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as (minimum) spanning trees [23], edge/vertex connectivity [27],

cut and spectral sparsifiers [31], spanners [23, 24] and weighted

matchings [33] all admit deterministic algorithms with the same

performance as best known randomized algorithms1 (or altogether

do not admit non-trivial algorithms even with randomization; see,

e.g. [3, 6, 12, 17, 24] for various examples of such impossibility

results). Consequently, there has been a general interest in de-

randomizing the semi-streaming algorithms for graph coloring,

following the same recent trend in various related models such as

distributed computing [14, 18, 25, 32] and Massively Parallel Com-

putation (MPC) algorithms [19, 20]. This has led to the following

important open question:

Can we design deterministic semi-streaming algo-

rithms for graph coloring with similar guarantees as

the randomized ones? In particular, are there determin-

istic semi-streaming algorithms for (Δ + 1)-coloring,
𝑂 (Δ) coloring, or even poly(Δ) coloring?

1.1 Our Contributions

Our main result is a strong negative answer to this fundamental

open question: coloring graphs even with exp
(
Δ
𝑜 (1)

)
colors is not

possible with a deterministic semi-streaming algorithm!

Result 1. There does not exist any deterministic single-pass

semi-streaming algorithm for coloring graphs of maximum de-

gree Δ using at most exp(Δ𝑜 (1) ) colors (even when Δ is known

to the algorithm at the beginning of the stream).

Result 1 extends to the entire range of streaming algorithms with

𝑜 (𝑛Δ) space as well; see Corollary 4.7 for the formalization of this

result and precise bounds. We emphasize that graph coloring, with

more than Δ colors, is inherently a search problem not a decision

one as all graphs can be colored with Δ + 1 colors after all. Thus,

our lower bound in Result 1 says that even though we are certain

that the input graph can be colored with (Δ + 1) colors, we cannot
find a coloring with even (almost) exponentially more number of

colors.

Previously, no space lower bound was known for deterministic

semi-streaming algorithms even for (Δ + 1)-coloring and even for

dynamic streams that also allow for deleting edges from the stream2

(but see Section 1.3 for a recent independent work). On the other

hand, Result 1 effectively rules out any non-trivial algorithm for

graph coloring: the best thing to do in 𝑂 (𝑛 log𝑞 (𝑛)) space is to

either store the entire input graph when Δ ≲ log𝑞 (𝑛) and find a

1There are some other exceptions to this rule also; moreover, in many cases, random-
ization can further help, e.g., by reducing the runtime of algorithms, but typically not
that much with their space. We also emphasize that this łrough equivalence of powerž
of deterministic vs randomized algorithms only exist in the semi-streaming model:
once we reduce the space to 𝑜 (𝑛) , deterministic algorithms are much weaker than
randomized ones for most problems.
2Unlike insertion-only streams, all known algorithms in dynamic streams are random-
ized and for a crucial reason. It is easy to see that any non-trivial algorithm that should
return a single edge from the graph cannot be deterministic in dynamic streams: one
can simply use the memory of the algorithm to recover the entire input by passing each
returned edge as a deletion to the algorithm, hence forcing it to return another edge of
the graph, until we recover the entire graph. This means the memory of the algorithm

has to be Ω (𝑛2) bits, enough to store the entire input. This approach however does
not apply to (Δ + 1)-coloring at it does not require returning any edge as output.

(Δ + 1) coloring at the end, or color all vertices differently which

results in 𝑛 ≈ exp
(
Δ
1/𝑞

)
-coloring for Δ ≳ log𝑞 (𝑛). Combined

with the randomized algorithm of [3] for (Δ + 1) coloring, Result 1
presents one of the strongest separations between deterministic

and randomized algorithms in the semi-streaming model.

Given the strong impossibility result of Result 1, it is natural

to consider standard relaxations of the problem. For this, we con-

sider multi-pass algorithms that read the stream more than once.

Multi-pass algorithms have also been studied extensively since the

introduction of semi-streaming algorithms in [23]. We show that

unlike in a single pass, deterministic semi-streaming multi-pass

algorithms can indeed solve non-trivial graph coloring problems

already in just two passes.

Result 2. There exist deterministic semi-streaming algo-

rithms for coloring graphs of maximum degree Δ using 𝑂 (Δ2)
colors in two passes or 𝑂 (Δ) colors in 𝑂 (logΔ) passes. The al-
gorithms can be implemented even in dynamic streams with

edge deletions (still deterministically).

Previously, no non-trivial deterministic semi-streaming algo-

rithm was known for graph coloring. In light of Result 1, our al-

gorithms in Result 2 also provide one of the strongest separation

between two-pass and single-pass algorithms (see [5] for another

example via min-cuts). Finally, our algorithms in Result 2 are among

the first deterministic algorithms that work on dynamic streams.

All in all, our results collectively establish surprising aspects of

graph coloring in the semi-streaming model, further cementing

the role of this fundamental problem in capturing various different

separations and properties in this model (say, search vs decision,

determinism vs randomization, and single- vs two-pass algorithms).

1.2 Our Techniques

We now give a quick summary of our techniques here. More details

can be found in the high-level overview of our approach in Section 2.

Lower bound of Result 1. Our Result 1 is proven by considering

the multi-party communication complexity of the coloring problem:

here, the edges of input graph are partitioned across the players and

they can speak in turn, once each, to compute a proper coloring

of the input using as small as possible number of colors. It is a

standard fact that communication complexity lower bounds the

space of streaming algorithms. The main technical contribution of

our work is thus a communication lower bound for this problem.

We obtain our lower bound by designing an adversary that spec-

ifies the inputs of players via random subgraphs chosen adaptively

based on the messages of prior players. The adaptivity in distri-

bution of inputs allows us to prove a lower bound specifically for

deterministic algorithms (as a non-adaptive distributional lower

bound also works for randomized algorithms by Yao’s minimax

principle [34]). At the same time, working with these distributional

inputs makes our arguments much simpler compared to using a

typical counting argument over all possible graphs (we elaborate

more on this in Section 2). One main ingredient of this proof is de-

termining the power of communication protocols for łcompressing
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non-edgesž in a random subgraph, compared to standard approaches

that bound the number of edges that can be recovered.

Algorithms of Result 2. Our algorithmic results are based on

finding a way to non-properly color the graph using a small number

of colors, so that the number of monochromatic edges is small. We

can then store these edges explicitly and use them to further refine

this non-proper coloring to a proper coloring of the entire graph

(for 𝑂 (Δ2) coloring) or further extending a partial coloring and

recurse (for 𝑂 (Δ) coloring).
To be able to implement this strategy, we design families of

coloring functions of small size so that for any given graph, at

least one of these coloring functions lead to the desired non-proper

coloring with a small number of monochromatic edges. These fam-

ilies are obtained via standard tools in de-randomization, namely,

near-universal hash functions.

1.3 Recent Related Work

Independently and concurrently, [15] studied graph coloring in the

semi-streaming model for adversarially robust algorithms (see [9,

15] for more context). They prove that no semi-streaming algorithm

can be adversarially robust for (Δ2−𝜀 )-coloring for constant 𝜀 > 0.

As all deterministic algorithms are adversarially robust, their result

implies that no deterministic semi-streaming algorithm can achieve

a (Δ2−𝜀 )-coloring. The authors of [15] state that: łA major remain-

ing open question is whether this [lower bound] can be matched,

perhaps by a deterministic semi-streaming 𝑂 (Δ2) coloring algo-

rithm. In fact, it is not known how to get even a poly(Δ)-coloring
deterministicallyž. Result 1 fully settles their open question for

deterministic algorithms in negative. Incidentally, [15] provides

a randomized but adversarially robust semi-streaming algorithm

for 𝑂 (Δ3) coloring. Thus one cannot hope for our exp(Δ𝑜 (1) ) col-
oring lower bound in their model. Technique-wise, the two work

are mostly disjoint: their lower bound is based on two-party com-

munication complexity in a way that handles randomization for

adversarially robust algorithms, while ours is based on multi-party

communication complexity for deterministic algorithms (as their

model admits an 𝑂 (Δ3) coloring, there is no łextensionž of their

two-party lower bound to a multi-party one to get the bounds in

our paper ś our approach even restricted to two-parties look quite

different). Algorithms of the two work are entirely disjoint.

1.4 Further Related Work

Recently, there has been a surge of interest in graph coloring and

related problems in graph streams [2ś4, 7, 8, 10, 12, 16, 17, 28, 30].

Beside what already mentioned, another work related to ours is [2]

that studied graph theoretic aspects of palette sparsification the-

orem of [3] and obtained semi-streaming algorithms for color-

ing triangle-free graphs and (deg+1)-coloring. Very recently, [7]

proved an analogue of celebrated Brook’s theorem [13] in the semi-

streaming model: there is a randomized semi-streaming algorithm

that can Δ-color any given graph besides cliques and odd cycles

(which are not Δ-colorable). Moreover, [12] showed that some of the

łeasiestž problems in coloring are intractable in the semi-streaming

model (even with randomization). See also [31] for an excellent

overview of work on other problems in the semi-streaming model.

2 HIGH-LEVEL OVERVIEW

We give a streamlined overview of our approach in this section.

We emphasize that this section oversimplifies many details and the

discussions will be informal for the sake of intuition.

2.1 Lower Bound of Result 1

As stated earlier, the proof of Result 1 is by considering the multi-

party communication complexity of the coloring problem. To start,

let us consider the simple case of two players Alice and Bob, re-

ceiving edges of a graph𝐺 with maximum degree Δ. Alice sends a

message 𝑀 to Bob and Bob outputs a proper coloring of 𝐺 using

as small as possible number of colors. What is the best strategy

of players for solving the problem with limited communication

and small number of colors? As stated earlier, coloring with more

than Δ colors is inherently a search problem, thus this question is

basically asking how much Bob should learn about Alice’s input to

agree on a proper coloring of the entire graph (without knowing

all edges of Alice). This view will be important throughout this

discussion and our formal lower bound arguments.

