2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids) | 979-8-3503-0979-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/HUMANOIDS53995.2022.10000225

2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)

November 28-30, 2022. Ginowan, Japan.

Dynamic Bipedal Turning through
Sim-to-Real Reinforcement Learning

Fangzhou Yu, Ryan Batke, Jeremy Dao, Jonathan Hurst, Kevin Green, and Alan Fern

Abstract— For legged robots to match the athletic capabilities
of humans and animals, they must not only produce robust
periodic walking and running, but also seamlessly switch be-
tween nominal locomotion gaits and more specialized transient
maneuvers. Despite recent advancements in controls of bipedal
robots, there has been little focus on producing highly dynamic
behaviors. Recent work utilizing reinforcement learning to
produce policies for control of legged robots have demonstrated
success in producing robust walking behaviors. However, these
learned policies have difficulty expressing a multitude of dif-
ferent behaviors on a single network. Inspired by conventional
optimization-based control techniques for legged robots, this
work applies a recurrent policy to execute four-step, 90°
turns trained using reference data generated from optimized
single rigid body model trajectories. We present a training
framework using epilogue terminal rewards for learning specific
behaviors from pre-computed trajectory data and demonstrate
a successful transfer to hardware on the bipedal robot Cassie.

I. INTRODUCTION

Animals exhibit a multitude of dynamic behaviors, such
as squirrels leaping from treetops and birds taking off and
landing. Moreover, they are also able to seamlessly transition
between behaviors. Robots that match human and animal
athletic capability will require a control architecture that
enables them to transition between behaviors with the same
fluidity. As legged robots evolved over the past few decades
to become more agile and dynamic, their control algorithms
became more sophisticated to take advantage of advances
in mobile computing [1]. Recent developments in the realm
of legged locomotion controls prominently feature the use of
model predictive control (MPC) and optimization techniques
to generate trajectories for quadrupedal jumps and backflips
[2], [3]. Using reinforcement learning (RL) to train neural
network locomotion controllers has also shown to be a
promising alternative avenue of research, enabling Cassie, a
human-scale bipedal robot, to perform dynamic gaits ranging
from walking, running, skipping, and stair climbing on real-
world hardware [4], [5]. This work extends upon the periodic
reward composition method of learning bipedal gait policies
for Cassie [4] by including trajectory data derived offline
using a single rigid body model (SRBM) [6] with the aim
of producing policies that learn to transfer the trajectories
of the reduced-order model (ROM) to Cassie in the real
world. The challenge of successfully transitioning between
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Fig. 1. A Cassie robot executing a four-step 90° right turn. (Top Row)
Hardware field test of the full-reference turning policy initialized from a
commanded heading speed of 2.0m/s on artificial turf. (Bottom Row) Cassie
running the full-reference turning policy in simulation initialized from a
target heading speed of 2.5 m/s.

different policies is addressed during the training process
with the concept of an epilogue terminal reward. To prove
the viability of our proposed technique implemented on real
world hardware, we demonstrate the successful sim-to-real
transfer of Cassie performing a four-step 90 degree right turn
using a policy trained with trajectory data that successfully
transitions between another policy performing a running gait
developed from our previous work.

II. RELATED WORKS
A. Learning Locomotion Skills

RL has shown to be a promising alternative to model-
based control of legged robots. Recent work on RL control
policies on the Cassie and ANY-mal robots are able to out
perform model-based controllers in published research, while
being computationally cheaper to evaluate at runtime [4],
[7], [8]. However, most published work on the application
of RL to legged locomotion focuses on performing cyclic
gaits, while in this work we are concerned with more
dynamics one-off maneuvers. Prior work on performing
different behaviors with learned methods use RL to train
a singular policy to execute all desired behaviors instead of
training separate policies for each individual behavior. This
causes the behavior space of the policies to be limited by
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the richness of a singular reward function, making them ill-
suited to learning a wide variety of different behaviors. This
work addresses this issue by training policies per behavior
and switching between them. [9] uses a RL-based approach
similar to our prior work to produce robust locomotion
policies for the ANY-mal quadrupedal robot that learns to
track commanded body velocities and yaw rate better than
any previously existing controller. They also demonstrate
a fall-recovery policy trained with the same methodology
that can successfully get up from difficult configurations,
although policy transitions occur only at static robot con-
figurations. [4] demonstrated a learning framework capable
of reproducing all common bipedal gaits for Cassie on a
single policy that does not use expert reference trajectories.
The resulting policy could continuously transition between
different bipedal gaits by adjusting a left and right foot
cycle offset parameter. However, this framework is unable
to express maneuver sequences that fall outside what can be
expressed by varying a single gait cycle offset parameter.

