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Abstract— In this work, we propose a learning approach for
3D dynamic bipedal walking when footsteps are constrained
to stepping stones. While recent work has shown progress on
this problem, real-world demonstrations have been limited to
relatively simple open-loop, perception-free scenarios. Our main
contribution is a more advanced learning approach that enables
real-world demonstrations, using the Cassie robot, of closed-
loop dynamic walking over moderately difficult stepping-stone
patterns. Our approach first uses reinforcement learning (RL)
in simulation to train a controller that maps footstep commands
onto joint actions without any reference motion information. We
then learn a model of that controller’s capabilities, which enables
prediction of feasible footsteps given the robot’s current dynamic
state. The resulting controller and model are then integrated
with a real-time overhead camera system for detecting stepping
stone locations. For evaluation, we develop a benchmark set of
stepping stone patterns, which are used to test performance in
both simulation and the real world. Overall, we demonstrate that
sim-to-real learning is extremely promising for enabling dynamic
locomotion over stepping stones. We also identify challenges
remaining that motivate important future research directions.

I. INTRODUCTION

Bipedal robots have advantages over wheeled and
quadruped robots in many environments, especially those
designed for human locomotion. However, current bipedal
systems are still far from reaching animal levels of agility
and robustness, especially over highly constrained discrete
terrains such as stepping-stone-like environments. In order to
traverse such environments, the robot must reason both about
its own dynamics and the surrounding terrain to determine
achievable footstep locations while maintaining balance[1].
The primary goal of this work is to study a learning-based
approach to this problem that learns a controller for achieving
specified footsteps and a model of the controller’s reachable
footsteps given the robot state.

Dynamic bipedal walking over discrete terrains requires
controllers to deliberately target each footstep, while traveling
at a reasonable speed and maintaining balance. Several
previous works focus on using model-based techniques to
design controllers, such as using an offline gait library and
online interpolation [2, 3], a control barrier function [4], or
reduced-order models [5]. These techniques often involve a
sequence of optimizations that must be computed online.

Reinforcement learning (RL) approaches have the potential
to learn a fast online controller via large amounts of
offline training in simulation. Sim-to-real RL has recently
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Fig. 1: The robot Cassie only knows the immediate next footstep
target, and is reaching to the next marker. A fixed camera is placed
overhead of the treadmill area to provide a real-time estimation
of Cassie’s position relative to the next footstep target shown as
the markers on treadmill. Green dots in simulation are the footstep
targets. Cassie performs the same stepping stone pattern between
hardware and simulation.

demonstrated highly-dynamic bipedal gaits on hardware
without explicit constraints on footstep locations [6–8]. RL
has also recently produced controllers that enable legged
robots to walk over discrete terrains, e.g. using curriculum-
based training of bipeds for simulation only [9] or hierarchical
control structures for quadrupeds [10–14]. These techniques,
however, have yet to demonstrate real-world bipedal dynamic
walking over stepping stones. Most recently, sim-to-real RL
has demonstrated bipedal walking for open-loop footstep
constraints that are known before deployment [15]. However,
there is currently no RL-based approach that has demonstrated
closed-loop control of bipedal dynamic walking over stepping
stones.

In this paper, we fill this empirical gap by significantly
extending prior work [15] in order to produce real-world
demonstrations of a closed-loop system. Our specific contri-
butions include:

• We propose a new learning-based control architecture for
dynamic walking stepping stone policies that control both
the motor actuation and the step frequency. Further this
new architecture supports bootstrapping from previously
learned controllers for unconstrained locomotion.
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• We learn a predictive model that encodes raw obser-
vations into a latent dynamics space where reachable
footstep locations can be predicted for lookahead.

• We demonstrate sim-to-real learning of the controller and
predictive model that are evaluated both in simulation
and on the real robot Cassie.

• We propose an evaluation approach in terms of a set of
benchmark stepping stone patterns that can be used and
extended in future research to track progress.

