?HEMT
employing a p-GaN RESURF layer as a function of the gate-to-drain distance. (d)
Schematics of a multi-channel device with a 3D junction-fin-anode. Part (c) repro-
duced with permission from Xiao et al., in IEDM Technical Digest (2021), p. 5.5.
Copyright 2021 IEEE.

distance (Lnc), show a Vgr over 10kV and a Roy of 39 mQcm?,
which is 2.5-fold lower than the Roy of the state-of-the-art 10-kV SiC
JBS diodes. Applied to the MC*-HEMTs, this technique enables a
large average lateral E-field of 1.24 MV/cm and a high Vg over 10kV
[Fig. 7(c)]” with a specific Rox of 40 mQcm?, which is 2.5-fold
smaller than that of 10kV SiC MOSFET's and below the 1D SiC uni-
polar limit.”” The MC*-HEMTs with various Vgy were reported to
show the highest Baliga’s FOMs in all 6.5-kV+ power transistors.”’

The leakage current reduction, especially in SBDs, is another
challenge facing multi-channel devices due to the concurrence of high
E-field and parallel current channels. Also, under this point of view,
tri-gate technology has shown great performance. By tuning the width
of the tri-gate, the threshold voltage of the tri-gate FP can be precisely
adjusted [Fig. 3(a)], and the voltage drop over the Schottky barrier
minimized.”*>*® Based on this approach, tri-anode/tri-gate multi-
channel SBDs have demonstrated very low leakage current ~1 nA/mm
up to off-state voltages of 600 V.'” In addition, tri-gate technology
can also be combined with other techniques, such as the use of a
p-type material,’” to ease the lithographic requirements. For instance, a
3D junction-fin-anode structure was recently proposed.” Fig. 7(d) com-
prises p-n junctions wrapping around the multi-2DEG-fins, which is
similar to the recently demonstrated junction tri-gate and can provide a
stronger depletion of the 2DEG channel as compared to planar p-n
junctions.” " At reverse biases, the junction-fin shields the Schottky
contact from the high biases; the leakage current of the entire multi-
channel diode can be made equal to that of a single-channel sidewall
SBD biased at a few volts.”” In the prototyped device, the junction-fin
structure comprises p-GaN on top of the fin and p-type nickel oxide
at the fin sidewalls.”” The resulting SBD shows a Vg up to 52KV, a
specific Roy of 13.5 mQ cm?, a current up to 1.5 A, and a leakage cur-
rent of 1.4 A/mm at 80% Vpg."”

In conclusion, the several strategies proposed in the literature
showcase the promise of multi-channel technologies for power
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devices, resulting in a considerable improvement of the Ronsp Vs Vg
trade-off for a wide range of voltage ratings, surpassing the 1D 4H-SiC
material limit and leading to unpreceded high-power figures of merit
(Fig. 8).

V. FUTURE PERSPECTIVES

Despite the significant progress presented above, multi-channel
technology still presents several promising future directions open to be
explored. A very interesting perspective is represented by applying the
polarization super-junction (PS]) concept’’ *° in which a charge-
balanced drift region leads to an ideally flat off-state electric field pro-
file. Multi-channel PSJs would enable a complete decoupling of the
on-resistance from the breakdown voltage, resulting in a tremendous
improvement of both the Ronsp Vs Vir and Ron vs Eog, figures of
merit”"”’ [Figs. 9(a) and 9(b)], where E,q is the energy stored in the
device output capacitance. Different approaches can be followed to
achieve multi-channel PSJs. On the one hand, an undoped multi-
channel heterostructure naturally results in charge balance between
holes in the two-dimensional hole gases (2DHGs) and electrons in the
2DEGs due to the matching polarization charges.”"”” On the other
hand, alternating #n- and p-type doping of the barrier and channel,
similarly to conventional super junctions, has also been proposed,”
which is, however, challenging for GaN due to the inefficient activation
in p-GaN doping. In addition to the heterostructure design, further
improvements of the contact to the embedded 2DHGs are required,
either by regrowth of a p-GaN layer or by proper design and annealing
of the metal stack. Despite their difficulty, these technological challenges
are possible to be overcome in a short time and a successful demonstra-
tion of multi-channel PSJs would result in a groundbreaking improve-
ment of the dc and switching performance of the device, with an impact
similar to super junctions for silicon devices.

In addition to more established GaN-based n-FETs, multi-
channel structures can be very beneficial also for material platforms
suffering from relatively low conductivity. For instance, GaN p-FET's
based on a multi-channel approach have shown improved current
capabilities,””” representing a possible solution toward GaN CMOS
logic.

Moreover, the multi-channel platform is particularly promising
for ultra-wide bandgap (UWBG) semiconductors such as gallium
oxide (Ga,0;), high-Al AlGaN, AIN, and diamond, which are being
actively investigated for the next generation of power electronics.”’
Owing to a larger bandgap, these materials promise a theoretical criti-
cal electric field (Ec) higher than that of GaN and SiC. Several UWBG
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2D carrier channels are available, including the 2DEG in Al,Ga, O/
Ga,05 and AIN/ALGa; N as well as the 2DHG in diamond. A peak
electric field higher than the Ec of GaN has been experimentally dem-
onstrated in several high-voltage UWBG devices.”' *’

Despite the high Ec, the resistivity of the demonstrated UWBG
channels is still much higher than the GaN counterpart. For example,
the Ry, of the state-of-the-art AlIGaO/GaO and high-Al AlGaN chan-
nels are 5300-13000°" °° and 1800-8000 €)/sq,"” respectively, which
are about 5-30 times higher than the Ry, of the single-channel AlIGaN/
GaN. Hence, the multi-channel platform is an excellent candidate for
UWBG power devices, as it can exploit the high Ec of UWBG materi-
als while effectively reducing the channel Ry,. Moreover, almost all the
epitaxy and device technologies for GaN-based multi-channel devices
can be seamlessly transferred to future UWBG counterparts.

Due to the distinct maturity levels of these different material sys-
tems, it is difficult to identify an ultimately superior candidate. To
determine the potential of multi-channel UWBG devices, one can con-
sider a practical Ronp Vs Vpr limit, ie., Rons = Resp + RnVer?/
EIZWE,“’ where Rcgp is the specific contact resistance and E, vy, is the
average lateral electric field. A UWBG HEMT with a twofold higher
Eave (~25MV/cm) is predicted to exceed the performance of a
single-channel GaN HEMT by stacking three or more channels. To
enable a comparable performance with similar channel numbers, a
threefold higher E,vg needs to be realized in the UWBG HEMTs.
These trade-offs provide useful guidance for future developments of
the UWBG multi-channel epitaxy and devices.

In conclusion, multi-channel devices offer tremendous potential
for future power devices. GaN-based multi-channel devices have dem-
onstrated unprecedented high-power figures of merit in a wide voltage
range, significantly outperforming conventional single-channel devices
and surpassing the performance 1D limit of 4H-SiC. Most impor-
tantly, such performances have been achieved in combination with
key requirements for power devices such as E-mode operation and sta-
ble switching performance, which proves the potential of the technol-
ogy. On the horizon, the application of the multi-channel platform to
new technologies, such as polarization super junctions and UWBG
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semiconductors, promises further groundbreaking improvements in
the performance of future multi-channel power devices.
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