B. Learning Behavior Transitions

Data-driven learning approaches has also been used to
learn different locomotion skills as well as smooth transitions
between them, although research in this area is mostly
confined to impressive simulation results, and published
hardware results in this area is rather preliminary. [10]
demonstrated successful sim-to-real transfer of switching
between forward and backward walking on a single policy
trained with atomic, task-specific reward functions. Similarly,
learned locomotion control policies have shown to be capable
of assuming different gait behaviors to negotiate terrain
obstacles and gaps. [11] demonstrated the emergence of ro-
bust obstacle clearing behavior for torque-controlled legged
agents by training control policies using simple reward
functions in obstacle-rich simulation environments. These
examples of prior work engineer the agent-environment inter-
actions to encourage the emergence of multiple locomotion
modes, which limits the amount of control one can have
over the possible actions and strategies adopted by the agent,
and may also lead to unexpected environment exploitation.
Related work from the computer graphics community has
demonstrated impressive results in motion synthesis for
animated characters by learning from motion capture datasets
[12], [13]. [14] used RL to train an physically-simulated
agent to mimic behaviors from reference motion capture data
on a single network. Their results were able to reproduce a
diverse array of behaviors from the sample data, and was also
able to generalize to some behaviors unseen during train-
ing. Similarly, [15] used RL with a generative adversarial
motion-prior component to train a simulated character for
motion synthesis of complex and highly dynamic behavior
sequences. [16] demonstrated that the RL framework of
[15] can transfer to hardware on a quadrupedal robot, but
only basic locomotion behaviors were shown to transfer to
hardware after training to mimic dog motion capture data.

C. Model Based Methods

Trajectory optimization (TO) is a widely used technique
in motion planning for modern dynamic legged locomotion
[3], [17]-[19]. In this context, trajectory optimization is
a tool used to yield a plan for future robot states given
an initial state, such as contact wrenches and center-of-
mass (CoM) positions. The fidelity of the model used for
TO varies from detailed, full-order dynamic and kinematic
representations of actual hardware [18] to reduced-order
dynamic, full-order kinematic models [20], down to minimal
centroidal/SLIP models amenable for MPC [2], [21]. In this
work, we choose to use the single rigid body model for
its ability to capture linear and rotational dynamics while
being easy to describe mathematically. TO-based control
techniques for legged robots have also shown success in
composing behaviors in recent work. [2] used a MPC strategy
to execute running leaps for the Cheetah 2 robot over obsta-
cles. [22] used offline TO to generate jumping trajectories
and a separate MPC style landing controller that targeted an
optimal distribution of foot contact forces to perform jumps
and successful landings for Cheetah 3. [23] demonstrates
jumping behaviors on Cassie using a model based controller
that tracks a reference trajectory generated by applying direct
collocation to the hybrid dynamics of a jump sequence on
a reduced order spring-mass model. [24] achieved smooth
transitions between a large variety of different behaviors by
using TO to generate a pre-computed motion library, and
targeted sequences of desired library motions using MPC
that plan over shorter time horizons. This approach is similar
to the approach taken by Boston Dynamics [25] for recent
work on the Atlas bipedal robot. Model-based methods are
capable of producing complex, dynamic behavior on legged
robots, but they are challenging to implement, and expensive
to evaluate. In comparison, training control policies using RL
algorithms are a more straightforward method of transferring
dynamic motion plans to controllers for the full-order robot.

