Check for
Updates

Deterministic Graph Coloring in the Streaming Model"

Sepehr Assadi' Andrew Chen* Glenn Sun®
Rutgers University Cornell University UCLA
USA USA USA
sepehr.assadi@rutgers.edu ac2337@cornell.edu glennsun@ucla.edu
ABSTRACT Rome, Italy. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

Recent breakthroughs in graph streaming have led to design of
semi-streaming algorithms for various vertex coloring problems
such as (A+1)-coloring, degeneracy-coloring, coloring triangle-free
graphs, and others. These algorithms are all randomized in crucial
ways and whether or not there is any deterministic analogue of
them has remained an important open question in this line of work.

We settle this fundamental question by proving that there is no
deterministic single-pass semi-streaming algorithm that given a
graph G with maximum degree A, can output a proper coloring
of G using any number of colors which is sub-exponential in A.
Our proof is based on analyzing the multi-party communication
complexity of a related communication game, using random graph
theory type arguments that may be of independent interest.

We complement our lower bound by showing that one extra
pass over the input allows one to recover an O(A?) coloring via a
deterministic semi-streaming algorithm. This result is extended to
an O(A) coloring in O(log A) passes even in dynamic streams.

CCS CONCEPTS

+ Theory of computation — Streaming, sublinear and near
linear time algorithms; Graph algorithms analysis.

KEYWORDS

Graph coloring, streaming, deterministic algorithms, lower bounds

ACM Reference Format:

Sepehr Assadi, Andrew Chen, and Glenn Sun. 2022. Deterministic Graph
Coloring in the Streaming Model. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing (STOC °22), June 20-24, 2022,

*A full version of the paper is available on arXiv: https://arxiv.org/abs/2109.14891.
TResearch supported in part by the NSF CAREER award CCF-2047061 and a gift from
Google Research.

#Research done primarily as part of 2020 REU program at DIMACS and Rutgers,
supported by the NSF grant CCF-1852215.

SResearch done primarily as part of 2021 REU program at DIMACS and Rutgers,
supported by the NSF grant CCF-1836666.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC ’22, June 20-24, 2022, Rome, Italy

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9264-8/22/06...$15.00
https://doi.org/10.1145/3519935.3520016

261

3519935.3520016

1 INTRODUCTION

Coloring graphs with a small number of colors is a central prob-
lem in graph theory with a wide range of applications in com-
puter science. A proper c-coloring of a graph G = (V, E) assigns a
color from the palette {1,...,c} to the vertices so that no edge is
monochromatic. We study graph coloring in the semi-streaming
model introduced by [23]: the edges of an n-vertex input graph
are arriving one by one in a stream and the algorithm can make
one (or a few) passes over the stream and use a limited memory of
O(n - polylog(n)) bits. At the end, it should output a proper color-
ing of the input graph. The semi-streaming model is particularly
motivated by its applications to processing massive graphs and has
received extensive attention in the last two decades.

Similar to the classical setting, it is known that approximating
the minimum number of colors for proper coloring is quite in-
tractable in the semi-streaming model [1, 17, 29]. As a result, the
interest in this problem in graph streaming has primarily been on
obtaining colorings with number of colors proportional to certain
combinatorial parameters of input graphs, such as maximum degree
or degeneracy. On this front, a breakthrough result of [3] gave the
first semi-streaming algorithm for (A + 1) coloring of graphs with
maximum degree A (see also the independent work of [11] that
obtained O(A) coloring). Another remarkable result is that of [10]
that gave a semi-streaming algorithm for (x + o(x))-coloring of
graphs with degeneracy k. See [2, 8, 12, 17] for other related results.

Perhaps, the single most common characteristic of all results in
this line of work is that they crucially rely on randomization. For in-
stance, one of the strongest tool for streaming graph coloring is the
palette sparsification theorem of [3] which states the following: if
we sample O(log n) colors from {1,..., A + 1} for each vertex inde-
pendently and uniformly at random, then with high probability, the
entire graph can be colored using only the sampled colors of each
vertex. This result immediately leads to a semi-streaming algorithm
for (A + 1) coloring: after sampling O(log n) colors for each vertex,
only O(nlog?(n)) edges can potentially become monochromatic
under any coloring of vertices from their sampled colors; thus, the
algorithm can simply store these edges throughout the stream and
find the desired coloring at the end (which is guaranteed to exist
by the palette sparsification theorem). But the resulting algorithm
is inherently randomized with this tool.

This state-of-affairs of graph coloring in admitting only random-
ized semi-streaming algorithms is rather unusual in the literature.
Indeed, most problems of interest in the semi-streaming model such

STOC ’22, June 20-24, 2022, Rome, Italy

as (minimum) spanning trees [23], edge/vertex connectivity [27],
cut and spectral sparsifiers [31], spanners [23, 24] and weighted
matchings [33] all admit deterministic algorithms with the same
performance as best known randomized algorithms' (or altogether
do not admit non-trivial algorithms even with randomization; see,
e.g. [3, 6, 12, 17, 24] for various examples of such impossibility
results). Consequently, there has been a general interest in de-
randomizing the semi-streaming algorithms for graph coloring,
following the same recent trend in various related models such as
distributed computing [14, 18, 25, 32] and Massively Parallel Com-
putation (MPC) algorithms [19, 20]. This has led to the following
important open question:

Can we design deterministic semi-streaming algo-
rithms for graph coloring with similar guarantees as
the randomized ones? In particular, are there determin-
istic semi-streaming algorithms for (A + 1)-coloring,
O(A) coloring, or even poly(A) coloring?

1.1 Our Contributions

Our main result is a strong negative answer to this fundamental
open question: coloring graphs even with exp (A"(l)) colors is not

possible with a deterministic semi-streaming algorithm!

