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Abstract
In the study of Markov chain mixing times, analysis has centered on the performance
from a worst-case starting state. Here, in the context of Glauber dynamics for the
one-dimensional Ising model, we show how new ideas from information percolation
can be used to establish mixing times from other starting states. At high temperatures
we show that the alternating initial condition is asymptotically the fastest one, and,
surprisingly, its mixing time is faster than at infinite temperature, accelerating as the
inverse-temperature β ranges from 0 to β0 = 1

2 arctanh(
1
3 ). Moreover, the dominant

test function depends on the temperature: at β < β0 it is autocorrelation, whereas at
β > β0 it is the Hamiltonian.

Mathematics Subject Classification 60J10 · 60K35

1 Introduction

In the study of mixing time of Markov chains, most of the focus has been on deter-
mining the asymptotics of the worst-case mixing time, while relatively little is known
about the relative effect of different initial conditions. The latter is quite natural from
an algorithmic perspective on sampling, since one would ideally initiate the dynamics
from the fastest initial condition. However, until recently, the tools available for ana-
lyzing Markov chains on complex systems, such as the Ising model, were insufficient
for the purpose of comparing the effect of different starting states; indeed, already
pinpointing the asymptotics of the worst-case state for Glauber dynamics for the Ising
model can be highly nontrivial.
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648 E. Lubetzky, A. Sly

In this paper we compare different initial conditions for the Ising model on the
cycle. In earlier work [11], we analyzed three different initial conditions. The all-plus
state is provably the worst initial condition up to an additive constant. Another is a
quenched random condition chosen from ν, the uniform distribution on configurations,
which with high probability has a mixing time which is asymptotically as slow (one
could potentially consider the quenched mixing time w.r.t. other distributions, e.g., the
Ising distribution π ). A third initial condition is an annealed random condition chosen
from ν, i.e., to start at time 0 from the uniform distribution, which is asymptotically
twice as fast as all-plus.

Here we consider two natural deterministic initial configurations. The first is the
alternating sequence

xalt(i) =
{
1 i ≡ 0 (mod 2)

−1 i ≡ 1 (mod 2),

which we will show is asymptotically the fastest deterministic initial condition—yet
strictly slower than starting from the annealed random condition—for all β < β0 :=
1
2 arctanh(

1
3 ) (at β = β0 they match). The second is the bi-alternating sequence

xblt(i) =
{
1 i ≡ 0, 3 (mod 4)

−1 i ≡ 1, 2 (mod 4).

For convenience we will assume that n is a multiple of 4, which ensures that the con-
figurations are semi-translation invariant and turns both sequences into eigenvectors
of the transition matrix of simple random walk on the cycle. (This is not necessary for
the main result but leads to cleaner analysis.)

In what follows, set θ = θβ = 1 − tanh(2β), and let tmixx0(ε) denote the time it
takes the dynamics to reach total variation distance at most ε from stationarity, starting
from the initial condition x0. For a distribution μ, the mixing time tmixμ(ε) is the one
for the chain with initial state x0 ∼ μ.

Theorem 1 For every β > 0 and 0 < ε < 1 there exist C(β) and N (β, ε) such that
the following hold for Glauber dynamics for the Ising model on the cycle Z/nZ at
inverse-temperature β for all n > N.

(i) Alternating initial condition:∣∣∣tmixxalt (ε) − max
{ 1
4−2θ , 1

4θ

}
log n

∣∣∣ ≤ C log log n.

(ii) Bi-alternating initial condition:∣∣∣tmixxblt (ε) − max
{ 1
2 ,

1
4θ

}
log n

∣∣∣ ≤ C log log n.

Surprisingly, the mixing time for the alternating initial condition at small β > 0
is actually faster than the infinite temperature model: it decreases as a function of β

before increasing when β > 1
2 arctanh(

1
3 ).
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Fig. 1 Asymptotic mixing time from the alternating and bi-alternating initial conditions as per Theorem 1,
compared to the known behavior of worst-case (all-plus) and random initial conditions

The following theorem summarizes the bounds we proved in [8,11] for the all-plus
and random initial conditions. See Fig. 1 for the relative performance of all these
different initial conditions.

Theorem 2 [8,11] In the same setting of Theorem 1, the following hold.

(i) All-plus initial condition x+ ≡ 1:

∣∣∣tmixx+
(ε) − 1

2θ log n
∣∣∣ ≤ C log log n.

(ii) Quenched random initial condition:

ν
({
x0 : ∣∣tmixx0(ε) − 1

2θ log n
∣∣ ≤ C log log n

}) → 1 as n → ∞.

(iii) Annealed random initial condition:

∣∣tmixν(ε) − 1
4θ log n

∣∣ ≤ C log log n. (1.1)

(Note that, in the case of the all-plus initial conditions, the mixing time tmixx
+
(ε)

is known in higher precision: it was shown [8,11] to be within an additive constant
(depending on ε and β) of 1

2θ log n. The quenched mixing time bound also holds when
replacing ν by the Ising distribution π ; more generally, if most sites have a modest
asymmetry between pluses and minuses in their local neighborhoods then the mixing
time is within O(log log n) of the worst case one—see [11, Proposition 6.5].)

The upper bounds on the mixing times in Theorem 1 rely on the information per-
colation framework introduced by the authors in [11]. The asymptotically matching
lower bounds in that theorem are derived from two test functions: the Hamiltonian
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650 E. Lubetzky, A. Sly

test function (yielding the bound 1
4θ log n for both xalt and xblt), which for instance

matches our upper bound for xalt whenever β > β0; and the autocorrelation test func-
tion (yielding the bounds 1

4−2θ log n for xalt and 1
2 log n for xblt), which furthermore

gives rise to the following lower bound on every deterministic initial condition.