III. METHODS

A four step 90° right turn was selected as the target
behavior for the control policies in this work because its
aperiodic and highly dynamic nature marks a significant
departure from the dynamical regime of regular walking.
We anticipate that such behaviors will be difficult to learn
and thus choose to rely on reference trajectories in order to
guide the policy learning. Control policies trained to execute
the turning behavior are expected to start from a pretrained
walking policy, follow the reference turning trajectory, and
should transition back to the walking policy at the end of
the turning maneuver. Matching the terminal state of the
reference trajectory is not guaranteed to permit successful
transitions back to walking policies, so turning policies must
learn how to deviate away from tracking the reference data to
facilitate successful transitions. This challenge is addressed
using epilogue rewards detailed in Section III-E, and is a
novel component of our proposed learning framework. We
train recurrent control policies to perform four-step, 90° turns
using Proximal Policy Optimization (PPO) in simulation
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Fig. 2. Plot of the reference trajectory for a 2.5 m/s, four-step turn from
the optimized single rigid-body model moving left to right. The thick line
represents the center of mass path, with different colors showing the different
stance phases. Thin lines show leg positions at the start and end of stance
phases.

[26]. The simulator we use is MuJoCo, extended with the
robot’s state estimator and noise models!. Previous work
has shown that highly accurate simulations such as this
are effective at producing control policies that transfer to
hardware with no additional adaptation [4], [10], [27].

A. Reference Trajectory Optimization

Dynamic legged maneuvers require abrupt changes in
linear and angular momentum while heavily constrained
by underactuation constraints. We hypothesize that in these
contexts reference information could be more useful than
it was previously shown to be in nominal, steady-state
locomotion. To provide a rich library of reference motions
we perform trajectory optimization with an SRBM, repre-
senting a reduced-order model of locomotion. The SRBM
approximates the complex multibody dynamics of a robot
into a single rigid-body with dynamics that are manipulated
via ground reaction forces applied at footholds. We apply
a widely-used, prescribed contact sequence, direct colloca-
tion trajectory optimization method [28]. This allows the
optimization to adjust foot timings, but not the sequence of
contacts. This is not overly restrictive as bipedal robots have
only a small space of feasible contact patterns. Our contact
pattern for four-step turns is a grounded run consisting of
alternating phases of single-stance with instant transfer. We
apply a set of transferability constraints which ensure the
resulting trajectories are more directly applicable to the target
Cassie robot. These include maximum ground reaction force,
friction cones, maximum yank (time rate of change of force),
leg length limits, and foot placement constraints to prevent
leg crossing. More details on the library generation method
can be found in [6].

The resulting library of turn references spans from 0.0
to 2.5 m/s. The 2.5 m/s turning trajectory is shown in

!'Simulation available at https:/github.com/osudrl/cassie-mujoco-sim
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Policy Input Size
Pelvis Orientation Quaternion 4
Pelvis Angular Velocity 3
Pelvis Translational Acceleration 3
Joint Positions and Velocities 28
Maneuver Progression 1
Clock Signal 2
Target Forward Speed 1

TABLE I
THE INPUTS INTO THE LEARNED CONTROL POLICIES. ALL STATE
INFORMATION IS ESTIMATED FROM REAL OR SIMULATED SENSOR DATA.

Fig. 2. The trajectories have smoothly varying body motions,
footstep locations, ground reaction forces, and step timing.

B. Policy Network Design

The policy architecture used in this work is derived
from previous work on applying LSTM networks to bipedal
locomotion control [29]. Both actor and critic networks are
LSTM RNNs of size 128x128. The state space inputs to
our control policy concatenates information from the robot
state estimator along with a maneuver progression counter,
two periodic clock waveforms, and a target forward heading
speed for a total input space size of 42. The breakdown of
the state space is shown in Table 1.

The action space of the policy consists of position targets
for all 10 actuated joints on Cassie. The actions are updated
at our nominal policy control rate of 40hz, which are then
sent to joint-level PD controllers running at 2 kHz.

C. Reward Function Formulation

To support an ablation study, we trained policies using
different reward functions, Full Reference, Subset Reference,
Foot Timing, and No Reference, each with a different set
of additive reward components that capture different aspects
of reference information. Table II gives the individual com-
ponent weights for each of the four reward functions. All
weights are rounded the nearest percentage point.