Two-player communication complexity of coloring. There is a sim-

ple solution to our two-player communication game using ≈ 𝑛 size

messages and 𝑂 (Δ2) colors. Alice simply sends a (Δ + 1) coloring
of her input graph to Bob and Bob further finds a (Δ + 1) color-
ing of each of Alice’s color classes individually to obtain a proper

(Δ + 1)2 coloring of the entire input graph. Let us show that this is

essentially the best one can do using 𝑂 (𝑛) size messages and for

a specific choice of Δ = Θ(
√
𝑛) (neither of these assumptions are

needed in our main lower bound).

Suppose Alice receives an arbitrary graph with maximum degree√
𝑛 and maps it to a message of size 𝑂 (𝑛). As the graphs with

maximum degree
√
𝑛 are a constant fraction of graphs with (𝑛3/2/2)

edges3, we have that there is a message, to which, Alice is mapping

at least

Ω(1) ·
( (𝑛

2

)

𝑛3/2
2

)
· 2−𝑂 (𝑛)

≳ exp

(
𝑛3/2

4
· ln (𝑛)

)
· 2−𝑂 (𝑛) ,

many different graphs. At the same time, given this message, Bob

should avoid coloring any pairs of vertices the same if they ap-

pear in some graph mapped to this message. But having so many

graphs mapped to the same message only allows for 𝑂 (𝑛3/2) pairs
of vertices to not have any edge at all in any of these graphs; this

is because the total number of graphs with maximum degree
√
𝑛

whose edges avoid a fixed set of 𝑂 (𝑛3/2) pairs of vertices have size
at most

( (𝑛
2

)
−𝑂 (𝑛3/2)
𝑛3/2
2

)
≲

( (𝑛
2

)

𝑛3/2
2

)
· (1 − 1

𝑂 (
√
𝑛)

) (
𝑛
3/2
2 )

3Technically speaking, this sentence is not correct ś one needs the number of edges to

be (1 + 𝑜 (1)) · (𝑛3/2/2) instead, but this distinction is not relevant for our discussion
here. Thus, to avoid the clutter, we omit this extra term in these informal calculations.
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≲ exp

(
𝑛3/2

4
· ln (𝑛)

)
· 2−𝑂 (𝑛) .

At this point, this means that from the perspective of Bob, only

𝑂 (𝑛3/2) pairs of vertices can be colored the same, even ignoring

his own input graph (see Figure 1 for an illustration). Moreover, a

Markov bound implies that half the vertices only have 𝑂 (
√
𝑛) non-

edges from the perspective of Bob. Thus, Bob will łseež a set 𝑆 of

Θ(𝑛) vertices where each one has at most𝑂 (
√
𝑛) non-edges inside 𝑆 .

But recall that we are considering the case where maximum degree

can be as large as Θ(
√
𝑛). So Bob’s own input can simply contain

all non-edges inside 𝑆 while keeping the maximum degree of the

graph still 𝑂 (
√
𝑛). At this point, the induced subgraph on vertices

𝑆 , from the perspective of Bob, is simply a clique, and thus requires

|𝑆 | = Ω(𝑛) colors. Since Δ = Θ(
√
𝑛), this gives us an Ω(Δ2) lower

bound on the number of colors.

Multi-party communication complexity of coloring. Given the

protocol mentioned earlier for two players, to prove Result 1, we

need to consider a larger number of players. In general, the same

strategy outlined above also implies a protocol for 𝑘 players with

𝑂 (𝑛) communication per player and an 𝑂 (Δ𝑘 ) coloring. Our goal
is to match this in our lower bound.

Suppose now we have 𝑘 players 𝑃1, . . . , 𝑃𝑘 and the input edges

are partitioned between them. Let us again present a graph of

maximum degree ≈ Δ/𝑘 to the first player. We can again use a

similar counting argument to bound the number of non-edges in

inputs mapped to a message of player 𝑃1 (assuming that it has size,

say, 𝑂 (𝑛)). We would like to continue this procedure, by choosing

the input graph of player 𝑃2 in a way that łdestroysž many of

these pairs, while having maximum degree of still ≈ Δ/𝑘 ; then
recourse on the third player and so on. However, continuing the

above counting argument directly seems intractable at this point.

It turns out however that there is an easier way to implement

this strategy by providing the input of players as random subgraphs.

Specifically, the process goes as follows (see Figure 2):

• We present the first player 𝑃1 with a random Erdős-Rényi graph

with probability ≈ (Δ/𝑘𝑛) for each edge (so max-degree ≈ Δ/𝑘
with high probability). We prove that (see our Compression

Lemma below) that there is some message𝑀1 of 𝑃1 that creates

≲ 𝑘 · 𝑛2/Δ non-edges from the perspective of remaining players.

We further remove all vertices with non-edge-degree ≳ 𝑘2𝑛/Δ
which by Markov bound are only ≲ 𝑛/𝑘 .

• To player 𝑃2, we give a random subgraph of (remaining) non-

edges left by 𝑀1 where each edge appears with probability ≈
(Δ2/𝑘3𝑛) now. By the bound of ≲ 𝑘2𝑛/Δ on the non-edge-degree

of remaining vertices, it is easy to see that the input given to

𝑃2 still has max-degree ≈ Δ/𝑘 with high probability. We again

use the Compression Lemma to find a message𝑀2 of 𝑃2 that

creates ≲ 𝑘3𝑛2/Δ2 non-edges from the perspective of subsequent

players, and continue. This way, each step to the next player

will remove ≲ 𝑛/𝑘 vertices while reducing non-edge-degree of

remaining vertices by a ≳ Δ/𝑘2 factor.
• Eventually, we will be able to give a random subgraph of non-

edges left by𝑀1, . . . , 𝑀𝑘−1 to the player 𝑃𝑘 with edge probability

≈ (Δ𝑘/𝑘2𝑘𝑛), and bound the total maximum-degree of the graph

by 𝑘 · Δ/𝑘 = Δ as desired. But if we assume that (Δ/𝑘2)𝑘 ≈ 𝑛

(again, this assumption is only for simplicity of exposition here),

it means that we turned the remaining vertices of the graph, from

the perspective of 𝑃𝑘 , into a clique entirely4. Moreover, since we

only removed ≲ 𝑛/𝑘 vertices for each player, we still have ≈ 𝑛/𝑘
vertices left in this clique. Thus, the number of colors needed by

𝑃𝑘 to color this clique is ≈ 𝑛/𝑘 ≳ (Δ/𝑘3)𝑘 (which is larger than

poly(Δ) for sufficiently large 𝑘).

Finally, we also state our compression lemma that is used to find the

messages𝑀1, . . . , 𝑀𝑘−1 that create łsmallž number of non-edges in

the above discussion.

• Compression Lemma: Let 𝐻 be any arbitrary graph and con-

sider a distribution over subgraphs of 𝐻 obtained by sampling

each edge with probability 𝑝 . Any compression scheme that

maps the graphs sampled from this distribution into 𝑠-bit sum-

maries will create a summary so that at most 𝑂 (𝑠/𝑝) edges are
missing from all graphs mapped to this summary.

This bound should be contrasted with more standard compression

arguments that in the same setting, prove that 𝑂 (𝑠 · log−1 (1/𝑝))
edges exist in all graphs mapped to the summary. The proof is a

simple exercise in random graph theory plus showing that an 𝑠-bit

compression cannot łcapturež events that happen with probability

< 2−𝑠 in the input distribution. This concludes the description of

our lower bound approach for establishing Result 1.

2.2 Algorithms of Result 2

Wenow turn to our algorithmic results formulti-pass semi-streaming

algorithms for graph coloring.

𝑂 (Δ2) coloring in two passes. The key ingredient of this algo-

rithm is the following family of coloring functions for any integers

𝑛,Δ ≥ 1:

• C(𝑛,Δ): there are𝑂 (𝑛) functions𝐶 : 𝑉 → [Δ] in the family

so that given any𝑛-vertex graph𝐺 = (𝑉 , 𝐸) withmax-degree

Δ, there is some function𝐶 in the family such that assigning

color𝐶 (𝑣) to each vertex 𝑣 only creates𝑂 (𝑛) monochromatic

edges. Moreover, each of these functions can be implicitly

stored in 𝑂 (log𝑛) bits.
The proof of existence of this family is via probabilistic method

by choosing these functions to be near-universal hash functions

and a simple probabilistic analysis.

Now, consider the following simple two-pass algorithm. In the

first pass, maintain𝑂 (𝑛) counters on the number of monochromatic

edges of 𝐺 for each of the functions 𝐶 ∈ C(𝑛,Δ): the counter for
function𝐶 simply needs to add one for each edge (𝑢, 𝑣) appearing in
the stream with𝐶 (𝑢) = 𝐶 (𝑣). This only requires𝑂 (𝑛) space. Given
that we already know at least one of these counters only count

up to 𝑂 (𝑛) by the guarantee of C(𝑛,Δ), we will use the function
𝐶 of that counter and store all monochromatic edges of 𝐺 under

𝐶 . Given that 𝐺 had maximum-degree Δ, these monochromatic

edges under 𝐶 can themselves be properly colored using (Δ + 1)
4We emphasize that this clique is not part of a single input graph, but rather is a union
of various inputs, which are all consistent with the view of player 𝑃𝑘 based on the
input and messages received.
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𝐺 1
𝐺
2

𝐺3

(a) Alice has to map several graphs to the same message. These

graphs are individually łsparsež: they havemax-degree ≲
√
𝑛.