Proposition 3 Let Xt be Glauber dynamics for the Ising model on Z/nZ at inverse-
temperature β. For every sequence of deterministic initial conditions x0, the dynamics
at time

t� = 1
4−2θ log n − 8 log log n

is at total variation distance 1 − o(1) from equilibrium; that is,

lim
n→∞ inf

x0

∥∥Px0

(
Xt� ∈ ·) − π

∥∥
tv = 1.

As a consequence of this result and Theorem 1, Part (i), we see that the initial
condition xalt is indeed the asymptotically optimal deterministic one in the range
β < β0, and that β0 marks the smallest β where a deterministic initial condition can
first match the performance of the annealed random condition.

even though it is believed tobewidespread (e.g., Peres conjectured [6,Conjecture 1],
[7, §23.2] cutoff for the Ising model on any sequence of transitive graphs when the
mixing time is of order log n); see [7, §18]. The mixing time estimates in Theorem 1
(as well as those in Theorem 2) imply, in particular, that Glauber dynamics for the
Isingmodel on the cycle, from the respective starting configurations, exhibits the cutoff
phenomenon—a sharp transition in its distance from stationarity, which drops along a
negligible time period known as the cutoff window (here, O(log log n), vs. tmix which
is of order log n) from near 1 to near 0. Until recently, only relatively few occurrences
of this phenomenon, that was discovered by Aldous and Diaconis in the early 1980’s
(see [1,2,4,5]), were rigorously verified,

For the Ising model on the cycle, the longstanding lower and upper bounds on
tmix from a worst-case initial condition differed by a factor of 2—in our notation,
1−o(1)
2θ log n and 1+o(1)

θ
log n—while cutoff was conjectured to occur (see, e.g., [7,

Theorem 15.4], as well as [7, pp. 214, 248 and Question 8 in p. 300]). This was
confirmed in [8], where the above lower bound was shown to be tight, via a proof that
relied on log-Sobolev inequalities and applied to Z

d , for any dimension d ≥ 1, so
long as the system features a certain decay-of-correlation property known as strong
spatial mixing. This result was reproduced in [11] (with a finer estimate for the cutoff
window) via the new information percolation method. Soon after, a remarkably short
proof of cutoff for the cycle—crucially hinging on the correspondence between the
one-dimensional Ising model and the “noisy voter” model—was obtained by Cox,
Peres and Steif [3]. It is worthwhile noting that the arguments both in [3] and in [8]
are tailored to worst-case analysis, and do not seem to be able to treat specific initial
conditions as examined here. In contrast, the information percolation approach does
allow one to control the subtle effect of various initial conditions on mixing.

To conclude this section, we conjecture that Proposition 3 also holds for t� =
max{ 1−o(1)

4−2θ ,
1−o(1)
4θ } log n, i.e., that xalt is asymptotically fastest among all the deter-
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Fast initial conditions for Glauber dynamics 651

ministic initial conditions at all β > 0. We further conjecture that the obvious
generalization of xalt to (Z/nZ)d for d ≥ 2 (a checkerboard for d = 2) is the analogous
fastest deterministic initial condition throughout the high-temperature regime.

2 Update support and information percolation

In this section we define the update support and use the framework of information
percolation (see the papers [9,12] as well as the survey paper [10] for an exposition
of this method) to upper bound the total variation distance with alternating and bi-
alternating initial conditions.

2.1 Basic notation

The Ising model on a finite graph G with vertex-set V and edge-set E is a distribution
over the set of configurations� = {±1}V ; each σ ∈ � is an assignment of plus/minus
spins to the sites in V , and the probability of σ ∈ � is given by the Gibbs distribution

π(σ) = Z−1eβ
∑

uv∈E σ(u)σ (v), (2.1)

whereZ is a normalizer (the partition-function) and β is the inverse-temperature, here
taken to be non-negative (ferromagnetic). The (continuous-time) heat-bath Glauber
dynamics for the Ising model is the Markov chain—reversible w.r.t. the Ising measure
π—where the sites are assigned i.i.d. rate-1 Poisson clocks, and as the clock at some
site u rings, the spin of u is replaced by a sample from the marginal of π given all
other spins. See [13] for an extensive account of this dynamics. In this paper we focus
on the graph G = Z/nZ and will let Xt denote the Glauber dynamics Markov chain
on G.

An important notion of measuring the convergence of a Markov chain (Xt ) to its
stationaritymeasureπ is its total-variationmixing time, denoted tmix(ε) for a precision
parameter 0 < ε < 1. From initial condition x0 we denote

tmix
x0(ε) = inf

{
t : ‖Px0(Xt ∈ ·) − π‖tv ≤ ε

}
,

and the overall mixing time as measured from a worst-case initial condition is

tmix(ε) = max
x0∈�

tmix
x0(ε),

where here and in what follows Px0 denotes the probability given X0 = x0, and
the total-variation distance ‖μ1 − μ2‖tv is defined as maxA⊂� |μ1(A) − μ2(A)| =
1
2

∑
σ∈� |μ1(σ ) − μ2(σ )|.
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652 E. Lubetzky, A. Sly

2.2 Information percolation clusters

The dynamics can be viewed as a deterministic function of X0 and a random “update
sequence” of the form (J1,U1, t1), (J2,U2, t2), . . ., where 0 < t1 < t2 < · · · are the
update times (the ringing of the Poisson clocks), the Ji ’s are i.i.d. uniformly chosen
sites (which clocks ring), and theUi ’s are i.i.d. uniform variables on [0, 1] (to generate
coin tosses). There is a variety ofways to encode such updates but in the case of the one-
dimensional model there is a particularly useful one.We add an extra variable Si which
is a randomly selected neighbor of Ji . Then, given the sequence of (Ji , Si ,Ui , ti ), the
updates are processed sequentially as follows: set t0 = 0; the configuration Xt for all
t ∈ [ti−1, ti ) (i ≥ 1) is obtained by updating the site Ji via the unit variable as follows:
ifUi ≤ θ = 1− tanh(2β) update the spin at Ji to a uniformly random value and with
probability 1 − θ set it to the spin of Si .