The following reward components are common across all
four reward function variations:

o A contact mode reward 7contact, Which specifies when
each foot should be in swing or in stance with a
piecewise linear clock function. The gait parameters that
define such a function (stepping frequency and swing
ratio) is calculated from the reference information. We
refer readers to previous work [27] for further details.
Action smoothness, torque cost, and motor velocity
costs on the hip roll and yaw motors make up 7cy-
These terms, along with self collision avoidance rewards
reon help promote successful sim-to-real transfer. To
implement ., We use Ssite as the distance between
points of interest on Cassie’s legs, such as the inner
edge of the heelsprings and the ankle joint crank. This
measurement defines the collision avoidance heuristic
that penalizes the policy for small sg54e Values.

— 1OOSsite )
6

The four reward functions are summarized below.

+3 (1)

Tcoll = €XP (_
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Reward Full Ref. Sub Ref. Foot Timing No Ref.
pref 6 3 - -
rier - 20 20
Tvxy 22 - -
Tvy 3 - - -
Tposexy 13 22 - -
Tpose, - - -
TL 9 - - -
Tcontact 38 32 53 53
Tetrl 19 22 27 27
TABLE II

REWARD COMPONENT COMPOSITION AND WEIGHTING PERCENTAGES.

1) Full Reference: The tracking components of the reward
function include pelvis yaw angle (), pelvis linear velocity
(v), pelvis angular momentum (L), and the relative distance
vector between the pelvis COM and the stance foot (pose).
They are given by

ref ref

Ty = eXp | wpelv pelv)’) 2)
ry = exp (= [[2(vperv — v )l 3
rL = exp (— || Lioay — Ly ||, “)
Ppose = XD (= [|5(Ppose — Phce)[|,) 5)

2) Subset Reference: Includes only a subset of full ref-
erence rewards, specifically r{ff,rvxy,rposexy,rcomact,rcm
Notably, this omits the angular momentum tracking term
in equation (4), as well as tracking only the planar z,y
components of ry and 7pgse. This particular reward function
was chosen because tracking angular momentum was found
to have no qualitative effects on the behavior of the resulting
policies.

3) Foot Timing: Omits all tracking rewards (2) to (5)
and only consists of rmterp , Teontacts el The only reference
information present in the reward is the gait parameters for
the contact mode reward term. r;‘b"erp replaces 77" and tracks
a yaw target that linearly interpolates between 0 and — /2
within the timespan of the reference turning maneuvers
instead of the optimized yaw trajectory wggv.

4) No Reference: A reference-free policy similar to Foot
Timing that also omits the tracking rewards (2) to (5). It

interp . .
uses 7, Ieontact; cirl exclusively, but in contrast to Foot
Timing, the gait parameters for 7¢once are set by a hand-
tuned heuristic. Thus, this policy uses no information from

the reference trajectory.

D. Episode Initialization

The beginning of a training episode for turning needs
to be reset to a configuration that is a close match to
the starting SRBM configuration specified by the turning
trajectory. For this purpose, a set of initialization poses
Pii(v,0) is generated by executing a pre-trained running
policy in simulation for a sweep of commanded speeds that
match the speeds v of the trajectories in the reference library.
The configurations [g, ] of Cassie within a range of gait
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Fig. 3. Visualization of a PPO rollout during training. After being initialized
from a 7W* pose, wt“"™™ is evaluated until the end of the turning
maneuver. If 7t%"™ completed the turning maneuver, 7% subsequently
takes over to generate the epilogue reward.

phases 6 before and after a left-foot swing apex (the starting
point of the reference trajectories) are saved to P;n;;. On every
reset, the configuration state of Cassie is uniformly sampled
from the set of poses in Py for a desired initial speed.

E. Epilogue Reward

Since we want to transition back to walking after executing
a turn, the turning policy should fulfill the terminal objective
of ending in a state that can successfully initialize walking in
order to return to a nominal locomotion gait. We introduce
the novel concept of training with an epilogue reward as
a component of our training framework in order to allow
turning policies 7% to successfully switch back to the
nominal locomotion policies 7%* once the turning policies
have reached the end of the reference trajectory states.