REsULT 1. There does not exist any deterministic single-pass
semi-streaming algorithm for coloring graphs of maximum de-
gree A using at most exp(A°V) colors (even when A is known
to the algorithm at the beginning of the stream).

Result 1 extends to the entire range of streaming algorithms with
o(nA) space as well; see Corollary 4.7 for the formalization of this
result and precise bounds. We emphasize that graph coloring, with
more than A colors, is inherently a search problem not a decision
one as all graphs can be colored with A + 1 colors after all. Thus,
our lower bound in Result 1 says that even though we are certain
that the input graph can be colored with (A + 1) colors, we cannot
find a coloring with even (almost) exponentially more number of
colors.

Previously, no space lower bound was known for deterministic
semi-streaming algorithms even for (A + 1)-coloring and even for
dynamic streams that also allow for deleting edges from the stream?
(but see Section 1.3 for a recent independent work). On the other
hand, Result 1 effectively rules out any non-trivial algorithm for
graph coloring: the best thing to do in O(nlog?(n)) space is to
either store the entire input graph when A < log? (n) and find a

IThere are some other exceptions to this rule also; moreover, in many cases, random-
ization can further help, e.g., by reducing the runtime of algorithms, but typically not
that much with their space. We also emphasize that this “rough equivalence of power”
of deterministic vs randomized algorithms only exist in the semi-streaming model:
once we reduce the space to o(n), deterministic algorithms are much weaker than
randomized ones for most problems.

2Unlike insertion-only streams, all known algorithms in dynamic streams are random-
ized and for a crucial reason. It is easy to see that any non-trivial algorithm that should
return a single edge from the graph cannot be deterministic in dynamic streams: one
can simply use the memory of the algorithm to recover the entire input by passing each
returned edge as a deletion to the algorithm, hence forcing it to return another edge of
the graph, until we recover the entire graph. This means the memory of the algorithm
has to be Q(n?) bits, enough to store the entire input. This approach however does
not apply to (A + 1)-coloring at it does not require returning any edge as output.

262

Sepehr Assadi, Andrew Chen, and Glenn Sun

(A + 1) coloring at the end, or color all vertices differently which
results in n ~ exp (Al/q)—coloring for A 2 log? (n). Combined
with the randomized algorithm of [3] for (A + 1) coloring, Result 1
presents one of the strongest separations between deterministic
and randomized algorithms in the semi-streaming model.

Given the strong impossibility result of Result 1, it is natural
to consider standard relaxations of the problem. For this, we con-
sider multi-pass algorithms that read the stream more than once.
Multi-pass algorithms have also been studied extensively since the
introduction of semi-streaming algorithms in [23]. We show that
unlike in a single pass, deterministic semi-streaming multi-pass
algorithms can indeed solve non-trivial graph coloring problems
already in just two passes.

RESULT 2. There exist deterministic semi-streaming algo-
rithms for coloring graphs of maximum degree A using O(A?)
colors in two passes or O(A) colors in O(log A) passes. The al-
gorithms can be implemented even in dynamic streams with
edge deletions (still deterministically).

Previously, no non-trivial deterministic semi-streaming algo-
rithm was known for graph coloring. In light of Result 1, our al-
gorithms in Result 2 also provide one of the strongest separation
between two-pass and single-pass algorithms (see [5] for another
example via min-cuts). Finally, our algorithms in Result 2 are among
the first deterministic algorithms that work on dynamic streams.

All in all, our results collectively establish surprising aspects of
graph coloring in the semi-streaming model, further cementing
the role of this fundamental problem in capturing various different
separations and properties in this model (say, search vs decision,
determinism vs randomization, and single- vs two-pass algorithms).

1.2 Our Techniques

We now give a quick summary of our techniques here. More details
can be found in the high-level overview of our approach in Section 2.

Lower bound of Result 1. Our Result 1 is proven by considering
the multi-party communication complexity of the coloring problem:
here, the edges of input graph are partitioned across the players and
they can speak in turn, once each, to compute a proper coloring
of the input using as small as possible number of colors. It is a
standard fact that communication complexity lower bounds the
space of streaming algorithms. The main technical contribution of
our work is thus a communication lower bound for this problem.

We obtain our lower bound by designing an adversary that spec-
ifies the inputs of players via random subgraphs chosen adaptively
based on the messages of prior players. The adaptivity in distri-
bution of inputs allows us to prove a lower bound specifically for
deterministic algorithms (as a non-adaptive distributional lower
bound also works for randomized algorithms by Yao’s minimax
principle [34]). At the same time, working with these distributional
inputs makes our arguments much simpler compared to using a
typical counting argument over all possible graphs (we elaborate
more on this in Section 2). One main ingredient of this proof is de-
termining the power of communication protocols for “compressing

Deterministic Graph Coloring in the Streaming Model

non-edges” in a random subgraph, compared to standard approaches
that bound the number of edges that can be recovered.

Algorithms of Result 2. Our algorithmic results are based on
finding a way to non-properly color the graph using a small number
of colors, so that the number of monochromatic edges is small. We
can then store these edges explicitly and use them to further refine
this non-proper coloring to a proper coloring of the entire graph
(for O(A?) coloring) or further extending a partial coloring and
recurse (for O(A) coloring).

To be able to implement this strategy, we design families of
coloring functions of small size so that for any given graph, at
least one of these coloring functions lead to the desired non-proper
coloring with a small number of monochromatic edges. These fam-
ilies are obtained via standard tools in de-randomization, namely,
near-universal hash functions.