With this description of the dynamics, we can work backwards to describe how
the configurations at a designated time t� (or at any intermediate time) depend on the
initial condition. The update support function, denoted Fs(A, s1, s2), as introduced
in [8], is the random set whose value is the minimal subset of 
 which determines the
spins of A given the update sequence along the interval (s1, s2].

We now describe the support of a vertex v ∈ V as it evolves backwards in time from
s2 to s1. Initially, Fs(v, s2, s2) = {v}; then, updates in reverse chronological order
alter the support: given the next update (Ji , Si ,Ui , ti ), if Ji = Fs(v, ti+1, s2) and
Ui ≤ θ thenFs(v, ti , s2) is set to ∅, and ifUi > θ then it is set to Si . Thus, backwards
in time Fs(v, t, s2) performs a continuous-time simple random walk with jump rate
1 − θ which is killed at rate θ . We refer to the full trajectory of the update support of
a vertex as the history of the vertex. The survival time for a walk is exponential and
so for t1 ≤ t2,

P (Fs(v, t1, t2) �= ∅) = e−(t2−t1)θ . (2.2)

For general sets A we have that Fs(A, s1, s2) = ⋃
v∈A Fs(v, s1, s2) and taken

together the collection of the update supports of the vertices are a set of coalescing
killed continuous-time random walks.

A key use of these histories is to effectively bound the spread of information, as
achieved by the following lemma.

Lemma 2.1 For any t we have that

P

(
max

v∈Z/nZ
max
0≤s≤t

Fs(v,s,t) �=∅
|v − Fs(v, s, t)| ≥ 1

10 log
2 n

)
≤ O(n−10).

Proof For all t ≥ log3/2 n, Eq. (2.2) implies that P(Fs(Z/nZ, t − log3/2 n, t) �= ∅) =
O(n−10); thus, it is sufficient to show that

P

(
max

0∨(t−log3/2 n)≤s≤t
Fs(v,s,t) �=∅

|v − Fs(v, s, t)| ≥ 1
10 log

2 n

)
≤ O(n−11).
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Fast initial conditions for Glauber dynamics 653

This last probability is bounded above by the probability of a rate 1 − θ continuous-
time random walk to make at least 1

10 log
2 n jumps by time log3/2 n. This is exactly

the probability that a Poisson with mean (1 − θ) log3/2 n is at least 1
10 log

2 n, which
satisfies the required bound by standard tail bounds. ��

3 Upper bounds

We will consider the dynamics run up to time t� and derive an upper bound on its
mixing time. We will first estimate the total variation distance not of the full dynamics
but simply at a single vertex from initial conditions xalt and xblt. Throughout the
section, we will assume that n is large enough.

Lemma 3.1 For v ∈ Z/nZ we have that,

∥∥Pxalt
(
Xt� (v) ∈ ·) − π |v

∥∥
tv = 1

2e
−(2−θ)t� ,∥∥Pxblt

(
Xt� (v) ∈ ·) − π |v

∥∥
tv = 1

2e
−t� .

Proof Wewill begin with the case of initial condition xalt. Of courseπ |v is the uniform
measure on {±1}. The history Fs(v, t, t�) is killed before time 0 with probability
1 − e−θ t� and on this event Xt� (v) is uniform on {±1}. Condition that it survives to
time 0 and let Y (s) = xalt(Fs(v, t� −s, t�)). This is simply a continuous-time random
walk on {±1} which switches state at rate 1 − θ . Thus,

P (Y (s) = a) =
{

1
2 + 1

2e
−2(1−θ)s if a = xalt(v),

1
2 − 1

2e
−2(1−θ)s otherwise.

It therefore follows that ‖P (Y (t�) ∈ ·) − π |v‖tv = 1
2e

−2(1−θ)t� , and altogether,

∥∥Pxalt
(
Xt� (v) ∈ ·) − π |v

∥∥
tv = 1

2e
−2(1−θ)t�e−θ t� = 1

2e
−(2−θ)t� .

The case of xblt follows similarly, with the exception that Y (s) has jump rate 1
2 (1− θ)

since it only switches sign with probability 1
2 each step. ��

3.1 Update support

In this subsection we analyze the geometry of the update support similarly to [8] in
order to approximate the Markov chain as a product measure. Let κ = 4

θ
and define

the support time as t− = t� −κ log log n. By Lemma 2.1 we expect the histories to not
travel “too far” along the time-interval t� to t−; precisely, if we define B as the event

B =
{

max
v∈Z/nZ

max
t−≤s≤t�

Fs(v,s,t�) �=∅
|v − Fs(v, s, t�)| ≤ 1

10 log
2 n

}
,
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then by Lemma 2.1,
P (B) ≥ 1 − n−10. (3.1)

The following event says that the support at time t− clusters into small well separated
components. LetA be the event that there exists a set of intervalsW1, . . . ,Wm ⊂ Z/nZ
that (i) cover the support:

{x : Fs(x, t−, t�) �= ∅} ⊂
⋃
i

Wi ; (3.2)

(ii) have logarithmic size:

Wi ≤ log3 n for every i ; (3.3)

and (iii) are well-separated:

d(Wi ,Wi ′) ≥ log2 n for every distinct i, i ′. (3.4)

Lemma 3.2 We have that P (A) ≥ 1 − O(n−9).

Proof Define the following intervals on Z/nZ:

Mi = {2i log2 n, . . . , (2i + 1) log2 n} for i ∈ I := {1, . . . , � n

2 log2 n
�}.