At the end of a standard PPO rollout, the critic value for
the final state V;(St) is used as the terminal value in the
discounted chain of rewards received at each episode step to
estimate the sum of any future discounted rewards [26]. This
is analogous to calculating the n-step temporal-difference
(TD) returns, where the final value is an estimate for the
uncollected rewards beyond the n-step horizon [30]. The
epilogue reward is an alternative terminal value computed
at the end of a 7' training episode. It is the discounted
sum of returns of the epilogue episode which starts when
the turning policy has successfully reached the end of its
maneuver. During the epilogue episode, the walking policy
7wk takes over from the last state of the turning episode
(normal PPO rollout of the 7™™ turning policy), and is
evaluated deterministically for k simulation steps. In essence,
rather than just using Vv to estimate how well the turning
policy can transition back to the walking policy, we actually
rollout the walking policy for some steps and use the
resulting rewards as a terminal value estimate. Formally, the
epilogue reward is

T+k

(e

where k is the length of the epilogue, T is the length of
the turning maneuver, R, is based on the reward function

7rturn ST 1) + ’ykvﬂ-walk(STJrkJrl) (6)
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Parameter Range Unit
Policy Control Rate [0.95,1.05] x default Hz
Joint Encoder Noise [-0.05, 0.05] rad
Joint Damping [0.8, 2.5] x default Nms/rad

Link Mass [0.9, 1.5] x default kg

Friction Coefficient [0.45, 1.3] -

External Force Magnitude [0, 40] N

External Force Dir. (Azimuth) [0, 27] rad

External Force Dir. (Elevation) | [0, %] rad

Initial Pelvis Velocity (x) [-0.3,0.3] + default m/s

Initial Pelvis Velocity (y) [-0.4,0.4] m/s
TABLE 111

RANDOMIZATION RANGE PARAMETERS

used to train 7%, and V.« is the critic trained for the
walking policy. To the best of the authors knowledge, the use
of non-standard terminal values such as our epilogue reward
has not been explored in prior work within the domain of
RL-based controllers for legged locomotion. Modifying the
estimate of future returns in this manner incentivizes w*%"™ to
terminate in a configuration [g, ¢] amenable for the execution
of m**¥ by maximizing the epilogue returns for continued
walking. As a control for the epilogue, we also compare
turning policies trained using a k value of 120 against their
no-epilogue versions trained using the same parameters, but
with k set to zero.

FE. Dynamics Randomization

We applied dynamics randomization as described in [29]
during the training process of our turning controller to help
close the sim-to-real gap and enable a successful transfer
to real hardware. In addition, we also apply a constant
perturbance force to the robot pelvis over the course of a
training episode with a randomly sampled magnitude and
direction in order to promote the emergence of robust turning
behaviors. The details of our randomization parameters can
be found in Table III.

IV. RESULTS

To evaluate the utility and necessity of our optimized
SRBM trajectories and the epilogue reward, we assess and
compare the set of policies proposed in Section III-C and
Section III-E in simulation for their performance and turning
behavior characteristics.

We also present successful sim-to-real transfer of a selec-
tion of the policies tested in simulation in our submission
video.

A. Simulation Results

1) Sample Efficiency: We plot the learning curves for each
policy in Fig. 4 to compare the sample efficiency of our
turning policies. Since each policy is trained with different
reward functions, the reward values attained by each policy
can not be used to form conclusions about their relative
performance. Instead, we compare policies by the number
of samples to convergence, shown for each turning policy
by star symbols in Fig. 4 that mark when each policy first
surpassed 97% of the maximum reward value experienced
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Fig. 4. Comparison of sample efficiency for our proposed turning policies.
Note that the absolute scale of the different curves are not necessarily
comparable since each reward function include different reward components.
The star symbols mark the time to convergence for each policy, which is the
first point on the learning curve that exceeds 97% of the maximum reward
seen during training for the first time.
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Fig. 5. Plot of footstep touchdown locations and pelvis trajectory for

the reference data, Full Reference and No Reference policies for a turning
maneuver executed at 2.5m/s, showing how the turning behavior differs
between policies trained with and without the use of TO data. All reference-
based policies used in this work executed similar footstep touchdown
locations and pelvis trajectories, so only Full Reference is compared against
No Reference for clarity. The ability of the SRBM to serve as a useful
model for Cassie can be seen by how closely turning maneuvers executed
by policies trained using reference data matched the reference trajectory.
during training. Notably, the policies that use less informa-
tion from the optimized trajectories converge slightly faster
than the policies that follow the SRBM reference trajectory
more faithfully. We hypothesize that the learning speed
disparity may be attributed to model differences between
the SRBM and Cassie’s dynamics leading to conflicting
interactions between the tracking reward terms. This may
cause policies that track more of the reference data to require
more samples in order to learn to optimize for multiple
conflicting objectives before convergence.