1.3 Recent Related Work

Independently and concurrently, [15] studied graph coloring in the
semi-streaming model for adversarially robust algorithms (see [9,
15] for more context). They prove that no semi-streaming algorithm
can be adversarially robust for (A%~¢)-coloring for constant & > 0.
As all deterministic algorithms are adversarially robust, their result
implies that no deterministic semi-streaming algorithm can achieve
a (A?7%)-coloring. The authors of [15] state that: “A major remain-
ing open question is whether this [lower bound] can be matched,
perhaps by a deterministic semi-streaming O(A?) coloring algo-
rithm. In fact, it is not known how to get even a poly(A)-coloring
deterministically”. Result 1 fully settles their open question for
deterministic algorithms in negative. Incidentally, [15] provides
a randomized but adversarially robust semi-streaming algorithm
for O(A3) coloring. Thus one cannot hope for our exp(A"(l)) col-
oring lower bound in their model. Technique-wise, the two work
are mostly disjoint: their lower bound is based on two-party com-
munication complexity in a way that handles randomization for
adversarially robust algorithms, while ours is based on multi-party
communication complexity for deterministic algorithms (as their
model admits an O(A%) coloring, there is no “extension” of their
two-party lower bound to a multi-party one to get the bounds in
our paper — our approach even restricted to two-parties look quite
different). Algorithms of the two work are entirely disjoint.

1.4 Further Related Work

Recently, there has been a surge of interest in graph coloring and
related problems in graph streams [2-4, 7, 8, 10, 12, 16, 17, 28, 30].
Beside what already mentioned, another work related to ours is [2]
that studied graph theoretic aspects of palette sparsification the-
orem of [3] and obtained semi-streaming algorithms for color-
ing triangle-free graphs and (deg +1)-coloring. Very recently, [7]
proved an analogue of celebrated Brook’s theorem [13] in the semi-
streaming model: there is a randomized semi-streaming algorithm
that can A-color any given graph besides cliques and odd cycles
(which are not A-colorable). Moreover, [12] showed that some of the
“easiest” problems in coloring are intractable in the semi-streaming

263

STOC 22, June 20-24, 2022, Rome, Italy

model (even with randomization). See also [31] for an excellent
overview of work on other problems in the semi-streaming model.

2 HIGH-LEVEL OVERVIEW

We give a streamlined overview of our approach in this section.
We emphasize that this section oversimplifies many details and the
discussions will be informal for the sake of intuition.

2.1 Lower Bound of Result 1

As stated earlier, the proof of Result 1 is by considering the multi-
party communication complexity of the coloring problem. To start,
let us consider the simple case of two players Alice and Bob, re-
ceiving edges of a graph G with maximum degree A. Alice sends a
message M to Bob and Bob outputs a proper coloring of G using
as small as possible number of colors. What is the best strategy
of players for solving the problem with limited communication
and small number of colors? As stated earlier, coloring with more
than A colors is inherently a search problem, thus this question is
basically asking how much Bob should learn about Alice’s input to
agree on a proper coloring of the entire graph (without knowing
all edges of Alice). This view will be important throughout this
discussion and our formal lower bound arguments.

Two-player communication complexity of coloring. There is a sim-
ple solution to our two-player communication game using ~ n size
messages and O(A?) colors. Alice simply sends a (A + 1) coloring
of her input graph to Bob and Bob further finds a (A + 1) color-
ing of each of Alice’s color classes individually to obtain a proper
(A + 1)? coloring of the entire input graph. Let us show that this is
essentially the best one can do using O(n) size messages and for
a specific choice of A = ©(+/n) (neither of these assumptions are
needed in our main lower bound).

Suppose Alice receives an arbitrary graph with maximum degree
y/n and maps it to a message of size O(n). As the graphs with
maximum degree /1 are a constant fraction of graphs with (n3/2/2)
edges®, we have that there is a message, to which, Alice is mapping
at least

5 3/2
Q(1) - (7(132/)2) . 2_0(71) 2 exp (nT -In(n)] - 2—O(n)’
2

many different graphs. At the same time, given this message, Bob
should avoid coloring any pairs of vertices the same if they ap-
pear in some graph mapped to this message. But having so many
graphs mapped to the same message only allows for o(n®?) pairs
of vertices to not have any edge at all in any of these graphs; this
is because the total number of graphs with maximum degree vn
whose edges avoid a fixed set of O(n3/2) pairs of vertices have size
at most

(2)) 1
we) 0 ot

n 3/2
(2)—O(n /) (n3/z)
<)2
n3/2 ~
2

3Technically speaking, this sentence is not correct — one needs the number of edges to
be (1+0(1)) - (n*?/2) instead, but this distinction is not relevant for our discussion
here. Thus, to avoid the clutter, we omit this extra term in these informal calculations.

STOC ’22, June 20-24, 2022, Rome, Italy

3/2
< exp (nT -In (n)) 270,

At this point, this means that from the perspective of Bob, only
O(n3/?) pairs of vertices can be colored the same, even ignoring
his own input graph (see Figure 1 for an illustration). Moreover, a
Markov bound implies that half the vertices only have O(+/n) non-
edges from the perspective of Bob. Thus, Bob will “see” a set S of
O(n) vertices where each one has at most O(+/n) non-edges inside S.
But recall that we are considering the case where maximum degree
can be as large as ©(y/n). So Bob’s own input can simply contain
all non-edges inside S while keeping the maximum degree of the
graph still O(+/n). At this point, the induced subgraph on vertices
S, from the perspective of Bob, is simply a clique, and thus requires
|S| = Q(n) colors. Since A = ©(+/n), this gives us an Q(A?) lower
bound on the number of colors.

Multi-party communication complexity of coloring. Given the
protocol mentioned earlier for two players, to prove Result 1, we
need to consider a larger number of players. In general, the same
strategy outlined above also implies a protocol for k players with
O(n) communication per player and an O(A¥) coloring. Our goal
is to match this in our lower bound.

Suppose now we have k players Py, ..., P; and the input edges
are partitioned between them. Let us again present a graph of
maximum degree ~ A/k to the first player. We can again use a
similar counting argument to bound the number of non-edges in
inputs mapped to a message of player P; (assuming that it has size,
say, O(n)). We would like to continue this procedure, by choosing
the input graph of player P, in a way that “destroys” many of
these pairs, while having maximum degree of still * A/k; then
recourse on the third player and so on. However, continuing the
above counting argument directly seems intractable at this point.