Restricting B to
⋃

Mi , we let

B′ =
{

max
v∈∪i Mi

max
t−≤s≤t�

Fs(v,s,t�) �=∅
|v − Fs(v, s, t�)| ≤ 1

10 log
2 n

}
.

Since B′ ⊃ B we have that P
(B′) ≥ 1 − n−10 by (3.1). Next, let Di be the event

Di = {Fs(Mi , t−, t�) = ∅}.

By a union bound and Eq. (2.2), we have that

P
(Dc

i

) ≤ |Mi |e−θκ log log n ≤ 1

log2 n
,

and so

P
(Dc

i | B′) ≤ P
(Dc

i

)
P (B′)

≤ 2

log2 n
.

Moreover, conditional on B′ the events Di are conditionally independent since the
history of Mi is determined by the updates within the set {v : d(v, Mi ) ≤ 1

10 log
2 n}
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Fast initial conditions for Glauber dynamics 655

which are disjoint. So, for all i ∈ I ,

P

(
Dc

i ,Dc
i+1, . . . ,Dc

i+ 1
10 log n

| B′
)

≤
(

2

log2 n

) 1
10 log n

= n−( 15−o(1)) log log n ≤ n−10;

hence,

P

(
Dc

i ,Dc
i+1, . . . ,Dc

i+ 1
10 log n

)
≤ P

(
Dc

i ,Dc
i+1, . . . ,Dc

i+ 1
10 log n

∣∣∣ B′
)

+P
(B′c) ≤ 2n−10.

Taking a union bound over all i ∈ I we have that

P

(
∃i : Dc

i ,Dc
i+1, . . . ,Dc

i+ 1
10 log n

)
≤ n−9.

We have thus arrived at the following: with probability at least 1 − n−9, for every
v ∈ Z/nZ there exists a block of log2 n consecutive vertices whose histories are killed
before t− within distance 1

5 log
3 n on both the right and the left, implying the existence

of the decomposition and completing the lemma. ��
When the eventA holdswewill want to refer to one concrete such cover; to this end,

we will refer to the canonical choice of theWi ’s obtained by letting X be the set of all
points x appearing in the left-hand of (3.2) and letting the Wi ’s be the complements
of all intervals of length at least log2 n in Xc (which amounts to placing any two
x, x ′ ∈ X with |x − x ′| ≤ log2 n in the same interval Wi ).

We set
Vi = Fs(Wi , t−, t�). (3.5)

On the event that both A and B hold, the sets Vi are disjoint, and satisfy

min
i,i ′

d(Vi , Vi ′) ≥ 1
2 log

2 n and max
i

diam(Vi ) ≤ 2 log3 n. (3.6)

We will make use of Lemma 3.3 from [9], a special case of which is the following.

Lemma 3.3 [9] For every x0, every 0 ≤ s ≤ t and every set of vertices �, we have
that

∥∥Px0 (Xt (�) ∈ ·) − π |�
∥∥
tv ≤ E

[∥∥∥Px0 (Xs(Fs(�, s, t)) ∈ ·) − π |Fs(�,s,t)

∥∥∥
tv

]
.

Using this result with � = Z/nZ, combined with the definition (3.5), we have that

∥∥Px0

(
Xt� ∈ ·) − π

∥∥
tv ≤ E

[∥∥∥Px0

(
Xt−(

⋃
i

Vi ) ∈ ·
)

− π |∪i Vi

∥∥∥
tv

]
.
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656 E. Lubetzky, A. Sly

We stress that the sets Vi are measurable w.r.t. the sequence of updates along the time
interval (t−, t�) (as were theWi ’s that these address), and in particular are independent
of the updates at times t ≤ t−.

3.2 Coupling with product measures

On the eventA∩Bwecouple Xt−(
⋃

i Vi ) andπ |⋃
i Vi

with productmeasures. Since the
Vi ’s depend only on the updates along the interval [t−, t�] and are independent of the
dynamics up to time t− we will treat the Vi as fixed deterministic sets satisfying (3.6).
Let (π(1), . . . , π(m)) be a product measure ofm copies of π . Then, by the exponential
decay of correlation of the one-dimensional Ising model,∥∥∥(π(1)|V1, . . . , π(m)|Vm ) − π

∣∣⋃
i Vi

∥∥∥
tv

≤ n−10. (3.7)

Next, let X (1)
t , . . . , X (m)

t be m independent copies of the dynamics up to time t−.
Define the event

E =
{
max

v∈∪i Vi
max

0≤s≤t−
Fs(v,s,t−) �=∅

|v − Fs(v, s, t−)| ≤ 1
10 log

2 n

}
,

and for each 1 ≤ j ≤ m define the analogous event

E ( j) =
{
max

v∈∪i Vi
max

0≤s≤t−
F ( j)

s (v,s,t−) �=∅

|v − F
( j)
s (v, s, t−)| ≤ 1

10 log
2 n

}
,

whereF ( j)
s is the support function for the dynamics X ( j)

t . From Lemma 2.1, together
with a union bound, we infer that

P (E) = P(E ( j)) ≥ 1 − O(n−10). (3.8)

Let X̃t denote Xt conditioned on E and, similarly, let X̃ ( j)
t denote X ( j)

t conditioned
on E ( j). Then∥∥∥P(X̃ ( j)

t− (Vj ) ∈ ·) − P(X ( j)
t− (Vj ) ∈ ·)

∥∥∥
tv

≤ P(E ( j)) ≤ n−10,

and so∥∥∥P (
(X̃ (1)

t− (V1), . . . , X̃
(m)
t− (Vm)) ∈ ·

)
− P

(
(X (1)

t− (V1), . . . , X
(m)
t− (Vm)) ∈ ·

)∥∥∥
tv

≤ n−9.