(b) Bob however łseesž all these edges as part of the input. So,

from Bob’s perspective, this subgraph is łdensež: it has min-

degree ≳ 𝑛 −
√
𝑛. Thus, even a łsparsež input to Bob with max-

degree ≲
√
𝑛, turns this subgraph into a clique.

Figure 1: An illustration of the two-player communication lower bound.

𝐺 1

𝐺
2

𝐺3

(a) Player 𝑃𝑖 ’s different inputs that are mapped to the same mes-

sage. The right (white) part are the vertices already removed from

consideration and the left (dark) part are the łdensež subgraph

of the input from the perspective of 𝑃𝑖 .

(b) For player 𝑃𝑖+1, the left (dark) part łlooksž even more łdensež

than it was for player 𝑃𝑖 , as multiple different graphs of 𝑃𝑖 ’s

input are mapped to the same message.

𝐺 1

𝐺2

𝐺3

(c)We further remove łless densež part of the input (middle layer)

and provide the inputs of 𝑃𝑖+1 inside the remaining subgraph.

(d) We continue like this until the last player; at that point, the

remaining łsuper densež part of the input (left most part) from

the perspective of 𝑃𝑘 is simply a clique.

Figure 2: An illustration of the multi-player communication lower bound.

colors. Taking the product of these two colorings then will give us

an 𝑂 (Δ2) coloring as desired.

𝑂 (Δ) coloring in𝑂 (logΔ) passes. The idea behind this algorithm
is to gradually grow a coloring of 𝐺 over multiple passes, using an

extension of the ideas in the previous algorithm. For this, we need

another family of coloring functions for integers 𝑛,Δ:

• C★(𝑛,Δ): there are 𝑂 (𝑛) functions 𝐶 : 𝑉 → [𝑂 (Δ)] in the

family so that given any 𝑛-vertex graph 𝐺 = (𝑉 , 𝐸) with
max-degree Δ and any partial (valid) coloring 𝐶0 of some

subset of vertices, there is some function𝐶 in the family such

that assigning color 𝐶 (𝑣) to every vertex 𝑣 uncolored by 𝐶0

only creates 𝑜 (𝑛0) monochromatic edges, where 𝑛0 is the

number of uncolored vertices by𝐶0. Moreover, each function

can be implicitly stored in 𝑂 (log𝑛) bits.

The proof of existence of this family is again via probabilistic argu-

ments although it needs a more detailed analysis.

The algorithm is then as follows. We start with a coloring 𝐶0

that leaves all vertices uncolored. Then, iteratively, we first make

one pass and use 𝑂 (𝑛) counters to find a desired coloring function

𝐶 ∈ C★(𝑛,Δ) as specified by the above result; in the second pass we
pick all 𝑜 (𝑛0) monochromatic edges of this coloring with respect to
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𝐶0. This allows us to color (1 − 𝑜 (1)) fraction of uncolored vertices

of𝐶0 by𝐶 without creating anymonochromatic edges.We continue

this for 𝑂 (logΔ) iterations so that 𝐶0 only leaves 𝑂 (𝑛/Δ) vertices
uncolored. We make one final pass over the input and store all

𝑂 (𝑛) edges incident on these remaining vertices and then at the

end, simply color them greedily using (Δ + 1) colors (as any partial

coloring can be extended to a (Δ + 1) coloring greedily). This gives

our 𝑂 (Δ) coloring algorithm.

We conclude this part by noting that even though both our

algorithms turn out quite simple, their design, based on families

C(𝑛,Δ) and C★(𝑛,Δ), requires a careful consideration to ensure

one can also verify the guarantees of families in limited space5.

3 PRELIMINARIES

Notation. For an integer 𝑡 ≥ 1, we define [𝑡] := {1, 2, . . . , 𝑡}. For a
tuple (𝑋1, . . . , 𝑋𝑡 ) and any 𝑖 ∈ [𝑡], we define 𝑋<𝑖 := (𝑋1, . . . , 𝑋𝑖−1).
For a distribution 𝜇, supp(𝜇) denotes the support of 𝜇.

For a graph 𝐺 = (𝑉 , 𝐸), we use Δ(𝐺) to denote the maximum

degree of𝐺 . For a vertex 𝑣 ∈ 𝑉 , we use𝑁 (𝑣) to denote the neighbors
of 𝑣 in 𝐺 . For any integer 𝑐 ≥ 1, a 𝑐-coloring function is any

function 𝐶 : 𝑉 → [𝑐] and does not necessarily need to be a proper

coloring of 𝐺 . A monochromatic edge under 𝐶 is any edge (𝑢, 𝑣)
of 𝐺 with 𝐶 (𝑢) = 𝐶 (𝑣). We further define a partial 𝑐-coloring

function as any function𝐶 : 𝑉 → [𝑐] ∪ {⊥}; we refer to vertices 𝑣
with 𝐶 (𝑣) =⊥ as uncolored vertices and do not consider edges (𝑢, 𝑣)
with 𝐶 (𝑢) = 𝐶 (𝑣) =⊥ as monochromatic edges.

We use the following standard form of Chernoff bound.

Proposition 3.1 (Chernoff bound; c.f. [22]). Suppose𝑋1, . . . , 𝑋𝑚
are 𝑚 independent random variables with range [0, 1] each. Let

𝑋 :=
∑𝑚
𝑖=1 𝑋𝑖 and 𝜇𝐿 ≤ E [𝑋 ] ≤ 𝜇𝐻 . Then, for any 𝜀 > 0,

Pr (𝑋 > (1 + 𝜀) · 𝜇𝐻 ) ≤ exp

(
−𝜀

2 · 𝜇𝐻
3 + 𝜀

)

Pr (𝑋 < (1 − 𝜀) · 𝜇𝐿) ≤ exp

(
−𝜀

2 · 𝜇𝐿
2 + 𝜀

)
.

Finally, we use the following property of any proper coloring.

Proposition 3.2. In any proper 𝑐-coloring of a graph𝐺 = (𝑉 , 𝐸)

for 𝑐 ≤ 𝑛
2 , there are ≥

𝑛2

4𝑐
pairs of vertices that are colored the same.

Proof. For any 𝑖 ∈ [𝑐], let 𝑛𝑖 vertices denote the number of

vertices colored 𝑖 in the given 𝑐-coloring.

number of pairs colored the same =

𝑐∑︁

𝑖=1

(
𝑛𝑖

2

)
=

1

2
·
(

𝑐∑︁

𝑖=1

𝑛2𝑖 − 𝑛𝑖

)

=
1

2
·
(

𝑐∑︁

𝑖=1

𝑛2𝑖

)
− 1

2
· 𝑛

(as
∑𝑐
𝑖=1 𝑛𝑖 = 𝑛 since all vertices are colored)

5For instance, a łmore standardž guarantee instead of C(𝑛,Δ) that bounds the
maximum-degree of monochromatic edges can also be obtained via pair-wise indepen-
dent hash functions (see, e.g. [10, 18]); but then that would require Θ(𝑛) space per
each function to verify whether or not the function satisfies the desired property.

≥ 1

2
·
(
𝑐 · (𝑛

𝑐
)2 − 𝑛

)
≥ 𝑛2

4𝑐
,

(as sum of quadratic-terms is minimized when they are all equal)

where the last inequality is by the assumption 𝑐 ≤ 𝑛/2. This con-
cludes the proof. Proposition 3.2

4 THE LOWER BOUND

We present our lower bound in this section and formalize Result 1.

We start by introducing a key tool used in our lower bound regard-

ing a family of random graphs and its key compression aspect for

our purpose. We then define the communication game we use in

proving Result 1 formally, and next present the proof the commu-

nication lower bound.

4.1 A Random Graph Distribution

We introduce a basic random graph distribution in this subsection

that forms an important component of the analysis of our lower

bound. The key difference of our distribution from standard random

graph models is that it generates random subgraphs of arbitrary

(base) graphs, as opposed to subgraphs of cliques (which means

some edges may never appear in the support of this distribution

if they are not part of the base graph). Another (minor) change is

that we ensure a deterministic bound on the maximum degree of

the graphs sampled from this distribution.

Definition 4.1. For a base graph 𝐺Base = (𝑉 , 𝐸Base) and
parameters 𝑝 ∈ (0, 1), 𝑑 ≥ 1, we define the random graph

distribution G := G(𝐺Base, 𝑝, 𝑑) as follows:
(𝑖) Sample a graph 𝐺 on vertices 𝑉 and edges 𝐸 by picking

each edge of 𝐸Base independently and with probability 𝑝

in 𝐸;

(𝑖𝑖) Return 𝐺 if Δ(𝐺) < 2𝑝 · 𝑑 , and otherwise repeat the

process.

We will eventually set 𝑑 to be approximately Δ(𝐺Base). Since the
average degree of a vertex is at most 𝑝 ·Δ(𝐺Base) ≈ 𝑝 ·𝑑 , the second
condition of Definition 4.1 rarely kicks in by Chernoff bound, and

thus this distribution is basically sampling random subgraphs of

𝐺Base. We will make these statements more precise in the proof

of Claim 4.4. We now consider algorithms that aim to łcompressž

graphs sampled from G.