II. SIM-TO-REAL LEARNING FOR STEPPING STONES

Here, we discuss the architecture of the control policy and
the corresponding sim-to-real RL training approach.

A. Control Policy Design
We follow common terminology used in RL where the

goal is to learn a reward-maximizing control policy that takes
observations as the input and produces actions as the output. In
this paper the main objective of the control policy is to allow
the robot to reach the next footstep target while maintaining
balance. Below we describe the observation space, action
space, and overall architecture of the policy.

1) Observation Space: The input observations to the policy
includes: 1) the robot proprioceptive observations, providing
the position and velocity of each motor (10 motors in total)
as well as the body orientations and angular velocities, 2) a
periodic clock value ϕ that is reset to zero when the period
ends, and 3) the footstep command for the immediate next
step, given as the relative position from the base frame of
the pelvis to the target. In this work, footstep targets lie
in the same vertical plane and hence are two-dimensional.
Targets for the next step are updated based on the value of
the periodic clock, which aligns with foot touchdown events.
This target update rule synchronizes the observations and the
reward during training (see Section II-B.2), since no explicit
ground force contact is fed into the policy. Importantly, this
ego-centric encoding of footstep commands avoids the need
for real-time estimation of ground contacts and feet positions.

2) Action Space: Following prior work [15], the RL policy
operates at 40Hz and outputs PD set-points for all motors,
which are provided to PD controllers operating at 2kHz. In
addition, our RL policy outputs a clock increment ∆ϕ, which
adjusts the clock value by ϕi+1 = ϕi +∆ϕ at each control
update. This choice is motivated by biomechanics studies
[1, 16], which show that the stepping frequency plays an
important role in adjusting the system dynamics to robustly
vary the step length.

In the most closely related prior work [15], hand-crafted
heuristics were used to adjust the clock period, which is
tedious since the choice of step frequency interacts with
system dynamics and the overall learning process. Rather,
in this work, our policy directly learns to jointly control
the clock period and PD set-points in order to maximize
overall reward. We limit the range of the clock period so
that gait cycle times are constrained to be within [0.65, 1.2]
seconds. Importantly, the clock period is updated at 40Hz,
which allows the learned solution to adjust to sudden changes
in step size.

LSTM
Dynamics 

Module
FF

clock

PD targets

clock increment

footstep
commandoverhead camera

or simulation

proprioceptive

states

Fig. 2: To allow for bootstrapping from pretrained policies while
having different inputs, the policy network has a LSTM module
which only consumes proprioceptive observations. The feed-forward
(FF) layer concatenates the output of the LSTM layers with a
periodic clock and the commands and eventually outputs the motor
actions. This means we can re-use the LSTM layers, because it is
not affected by the task specific inputs like commands.

3) Policy Architecture: We use a neural network to repre-
sent the policy for mapping observation sequences to actions.
Training footstep-constrained policies from scratch using RL
is computationally expensive, requiring hundreds of millions
of simulated time steps. Thus, in this work, we introduce a
novel neural network architecture for the policy that supports
transfer from previously learned locomotion policies to speed
up learning. A challenge is that previously learned locomotion
policies will typically use different observation and/or action
spaces and be optimized for different reward functions.
However, nearly all such policies will use the proprioceptive
observation as one of the inputs for encoding the dynamic
state of the robot. Thus, our new architecture is divided into
a module that solely encodes the history of proprioceptive
observations, which can be transferred between policies.

More specifically, we decompose the neural network policy
into two parts as shown in Figure 2: one to handle the robot’s
proprioceptive inputs as an LSTM dynamics module, and
another feed-forward (FF) module to handle various types of
command inputs that may differ among tasks. For our stepping
stone application, the feed-forward module outputs motor
set-points along with the clock increment ∆ϕ. Intuitively,
the dynamics module is intended to provide a generic, but
useful, representation of the robot’s dynamic state based on
the history of observations, which is useful for a variety of
tasks. Our proposed architecture allows for initializing our
dynamics module with modules learned from previous tasks,
even if the previous tasks required different command inputs.
This is a form of transfer learning that is common in other
areas of machine learning, such as computer vision where
pre-trained models are commonly used as starting points for
learning. Our experiments show that this type of transfer can
significantly speedup learning of stepping-stone locomotion.