It turns out however that there is an easier way to implement
this strategy by providing the input of players as random subgraphs.
Specifically, the process goes as follows (see Figure 2):

e We present the first player P; with a random Erdés-Rényi graph
with probability ~ (A/kn) for each edge (so max-degree ~ A/k
with high probability). We prove that (see our Compression
Lemma below) that there is some message M; of P; that creates
< k- n?/A non-edges from the perspective of remaining players.
We further remove all vertices with non-edge-degree > k%n/A
which by Markov bound are only < n/k.
To player P,, we give a random subgraph of (remaining) non-
edges left by M; where each edge appears with probability =
(A?/k3n) now. By the bound of < k%n/A on the non-edge-degree
of remaining vertices, it is easy to see that the input given to
P, still has max-degree ~ A/k with high probability. We again
use the Compression Lemma to find a message M of P that
creates < k3n? /A2 non-edges from the perspective of subsequent
players, and continue. This way, each step to the next player
will remove < n/k vertices while reducing non-edge-degree of
remaining vertices by a 2 A/k? factor.
o Eventually, we will be able to give a random subgraph of non-
edges left by My, . .., My_; to the player P with edge probability
~ (A /k%* 1), and bound the total maximum-degree of the graph

264

Sepehr Assadi, Andrew Chen, and Glenn Sun

by k - A/k = A as desired. But if we assume that (A/kz)k xn
(again, this assumption is only for simplicity of exposition here),
it means that we turned the remaining vertices of the graph, from
the perspective of Py, into a clique entirely*. Moreover, since we
only removed < n/k vertices for each player, we still have ~ n/k
vertices left in this clique. Thus, the number of colors needed by
Py to color this clique is = n/k 2 (A/k3)K (which is larger than
poly(A) for sufficiently large k).

Finally, we also state our compression lemma that is used to find the
messages M, ..., My_; that create “small” number of non-edges in
the above discussion.

e Compression Lemma: Let H be any arbitrary graph and con-
sider a distribution over subgraphs of H obtained by sampling
each edge with probability p. Any compression scheme that
maps the graphs sampled from this distribution into s-bit sum-
maries will create a summary so that at most O(s/p) edges are
missing from all graphs mapped to this summary.

This bound should be contrasted with more standard compression
arguments that in the same setting, prove that O(s - log™!(1/p))
edges exist in all graphs mapped to the summary. The proof is a
simple exercise in random graph theory plus showing that an s-bit
compression cannot “capture” events that happen with probability
< 27% in the input distribution. This concludes the description of
our lower bound approach for establishing Result 1.

2.2 Algorithms of Result 2

We now turn to our algorithmic results for multi-pass semi-streaming
algorithms for graph coloring.

O(A?) coloring in two passes. The key ingredient of this algo-
rithm is the following family of coloring functions for any integers
nA>1:

e C(n,A): there are O(n) functions C : V. — [A] in the family
so that given any n-vertex graph G = (V, E) with max-degree
A, there is some function C in the family such that assigning
color C(v) to each vertex v only creates O(n) monochromatic
edges. Moreover, each of these functions can be implicitly
stored in O(log n) bits.

The proof of existence of this family is via probabilistic method
by choosing these functions to be near-universal hash functions
and a simple probabilistic analysis.

Now, consider the following simple two-pass algorithm. In the
first pass, maintain O(n) counters on the number of monochromatic
edges of G for each of the functions C € C(n, A): the counter for
function C simply needs to add one for each edge (u, v) appearing in
the stream with C(u) = C(v). This only requires O(n) space. Given
that we already know at least one of these counters only count
up to O(n) by the guarantee of C(n, A), we will use the function
C of that counter and store all monochromatic edges of G under
C. Given that G had maximum-degree A, these monochromatic
edges under C can themselves be properly colored using (A + 1)
4We emphasize that this clique is not part of a single input graph, but rather is a union

of various inputs, which are all consistent with the view of player Pj based on the
input and messages received.

Deterministic Graph Coloring in the Streaming Model

(a) Alice has to map several graphs to the same message. These
graphs are individually “sparse”: they have max-degree < \/n.

STOC 22, June 20-24, 2022, Rome, Italy

(b) Bob however “sees” all these edges as part of the input. So,
from Bob’s perspective, this subgraph is “dense”: it has min-
degree > n — y/n. Thus, even a “sparse” input to Bob with max-
degree < /i, turns this subgraph into a clique.

Figure 1: An illustration of the two-player communication lower bound.

(a) Player P;’s different inputs that are mapped to the same mes-
sage. The right (white) part are the vertices already removed from
consideration and the left (dark) part are the “dense” subgraph
of the input from the perspective of P;.

(c) We further remove “less dense” part of the input (middle layer)
and provide the inputs of P;;; inside the remaining subgraph.

PR
sr77. 11777777777,
17777774 1777777777777,
1277777777, 17777777777777,
477777777777 4777777777777 777
1172777777777 7727727727727777
1277777777777 17277777727 777777
17777727 777777 177777777777777
R R
17777777777727777777777777777777777
V701707177777 77777777777770777
V77077777772777777777777 0727777
777777777727777777777777,
2177777770 7072777777777.
“272227%" 7 727777777,
55% 2 277777777

(b) For player P;.q, the left (dark) part “looks” even more “dense”
than it was for player P;, as multiple different graphs of P;’s
input are mapped to the same message.

(d) We continue like this until the last player; at that point, the
remaining “super dense” part of the input (left most part) from
the perspective of Py is simply a clique.

Figure 2: An illustration of the multi-player communication lower bound.

colors. Taking the product of these two colorings then will give us
an O(A?) coloring as desired.