Definition 4.2. ConsiderG(𝐺Base, 𝑝, 𝑑) for a base graph𝐺Base =

(𝑉 , 𝐸Base) and parameters 𝑝 ∈ (0, 1), 𝑑 ≥ 1, and an integer

𝑠 ≥ 1. A compression algorithm with size 𝑠 is any function

Φ : supp(G) → {0, 1}𝑠 that maps graphs sampled from G into

𝑠-bit strings. For any graph 𝐺 ∈ supp(G), we refer to Φ(𝐺) as
the summary of 𝐺 . For any summary 𝜙 ∈ {0, 1}𝑠 , we define:

• G𝜙 as the distribution of graphs mapped to 𝜙 by Φ, i.e.,

G𝜙 := (𝐺 ∼ G | Φ(𝐺) = 𝜙).
• 𝐺Miss (𝜙) = (𝑉 , 𝐸Miss (𝜙)), called the missing graph of

𝜙 , as a graph on vertices𝑉 and edges missed by all graphs

in G𝜙 , i.e., 𝐸Miss (𝜙) is the set of all (𝑢, 𝑣) ∈ 𝐸Base such

that no graph in supp(G𝜙 ) contains the edge (𝑢, 𝑣).
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We use the graphs from distribution G (for different base graphs

and probability parameters) in the design of our lower bounds.

The compression algorithms in Definition 4.2 then correspond to

streaming algorithms that compress these graphs into their 𝑠-bit

memory.

The notion of a missing graph is particularly useful for us, as

from the perspective the streaming algorithm, only pairs of vertices

with an edge in the missing graph are known to not have an edge

in the original input. This implies that these are the only pairs of

vertices that can be monochromatic in the final coloring without

violating the correctness of the algorithm on some input.

The following lemma summarizes the main property of compres-

sion algorithms for our random graph distribution required in our

main proof. Roughly speaking, it states that the missing graph of a

łsmall-sizež compression algorithm cannot have łmanyž edges

Lemma 4.3. Let 𝐺Base = (𝑉 , 𝐸Base) be an 𝑛-vertex graph, 𝑠 ≥ 1

be an integer, and 𝑝 ∈ (0, 1) and 𝑑 ≥ 1 be parameters such that

𝑑 ≥ max{Δ(𝐺Base), 4 ln (2𝑛)/𝑝}. Consider the distribution G :=

G(𝐺Base, 𝑝, 𝑑) and suppose Φ : supp(G) → {0, 1}𝑠 is a compression

algorithm of size 𝑠 for G. Then, there exist a summary 𝜙∗ ∈ {0, 1}𝑠
such that in the missing graph of 𝜙∗, we have

��𝐸Miss (𝜙∗)
�� ≤ ln 2 · (𝑠 + 1)

𝑝
.

Proof. Define the distribution G̃ as the distribution of graphs

in Line (𝑖) of Definition 4.1 (i.e., without the check on max-degree

and re-sampling step). This way, we have

G =

(
𝐺 ∼ G̃ | Δ(𝐺) < 2𝑝 · 𝑑

)
. (1)

We shall use this view in the following for bounding the proba-

bilities of certain events. We have the following simple claim that

bounds the probability of any event in G by twice the probability

of the same event in G̃ ś this is true simply because the graphs

sampled from G̃ already satisfy the conditioned event above with

high enough probability. The proof is standard and is postponed to

the full version of the paper.

Claim 4.4. For any event E, PrG (E) ≤ 2 · Pr
G̃
(E) .

For any summary 𝜙 ∈ {0, 1}𝑠 , its distributionG𝜙 , and its missing

graph 𝐺Miss (𝜙),

Pr
G

(
𝐺 is sampled from G𝜙

)

≤ Pr
G

(no edge of 𝐺Miss (𝜙) is sampled in 𝐺) , (2)

because edges in 𝐺Miss (𝜙) cannot belong to the graphs in the sup-

port of G𝜙 by Definition 4.2. We can bound the RHS of Equation (2)

using the distribution G̃ and apply Claim 4.4 to get the result for G

also. By the independence in the choice of edges in G̃, we have,

Pr
G̃

(no edge of 𝐺Miss (𝜙) is sampled in 𝐺)

=

∏

𝑒∈𝐸Miss (𝜙)
(1 − 𝑝)

= (1 − 𝑝) |𝐸Miss (𝜙) | ≤ exp
(
− 𝑝 · |𝐸Miss (𝜙) |

)
.

Thus, combined with Claim 4.4 and Equation (2), for any summary

𝜙 ∈ {0, 1}𝑠 , we have,

Pr
G

(
𝐺 is sampled from G𝜙

)
≤ 2 · exp

(
− 𝑝 · |𝐸Miss (𝜙) |

)
. (3)

We now switch to lower bounding the LHS of Equation (3) in-

stead. Since Φ maps each graph sampled from G to one of 2𝑠 mes-

sages 𝜙 ∈ {0, 1}𝑠 , we have,
∑︁

𝜙 ∈{0,1}𝑠
Pr
G

(
𝐺 is sampled from G𝜙

)
= 1,

which means that there exist some 𝜙∗ ∈ {0, 1}𝑠 such that

Pr
G

(
𝐺 is sampled from G𝜙∗

)
≥ 2−𝑠 .

Combining this with Equation (3), we have that

exp (−𝑠 · ln 2) ≤ exp
(
ln 2 − 𝑝 ·

��𝐸Miss (𝜙∗)
��
)
,

which, by re-arranging the terms, implies the bound in the lemma

statement. Lemma 4.3

4.2 The Coloring Communication Game

We prove our lower bound in Result 1 via communication complex-

ity arguments in the following communication game.

Definition 4.5. For integers 𝑛,Δ, 𝑘 ≥ 1, the Coloring(𝑛,Δ, 𝑘)
game is defined as:

𝑖) . There are 𝑘 players 𝑃1, . . . , 𝑃𝑘 . Each player 𝑃𝑖 knows the

vertex set 𝑉 and receives a set 𝐸𝑖 of edges. Letting 𝐺 =

(𝑉 , 𝐸) where 𝐸 = 𝐸1 ⊔ · · · ⊔ 𝐸𝑘 , players are guaranteed

that on every input Δ(𝐺) ≤ Δ and their goal is to output

a proper coloring of 𝐺 .

𝑖𝑖) . The communication is done using a shared blackboard.

First player 𝑃1 writes a message𝑀1 based on 𝐸1 on the

shared blackboardwhichwill be visible to all subsequent

players. Then, player 𝑃2 writes the next message 𝑀2

based on 𝐸2 and𝑀1. The players continue like this until

𝑃𝑘 writes the last message𝑀𝑘 which is a function of 𝐸𝑘
and𝑀<𝑘 .

𝑖𝑖𝑖) . The goal of the players is to output a valid coloring of

the input graph 𝐺 by 𝑃𝑘 writing it last on the shared

blackboard as the message𝑀𝑘 .

The communication cost of a protocol used by the players

is defined as the worst-case number of bits written by any single

player on the blackboard on any input.

Proposition 4.6. Suppose there is a function 𝑓 : N+ → N+ and

a deterministic streaming algorithm that on any 𝑛-vertex graph 𝐺

with known maximum degree Δ, outputs an 𝑓 (Δ)-coloring of𝐺 using

𝑠 = 𝑠 (𝑛,Δ) bits of space. Then, there also exists a deterministic protocol

for Coloring(𝑛,Δ, 𝑘) for any 𝑘 > 1 with communication cost 𝑂 (𝑠)
bits that outputs an 𝑓 (Δ)-coloring of any input graph.

Proof. The players simply run the streaming algorithm on their

input by writing the content of the memory of the algorithm from

one player to the next on the blackboard, so that the next player
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can continue running the algorithm on their input. At the end, the

last player computes the output of the streaming algorithm.

The maximum message size written on the blackboard is pro-

portional to the size of memory of the streaming algorithm and is

thus 𝑂 (𝑠) as desired. Proposition 4.6

The following is the main technical result of our paper.

Theorem 1. There are absolute constants 𝑛0, 𝜂0 > 0 such that the

following is true. Consider any choice of the following parameters

𝑛 ≥ 𝑛0, Δ ≥ 64 ln2 (2𝑛), 1 ≤ 𝑘 ≤ log
Δ
(𝑛), 𝑠 ≥ 𝑛 logΔ.

Then no deterministic protocol for Coloring(𝑛,Δ, 𝑘) with communi-

cation cost 𝑠 can color every input graph with fewer than
(

1

𝜂0 · 𝑘

)2𝑘
·
(
𝑛 · Δ
𝑠

)𝑘
colors.

As a corollary of this and Proposition 4.6, we can formalize Result 1.

Corollary 4.7. For any 𝑞 ≥ 1, 𝛼 ∈ (0, 1), and sufficiently large

𝑛 > 1, no deterministic single-pass streaming algorithm can obtain a

proper coloring of every graph with maximum degree at most Δ for

the following parameters:

𝑖). 𝑂 (𝑛 · log𝑞 𝑛) space and fewer than exp
(
Δ
1/4𝑞

)
colors for Δ =

200 log𝑞+1 (𝑛);
𝑖𝑖). 𝑂 (𝑛1+𝛼 ) space and fewer than Δ

1/3𝛼 colors for Δ = 𝑛2𝛼 .

Proof. We prove both parts by Proposition 4.6 and using differ-

ent parameters in Theorem 1.

𝑖). Set 𝑘 =
√︁
log

Δ
𝑛 = Θ(

√︂
log𝑛

log log𝑛
) and 𝑠 = 𝑂 (𝑛 · log𝑞 𝑛). These

parameters, plus 𝑛 and Δ, satisfy the hypotheses of Theorem 1.

As such, we get that the minimum number of colors needed

to color the input graph in this case is at least

(
1

𝜂0 · 𝑘

)2𝑘
·
(
𝑛 · Δ
𝑠

)𝑘
=

(
log log𝑛 · log𝑛
Θ(1) · log𝑛

)Θ(
√︃

log𝑛
log log𝑛

)

> exp

(
Θ(1) ·

√︄
log𝑛

log log𝑛

)
≫ exp

(
Δ
1/4𝑞

)
,

by a simple calculation of the parameters in these bounds.