2) Turning Behavior: Fig. 5 compares the turning trajec-
tory of the Full Reference and No Reference policies for

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on February 14,2023 at 01:36:37 UTC from |IEEE Xplore. Restrictions apply.



I
—— No Reference
= = Foot Timing
Subset Reference
+ Full Reference
Reference Yaw Angle

—0.25 4
—0.50 1
—0.75 4 Step

—1.001

—1.2519

Pelvis Orientation (rad)

step 3 \%‘i\\,

0.00 0.'25 0.150 0.'75 1.60 1.'25 1.'50 1,'75
Maneuver Duration (s)

step 1

step 2

-1.501

Fig. 6. Simulated pelvis yaw angles for various turning policies over the
course of a turning maneuver. The Foot Timing and No Reference policies
were not trained to track the reference data yaw trajectory shown in solid
red. The Full and Subset Reference policies deviate the most from the target
yaw angle in order to fulfill competing reward objectives, and their motions
also qualitatively appear the best in simulation.

a single sample trial in simulation against the trajectory
prescribed by the reference data. Since the No Reference
policy is trained to match a footstep contact schedule set
by a heuristic instead of following the trajectory data, it
completes the 90° turn in seven steps rather than four. As
a result, the pelvis trajectory and footstep placements differ
from the reference data since it is trained to not track the
reference data. This is in contrast to the Full Reference
policy turning behavior, where the features of the pelvis
trajectory is similar to that of the reference data, and the
placement of its stance feet relative to the body also closely
match those of the reference. Policies trained on subsets of
the tracking rewards all produce four-step turning behaviors
similar to the results of the Full Reference policy, indicating
that the only necessary reference trajectory information for
training policies to perform four-step 90° turns is a feasible
footstep contact schedule. However, our results explained in
the next section suggest that the choice of data tracked by the
reward function from the trajectory data seem to affect the
robustness of policies trained using it. Fig. 6 illustrates the
change in orientation of the robot pelvis over the course of a
turning maneuver, which is not communicated by the pelvis
COM trajectories illustrated in Fig. 5. The Full Reference
and Subset Reference policies are the two policies rewarded
to track the optimized body yaw angle trajectory, but deviate
noticeably from the target yaw trajectories at the beginning
of the first and third footsteps. This is likely caused by the
policies learning to maximize rewards of multiple conflicting
objectives from the reference data, such as pelvis linear
velocity and body yaw angles. The No Reference and Foot
Timing policies on the other hand do not use the reference
yaw data.

3) Policy Robustness: We simulate 1000 trials of 2.5m/s
turning maneuvers for each turning policy to assess its ability
to complete a turn and switch back to 7%** successfully
in the presence of a constant perturbance force applied to
the body during the execution of the turning maneuver. A
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Fig. 7. Robustness comparison between Full Reference, Subset Reference
and Foot Timing policies trained with epilogue and the same policies trained
without using the same method as Fig. 8. The epilogue improved the
likelihood of successful walking transitions for all turning policies.
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Fig. 8. Robustness comparison between our proposed turning policies

conducted for 1000 turning maneuver trials at 2.5m/s. The step labels denote
the reference data step progression timings produced by TO. Since the No
Reference policy is trained to follow a contact schedule set by a heuristic,
the step labels do not apply to this policy.

random direction is sampled before each turning maneuver
trial, and a constant force of 35N is applied in the chosen
direction. The time at which the the policy falls over is
logged for each trial to produce the policy survival plots
shown in Figs. 7 and 8. From Fig. 8, policies trained with
more of the reference trajectory data are more robust at
rejecting perturbance forces, with the exception that the No
Reference policy outperforms the Foot Timing policy during
the turn maneuver. The Full Reference policy was the most
successful at completing the four step turn without falling.
Fig. 7 compares the effects of training with and without
the use of epilogue rewards in simulation. Policies trained
without the epilogue used a terminal value V,(St) com-
puted by simply evaluating the walking policy ¥ critic
network. Across all reward functions, policies trained using
the epilogue are observed to be more likely to successfully
switch to walking than their counterparts trained without.
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B. Hardware Results