Now, since the laws of the X̃t−(Vi ) for distinct i depend on disjoint sets of updates,

they are independent and equal in distribution to X̃ (i)
t− (Vi ), hence

(X̃ (1)
t− (V1), . . . , X̃

(m)
t− (Vm))

d= (X̃t−(V1), . . . , X̃t−(Vm)).
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Fast initial conditions for Glauber dynamics 657

Since X̃ is X conditioned on E ,
∥∥∥P (

(X̃t−(V1), . . . , X̃t−(Vm)) ∈ ·
)

− P
(
(Xt−(V1), . . . , Xt−(Vm)) ∈ ·)∥∥∥

tv

≤ P(E) ≤ n−10.

Combining the previous three equations we find that

∥∥∥P (
(X (1)

t− (V1), . . . , X
(m)
t− (Vm)) ∈ ·

)
− P

(
(Xt−(V1), . . . , Xt−(Vm)) ∈ ·)∥∥∥

tv
≤ 2n−9.

(3.9)
Thus, to show that

∥∥Px0

(
Xt� ∈ ·) − π

∥∥
tv → 0 it is sufficient to prove that

∥∥∥P (
(X (1)

t− (V1), . . . , X
(m)
t− (Vm)) ∈ ·

)
− (π(1)|V1, . . . , π(m)|Vm )

∥∥∥
tv

→ 0. (3.10)

3.3 Local L2 distance

Let L = 10, and for each i set

Si = inf {s : |Fs(Vi , t− − s, t−)| ≤ L} ,

with Si = 0 if |Vi | ≤ L .
First we bound the right tail of the distribution of Si . If |Fs(Vi , t− − s, t−)| > L

then at least L + 1 histories from Vi have survived to time t− − s and not intersected.
Hence, by Eq. (2.2),

P (|Fs(Vi , t− − s, t−)| > 10) ≤
( |Vi |
L + 1

)
e−(L+1)sθ ≤ e−(L+1)sθ log3(L+1) n.

Therefore, for 0 < s < t− we see that

P (Si ≥ s) ≤ e−s(L+1)θ log3(L+1) n. (3.11)

Let I denote the event that for all i we have that Si < t−. By (3.11),

P (I) ≤ e−(L+1)θ t− n log3(L+1) n, (3.12)

and so t� ≥ 2
Lθ

log n implies that P (I) → 1. On the event I, we define

Ui = Fs(Vi , t− − Si , t−).
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658 E. Lubetzky, A. Sly

Applying Lemma 3.3 we have that∥∥∥P (
(X (1)

t− (V1), . . . , X
(m)
t− (Vm)) ∈ ·

)
− (π(1)|V1, . . . , π(m)|Vm )

∥∥∥
tv

≤
∥∥∥P (

(X (1)
t−−S1

(U1), . . . , X
(m)
t−−Sm

(Vm)) ∈ ·
)

− (π(1)|U1 , . . . , π
(m)|Um )

∥∥∥
tv

.

(3.13)

Lemma 3.4 There exists C = C(β) > 0 such that, for every |Ui | ≤ L and 0 ≤ Si <

t−, ∥∥∥Px0

(
(X (i)

t−−Si
(Ui ) ∈ ·

∣∣∣ Ui , Si
)

− π(i)|Ui

∥∥∥
tv

≤
{
Ct− exp

[−(t− − Si )min{2θ, 2 − θ}] x0 = xalt,

Ct− exp
[−(t− − Si )min{2θ, 1}] x0 = xblt.

Proof We will consider the case of xalt, the proof for xblt follows similarly. Let Ri

denote the first time the history coalesces to a single point:

Ri = inf {r : |Fs(Ui , t− − Si − r , t− − Si )| ≤ 1} ,

with the convention Ri = t− − Si if |Fs(Ui , 0, t− − Si )| ≥ 2. By Eq. (2.2),

P (Ri > r | Ui , Si ) ≤
(
L

2

)
e−2rθ .

Denote the vertex ai = Fs(Ui , t− − Si − Ri , t− − Si ). By Lemmas 3.1 and 3.3 we
have that ∥∥∥P (

X (i)
t−−Si

(Ui ) ∈ · | Ui , Si
)

− π(i)|Ui

∥∥∥
tv

≤ E

[∥∥∥P (
X (i)
t−−Si−Ri

(ai ) ∈ · | Ui , Si
)

− π(i)|ai
∣∣∣ Ui , Si

∥∥∥
tv

]
≤ E

[
e−(2−θ)(t−−Si−Ri )

∣∣ Ui , Si
]
. (3.14)

We estimate the right hand side as follows:

E

[
e−(2−θ)(t−−Si−Ri )

∣∣ Ui , Si
]

≤
�t−−Si �∑
k=1

P (Ri ∈ (k − 1, k)) e−(2−θ)(t−−Si−k)

≤
�t−−Si �∑
k=1

(
L

2

)
e−2(k−1)θe−(2−θ)(t−−Si−k)

≤ Ct−e−(t−−Si )min{2θ,2−θ}, (3.15)

where the final inequality follows by taking themaximal term in the sum.This, together
with (3.14), completes the proof of the lemma. ��
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Fast initial conditions for Glauber dynamics 659

We now appeal to the L1-to-L2 reduction developed in [8,9]. Recall that the L2-
distance on measures is defined as

‖μ − π‖L2(π) =
( ∑

x

∣∣∣μ(x)

π(x)
− 1

∣∣∣2π(x)
)1/2

,

and set

Mt =
m∑
i=1

∥∥∥Px0 [(X (i)
t−−Si

(Ui ) ∈ · | Ui , Si ] − π(i)|Ui

∥∥∥2
L2(π(i)|Ui )

. (3.16)

By [9, Proposition 7],

∥∥∥P (
(X (1)

t−−S1
(U1), . . . , X

(m)
t−−Sm

(Vm)) ∈ ·
)

− (π(1)|U1 , . . . , π
(m)|Um )

∥∥∥
tv

≤ √
Mt .