𝑖𝑖). Set 𝑘 = log
Δ
𝑛 = 1/2𝛼 and 𝑠 = 𝑂 (𝑛1+𝛼 ). These parameters,

plus 𝑛 and Δ, satisfy the hypotheses of Theorem 1. As such,

we get that the minimum number of colors needed to color

the input graph in this case is at least
(

1

𝜂0 · 𝑘

)2𝑘
·
(
𝑛 · Δ
𝑠

)𝑘
=

(
𝑛𝛼

Θ(1)

)1/2𝛼
= Θ(

√
𝑛) ≫ Δ

1/3𝛼 ,

again by a simple calculation. This concludes the proof.

4.3 A Communication Lower Bound for
Coloring

Before getting to the lower bound construction, we specify a recur-

sive set of parameters.

Parameters. Our construction is governed by the following two

parameters:

• 𝑝𝑖 : the probability parameter used in defining the graph of

each player 𝑃𝑖 from the random graph distribution G for

base graphs chosen by the adversary;

• 𝑑𝑖 : a threshold on maximum degree of base graph (used in

G) chosen by the adversary for each player 𝑃𝑖 .

These parameters are defined recursively as follows (these expres-

sion would become clear shortly from the description and analysis

of the lower bound):

𝑑1 = 𝑛, 𝑝1 :=
Δ

2𝑘 · 𝑛 ,

and for 𝑖 > 1: 𝑑𝑖 =
2 ln 2 · (𝑠 + 1) · 2𝑘

𝑝𝑖−1 · 𝑛
, 𝑝𝑖 =

Δ

2𝑘 · 𝑑𝑖
. (4)

It is easier for us to work with the recursive definitions of these

parameters in most of the analysis (as their closed form is tedious

to work with). But, we also compute them explicitly (the proof is

postponed to the full version).

Claim 4.8. For any 𝑖 > 1, we have,

𝑑𝑖 = 𝑛 ·
(
2 ln 2 · (𝑠 + 1) · (2𝑘)2

𝑛 · Δ

)𝑖−1

𝑝𝑖 =
Δ

2𝑘 · 𝑛 ·
(

𝑛 · Δ
2 ln 2 · (𝑠 + 1) · (2𝑘)2

)𝑖−1
.

The lower bound construction is as follows (see Figure 3).

An adversary that generates the łhardž input of players (using

parameters in Equation (4)).

(𝑖) Let 𝐺Base (1) be a clique on 𝑛 vertices 𝑉1 = 𝑉 .

(𝑖𝑖) For 𝑖 = 1 to 𝑘 :

(a) Let G𝑖 := G(𝐺Base (𝑖), 𝑝𝑖 , 𝑑𝑖 ) and let

Φ𝑖 = Φ𝑖 (G𝑖 , 𝑀∗
<𝑖 ) : supp(G𝑖 ) → {0, 1}𝑠

be the function generating the message of player 𝑃𝑖
after seeing messages 𝑀∗

<𝑖 of the first 𝑖 − 1 players;

we ensure that the input graph of player 𝑃𝑖 given

previous messages 𝑀∗
<𝑖 is chosen from G𝑖 and thus

this is well defined.

(b) Notice that Φ𝑖 is a compression algorithm. Apply

Lemma 4.3 and let 𝑀∗
𝑖 be the special summary of

this compression algorithm which is message for the

player 𝑃𝑖 . We shall verify the hypotheses of the lemma

in Lemma 4.9.

(c) Let 𝑉𝑖+1 be the set of vertices in 𝐺Miss (𝑀∗
𝑖 ) with de-

gree at most 𝑑𝑖+1 and𝐺Base (𝑖 + 1) be the subgraph of

𝐺Miss (𝑀∗
𝑖 ) induced on 𝑉𝑖+1.

(𝑖𝑖𝑖) Let 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ) ∈ supp(G𝑖 ) be such that Φ𝑖 (𝐺𝑖 ) = 𝑀∗
𝑖

for all 𝑖 ∈ [𝑘]. Give player 𝑃𝑖 the edge set 𝐸𝑖 as the adver-
sarial input. We shall verify that this is a valid input in

Lemma 4.10.

Notice that in this construction, we allow the players to know

that their inputs come from a smaller distribution G𝑖 , not the entire
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space of edges. This is convenient for our analysis, and since this

only makes the players’ jobs easier (as they can simply ignore this

information), this can only strengthen our lower bound.

It is useful to note the containment relationships between various

edge sets in the lower bound construction. For all 𝑖 ∈ [𝑘], the edge
sets 𝐸𝑖 and 𝐸Miss (𝑀∗

𝑖 ) are disjoint because 𝐺𝑖 was mapped to𝑀∗
𝑖 ,

and both are subsets of 𝐸Base (𝑖) by definition. Also, 𝐸Base (𝑖) itself is
a subset of 𝐸Miss (𝑀∗

𝑖−1) by Line (𝑖𝑖)c of the construction, obtained
by removing łhigh degreež vertices in 𝐸Miss (𝑀∗

𝑖−1). A visual is

provided in Figure 3 for reference.

We start with two lemmas verifying that the above construction

produces a valid input and satisfies the hypotheses of Lemma 4.3.

Lemma 4.9. For all 𝑖 ∈ [𝑘], the parameters 𝑝𝑖 and 𝑑𝑖 in the distri-

bution G𝑖 = G(𝐺Base (𝑖), 𝑝𝑖 , 𝑑𝑖 ) satisfy the hypotheses of Lemma 4.3.

That is, 𝑑𝑖 ≥ max{Δ(𝐺Base (𝑖)), 4 ln(2𝑛)/𝑝𝑖 } and 𝑝𝑖 ∈ (0, 1).

Proof. The fact that 𝑑𝑖 ≥ Δ(𝐺Base (𝑖)) follows from 𝑑1 = 𝑛 in

the case 𝑖 = 1, and directly from the construction of 𝐺Base (𝑖) in
Line (𝑖𝑖)c for all other 𝑖 .

To show that 𝑑𝑖 ≥ 4 ln(2𝑛)/𝑝𝑖 , we first note that 𝑝𝑖 · 𝑑𝑖 =
Δ

2𝑘
by definition of 𝑝𝑖 in Equation (4). Hence it suffices to show that

Δ ≥ 8𝑘 ln(2𝑛). Referencing the constraints in the statement of

Theorem 1, we have Δ ≥ 64 ln2 (2𝑛) which implies
√
Δ ≥ 8 ln(2𝑛),

and we have
√
Δ ≥ 𝑘 , which combined with the latter inequality,

implies Δ ≥ 8𝑘 ln(2𝑛). This proves the bound for 𝑑𝑖 .

We now prove the bound for 𝑝𝑖 . For this, it is easier to work with

the closed-form of 𝑝𝑖 in Claim 4.8. We have,

𝑝𝑖 =
Δ

2𝑘 · 𝑛 ·
(

𝑛 · Δ
2 ln 2 · (𝑠 + 1) · (2𝑘)2

)𝑖−1
<

Δ
𝑖

𝑛
≤ Δ

𝑘

𝑛
≤ 1,

as 𝑠 ≥ 𝑛 and 𝑘 > 1 for the first inequality and by the upper bound

of 𝑘 ≤ log
Δ
(𝑛) for the last one. It is also clear that 𝑝𝑖 > 0, thus

concluding the proof. Lemma 4.9

Lemma 4.10. Any graph𝐺 constructed by the adversary hasΔ(𝐺) ≤
Δ and no parallel edges.

Proof. Consider each graph 𝐺𝑖 as input to player 𝑃𝑖 . We have,

Δ(𝐺𝑖 ) < 2𝑝𝑖𝑑𝑖 =
Δ

𝑘
,

where the first inequality is by Definition 4.1 for G(𝐺Base (𝑖), 𝑝𝑖 , 𝑑𝑖 )
and the second equality is by the definition of 𝑝𝑖 in Equation (4). This

implies that the graph 𝐺𝑖 presented to each player has maximum

degree at most Δ/𝑘 . Given that there are 𝑘 players in the game, this

means the final graph has maximum degree at most Δ.

To show that there are no parallel edges, note that 𝐸1, . . . , 𝐸𝑘 are

pairwise disjoint by the edge set containments. Lemma 4.10

We start proving the communication lower bound. First, we

show that the set𝑉𝑘+1 obtained at the end, i.e., after presenting last
player’s input, still is łquite largež.

Lemma 4.11. For any 𝑖 ∈ [𝑘 + 1], we have |𝑉𝑖 | ≥ 𝑛 − (𝑖 − 1) · 𝑛

2𝑘
.

Proof. The proof is by induction on 𝑖 . For 𝑖 = 1, we simply

have 𝑉1 = 𝑉 and thus |𝑉1 | = 𝑛; hence, the base case holds. For

the inductive step, it suffices to show that at most 𝑛
2𝑘

vertices are

removed after every player. By Lemma 4.3, for which we verified

the hypotheses in Lemma 4.9, we have that𝑀∗
𝑖 satisfies

��𝐸Miss (𝑀∗
𝑖 )

�� ≤ ln 2 · (𝑠 + 1)
𝑝𝑖

.