O(A) coloring in O(log A) passes. The idea behind this algorithm
is to gradually grow a coloring of G over multiple passes, using an
extension of the ideas in the previous algorithm. For this, we need
another family of coloring functions for integers n, A:

e C*(n, A): there are O(n) functions C : V. — [O(A)] in the
family so that given any n-vertex graph G = (V,E) with
max-degree A and any partial (valid) coloring Cy of some
subset of vertices, there is some function C in the family such

265

that assigning color C(v) to every vertex v uncolored by Cy
only creates 0(no) monochromatic edges, where ny is the
number of uncolored vertices by Cy. Moreover, each function
can be implicitly stored in O(log n) bits.

The proof of existence of this family is again via probabilistic argu-
ments although it needs a more detailed analysis.

The algorithm is then as follows. We start with a coloring Cp
that leaves all vertices uncolored. Then, iteratively, we first make
one pass and use O(n) counters to find a desired coloring function
C € C*(n, A) as specified by the above result; in the second pass we
pick all 0(np) monochromatic edges of this coloring with respect to

STOC ’22, June 20-24, 2022, Rome, Italy

Co. This allows us to color (1 —0(1)) fraction of uncolored vertices
of Cy by C without creating any monochromatic edges. We continue
this for O(log A) iterations so that Cy only leaves O(n/A) vertices
uncolored. We make one final pass over the input and store all
O(n) edges incident on these remaining vertices and then at the
end, simply color them greedily using (A + 1) colors (as any partial
coloring can be extended to a (A + 1) coloring greedily). This gives
our O(A) coloring algorithm.

We conclude this part by noting that even though both our
algorithms turn out quite simple, their design, based on families
C(n,A) and C*(n, A), requires a careful consideration to ensure
one can also verify the guarantees of families in limited space’.

3 PRELIMINARIES

Notation. For aninteger t > 1, we define [t] := {1,2,...,t}.Fora
tuple (X3, ...,X;) and any i € [t], we define X<; == (Xj, ..., Xj-1)-
For a distribution y, supp(y) denotes the support of p.

For a graph G = (V,E), we use A(G) to denote the maximum
degree of G. For avertex v € V, we use N(v) to denote the neighbors
of v in G. For any integer ¢ > 1, a c-coloring function is any
function C : V. — [c] and does not necessarily need to be a proper
coloring of G. A monochromatic edge under C is any edge (u,v)
of G with C(u) = C(v). We further define a partial c-coloring
function as any function C : V. — [c] U {L}; we refer to vertices v
with C(v) =L as uncolored vertices and do not consider edges (u, v)
with C(u) = C(v) =L as monochromatic edges.

We use the following standard form of Chernoff bound.
PROPOSITION 3.1 (CHERNOFF BOUND; C.F. [22]). SupposeXq, ..

are m independent random variables with range [0,1] each. Let
X :=3" X;and pp < E[X] < pg. Then, for any e > 0,

€ pr
Pr(X>(1+4¢)-pg) <exp|-—

3+¢

2.
Pr(X<(1-¢)-pr) Sexp(—g ’uL).

2+¢

Finally, we use the following property of any proper coloring.
PROPOSITION 3.2. In any proper c-coloring of a graph G = (V,E)
2

n
forc < 3, there are > ™ pairs of vertices that are colored the same.
c

Proor. For any i € [c], let n; vertices denote the number of
vertices colored i in the given c-coloring.
C C
. nj 1 2
number of pairs colored the same = Z ()) =5 (Z ny — ni)
i=1 i=1

(4
1 1
[
2 |4 2
(as X.¢_; n; = n since all vertices are colored)

SFor instance, a “more standard” guarantee instead of C(n,A) that bounds the
maximum-degree of monochromatic edges can also be obtained via pair-wise indepen-
dent hash functions (see, e.g. [10, 18]); but then that would require ©(n) space per
each function to verify whether or not the function satisfies the desired property.

- Xm

266

Sepehr Assadi, Andrew Chen, and Glenn Sun

1 2

n n
>~ (e (B -n)2

c
(as sum of quadratic-terms is minimized when they are all equal)

where the last inequality is by the assumption ¢ < n/2. This con-

cludes the prOOf- I Proposition 3.2

4 THE LOWER BOUND

We present our lower bound in this section and formalize Result 1.
We start by introducing a key tool used in our lower bound regard-
ing a family of random graphs and its key compression aspect for
our purpose. We then define the communication game we use in
proving Result 1 formally, and next present the proof the commu-
nication lower bound.

4.1 A Random Graph Distribution

We introduce a basic random graph distribution in this subsection
that forms an important component of the analysis of our lower
bound. The key difference of our distribution from standard random
graph models is that it generates random subgraphs of arbitrary
(base) graphs, as opposed to subgraphs of cliques (which means
some edges may never appear in the support of this distribution
if they are not part of the base graph). Another (minor) change is
that we ensure a deterministic bound on the maximum degree of
the graphs sampled from this distribution.

Definition 4.1. For a base graph Ggase = (V, Egase) and
parameters p € (0,1),d > 1, we define the random graph
distribution G := G(Ggase, p, d) as follows:

(i) Sample a graph G on vertices V and edges E by picking
each edge of Epyse independently and with probability p
in E;
(ii) Return G if A(G) < 2p - d, and otherwise repeat the
process.

We will eventually set d to be approximately A(Ggase). Since the
average degree of a vertex is at most p- A(Gpase) = p - d, the second
condition of Definition 4.1 rarely kicks in by Chernoff bound, and
thus this distribution is basically sampling random subgraphs of
Ggase- We will make these statements more precise in the proof
of Claim 4.4. We now consider algorithms that aim to “compress”
graphs sampled from G.