B. Training in Simulation

We follow a sim-to-real RL training approach similar to the
the most closely related prior work [15]. Below we provide
an overview of the approach and refer the reader to that
prior work for more specific training details. In addition,
we describe our transfer learning approach which is a new
addition to this work.
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1) Training Scenario Generation: All training is conducted
in simulation using the Proximal Policy Optimization (PPO)
[17] RL algorithm. To help support reliable sim-to-real
transfer we use the same dynamics randomization technique
of prior work [18]. In particular, each training episode uses
a set of randomized physical parameters (e.g. friction, center
of mass, etc.) drawn uniformly from a range of values,
which encourages the learned policies to be robust to those
variations.

For each training episode, we randomly pre-generate a
sequence of relative footstep commands to ensure that the net
movement of the robot over an episode follows meaningful
walking directions, such as forward, backward or stepping in
place. During training, we input commands from the sequence
in order. This supports training on a wide variety of footstep
commands from a wide variety of dynamic states.

2) Reward Function: We use the same reward function as
prior work [15], which depends on the periodic clock, the
robot state, and the command inputs. The reward encourages
alternating swing and stance phases to align with the clock
as well as reaching the next footstep target, which is an
input to the policy. Note that the footstep commands are over
continuous flat terrain, and thus complete failure or episode
termination will not occur if the robot misses a step, the robot
will just incur low reward. This training setup encourages the
robot to trade-off between maintaining balance and reaching
to the footstep target. Thus, the footstep matching reward
acts as a soft constraint that the robot may violate in favor
of not falling down, in order to collect more reward through
out the training episode.

3) Transfer of Pre-trained Dynamics Module: Training the
neural network policy from scratch for challenging locomotion
tasks can require days of training on multiple processors.
To test the potential speedup, we consider transferring a
pre-trained dynamics model from a conventional dynamic
walking policy. Specifically, we train a regular locomotion
policy that is able to achieve speed and direction commands
following prior work [7]. The only adjustment is that we use
the above policy architecture, which includes the dedicated
dynamics module, but with the desired speed and direction
used as command inputs rather than footstep targets. After
fully training this policy, the dynamics module was saved
for transfer. Next we trained the stepping-stone policy by
initializing it with this pre-trained dynamics module. During
training, PPO is used to adjust the parameters of the entire
network, including fine-tuning the dynamics module.

III. LEARNING A REACHABILITY PREDICTION MODEL

Planning for footsteps needs to reason about robot’s
dynamics along with the control policy. To this end, we learn
a step error prediction model which we call the reachability
model. The reachability model maintains a latent dynamic
state of the robot, which is used to predict: 1) the step error of
the current step target, and 2) the next latent robot state after
touchdown of the current step attempt (Figure 3). We use this
model to deduce the reachable region as potential step targets
where the predicted step-error is less than some threshold.

Encoder
Predictor

Predicted error

Predicted latent state
at next touchdown

Fig. 3: For the reachability prediction model, where the encoder
produces the latent dynamic states and the predictor can be called
recursively using its own output as input for multi-step prediction.
Both modules are MLPs with 1 hidden layer (size of 128).

Since the model also produces the next robot latent state,
the model can also be used to direct multi-step look-ahead
search for highly constrained terrains.