Recall that 𝑉𝑖+1 is the set of vertices with degree at most 𝑑𝑖+1 in
𝐺Miss (𝑀∗

𝑖 ). Since any vertex in 𝑉𝑖 \𝑉𝑖+1 contributes at least 𝑑𝑖+1
edges to 𝐸Miss (𝑀∗

𝑖 ) (and each edge can be contributed at most

twice), we have,

��𝐸Miss (𝑀∗
𝑖 )

�� ≥ 1

2
· |𝑉𝑖 \𝑉𝑖+1 | · 𝑑𝑖+1,

implying that

|𝑉𝑖 \𝑉𝑖+1 | ≤
2 ln 2 · (𝑠 + 1)

𝑝𝑖 · 𝑑𝑖+1
=

𝑛

2𝑘
,

by the choice of 𝑝𝑖 and 𝑑𝑖 in Equation (4). Lemma 4.11

We now formalize the idea we alluded to after defining the miss-

ing graph in Definition 4.2, where we described how only the edges

appearing in the missing graph can have the same color assigned to

both endpoints. Some extra care is needed here to account for the

fact that the players have their own compression algorithm which

is defined based on the messages of previous players.

Lemma 4.12. For any two vertices 𝑢, 𝑣 ∈ 𝑉𝑘+1 that have the same

color in the output of 𝑃𝑘 , the edge (𝑢, 𝑣) exists in 𝐸Miss (𝑀∗
𝑘
).

Proof. Suppose toward a contradiction that (𝑢, 𝑣) ∉ 𝐸Miss (𝑀∗
𝑘
).

We first show that there exists 𝑖 such that (𝑢, 𝑣) ∉ 𝐸Miss (𝑀∗
𝑖 ) and

(𝑢, 𝑣) ∈ 𝐸Base (𝑖). Recalling that 𝐸Miss (𝑀∗
𝑘
) ⊆ · · · ⊆ 𝐸Miss (𝑀∗

1 ),
either (𝑢, 𝑣) ∉ 𝐸Miss (𝑀∗

1 ), in which case taking 𝑖 = 1 suffices, or

(𝑢, 𝑣) ∈ 𝐸Miss (𝑀∗
𝑖−1) \ 𝐸Miss (𝑀∗

𝑖 ) for some 𝑖 > 1. Referencing

the containments illustrated in Figure 3, either (𝑢, 𝑣) ∈ 𝐸Base (𝑖) or
(𝑢, 𝑣) ∈ 𝐸Miss (𝑀∗

𝑖−1)\𝐸Base (𝑖). By Line (𝑖𝑖)c of the construction, the
second case happens only when 𝑢 or 𝑣 is dropped when restricting

to 𝑉𝑖 , which is impossible because 𝑢, 𝑣 ∈ 𝑉𝑘+1 ⊆ 𝑉𝑖 , so (𝑢, 𝑣) ∈
𝐸Base (𝑖) as desired.

Because (𝑢, 𝑣) ∉ 𝐸Miss (𝑀∗
𝑖 ) and (𝑢, 𝑣) ∈ 𝐸Base (𝑖), there should

exists some graph 𝐺 ′
𝑖 ∈ supp(G𝑖 ) that contains the edge (𝑢, 𝑣) and

is mapped to 𝑀∗
𝑖 by player 𝑃𝑖 , i.e., Φ𝑖 (𝐺 ′

𝑖 ) = 𝑀∗
𝑖 . Consider giv-

ing the graphs𝐺1, . . . ,𝐺𝑖−1,𝐺 ′
𝑖 ,𝐺𝑖+1, . . . ,𝐺𝑘 as input to the players

𝑃1, . . . , 𝑃𝑘 , respectively. Because the same messages are generated

as in the original construction, 𝑃𝑘 also outputs the same coloring.

But now (𝑢, 𝑣) is in the input graph, so 𝑢 and 𝑣 should be colored

differently. Lemma 4.12

In this final lemma, we bound the number of colors that can be

used by player 𝑃𝑘 to color 𝐺 .

Lemma 4.13. Player 𝑃𝑘 requires

𝑐 ≥ 𝑛2

16 ln 2 · (𝑠 + 1) · 𝑝𝑘

colors to color the graph 𝐺 constructed by the adversary above.
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𝐸Base (1) =
(𝑉
2

)
𝐸1 𝐸Miss (𝑀∗

1 )

𝐸Base (2)

𝐸2 𝐸Miss (𝑀∗
2 )

· · ·

Figure 3: An illustration of edge set containments in the adversary construction.

Proof. Consider the number of pairs of vertices in𝑉𝑘+1 that are
assigned the same color by the proper 𝑐-coloring created by player

𝑃𝑘 . Because𝑉𝑘+1 has at least
𝑛
2 vertices by Lemma 4.11, the number

of pairs is at least 𝑛2

16𝑐 by Proposition 3.2. (We have 𝑐 ≤ 𝑛
2 by the

choice of 𝑠 > 𝑛.) At the same time, the number of pairs of vertices

that can be colored the same is at most |𝐸Miss (𝑀∗
𝑘
) | by Lemma 4.12,

which by Lemma 4.3 is at most
ln 2· (𝑠+1)

𝑝𝑘
. In conclusion,

𝑛2

16𝑐
≤ ln 2 · (𝑠 + 1)

𝑝𝑘
,

which rearranges to our desired bound. Lemma 4.13

Finally, by plugging in the explicit value of 𝑝𝑘 in Claim 4.8 in

the bounds of Lemma 4.13, we have that the minimum number of

colors 𝑐 used by the protocol is at least

𝑐 ≥ 𝑛2

16 ln 2 · (𝑠 + 1) ·
Δ

2𝑘 · 𝑛 ·
(

𝑛 · Δ
2 ln 2 · (𝑠 + 1) · (2𝑘)2

) (𝑘−1)

=
𝑘

4
·
(

𝑛 · Δ
2 ln 2 · (𝑠 + 1) · (2𝑘)2

)𝑘

≥
(

1

𝜂0 · 𝑘

)2𝑘
·
(
𝑛 · Δ
𝑠

)𝑘
,

for some absolute constant 𝜂0 < 100. This concludes the proof

of Theorem 1.

5 THE ALGORITHMS

We present our algorithmic results in this section that complement

our strong lower bound for single-pass algorithms. Our first algo-

rithm achieves an 𝑂 (Δ2)-coloring in only two passes.

Theorem 2. There exists a deterministic algorithm that given any

𝑛-vertex graph 𝐺 with maximum degree Δ presented in an insertion-

only stream, can find an 𝑂 (Δ2)-coloring of 𝐺 in two passes and

𝑂 (𝑛 log𝑛) bits of space.

Our second algorithm builds on the ideas developed for the

first one and reduces the number of colors to 𝑂 (Δ), at the cost of
increasing the number of passes to 𝑂 (logΔ).

Theorem 3. There exists a deterministic algorithm that given any

𝑛-vertex graph 𝐺 with maximum degree Δ presented in an insertion-

only stream, can find an 𝑂 (Δ)-coloring of 𝐺 in 𝑂 (logΔ) passes and
𝑂 (𝑛 log𝑛) bits of space.

Remark 5.1. We prove Theorem 3 with a leading constant of

6 in the 𝑂 (Δ)-coloring, i.e., obtain a 6Δ-coloring of the graph in

𝑂 (logΔ) passes. This constant is in no way sacrosanct and is simply

chosen to eliminate the need to consider any corner cases (e.g., 𝑛

not being a power of 2 or Δ not being a prime and alike ś this

will become clear from the algorithm). In fact, a somewhat more

detailed analysis of the same approach gives a (1 + 𝜀) · Δ coloring

algorithm in 𝑂 (logΔ) passes for any constant 𝜀 > 0. However, as

this result is not the main focus of our work, we opted to present

the proof of the most direct approach in this theorem for brevity

and showcasing the main idea.

In the following, we first present two families of coloring func-

tions that create few monochromatic edges in different settings,

needed for our algorithms, and then present each of our algorithms.

Further extensions of our results such as to dynamic streams are

presented at the end of this section. These results collectively for-

malize Result 2.

5.1 Families of Coloring Functions with Few
Monochromatic Edges

We start with the following simple result that shows existence of a

fixed family of Δ-coloring functions that allows for coloring any

graph 𝐺 with 𝑂 (𝑛) monochromatic edges via at least one of the

functions in the family. We use this result in our two-pass algorithm.

Lemma 5.2. For any integers 𝑛,Δ ≥ 1, there exists a family C :=

C(𝑛,Δ) of size at most (2𝑛) consisting of Δ-coloring functions such
that for any 𝑛-vertex graph 𝐺 = (𝑉 , 𝐸) with maximum degree Δ,

there is a coloring function 𝐶 ∈ C such that 𝐺 has at most (4𝑛)
monochromatic edges under 𝐶 . Moreover, each function in C can be

generated via 𝑂 (log𝑛) bits.

Proof. The proof is by a probabilistic method. Let 𝑝 be the

smallest prime number larger than 𝑛 and note that we have 𝑝 < 2𝑛

by Bertrand’s postulate. We simply pick C to be the following

standard family of near-universal hash functions:

{𝐶𝑎 (𝑣) = ((𝑎 · 𝑣mod 𝑝)mod Δ) + 1 ∀𝑣 ∈ 𝑉 | 𝑎 ∈ {0, 1, . . . , 𝑝 − 1}} .
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As such, since C is a near-universal hash family, for any two vertices

𝑢, 𝑣 ∈ 𝑉 , we have,

Pr
𝐶∈C

(𝐶 (𝑢) = 𝐶 (𝑣)) ≤ 2

Δ
. (5)

See the full version of the paper for the standard that proves Equa-

tion (5). Using Equation (5), for any graph 𝐺 , we have,

E
𝐶∈C

[
# of monochromatic edges of 𝐺 under 𝐶

]

=

∑︁

(𝑢,𝑣) ∈𝐸
Pr

𝐶∈C
(𝐶 (𝑢) = 𝐶 (𝑣)) ≤ 2𝑛Δ · 2

Δ
= 4𝑛.