(3.17)
We are now ready to prove the upper bound for the main theorem.

Proof of Theorem 1, Upper bound Again we focus on the case of xalt. Set

t� = 1

(4 − 2θ) ∧ 4θ
log n +

(
κ + 3L + 6

(4 − 2θ) ∧ 4θ

)
log log n.

With this choice of t� we have thatP(Ic) → 0 and so, by Eqs. (3.10), (3.13) and (3.17),
it is sufficient to show that

E [Mt1I ] → 0. (3.18)

Since each vertex is either plus or minus with probability that is uniformly bounded
below by e−2β

e−2β+e2β
, given any choice of conditioning on the other vertices, we have

that

min
Ui

min
x∈{±1}Ui

π |Ui (x) ≥
(

e−2β

e−2β + e2β

)L

.

Comparing the L1 and L2 bounds we have that for any measures μ and set Ui ,

∥∥μ|Ui − π |Ui

∥∥2
L2(π |Ui ) =

∑
x

1

π |Ui (x)

∣∣∣μ|Ui (x) − π |Ui (x)
∣∣∣2

≤ 2L
(
e−2β + e2β

e−2β

)L

max
x∈{±1}Ui

∣∣∣μ|Ui (x) − π |Ui (x)
∣∣∣2

≤ 2L
(
e−2β + e2β

e−2β

)L ∥∥∥μ|Ui − π |Ui

∥∥∥2
tv

.
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660 E. Lubetzky, A. Sly

Thus, by Lemma 3.4,

E [Mt1I ] ≤ E

[
2L

(
e−2β + e2β

e−2β

)L m∑
i=1

∥∥∥Px0 [(X (i)
t−−Si

(Ui ) ∈ · | Ui , Si ] − π(i)|Ui

∥∥∥2
tv

]

≤ 2L
(
e−2β + e2β

e−2β

)L

nE

[ (
Ct−e−(t−−Si )min{2θ,2−θ})2 ]

≤ C ′(β)e−t− min{4θ,4−2θ}n log2 n E
[
emin{4θ,4−2θ}Si

]
= C ′(β) (log n)−(3L+4)

E

[
emin{4θ,4−2θ}Si

]
,

for some C ′(β). Finally, by Eq. (3.11)

E

[
emin{4θ,4−2θ}Si

]
≤

∞∑
k=1

emin{4θ,4−2θ}k
P (Si ∈ (k − 1, k))

≤
∞∑
k=1

emin{4θ,4−2θ}ke−(k−1)(L+1)θ log3(L+1) n = O(log3L+3 n).

Combining the previous two inequalities implies thatEMt1I → 0 and hence we have
that

∥∥Pxalt
(
Xt� ∈ ·) − π

∥∥
tv → 0,

as required. The proof for xblt follows similarly for the choice of

t� = 1

2 ∧ 4θ
log n +

(
κ + 3L + 6

2 ∧ 4θ

)
log log n.

��

4 Lower bounds

In order to establish the lower bound we will analyze two separate test functions. First,
in order to analyze our test functions, we establish the following decay of correlation
bound.

Lemma 4.1 Let V1, V2 ⊂ Z/nZ such that d(V1, V2) ≥ log2 n and let fi : {±1}Vi → R

be functions with ‖ fi‖∞ ≤ 1. Then for any initial condition x0 and time t we have
that

Covx0( f1(Xt (V1)), f2(Xt (V2))) = O(n−5).

Proof We will prove the result by showing that Yi = fi (Xt (Vi )) can be approximated
locally. Let V+

i = {v : d(v, Vi ) ≤ 1
10 log

2 n} and so the V+
i are disjoint. LetJi denote
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Fast initial conditions for Glauber dynamics 661

the sigma-algebra of generated by updates in V+
i and set Ŷi = Ex0 [Yi | Ji ]. Since the

V+
i are disjoint the Ŷi depend on independent updates and so are independent. Let

G =
{

max
0≤s≤t

Fs(v,s,t) �=∅
|v − Fs(v, s, t)| ≥ 1

10 log
2 n

}

be the event in Lemma 2.1. On the event G, the random variables Yi are completely
determined by the initial condition and the updates in V+

i and so Yi I (G) = Ŷi I (G).
Thus,

∣∣Ex0 [Y1Y2] − E[Ŷ1Ŷ2]
∣∣ ≤ Ex0 [2I (Gc)] = O(n−10).

and hence

Covx0(Y1,Y2) = Covx0(Y1,Y2) − Covx0(Ŷ1, Ŷ2) = O(n−10),

which completes the proof. ��
Since the above bound is uniform in t by taking t to infinity we get the result for X

given by the stationary measure as well.

4.1 Autocorrelation test functions

The magnetization test function achieves, at least up to an additive constant, the mix-
ing time from the all-plus initial condition, which is asymptotically the worst-case
(see [11]). In this light it is natural to consider test functions for xalt and xblt based
on the autocorrelation,

∑n
i=1 Xt (i)x0(i). This can be seen as a special case of a test

function based on conditional expectations,

Rx0,t (X) =
n∑

i=1

X(i)Ex0 [Xt (i)].

Because of the special structure of the histories as a killed randomwalk the expectation
has the following useful representation. Let Pt be the semigroup of a continuous-time
rate-1 simple random walk on Z/nZ. Then by the killed random walk representation
we have that

Ex0 [Xt (i)] = e−θ t (P(1−θ)t x0)(i)

The eigenvectors of Pt are e2π ikx/n with eigenvalues 1 − cos(2πk/n) for k ∈
{0, . . . , n − 1}. Since the simple random walk is reversible with uniform stationary
distribution we can write an orthonormal basis of real eigenvectors ηk with eigenval-
ues λk . Note that both xalt and xblt are eigenvectors of Pt with eigenvalues 2 and 1
respectively and in fact 2 is the largest eigenvalue. We first give a condition for the
chain to not be sufficiently mixed starting from x0.
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662 E. Lubetzky, A. Sly

Lemma 4.2 If for a sequence of initial conditions x0 and time points t we have

lim
n→∞

e2θ t log3 n

‖P(1−θ)t x0‖2 = 0,

then

lim
n→∞

∥∥Px0 (Xt ∈ ·) − π
∥∥
tv = 1.