During our outdoor hardware tests, we were able to
demonstrate successful turning maneuvers and policy switch-
ing on artificial turf with the No Reference and Full Reference
policies. The Subset Reference policy was also tested, but we
were unable to switch back to the walking policy without
falling. Due to the logistical challenges of running field tests
for dynamic maneuvers, we are unable to provide quantitative
reliability data and performance metrics for turning policies
on hardware. We also successfully tested the Foot Timing
policy indoors on multiple low speed turns performed in
succession. While our simulation results indicate that the
Full Reference policy should perform more consistently than
the No Reference policy on real hardware, we observed
that the No Reference policy was more consistent than the
Full Reference policy at turning and transitioning in our
outdoors tests. On hardware, the Full Reference and Subset
Reference policies modulate the pelvis pitch, in contrast to
the No Reference and Foot Timing policies, which keep the
pelvis fairly level throughout the turn. This is consistent
with what we see in simulation, although the Full Reference
pelvis pitching motion in simulation appeared much more
dynamic and continuous than our corresponding hardware
results, where an awkward downward angle is maintained
throughout the entire turn. We also found that the pelvis
orientation state estimates deviated significantly from the
actual orientation during turning attempts of Full Reference
and Subset Reference policies. The No Reference and Foot
Timing policies did not appear to suffer this state estimation
bug, suggesting an issue with the sensor readings that feed
our orientation state estimates under certain situations. This
may be related to why our hardware results differ from
what our simulation results predict. Despite this, the Full
Reference policy performed the best on hardware out of the
reference based policies for turning at speed. We refer readers
to the attached video for full hardware results.

V. CONCLUSIONS

In this work, we present a novel learning framework to
generate aperiodic behaviors using SRBM trajectories on the
bipedal robot Cassie. From our simulation rewards, we see
that the Full Reference policy trained to track all the data
available from the reference trajectory is the most robust
policy tested in sim. Policies trained to track minimal to no
reference data are significantly less capable than the Full
Reference at rejecting disturbances. From our results, the
availability of reference turning trajectories aid policies to
discover good strategies for executing the desired maneuver.
Epilogue rewards introduced in this work have the poten-
tial to significantly improve the probability of successful
transitions between different locomotion policies. However,
our tests also indicate that the efficacy of the epilogue
may be dependent on the choice of reward function. While
our methods exhibited promising results in simulation, we
encountered difficulties with sim-to-real and were unable
to fully transfer the success of our simulation results to
hardware field trials. The Full Reference still performed the
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best on hardware out of the reference based policies, but was
not able to execute transitions back to the walking policy as
consistently as the No Reference policy. A possible reason
for the performance gap might stem from issues with the
hardware state estimator producing inaccurate orientation
estimates when large pelvis accelerations are experienced
during the execution of turning maneuvers at higher speeds.
Our reference-based policies command much larger pelvis
pitch angles over the course of a turn than the No Reference
and Foot Timing policies which may have exacerbated the
state estimation problems.

Although we only address learning a 4-step right 90° turn
maneuver in this work, our methods can clearly be applied to
learning other singular turning maneuvers at different angles.
We can also see our framework being able to learn multiple
turns given a more diverse trajectory library set that includes
turns at varying angles and different number of steps. Such
a policy could likely interpolate between the turn maneuvers
in the library and learn to generalize, though it is unclear
how many different turns a single policy could handle.

One drawback of this learning framework is its tedious
implementation procedure and lack of ability to scale to
handle diverse behavior trajectory libraries, as there are at
most n(n — 1) number of transition policies to train for a
library of n behaviors. Future avenues of research could build
upon this work by investigating how to effectively switch
between large sets of individual behavior policies in order to
allow for the execution of more complex dynamic routines
such as dancing or parkour. Quantitatively identifying the
limit to behaviors that can be produced by a single policy
network would be a useful insight to know when switching
between multiple policies should be considered. Using data
driven methods to learn motion skill embeddings that are
then used to train control policies similar to [12] are also
promising next steps.
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