Consequently, for any given graph𝐺 , there should exist a choice of

𝐶 ∈ Cwith atmost (4𝑛)monochromatic edges. Finally, any coloring

function in C is specified uniquely by an integer in {0, 1, . . . , 𝑝 − 1}
which requires 𝑂 (log𝑛) bits to store. Lemma 5.2

We next present our second family of functions which is used in

our 𝑂 (Δ) coloring algorithm.

Definition 5.3. Let𝐶1 : 𝑉 → [𝑐] ∪ {⊥} be a partial 𝑐-coloring
function of a graph 𝐺 = (𝑉 , 𝐸) that has no monochromatic

edges. Let 𝐶2 : 𝑉 → [𝑐] be a 𝑐-coloring function of 𝑉 (not

necessarily a proper one). We define the extension of 𝐶1 by

𝐶2 as the 𝑐-coloring function 𝐶3 : 𝑉 → [𝑐] such that for any

𝑣 ∈ 𝑉 ,

𝐶3 (𝑣) =
{
𝐶1 (𝑣) if 𝐶1 (𝑣) ≠⊥
𝐶2 (𝑣) otherwise

,

i.e.,𝐶3 uses𝐶1 to color vertices 𝑣 with𝐶1 (𝑣) ≠⊥ and use𝐶2 to

color the remaining vertices.

The following family of coloring functions has the following

property: for any graph 𝐺 and a partial coloring 𝐶1 of 𝐺 , there is a

coloring function𝐶 in the family with a small number of monochro-

matic edges in the extension of 𝐶1 by 𝐶 . Formally,

Lemma 5.4. For any 𝑛,Δ ≥ 1, there is a family C★ := C★(𝑛,Δ)
of size at most (2𝑛) consisting of (6Δ)-coloring functions such that

the following is true. For any 𝑛-vertex graph 𝐺 = (𝑉 , 𝐸) with max-

imum degree Δ and any partial coloring function 𝐶1 of 𝐺 with no

monochromatic edges, there is a (6Δ)-coloring function 𝐶 ∈ C★ such

that extension of 𝐶1 by 𝐶 has ≤ (𝑛0
3
) monochromatic edges where

𝑛0 := |{𝑣 ∈ 𝑉 | 𝐶1 (𝑣) =⊥}|, is the number of uncolored vertices by

𝐶1. Each function in C★ can be generated via 𝑂 (log𝑛) bits.

Proof. The proof is again by the probabilistic method similar to

that of Lemma 5.2. Let 𝑝 be the smallest prime number larger than

𝑛 and note that we have 𝑝 < 2𝑛 by Bertrand’s postulate. We pick

C★ to be the following family of near-universal hash functions:

{𝐶𝑎 (𝑣) = ((𝑎 · 𝑣mod 𝑝)mod 6Δ) + 1 ∀𝑣 ∈ 𝑉 | 𝑎 ∈ {0, . . . , 𝑝 − 1}} .

Since C★ is a near-universal hash family, for any two vertices

𝑢, 𝑣 ∈ 𝑉 and any fixed color 𝑐 ∈ [6Δ],

Pr
𝐶2∈C★

(𝐶2 (𝑢) = 𝐶2 (𝑣)) ≤
2

6Δ
=

1

3Δ

Pr
𝐶2∈C★

(𝐶2 (𝑢) = 𝑐) ≤ 2

6Δ
=

1

3Δ
. (6)

The proof is similar to Equation (5) (see the full version).

For any edge (𝑢, 𝑣) ∈ 𝐸 to be monochromatic in the extension𝐶3

of𝐶1 by𝐶2, we should have that at least one of𝐶1 (𝑢) or𝐶1 (𝑣) is ⊥;
otherwise, both retain 𝑢 and 𝑣 their colors in 𝐶1 which contains no

monochromatic edges. By symmetry suppose 𝐶1 (𝑢) =⊥ and so 𝑢

will be colored by 𝐶2 in the extension 𝐶3. If 𝐶1 (𝑣) =⊥ also, then to

get a monochromatic edge, we need 𝐶2 (𝑢) = 𝐶2 (𝑣) which happens

with probability at most 1/3Δ by the first part of Equation (6).

Conversely, if 𝐶1 (𝑣) ≠⊥, then to get a monochromatic edge, we

need 𝐶2 (𝑢) = 𝐶1 (𝑣) which again happens with probability at most

1/3Δ by the second part of Equation (6). All in all, only edges

incident on {𝑣 ∈ 𝑉 | 𝐶1 (𝑣) =⊥} can be monochromatic and each

one will become so with probability at most 1/3Δ. Hence,

E
𝐶2∈C★

[
# of monochromatic edges of 𝐺 in extension of 𝐶1 by 𝐶2

]

≤
∑︁

𝑣:𝐶1 (𝑣)=⊥

∑︁

𝑢∈𝑁 (𝑣)

1

3Δ
= 𝑛0 · Δ · 1

3Δ
=
𝑛0

3
.

Hence, for any 𝐺 and 𝐶1, there should exist a choice of 𝐶2 ∈ C
with at most (𝑛0/3) monochromatic edges in the extension of 𝐶1

by 𝐶2. Also, any coloring function in C is specified uniquely by

an integer in {0, 1, . . . , 𝑝 − 1} which requires 𝑂 (log𝑛) bits to store,

concluding the proof. Lemma 5.4

5.2 A Two-Pass 𝑂 (Δ2)-Coloring Algorithm

We now present our two-pass semi-streaming algorithm for 𝑂 (Δ2)
coloring and prove Theorem 2. The key tool we use in this result is

the coloring functions of Lemma 5.2.

Algorithm 1. A two-pass deterministic semi-streaming algorithm

for 𝑂 (Δ2) coloring.
(𝑖) Let C = C(𝑛,Δ) = {𝐶1, . . . ,𝐶𝑘 } be the family of Δ-coloring

functions guaranteed by Lemma 5.2 for some 𝑘 ≤ 2𝑛.

(𝑖𝑖) In the first pass, for any 𝑖 ∈ [𝑘], maintain a counter 𝜙𝑖 that

counts the number of monochromatic edges of 𝐺 under the

coloring 𝐶𝑖 , i.e.,

𝜙𝑖 = |{(𝑢, 𝑣) ∈ 𝐺 | 𝐶𝑖 (𝑢) = 𝐶𝑖 (𝑣)}| .
Let𝐶𝑖★ ∈ C be the coloring function with the smallest value

of 𝜙𝑖★ , i.e., 𝑖
★ ∈ argmin𝑖∈[𝑘 ] 𝜙𝑖 .

(𝑖𝑖𝑖) In the second pass, store all monochromatic edges of𝐺 under

𝐶𝑖★ . Compute a (Δ + 1) coloring 𝐶 of the stored edges and

return the following coloring function 𝐶★ as the answer:

for all 𝑣 ∈ 𝑉 : 𝐶★(𝑣) = (𝐶𝑖★ (𝑣) − 1) · (Δ + 1) +𝐶 (𝑣) .

Lemma 5.5. Space complexity of Algorithm 1 is 𝑂 (𝑛 log𝑛) bits.

Proof. The first pass of this algorithm requires storing 𝑂 (𝑛)
counters of size 𝑂 (log𝑛) bits each, and can be implemented in

𝑂 (𝑛 log𝑛) bits of space. The second pass requires storing only𝑂 (𝑛)
edges by the guarantee of Lemma 5.2 which again can be done in

𝑂 (𝑛 log𝑛) bits of space. Lemma 5.5

We now argue that the final coloring 𝐶★ returned by the al-

gorithm is a proper coloring of 𝐺 , i.e., it does not contain any

monochromatic edges.
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Lemma 5.6. Algorithm 1 always outputs a proper 𝑂 (Δ2) coloring
of any given input graph with maximum degree Δ.

Proof. Firstly, since maximum degree of𝐺 is Δ, we clearly have

that maximum degree of stored edges is also at most Δ, and con-

sequently, the algorithm can always find a (Δ + 1) coloring of the
stored edges. For any edge (𝑢, 𝑣) ∈ 𝐺 , if 𝐶𝑖★ (𝑢) ≠ 𝐶𝑖★ (𝑣),��𝐶★(𝑢) −𝐶★(𝑣)

�� ≥ |𝐶𝑖★ (𝑢) −𝐶𝑖★ (𝑣) | · (Δ + 1) − |𝐶 (𝑢) −𝐶 (𝑣) |
≥ (Δ + 1) − Δ = 1,

thus 𝐶★(𝑢) ≠ 𝐶★(𝑣) and so (𝑢, 𝑣) will not be monochromatic. For

any edge (𝑢, 𝑣) ∈ 𝐺 with 𝐶𝑖★ (𝑢) = 𝐶𝑖★ (𝑣), the algorithm stores

(𝑢, 𝑣) in the second pass and thus by the coloring it finds, we have

𝐶 (𝑢) ≠ 𝐶 (𝑣), making 𝐶★(𝑢) ≠ 𝐶★(𝑣) also.
Finally, since the total number of colors used by𝐶★ is Δ · (Δ + 1),

we obtain an 𝑂 (Δ2) coloring as desired. Lemma 5.6

This concludes the proof of Theorem 2.

5.3 An 𝑂 (logΔ)-Pass 𝑂 (Δ)-Coloring Algorithm

This section includes our 𝑂 (logΔ)-pass semi-streaming algorithm

for𝑂 (Δ) coloring, i.e., the proof of Theorem 3. The key tool we use

in this result is the coloring functions of Lemma 5.4.