Proof Let Y be distributed according to the stationary distribution. Then by symmetry,

E
[
Rx0,t (Y )

] = 0,

while

Ex0

[
Rx0,t (Xt )

] =
n∑

i=1

(Ex0 [Xt (i)])2 = e−2tθ
∥∥P(1−θ)t x0

∥∥2
2 .

To estimate the variance, observe that

Varx0
(
Rx0,t (Xt )

) =
n∑

i=1

n/2∑
j=−n/2+1

Cov
(
Xt (i)Ex0 [Xt (i)] , Xt (i+ j)Ex0 [Xt (i + j)]

)

≤ e−2tθ
n/2∑

j=−n/2+1

n∑
i=1

∣∣(P(1−θ)t x0)(i)
∣∣

∣∣(P(1−θ)t x0)(i + j)
∣∣ ∣∣Cov(Xt (i), Xt (i + k))

∣∣.
By Lemma 4.1, this is at most

e−2tθ
log2 n∑

j=− log2 n

n∑
i=1

∣∣(P(1−θ)t x0)(i)
∣∣ ∣∣(P(1−θ)t x0)(i + j)

∣∣

+ O(n−10)e−2tθ
n/2∑

j=−n/2+1

n∑
i=1

∣∣(P(1−θ)t x0)(i)
∣∣ ∣∣(P(1−θ)t x0)(i + j)

∣∣
≤ O(log2 n)e−2tθ

∥∥P(1−θ)t x0
∥∥2
2,

where the final inequality follows by the rearrangement inequality. Since Lemma 4.1
also applies to the stationary distribution, we further have

Var
(
Rx0,t (Y )

) = O(log2 n)e−2tθ
∥∥P(1−θ)t x0

∥∥2
2.
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Fast initial conditions for Glauber dynamics 663

Our test function considers the set A = {
x ∈ {±1}Z/nZ : Rx0,t (x) ≥

1
2e

−2θ t‖P(1−θ)t x0‖22
}
. Therefore, by Chebyshev’s inequality,

Px0

(
Xt ∈ Ac) ≤ Varx0(Rx0,t (Xt ))(

Ex0 [Rx0,t (Xt )] − 1
2e

−2θ t‖P(1−θ)t x0‖22
)2 = O

(
e2θ t log2 n

‖P(1−θ)t x0‖22

)
,

and so by the assumption of the lemma Px0 (Xt ∈ A) → 1. Similarly,

P (Y ∈ A) ≤ Var(Rx0,t (Y ))( 1
2e

−2θ t‖P(1−θ)t x0‖22
)2 = O

(
e2θ t log2 n

‖P(1−θ)t x0‖22

)
,

so P (Y ∈ A) → 0 which completes the lemma. ��
We can now establish Proposition 3, giving a lower bound for any deterministic

initial condition.

Proof of Proposition 3 Writing x0 = ∑
j b jη j we have that

‖Pt x0‖22 =
∥∥∥∥∑

j

b jη j e
−λ j t

∥∥∥∥
2

2
=

∑
j

b2j e
−2λ j t ≥ e−4t

∑
j

b2j = e−4t ‖x0‖22 = e−4t n,

where the inequality follows from the fact that all the eigenvalues are bounded by 2.
Thus,

e2θ t� log3 n

‖P(1−θ)t�x0‖2
≤ e(4−2θ)t� log3 n

n
≤ 1

log n
,

and so, by Lemma 4.2, we have that
∥∥Px0

(
Xt� ∈ ·) − π

∥∥
tv → 1, as claimed. ��

This gives the right bound in the case of xalt since it is an eigenvector of eigenvalue
2. For xblt we get a stronger lower bound. Since it has eigenvalue 1,

∥∥∥Pt xblt∥∥∥2
2

=
∥∥∥e−t xblt

∥∥∥2
2

= e−2t
∥∥∥xblt∥∥∥2

2
= e−2t n.

So, taking t� = 1
2 log n − 8 log log n,

e2θ t� log3 n

‖P(1−θ)t�x0‖2
= e2t� log3 n

n
≤ 1

log n
,

and hence by Lemma 4.2 we have that

‖Pxblt
(
Xt� ∈ ·) − π‖tv → 1. (4.1)
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664 E. Lubetzky, A. Sly

4.2 Hamiltonian test functions

The alternating initial condition xalt is an extreme value for the Hamiltonian and
measuring its convergence to stationarity gives another test of convergence. Such test
functions were studied in [11] to analyze the a random annealed initial condition. To
treat xalt and xblt in a unified manner, consider the function R : {±1}Z/nZ → R given
by

R(X) =
n/4∑
i=1

X(4i)X(4i + 1).

For every x0 and t we have that, by Lemma 4.1,

Varx0(R(Xt )) =
n/4∑
i=1

n/4∑
j=1

Cov (X(4i)X(4i + 1), X(4 j)X(4 j + 1)]) = O(n log2 n).