A. Training Data Collection

We use the fully trained policy to collect data. During data
collection, each episode first runs the policy by providing it
with a randomized footstep command that is fixed for several
steps, which we refer to as the procedural steps. After the
procedural steps the robot state is recorded and will be used
to generate multiple training examples. We then perform
the collection step, where each training example is created
by selecting one of the procedurally-generated robot states
and then executing the policy with a randomized step target.
The step error ϵ for each of the step targets is recorded as
ground-truth values for training. This process is repeated
with the same procedural steps and different collection step
commands to cover a full range of X-Y Cartesian space
of footstep commands. Thus, each randomized procedural
command embodies a range of collection step commands. For
our purposes, we limit the step target range to be within [0,
0.5]m in the X-direction and [-0.2, 0.2]m in the Y-direction
for randomizing the procedural steps and the collection steps.
The result is a supervised training set of robot states, footstep
targets, and the error that resulted after attempting the step.
Each training tuple has the form (si, si+1, ci, ϵi), where si
is the initial robot state, ci is the target step, si+1 is the
robot state after touchdown, and ϵi is the touchdown error
with respect to ci. We use approximately 500K tuples for the
training dataset.

We investigate different variations of the above data
collection method to observe the impact on model accuracy.
The variations include: 1) Using dynamics randomization
during data collection, 2) Adding a small amount of noise
into the procedural step commands at each touchdown, 3)
Averaging multiple step errors around the final procedural
touchdown to account for contact uncertainties, and 4)
Vanilla, without any additional scheme. We evaluate and
compare each of these methods in Section V-C. We collect
separate evaluation data to test the models for a more candid
comparison of the potential models instead of segregating
each dataset into test and train sets. The evaluation data is
collected by randomizing the step targets at each touchdown
during the procedural steps.
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Fig. 4: A set of stepping stone patterns that gradually change the number of required footsteps and the difficulty. The patterns are designed
with step length and step direction, where blue/yellow symbols indicate left/right sides.

B. Training the Reachability Prediction Model

The complete architecture of the reachability model is
shown in Figure 3. The encoder network learns a latent state
representation that aims to capture information relevant to
the ensuing touchdown error. The second network called the
predictor uses this latent representation with step targets to
predict the step error and the latent representation of the
next touchdown state. Note that this architecture, in concept,
supports auto-regressive prediction of multiple steps into the
future by feeding predicted latent states into the predictor
network.

We use feed-forward neural networks with ReLu activation
functions for each module and train them end-to-end using
supervised learning. For each training tuple (si, si+1, ci, ϵi)
the network loss function is computed as follows: The current
encoder is used to encode the robot states si and si+1 to
latent states zi and zi+1 respectively. Then, the predictor takes
in zi and ci and outputs the predicted errors for the next
touchdown ϵ̂i and the prediction of the next latent state ẑi+1.
The loss L for the training example is then just a weighted
error of each prediction. That is,

L = (ϵi − ϵ̂i)
2 + γ(zi+1 − ẑi+1)

2

where, γ = 5 is the weighing constant.

IV. EXPERIMENT SETUP

This section explains our experimental setup for simula-
tion and hardware. First, we describe a benchmark set of
stepping-stone patterns. Second, we describe our perception
system, based on an overhead camera, for providing real-time
information about footstep targets.

A. Stepping Stone Patterns for Evaluation

Ideally an evaluation should enable multiple researchers
to compare performance across varying robot platforms. To
enable such comparisons, we designed a set of 8 stepping
stone patterns of varying difficultly, which are illustrated

in Figure 4. Each pattern specifies a number of alternating
left-right footsteps and specifies the distance and direction
between successive steps. The set of patterns were designed
to span different dimensions of difficulty. One dimension
is the number of steps, which tests the ability to address
error accumulation over successive step sequences. A second
dimension is to vary the length and angle of steps, with more
extreme values tending to be more difficult. Finally, a third
dimension is to vary the relative length and/or angle between
successive steps, e.g. a short step followed by a long step,
which tends to increase difficulty with more abrupt changes.

In simulation we quantitatively evaluate policies on the
patterns via the average and maximum step error as measured
by the mid-point of the foot at touchdown relative to the
center position of the footstep target. The maximum error is
particularly informative, since it indicates the minimum size of
a stepping stone that would have led to a successful traversal
of a pattern. Such quantitative evaluation is more difficult on
real hardware and we instead report visual assessments of
performance in this paper.