Definition 4.2. Consider G(Ggase, p, d) for abase graph Ggase =
(V, Egase) and parameters p € (0,1),d > 1, and an integer
s > 1. A compression algorithm with size s is any function
® : supp(G) — {0, 1}*° that maps graphs sampled from G into
s-bit strings. For any graph G € supp(G), we refer to ®(G) as
the summary of G. For any summary ¢ € {0, 1}*, we define:

e Gy as the distribution of graphs mapped to ¢ by @, i.e.,
Gy = (G~ G| B(G) = ¢).

e Gyiss(P) = (V, Eniss(¢)), called the missing graph of
¢, as a graph on vertices V and edges missed by all graphs
in Gy, i.e., Eiss(4) is the set of all (u,0) € Epase such
that no graph in supp(Gy) contains the edge (u,).

Deterministic Graph Coloring in the Streaming Model

We use the graphs from distribution G (for different base graphs
and probability parameters) in the design of our lower bounds.
The compression algorithms in Definition 4.2 then correspond to
streaming algorithms that compress these graphs into their s-bit
memory.

The notion of a missing graph is particularly useful for us, as
from the perspective the streaming algorithm, only pairs of vertices
with an edge in the missing graph are known to not have an edge
in the original input. This implies that these are the only pairs of
vertices that can be monochromatic in the final coloring without
violating the correctness of the algorithm on some input.

The following lemma summarizes the main property of compres-
sion algorithms for our random graph distribution required in our
main proof. Roughly speaking, it states that the missing graph of a
“small-size” compression algorithm cannot have “many” edges

LEMMA 4.3. Let Gpase = (V, Epase) be an n-vertex graph, s > 1
be an integer, and p € (0,1) and d > 1 be parameters such that
d > max{A(Ggase),4In (2n)/p}. Consider the distribution G :=
G(Ggase. p» d) and suppose @ : supp(G) — {0,1}° is a compression
algorithm of size s for G. Then, there exist a summary ¢* € {0,1}*
such that in the missing graph of ¢*, we have

N In2-(s+1)
E iss - -
|Ewiss (¢%) »

<

ProoF. Define the distribution G as the distribution of graphs
in Line (i) of Definition 4.1 (i.e., without the check on max-degree
and re-sampling step). This way, we have

G:(G~@|A(G)<zp-d). (1)

We shall use this view in the following for bounding the proba-
bilities of certain events. We have the following simple claim that
bounds the probability of any event in G by twice the probability
of the same event in G — this is true simply because the graphs
sampled from G already satisfy the conditioned event above with
high enough probability. The proof is standard and is postponed to
the full version of the paper.

CrLamM 4.4. For any event &, Prg (8) < 2- Prg (&).

For any summary ¢ € {0, 1}, its distribution G¢, and its missing
graph Gyiss(¢),

lg (G is sampled from G¢)
@)

because edges in Gujss(¢) cannot belong to the graphs in the sup-
port of G by Definition 4.2. We can bound the RHS of Equation (2)

< Ig (no edge of Gyiss (@) is sampled in G),

using the distribution G and apply Claim 4.4 to get the result for G
also. By the independence in the choice of edges in G, we have,

Pr (no edge of Gyjss (@) is sampled in G)
G
=[]a-»
e€Eyiss(¢)

= (1= p) B Ol < exp(-p - |Busss (9)1).

267

STOC 22, June 20-24, 2022, Rome, Italy
Thus, combined with Claim 4.4 and Equation (2), for any summary
¢ € {0,1}*, we have,

%{ (G is sampled from G¢) <2- exp(—P : |EMiss(¢)|)~ (3)

We now switch to lower bounding the LHS of Equation (3) in-
stead. Since ® maps each graph sampled from G to one of 2° mes-
sages ¢ € {0,1}°, we have,

Pr (G is sampled from G¢) =1,
G
pe{0.1)?

which means that there exist some ¢* € {0, 1}* such that
Pr (G is sampled from G¢,*) > 275
G

Combining this with Equation (3), we have that

exp (=s-1n2) < exp(In2 - p- [Euiss(9")]),
which, by re-arranging the terms, implies the bound in the lemma
statement. W Lemma 4.3
4.2 The Coloring Communication Game

We prove our lower bound in Result 1 via communication complex-
ity arguments in the following communication game.

Definition 4.5. For integers n, A, k > 1, the Coloring(n, A, k)
game is defined as:
i). There are k players Py, . . ., P. Each player P; knows the
vertex set V and receives a set E; of edges. Letting G =
(V,E) where E = Eq U - - - Ll Eg, players are guaranteed
that on every input A(G) < A and their goal is to output
a proper coloring of G.

ii). The communication is done using a shared blackboard.
First player P; writes a message M; based on E; on the
shared blackboard which will be visible to all subsequent
players. Then, player P, writes the next message M3
based on E; and M. The players continue like this until
Py writes the last message My which is a function of Ej.
and M_g.

The goal of the players is to output a valid coloring of
the input graph G by Py writing it last on the shared
blackboard as the message M.

iii).

The communication cost of a protocol used by the players
is defined as the worst-case number of bits written by any single
player on the blackboard on any input.

PROPOSITION 4.6. Suppose there is a function f : N* — N* and
a deterministic streaming algorithm that on any n-vertex graph G
with known maximum degree A, outputs an f(A)-coloring of G using
s = s(n, A) bits of space. Then, there also exists a deterministic protocol
for Coloring(n, A, k) for any k > 1 with communication cost O(s)
bits that outputs an f(A)-coloring of any input graph.

Proor. The players simply run the streaming algorithm on their
input by writing the content of the memory of the algorithm from
one player to the next on the blackboard, so that the next player

STOC ’22, June 20-24, 2022, Rome, Italy

can continue running the algorithm on their input. At the end, the
last player computes the output of the streaming algorithm.