Algorithm 2. An 𝑂 (logΔ)-pass deterministic semi-streaming al-

gorithm for (6Δ) coloring.

(𝑖) Let C★
= C★(𝑛,Δ) = {𝐶1, . . . ,𝐶𝑘 } be the family of (6Δ)-

coloring functions guaranteed by Lemma 5.4 for some 𝑘 ≤
2𝑛.

(𝑖𝑖) Let 𝐶 be a partial coloring function, initially set to map all

vertices to ⊥.
(𝑖𝑖𝑖) While 𝐶 has more than 𝑛/Δ uncolored vertices:

(a) In one pass, for any 𝑖 ∈ [𝑘], maintain a counter 𝜙𝑖 that

counts the number of monochromatic edges of 𝐺 under

the extension 𝐶 ′
𝑖 of 𝐶 by 𝐶𝑖 , i.e.,

𝜙𝑖 =
��{(𝑢, 𝑣) ∈ 𝐺 | 𝐶 ′

𝑖 (𝑢) = 𝐶 ′
𝑖 (𝑣)

}�� .
Let 𝐶𝑖★ ∈ C be the coloring function with the smallest

𝜙𝑖★ , i.e., 𝑖
★ ∈ argmin𝑖∈[𝑘 ] 𝜙𝑖 and 𝐶

′
𝑖★

be the extension of

𝐶 by 𝐶𝑖★ .

(b) In another pass, store all monochromatic edges of𝐺 under

𝐶 ′
𝑖★
. For any vertex 𝑣 ∈ 𝑉 , if no monochromatic edges

incident on 𝑣 are stored, then set 𝐶 (𝑣) = 𝐶 ′
𝑖★
(𝑣).

(𝑖𝑣) In the last pass, store all edges incident on the uncolored

vertices of 𝐶 . Greedily color all the remaining uncolored

vertices with a color not assigned to their neighbors.

We first note a direct invariant of the algorithm that will be used

in our analysis.

Lemma 5.7. At any point of time in Algorithm 2, there are no

monochromatic edges between vertices colored by 𝐶 .

Proof. This is simply because we always work with the exten-

sions of 𝐶 and thus if a vertex is colored by 𝐶 , we never change its

color, and since we only color a vertex by 𝐶 if it does not have any

monochromatic edges. Lemma 5.7

Note that if the while-loop finishes, then the coloring 𝐶 com-

puted greedily by the algorithm is a proper (6Δ) coloring of 𝐺 as

𝐶 contained no monochromatic edges throughout (by Lemma 5.7),

and the last step of using greedy coloring, only requires (Δ + 1)
colors since we have stored all edges incident on uncolored vertices.

We thus want to show that the while-loop indeed finishes. This is

the main part of the analysis.

Lemma 5.8. There are 𝑂 (logΔ) iterations of the while-loop in Al-

gorithm 2 before it terminates.

Proof. Fix an iteration of the while-loop and let

𝑛0 := |{𝑣 ∈ 𝑉 | 𝐶 (𝑣) =⊥}|
denote the number of uncolored vertices by 𝐶 at the beginning of

this iteration. By the guarantee of Lemma 5.4 (and since Lemma 5.7

verifies the hypothesis of this lemma), we know that the coloring

𝐶 ′
𝑖★

computed by the algorithm in this iteration has at most 𝑛0/3
monochromatic edges. This means that at least 𝑛0 − 2𝑛0/3 = 𝑛0/3
vertices not colored by𝐶 have zero monochromatic edges under𝐶 ′

𝑖★
.

All these vertices will be colored by 𝐶 at the end of this iteration.

By the above discussion, the number of uncolored vertices re-

duces by a factor of at most 2/3 in each iteration. As a result, after

𝑂 (logΔ) iterations, the number of uncolored vertices by 𝐶 drops

below 𝑛/Δ and thus the while-loop terminates. Lemma 5.8

Finally, we analyze the space complexity of the algorithm.

Lemma 5.9. Space complexity of Algorithm 2 is 𝑂 (𝑛 log𝑛) bits.

Proof. The first pass of each iteration of while-loop of Algo-

rithm 2 requires maintaining 𝑂 (𝑛) counters of size 𝑂 (log𝑛) bits
each, and can be implemented in 𝑂 (𝑛 log𝑛) bits of space. The

second pass requires storing only 𝑂 (𝑛) edges by the guarantee

of Lemma 5.4 (and since Lemma 5.7 verifies the hypothesis of this

lemma) which again can be done in𝑂 (𝑛 log𝑛) bits of space. Finally,
at the end we are storing at most Δ edges for each of the remaining

𝑛/Δ uncolored vertices and thus we can store them in 𝑂 (𝑛 log𝑛)
bits as well. Lemma 5.9

This concludes the proof of Theorem 3.

5.4 Further Extensions: Dynamic Streams and
Unknown Δ

Dynamic streams. In order to implement our algorithms in dy-

namic streams, we simply need a way of recovering the 𝑂 (𝑛)
monochromatic edges in each step of each one. (Maintaining the

counters is straightforward by simply adding and subtracting their

values based on insertion and deletion of monochromatic edges

ś recall that we already know the coloring we need to work with

and thus upon update of an edge, we know whether or not it is a

monochromatic edge).

To recover these𝑂 (𝑛) monochromatic edges, we can simply use

any standard deterministic sparse recovery algorithm [26] over
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dynamic streams. The following result is folklore (we provide a

short proof sketch for completeness).

Proposition 5.10 (Folklore; cf. [21, 26]). There exists a de-

terministic algorithm that given an integer 𝑘 ≥ 1 and a dynamic

stream of of edge insertions and deletions that define an 𝑛-vertex

graph 𝐺 = (𝑉 , 𝐸), uses 𝑂 (𝑘 · log𝑛) bits of space and at the end of

the stream recovers all edges under the promise that 𝐺 has at most 𝑘

edges (the answer can be arbitrary if the promise is not satisfied).

Proof Sketch. Consider the characteristic vector 𝑥 ∈ {0, 1}(
𝑛

2)
of edges of 𝐺 being updated in the stream. The promise of the

proposition is that 𝑥 is going to be 𝑘-sparse.

Let 𝑝 be a prime larger than𝑚 :=
(𝑛
2

)
and consider the field F𝑝 .

Let 𝐴 be the (transpose) of Vandermonde matrix over F𝑝 defined

as follows:

𝐴 :=



1 1 1 · · · 1

1 21 31 · · · 𝑚1

1 22 32 · · · 𝑚2

...
...

...
. . .

...

1 22𝑘−1 32𝑘−1 · · · 𝑚2𝑘−1



where or for all 𝑖 ∈ [2𝑘] and 𝑗 ∈ 𝑚, we set 𝐴𝑖, 𝑗 = 𝑗𝑖−1 mod 𝑝 .

Given that 𝐴 can be described explicitly using only 𝑂 (log𝑚) bits,
we can maintain 𝑦 = 𝐴 · 𝑥 throughout the stream by linearity: for

any update to the 𝑖-th entry of 𝑥 , we simply add or subtract the 𝑖-th

column of 𝐴 from 𝑦 to have the updated value of 𝐴 · 𝑥 .
We now argue that at the end of the stream, one can recover 𝑥

from 𝐴 · 𝑥 . Consider any two 𝑘-sparse vectors 𝑥1 ≠ 𝑥2 ∈ F𝑚𝑝 . We

argue that𝐴 ·𝑥1 ≠ 𝐴 ·𝑥2. Suppose not, then we have𝐴 · (𝑥1−𝑥2) = 0.

This in turn means that the at most 2𝑘 columns of 𝐴 corresponding

to the union of the support of 𝑥1 and 𝑥2 are not linearly independent.

But this is a contradiction as in the Vandermonde matrix, every 2𝑘

columns are linearly independent. This already implies that unique

recovery of 𝑥 is possible from𝐴 ·𝑥 for any 𝑘-sparse vector 𝑥 ∈ F(
𝑛

2)
𝑝 .

Finally, one can also use syndrome decoding from coding theory

to implement this decoding step in polynomial time. We refer the

interested reader to, e.g. [21], for more details.

As in Algorithm 1 and Algorithm 2, we need to find monochro-

matic edges that are guaranteed to be at most 𝑂 (𝑛) many, we can

simply use Proposition 5.10 to recover these edges in𝑂 (𝑛 log𝑛) bits
even in dynamic streams (we only need to define the underlying

graph as insertions and deletions betweenmonochromatic pairs and

set 𝑘 = 𝑂 (𝑛) and apply the proposition).

This immediately extends both our Theorems 2 and 3 to dynamic

streams with the same asymptotic space complexity and the same

exact number of passes.

Removing the knowledge of Δ. Our algorithms in the previous

part are described assuming the knowledge of Δ. For our 𝑂 (Δ)
coloring algorithm this is simply without loss of generality as we

can increase the number of passes by one and compute Δ in the first

passÐgiven that we report the number of passes asymptotically

anyway, this does not change anything. But the same approach for

our 𝑂 (Δ2) coloring algorithm increases the number of passes to

three instead.

Nevertheless, there is a simple way to fix 𝑂 (Δ2) coloring algo-
rithm without changing the number of passes. In the first pass,

pick 𝑂 (log𝑛) choices of for Δ in geometrically increasing values

and maintain the counters for 𝐶 (𝑛, ·) for these 𝑂 (log𝑛) choices; in
parallel, also compute Δ in this pass. At the end of the first pass, we

know Δ and can focus on the right choice of counters for 𝐶 (𝑛,Δ′)
where Δ′ ≥ Δ ≥ 1

2 · Δ′. The rest of the algorithm and its proof are

exactly as before.
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