Note that these patterns are designed for the robot to exactly
follow the specified steps rather than needing to choose the
best steps. We expect that future pattern benchmarks will be
designed that also test the higher-level decision of stepping
stone selection. In this work, we provide an initial evaluation
of such decision making that is independent of our 8 stepping-
stone patterns (Sections V-C.2 and VI-B).

B. Overhead Camera for Target Footstep Estimation

In order to execute our stepping-stone policy on hardware,
the robot needs real-time information about the next footstep
target relative to the robot pelvis. Since the focus of this
work is not on perception, we simplified this problem via
the use of an overhead camera, rather than a camera on-
board the robot. Specifically, we installed a downward facing
Intel D435 depth camera positions above a treadmill area
(Figure 1). Each footstep of a stepping-stone pattern was
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Pattern Num
Steps

Avg
Error[m]

Max
Error[m]

Avg
Speed[m/s]

A 3 0.06±0.02 0.10 0.97
B 4 0.09±0.03 0.18 1.23
C 4 0.10±0.02 0.18 1.42
D 4 0.08±0.05 0.22 1.36
E 4 0.11±0.04 0.22 1.39
F 6 0.08±0.01 0.12 1.26
G 7 0.08±0.02 0.13 1.37
H 8 0.07±0.01 0.10 1.31

TABLE I: This table shows the footstep accuracy results of the
learned policy evaluated on each of the stepping stone pattern in
simulation. Errors are measured between each footstep target to the
center of the foot at the corresponding touchdown. We collect 100
trials in simulation for each pattern. The max error is the worst case
among all trials for each pattern, which usually occurs at the last
footstep for each pattern.

represented via an ArUco marker [19, 20] attached to the
treadmill at the specified relative locations. We also attach a
marker on top of the robot pelvis to track its current position
and orientation. The RGB information provided by the camera
is then used to track the marker center points, noting that
the robot corresponds to the only moving marker. It is then
straightforward to provide the relative location of the next
footstep target to the policy at any point during a pattern
traversal. In order to avoid having a cable attached to the robot,
the camera is connected to an external compute platform and
sends the information via wireless network to the robot.

V. SIMULATION RESULTS

This section presents experimental results of the entire
control system over various evaluations in simulation. First,
we test the policy in simulation over the set of patterns.
Second, we evaluate the accuracy and utility of the learned
prediction model when there is more than one footstep choice
given the nearby terrain.

A. Utility of Pretrained Dynamics Module

We compare the footstep performance of the bootstrapped
policy versus a policy trained from scratch given the same
amount of training experience. Figure 5a shows that the policy
using the pretrained dynamics module has faster convergence
to a higher reward. As shown in Figure 5b, given only 50
million samples, the bootstrap method already shows twice
the accuracy over the policy trained from scratch evaluated on
all the patterns. The fully trained policy took approximately
3 days, using 56 cores on a dual Intel Xeon Platinum 8280
server on Intel vLab. Figure 5c shows the emergent behavior
of the learned step frequency when the step length changes
from shorter to longer.

B. Simulation Performance on Stepping Stone Patterns

Given the set of stepping stone patterns, we evaluate the
learned policy in simulation. Table I shows the quantitative
results from simulation. We note that the learned policy shows
good performance on patterns A/F/G/H, as these patterns are
more uniformly spread out. The performance over patterns
B/C/D/E is degraded, since they have large changes in step
length and direction between footsteps. This is more difficult

Data collection method Avg
error [cm]

Success
rate [%]

Vanilla / Base 6.6 83.6
Dynamics randomization 9.1 73.7
Noisy Procedural steps 6.1 83.1
Noisy touchdown states 6.4 81.9

TABLE II: Each model is trained with the same hyper-parameters
values for the same number of iterations. The “Mean error” column
shows the prediction accuracy on the evaluation data for reachability
models trained with each training data collection method. The
“Success rate” column shows the 1-footstep targeting success rate
over 1000 independent trials for each data collection method.

for the policy to deal with, particularly since the policy only
knows the immediate next footstep.