The maximum message size written on the blackboard is pro-
portional to the size of memory of the streaming algorithm and is

thus O(s) as desired. 0 proposition 4.6

The following is the main technical result of our paper.

THEOREM 1. There are absolute constants ng,no > 0 such that the
following is true. Consider any choice of the following parameters

n>ng, A>64In%(2n), 1<k< loga(n), s> nlogA.

Then no deterministic protocol for Coloring(n, A, k) with communi-
cation cost s can color every input graph with fewer than

el ()
-|——| colors.
no - k s

As a corollary of this and Proposition 4.6, we can formalize Result 1.

COROLLARY 4.7. Foranyq > 1, @ € (0,1), and sufficiently large
n > 1, no deterministic single-pass streaming algorithm can obtain a
proper coloring of every graph with maximum degree at most A for
the following parameters:

i). O(n-log?n) space and fewer than exp(A1/4q) colors for A =
200 log?*! (n);

ii). O(n'*®) space and fewer than AY/3% colors for A = n®?.

ProoF. We prove both parts by Proposition 4.6 and using differ-
ent parameters in Theorem 1.

i). Set k = +flogp n = 0(

parameters, plus n and A, satisfy the hypotheses of Theorem 1.
As such, we get that the minimum number of colors needed
to color the input graph in this case is at least

1
\V lo;ign) and s = O(n - log? n). These

n-A

(nol-k)'zk(T

logn
k _ [loglogn-logn 6(@)
“\ e@)-logn

logn 1/4
O(1) - 4| —r A4
) loglogn) > exp()’

by a simple calculation of the parameters in these bounds.

> exp

ii). Set k = logyn = 1/2a and s = O(n'*%). These parameters,
plus n and A, satisfy the hypotheses of Theorem 1. As such,
we get that the minimum number of colors needed to color

the input graph in this case is at least

N ne \1/2
T (5] o

again by a simple calculation. This concludes the proof.

4.3 A Communication Lower Bound for
Coloring

Before getting to the lower bound construction, we specify a recur-
sive set of parameters.

268

Sepehr Assadi, Andrew Chen, and Glenn Sun

Parameters. Our construction is governed by the following two
parameters:

e p;: the probability parameter used in defining the graph of
each player P; from the random graph distribution G for
base graphs chosen by the adversary;

e d;: a threshold on maximum degree of base graph (used in
G) chosen by the adversary for each player P;.

These parameters are defined recursively as follows (these expres-
sion would become clear shortly from the description and analysis
of the lower bound):
A
T 2k-n’
2ln2-(s+1)-2k
di=———, pi= 5.
pi-1-n 2k - d;
It is easier for us to work with the recursive definitions of these
parameters in most of the analysis (as their closed form is tedious
to work with). But, we also compute them explicitly (the proof is
postponed to the full version).
CraM 4.8. For anyi > 1, we have,
i-1
dl |
n-A

A
pi= zk~n'(21nz-(s+1).(zk)2

dl—n,

p1:

A
and fori > 1:

©

2In2- (s+1) - (2k)?
n-A

d;

The lower bound construction is as follows (see Figure 3).

An adversary that generates the “hard” input of players (using
parameters in Equation (4)).

(i) Let Gpase(1) be a clique on n vertices V3 = V.
(ii) Fori=1tok:
(a) Let G; := G(Ggase(i), pi, di) and let

®; = ;(Gy, MZ;) : supp(Gy) — {0,1}°

be the function generating the message of player P;

after seeing messages M ; of the first i — 1 players;

we ensure that the input graph of player P; given
previous messages MZ; is chosen from G; and thus
this is well defined.

Notice that ®; is a compression algorithm. Apply

Lemma 4.3 and let M be the special summary of

this compression algorithm which is message for the

player P;. We shall verify the hypotheses of the lemma

in Lemma 4.9.

Let V41 be the set of vertices in Gyiss (M) with de-

gree at most dj;1 and Ggase (i + 1) be the subgraph of

Guiss (M) induced on V1.

(iii) Let G; = (V;,E;) € supp(G;) be such that ®;(G;) = M}
for all i € [k]. Give player P; the edge set E; as the adver-
sarial input. We shall verify that this is a valid input in
Lemma 4.10.

b

=

(c

~

Notice that in this construction, we allow the players to know
that their inputs come from a smaller distribution G;, not the entire

Deterministic Graph Coloring in the Streaming Model

space of edges. This is convenient for our analysis, and since this
only makes the players’ jobs easier (as they can simply ignore this
information), this can only strengthen our lower bound.

It is useful to note the containment relationships between various
edge sets in the lower bound construction. For all i € [k], the edge
sets E; and Eyiss(M]) are disjoint because G; was mapped to M},
and both are subsets of Egase (i) by definition. Also, Egase (i) itself is
a subset of Eyjss(M;_;) by Line (ii)c of the construction, obtained
by removing “high degree” vertices in Eyjss(M;_ ;). A visual is
provided in Figure 3 for reference.

We start with two lemmas verifying that the above construction
produces a valid input and satisfies the hypotheses of Lemma 4.3.

LEMMA 4.9. For alli € [k], the parameters p; and d; in the distri-
bution G; = G(Ggase (i), pi, di) satisfy the hypotheses of Lemma 4.3.
That is, d; > max{A(Ggase(i)),4In(2n)/p;} and p; € (0,1).

Proor. The fact that d; > A(Ggase(i)) follows from dy = n in
the case i = 1, and directly from the construction of Ggase (i) in
Line (ii)c for all other i.

- A

To show that d; > 41n(2n)/p;, we first note that p; - d; = 5
by definition of p; in Equation (4). Hence it suffices to show that
A > 8klIn(2n). Referencing the constraints in the statement of
Theorem 1, we have A > 641n%(2n) which implies VA > 81n(2n),
and we have VA > k, which combined with the latter inequality,
implies A > 8k In(2n). This proves the bound for d;.

