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OUTLOOK

Broken up but still living together: how
ARGONAUTE’s retention of cleaved
fragments explains its role during
chromatin moditication
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Throughout the eukaryotic kingdoms, small RNAs direct
chromatin modification. ARGONAUTE proteins sit at
the nexus of this process, linking the small RNA informa-
tion to the programming of chromatin. ARGONAUTE pro-
teins physically incorporate the small RNAs as guides to
target specific regions of the genome. In this issue
of Genes & Development, Wang and colleagues (pp.
XXX-XXX) add substantial new detail to the processes of
ARGONAUTE RNA loading, preference, cleavage, and re-
tention, which together accomplish RNA-directed chroma-
tin modification. They show that after catalytic cleavage by
the plant ARGONAUTE protein AGO4, the cleaved frag-
ment remains bound. This happens during two distinct
RNA cleavage reactions performed by AGO4: first for a pas-
senger RNA strand of the siRNA duplex, and second for a
nascent transcript at the target DNA locus. Cleaved frag-
ment retention of the nascent transcript explains how the
protein complex accumulates to high levels at the target lo-
cus, amplifying chromatin modification.

In order to silence the expression of transposable ele-
ments and other regions of the genome, eukaryotic cells
use three methods of targeting new repressive chromatin
modifications. First, the presence of pre-existing chroma-
tin modifications can direct the recruitment of additional
rounds of modification. Second, transcription factor pro-
teins can directly bind specific DNA sequences and direct
chromatin modification. Third, chromatin modifications
can be targeted through the action of small RNAs. In
protists, plants, fungi, and animals, the action of ARGO-
NAUTE (AGO) proteins is programmed by the incorpora-
tion of a small RNA molecule (for review, see Hock and
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Meister 2008). This process is essential for localizing
AGOs to chromatin in order to initiate chromatin modifi-
cation (Shimada et al. 2016), even though the types of
small RNAs and their biogenesis can differ between
species.

In the model organism Arabidopsis thaliana, the mech-
anism of RNA-directed DNA methylation (RADM) has
been dissected (for review, see Zhang et al. 2018). Since
plants do not have transcription factor-based silencing of
transposable elements, RADM plays a central role in initi-
ating transposable element silencing and maintaining ro-
bust chromatin boundaries between euchromatic genes
and neighboring heterochromatic transposable elements
(Li et al. 2015; Sigman et al. 2021).

A key protein in plants responsible for RADM is AGO4.
AGO4 is programmed by 24-nt small interfering RNAs
(siRNAs), which direct base pairing with a nascent tran-
script that is still attached to the DNA locus. AGO4 incor-
porates a duplex of double-stranded siRNA in the cytoplasm
after export of the siRNA duplex from the nucleus (Fig. 1A;
Ye et al. 2012). The double-stranded RNA duplex has both a
guide strand, which will guide AGO4 to complementary se-
quences, and a passenger strand, which will be cleaved and
not used. After loading, AGO4 slices the passenger strand
(Fig. 1B) and is imported into the nucleus (Fig. 1C) to direct
RdDM (Fig. 1D). Although AGO4 has been extensively
studied, key questions remained. For example, how it is se-
lected which RNA strand is the passenger to be cleaved ver-
sus the guide strand to target AGOA4.

In this issue of Genes & Development, Wang et al.
(2023) used in vivo AGO4-RNA immunoprecipitation
paired with sequencing alongside the creation of an in vi-
tro AGO4 loading and cleavage assay to generate a deeper
understanding of AGO4 action. They found that even af-
ter AGO4 catalytic activity and slicing, AGO4 retains
binding of the cleaved fragment. AGO4 performs two
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Figure 1. AGO4 mechanism during RADM. (Left) Previous model, in which 24-/23-nt siRNA duplexes are loaded into AGO4. (A) AGO4
chooses the 24-nt strand that has a 5’ A on the guide strand. (B) The 23-nt strand is cleaved and eliminated. (C) AGO4 is imported into the
nucleus and cleaves a nascent transcript at the DNA locus, resulting in (D) RNA-directed DNA methylation. (Right) New proposed model.
(E)Both 24-/23- and 24-/24-nt siRNA duplexes are loaded into AGO4. (F) In the 24/23 duplex, the 24-nt strand is recognized as the guide. In
the 24/24 duplex, the strand that contains a 5 monophosphate is recognized as the guide. (G) AGO4 cleaves the passenger strand and re-
tains the 5’ 12-nt fragment. (H) AGO4 is imported into the nucleus, where it cleaves a nascent transcript, retaining the cleaved fragments
and remaining at the DNA locus for (D) RNA-directed DNA methylation. (Created with BioRender.com.)

separate cleavage reactions during RADM. Retention of
the cleaved fragment was found with both the passenger
RNA strand just after AGO4 loading of the duplex siRNA
in the cytoplasm (Fig. 1G) and the nascent RNA transcript
after cleavage in the nucleus (Fig. 1H).

Diving deeper, the first key finding by Wang et al.
(2023) is that AGO4 can incorporate duplexes of 24/24
nt or 24/23 nt (Fig. 1E). In the case of the 24-/23-nt du-
plex, the 23-nt strand serves as the passenger and is
cleaved, generating a 12-nt fragment that remains associ-
ated with AGO4. For 24-/24-nt duplexes, one strand is
recognized as the guide strand, likely by the 5 mono-
phosphate on the strand made by an RNA polymerase
rather than the 5’ triphosphate on the strand generated
by an RNA-dependent RNA polymerase protein (Fig.
1F; Singh et al. 2019).

Equally important, Wang et al. (2023) found that in vi-
tro AGO4 does not have the strict preference for 24-nt
siRNAs or the 5 adenosine base characteristic of
AGO4-bound siRNAs in vivo (Mi et al. 2008; Havecker
et al. 2010). Rather, these in vivo observations are the re-
sult of cleavage and biogenesis preferences of siRNAs by
proteins upstream of AGO4 (Loffer et al. 2022). This is
important because previous work has shown that the
closely related protein AGOG6 is able to incorporate
shorter 21- to 22-nt siRNAs and trigger the establish-
ment of RADM using siRNAs generated by other path-
ways (McCue et al. 2015). Together, these works
demonstrate that AGO4 and related proteins are more
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flexible in their RNA binding capacities than previously
thought.

Once translocated into the nucleus, Wang et al. (2023)
now suggest that the seed region of the guide RNA strand,
which is exposed due the removal of the passenger strand
11- to 12-nt cleavage fragment, can initiate base pairing
to the nascent transcript (see Fig. 1H). They demonstrate
the first direct biochemical evidence of slicing of nascent
transcripts by AGO4. This function had been previously in-
ferred from patterns of in vivo sequencing data (Liu et al.
2018) and genetic evidence of loss of some RADM in cata-
lytically inactive mutant versions of AGO4 (Qi et al. 2006).

AGO4 localization at the target locus is important, and
the previous model suggested that a lack of cleavage
would retain AGO4 at this locus longer than if AGO4
cleaved the nascent RNA and then dissociated. Intriguing-
ly, since AGO4 retains the sliced nascent transcript after
cleavage (Fig. 1H), the investigators speculate that
AGO4 retention of nascent RNA at the target locus could
build up a local concentration of silencing proteins at this
site, potentially directly recruiting the DNA methyltrans-
ferase responsible for de novo DNA methylation.
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