C. Simulation Evaluation of the Prediction Model

1) Model Accuracy: As explained in section III-A, there
are several choices for how we could collect data to train the
footstep prediction model. We use a separate test dataset to
evaluate which data collection method is better in terms of the
corresponding trained model’s accuracy. As shown in the first
column “Avg error” of Table II, noisy procedural footsteps
produces the best accuracy among the four methods. It is
interesting to note how bad dynamics randomization performs.
This is because for similar touchdown states, we can have
greatly different step error values due to different dynamics
across experiments. This noise in the data may result in
conflicting information about what the predicted step error
should be, which reduces the accuracy of the model.

2) 1-Footstep Targeting with Prediction Model: We also
evaluate the prediction models with the learned footstep policy
to see if they can be effectively used for single step reaction.
In simulation, the evaluation task asks the robot go across
a 40cm wide gap with a single randomly placed stepping
stone of size 10× 10cm2 in the gap. Note that Cassie’s foot
is 18cm long and 2cm wide. The stone can either be on the
robot’s left or right side based on which side is about to
touchdown. During evaluation, Cassie walks towards the gap
and as soon as the predicted error is less than a threshold
(< 10cm), the policy takes in the footstep commands towards
the stepping stone and crosses the gap. A success means the
robot is able to land on the stone safely and go across the
gap without getting tripped or falling into the gap. Table II
lists the success rate for four types of trained models. We
find that the noisy procedural steps collection method results
in the best overall model since it has nearly the best success
rate for crossing the gap as well as the lowest prediction
error. As such, we use this model for the remaining analysis.

3) Prediction Model over Multiple Choices: We increase
the gap size to 60cm and randomly place 10 stepping stones
instead of just a single stone (Figure 6). The robot is initialized
with different step commands and has to go across the gap
by choosing one stone among the 10 possible choices that
is predicted to have the smallest error. It should be noted
that since the locations of the stones are random, there is
no guarantee the majority or any of them will be good
choices with prediction error less than 0.1m. Figure 6 reports
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A 0.11±0.07 0.21±0.04
B 0.15±0.06 0.26±0.08
C 0.16±0.11 0.31±0.18
D 0.19±0.11 0.29±0.18
E 0.20±0.08 0.31±0.11
F 0.11±0.05 0.26±0.06
G 0.11±0.07 0.28±0.06
H 0.12±0.06 0.26±0.06

(b) Performance comparison of training
method in the middle of training process.
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Fig. 5: (a) The training curve shows the benefit of using a pretrained dynamics layer, which results in higher reward and faster convergence.
(b) The performance of the policy is evaluated in during training (∼50millions) shows that the pretrained method performs better than
trained from scratch on the set of patterns. (c) The policy can only see the immediate next footstep command. As part of the emergent
behaviors, the learned step frequency allows the robot to successfully achieve the next target step by taking a longer or shorter swing
duration. The policy also learns to elevate the body height in order to enable longer steps.

Selection
Method

Success
Rate [%]

Random 59.1
Random on TD side 69.0
Closest stone 50.2
Closest on TD side 76.8
Reachability model 82.3

Fig. 6: Simulation test of the utility of prediction model. Left:
Stepping stone locations and initial robot position are randomized
for each trial. Cassie is asked to go across the gap by stepping
onto one of the stones. Right: “Random” refers to random selection
among all footstep choices presented in simulation. “Closest” and
“Closest on touchdown (TD) side” refer to selecting the closest
(in euclidean sense) stone or only selecting on stones same as the
touchdown side. A comparison of the reachability model with these
selection heuristics is important to demonstrate the need of such
a model for real world performance. The success rate is measured
from 1000 independent simulation trials.

the success rate of each method over 1000 trials using our
learned reachability model as well as four other heuristics (see
caption) for selecting a stone. The reachability model achieved
the highest success rate and significantly outperformed the
closest-stone and random-stone heuristics.

VI. HARDWARE RESULTS

In this section, we consider the sim-to-real transfer capa-
bilities using the Cassie robot with the overhead camera for
perception.