(4.2)

If Y is taken from the stationary distribution by taking a limit as t → ∞, then we also
have thatVar(R(Y )) = O(n log2 n). LetH denote the set of all histories of the vertices
from time t�, and consider Ex0 [Xt� (i)Xt� (i

′) | H ]. If the histories of i and i ′ merge
then Xt� (i) and Xt� (i

′) must take the same value and Ex0 [Xt� (i)Xt� (i
′) | H ] = 1. If

the histories do not merge and at least one is killed before reaching time 0 then it is
equally likely to be ±1 so Ex0 [Xt� (i)Xt� (i

′) | H ] = 0. Thus, the boundary condition
can only play a role when both histories survive to time 0 and do notmerge, as captured
by the event

Ki,i ′ = {|Fs(i, 0, t�)| = |Fs(i
′, 0, t�)| = 1, Fs(i, 0, t�) �= Fs(i

′, 0, t�)
}
.

Let Y be an independent configuration distributed as π and let Eπ denotes the expec-
tation started from the stationary measure. Then

Eπ

[
Xt� (i)Xt� (i + 1)1Ki,i+1 | H ]

= Eπ

[
X0(Fs(i, 0, t))X0(Fs(i + 1, 0, t))1Ki,i+1 | H ]

= E[Y (Fs(i, 0, t))Y (Fs(i + 1, 0, t))1Ki,i+1 | H ] ≥ 0, (4.3)

as the ferromagnetic Ising model is positively correlated. In a graph with two vertices
connected by an edge, the correlation of spins of the Ising model can be found to
be tanh θ . Correlations are monotone in the edges of the graph, so for neighboring
vertices in Z/nZ we have E[Y (i)Y (i + 1)] ≥ tanh θ > 0. It was shown in the proof
of Theorem 6.4 of [11] that

P (Fs(i, 0, t) = {i}, Fs(i + 1, 0, t) = {i + 1}) ≥ c1t
−2e−2θ t ,
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and so

Eπ

[
Xt� (i)Xt� (i + 1)1Ki,i+1 | H ]

≥ tanh(θ)P (Fs(i, 0, t�) = {i},Fs(i + 1, 0, t�) = {i + 1})
≥ c1 tanh(θ)t−2

� e−2θ t� . (4.4)

We will compare this bound with the behavior under the initial conditions xalt and
xblt.

Claim 4.3 For x0 ∈ {xalt, xblt} and i ≡ 0 (mod 4) we have that

Ex0

[
Xt� (i)Xt� (i + 1)1Ki,i+1 | H ] ≤ 0.

Proof We first treat the case of xalt. Let Z1(t) and Z2(t) be independent rate-
(1 − θ ) continuous-time simple random walks with initial conditions Z1(0) = i
and Z2(0) = i + 1. Let T denote the first time the walks hit each other and
W (t) = xalt(Z1(t))xalt(Z2(t)). By the killed random walk representation of the his-
tories, we have that

Exalt
[
Xt� (i)Xt� (i + 1)1Ki,i+1 | H ] = e−2θ

E

[
xalt(Z1(t�))x

alt(Z2(t�))1T>t�

]
= e−2θ

E
[
W (t�)1T>t�

]
.

Note that W (t) is itself a Markov chain with state space {±1} and transition rate
2(1 − θ), and so

E[W (t + s) | W (s)] = e−4(1−θ)W (s). (4.5)

Thus, since W (0) = −1 by the definition of xalt, and W (T ) = 1, applying (4.5) we
get

E
[
W (t�)1T>t�

] = E [W (t�)] − E
[
W (t�)1T≤t�

]
= −e−4(1−θ)t� − E

[
1T≤t�E

[
W (t�)

∣∣∣T ]]
= −e−4(1−θ)t� − E

[
1T≤t�e

−4(1−θ)(t�−T )
]

≤ 0.

Hence, Exalt [Xt� (i)Xt� (i + 1)1Ki,i+1 | H ] ≤ 0.
For xblt, the process xblt(Z1(t))xblt(Z2(t)) is again a Markov chain but with tran-

sition rate 1 − θ . The requirement that i is a multiple of 4 was chosen to ensure that
xblt(Z1(0))xblt(Z2(0)) = −1. The argument is otherwise unchanged. ��
Combining Lemma 4.5 with Eq. (4.4), we obtain that

Eπ [Xt� (i)Xt� (i + 1)] − Exalt [Xt� (i)Xt� (i + 1)]
= Eπ [Xt� (i)Xt� (i + 1)1Ki,i+1] − Exalt [Xt� (i)Xt� (i + 1)1Ki,i+1]

≥ c1 tanh(θ)t−2
� e−2θ t� ,
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and thus

E[R(Y )] − Ex0 [R(Xt� )] ≥ c1 tanh(θ)t−2
� e−2θ t� n

4
. (4.6)

We are now ready to prove the second lower bound.

Lemma 4.4 Set

t� = 1
4θ t� − 5

θ
log log n.

For x0 ∈ {xalt, xblt} we have

lim
n→∞ ‖Px0(Xt� ∈ ·) − π‖tv = 1.

Proof Denote by A the event

A = {
x ∈ {±1}Z/nZ : R(x) ≥ 1

2 (E[R(Y )] + Ex0 [R(Xt� )])
}
.

By Chebyshev’s inequality and Eqs. (4.2) and (4.6)

Px0(Xt� ∈ A) ≤ Varx0(R(Xt� ))( 1
2 (E[R(Y )] − Ex0 [R(Xt� )])

)2 = O

(
n log2 n

t−4
� e−4θ t�n2

)
→ 0,

and similarly

P(Y ∈ Ac) ≤ Var(R(Y ))( 1
2 (E[R(Y )] − Ex0 [R(Xt� )])

)2 → 0.

Hence, ‖Px0(Xt� ∈ ·) − π‖tv → 1, as claimed. ��
Proof of Theorem 1, Lower bound The case of xalt follows from combining Proposi-
tion 3 and Lemma 4.4, while the lower bound for xblt follows from Eq. (4.1) and
Lemma 4.4. ��
Acknowledgements We thank an anonymous referee for useful comments.
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