A. Hardware Performance on Stepping Stone Patterns

We test the same stepping stone patterns on hardware
as we used in simulation. During hardware execution, we
manually switch the mode of operation between user-control
and footstep-reaction. During user-control mode, an operator
is manually commanding footstep length and direction to
bring the robot close to and facing the marker footstep pattern.
We then enable the footstep-reaction mode at an arbitrary
time when the user decides the robot is in a “good” initial
state. Then, the policy will react to a sequence of footstep
markers. Once the robot completes the number of footsteps in

each pattern, the controller is switched back to user-control
and steps in place.

We show that Cassie is able to exhibit the expected
behaviors for all the patterns as shown in Figure 7. Please
refer to the accompanied video for hardware demonstrations.
During hardware experiments, we noticed that it is difficult
to get the policy to consistently hit all the markers every
trial. We found that the robot initial state before enabling
footstep-reaction mode significantly affects the performance
on hardware. For example, the initial speed and orientation of
the robot affects the footstep accuracy, because the momentum
carried before switching to footstep-reaction mode influences
the robot dynamics. This can be addressed with better
orientation control of the policy and the use of look-ahead
from a prediction model in future work.

B. Evaluation of the Prediction Model on Hardware

We conducted two experiments on hardware similar to
those in simulation. First, for 1-footstep targeting, we use the
learned footstep prediction model to automatically choose
when to switch to footstep-reaction mode. Given the next
footstep marker, the prediction model will tell the policy when
the robot is in a state that will produce low footstep error,
and then switch to footstep-reaction mode. Please refer to the
video submission for better illustration of the experiments.

To do this, the prediction model acts as an uncertainty
estimator and is called on every touchdown (based on the
clock value) to predict if the target marker will have step error
less than 0.1m. Once the condition is satisfied, the policy will
send the target marker’s relative location as the command
and perform the subsequent footstep targeting. We found that
1-footstep targeting using the prediction model tends to be
more consistent than manual user switching of the modes.

Our second evaluation tests the prediction model on
multiple footstep choices, similar to the tests performed in
simulation. Instead of having a single marker for each footstep
decision, we test having a set of possible targets formed by
a stripe line. For each stripe, the prediction model chooses
a reachable footstep from the given choices (20 choices are
present along the line), indicated by the lowest prediction
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Fig. 7: Cassie performs a sequence of footsteps (pattern D), which are shown as the markers (10x10cm) on treadmill.

error. The policy then controls the robot to land around the
stripe line. We gradually increase the difficulty by stacking
more stripe lines. As can be seen in the hardware video,
Cassie is able to go across test cases with 1 or 2 stripe lines,
but struggles when more lines are added. We hypothesize this
challenge can be resolved by introducing look-ahead from
the prediction model, so the initial state when approaching
the stripe lines is better suited for dynamics evolving over
such terrain.

VII. CONCLUSION AND FUTURE WORK

In this work, we demonstrate real-world 3D dynamic walk-
ing over stepping stones on a bipedal robot by introducing a
learned 1-footstep control policy and a reachability prediction
model. We examined the performance of the policy and the
utilities of the prediction model both in simulation and on
hardware. These two major pieces could form the foundations
of future work, enabling dynamic locomotion with a multi-
footstep look-ahead.

Future works could focus on several directions. First, a
reduced-order model planner that outputs footstep and body
orientation commands could be incorporated into the learning
process. This planner could be used during sampling to
replace randomly sampling commands. This simple model
could also be used online with the policy to form a control
hierarchy which keeps the planning process simple, but
also has the robustness of a learned solution. Second, we
hypothesize that training on discrete terrains, with immediate
termination when missing a step, will improve the policy
with more accurate footstep control. The difficulty of such
hard termination can be alleviated by curriculum learning
[9] or learning the footstep prediction model together to self-
evaluate the policy. Third, we seek to extend the learned
prediction model with a look-ahead feature, so the model can
better utilize the predicted next latent state recursively.
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