We now prove the bound for p;. For this, it is easier to work with
the closed-form of p; in Claim 4.8. We have,

i-1 Ai Ak
— < — <1,
n n

A) n-A
2k-n \2In2-(s+1)-(2k)?

pi=

as s > nand k > 1 for the first inequality and by the upper bound
of k < logy (n) for the last one. It is also clear that p; > 0, thus
concluding the proof. [Lemma 4.9

LEMMA 4.10. Any graph G constructed by the adversary has A(G) <
A and no parallel edges.

Proor. Consider each graph G; as input to player P;. We have,
A
A(Gj) < 2p;id; = o

where the first inequality is by Definition 4.1 for G(Ggase (i), pi, di)
and the second equality is by the definition of p; in Equation (4). This
implies that the graph G; presented to each player has maximum
degree at most A/k. Given that there are k players in the game, this
means the final graph has maximum degree at most A.

To show that there are no parallel edges, note that Ey, ..
pairwise disjoint by the edge set containments. Boicimaaio

., Ej are

We start proving the communication lower bound. First, we
show that the set V., obtained at the end, i.e., after presenting last
player’s input, still is “quite large”.

n

LEMMA 4.11. Foranyi € [k+1], we have |V;| > n—(i—1) - %

269

STOC 22, June 20-24, 2022, Rome, Italy

Proor. The proof is by induction on i. For i = 1, we simply
have V; = V and thus |Vi| = n; hence, the base case holds. For
the inductive step, it suffices to show that at most % vertices are
removed after every player. By Lemma 4.3, for which we verified
the hypotheses in Lemma 4.9, we have that M satisfies

In2-(s+1)

|EMiss (M,*) <
Recall that V41 is the set of vertices with degree at most dj;1 in
Guiss (lek), Since any vertex in V; \ Vi41 contributes at least dj41
edges to Eyjss(M]) (and each edge can be contributed at most
twice), we have,

1
|EMiss(M;k)‘ 2 E . |V1 \ Vi+1| : di+1,

implying that
2In2-(s+1) n

[Vi\ Viga] < =%

pi+dis1

by the choice of p; and d; in Equation (4). Boicnma st

We now formalize the idea we alluded to after defining the miss-
ing graph in Definition 4.2, where we described how only the edges
appearing in the missing graph can have the same color assigned to
both endpoints. Some extra care is needed here to account for the
fact that the players have their own compression algorithm which
is defined based on the messages of previous players.

LEmMMA 4.12. For any two vertices u,v € Vi, that have the same
color in the output of Py, the edge (u,v) exists in Eyiss (MZ).

PRrROOF. Suppose toward a contradiction that (u,v) ¢ Eyi SS(MZ)'
We first show that there exists i such that (u,v) ¢ Eyiss (M) and
(u,v) € Egase(i). Recalling that EMiss(MZ) C -+ C Eniss(M]),
either (u,0) ¢ Ewiss(M]), in which case taking i = 1 suffices, or
(u,9) € Ewiss(M;_;) \ Emiss(M;) for some i > 1. Referencing
the containments illustrated in Figure 3, either (u,v) € Epase (i) or
(u,9) € Eyiss(M;_;)\Egase (i). By Line (ii)c of the construction, the
second case happens only when u or v is dropped when restricting
to V;, which is impossible because u,v € Viyy € Vi, so (u,0) €
Egase (i) as desired.

Because (u,0) € Ewiss(M;) and (u,0) € Ease(i), there should
exists some graph G/ € supp(G;) that contains the edge (u,v) and
is mapped to M; by player P, i.e., ®;(G]) = M;. Consider giv-
ing the graphs Gy, ..., Gi_1, Glf, Git1, - - ., G as input to the players
Py,..., Py, respectively. Because the same messages are generated
as in the original construction, Py also outputs the same coloring.
But now (u,0) is in the input graph, so u and v should be colored
differently. W Lemma 412

In this final lemma, we bound the number of colors that can be
used by player Py to color G.

LEmMA 4.13. Player Py requires

n2

> .
€= 16In2-(s+1) Pk

colors to color the graph G constructed by the adversary above.

STOC ’22, June 20-24, 2022, Rome, Italy

Sepehr Assadi, Andrew Chen, and Glenn Sun

E;

Euiss (M;)

Egase (2)

Eq Ewiss (Mik)

Egase (1) = (‘2/)

Figure 3: An illustration of edge set containments in the adversary construction.

Proor. Consider the number of pairs of vertices in Vi, that are
assigned the same color by the proper c-coloring created by player
Py Because Vi, has at least 2 vertices by Lemma 4.11, the number

2
n

of pairs is at least {¢= by Proposition 3.2. (We have ¢ < § by the
choice of s > n.) At the same time, the number of pairs of vertices
that can be colored the same is at most |Eyjss (M;;)| by Lemma 4.12,

which by Lemma 4.3 is at most % In conclusion,

2 .
nt < In2-(s+1)
16¢ Pk

>

which rearranges to our desired bound. | Lemma 4.13

Finally, by plugging in the explicit value of p; in Claim 4.8 in
the bounds of Lemma 4.13, we have that the minimum number of
colors ¢ used by the protocol is at least

n-A (k=1)

2In2- (s+1)-(2k)?

)k

n? A
c2z : :
16In2-(s+1) 2k-n
k n-A

T4 (21n2~(s+1) - (2k)?

N 1 Zk.n~Ak
“\no-k s ’

for some absolute constant o < 100. This concludes the proof
of Theorem 1.

5 THE ALGORITHMS

We present our algorithmic results in this section that complement
our strong lower bound for single-pass algorithms. Our first algo-
rithm achieves an O(A?)-coloring in only two passes.

THEOREM 2. There exists a deterministic algorithm that given any
n-vertex graph G with maximum degree A presented in an insertion-
only stream, can find an O(A?)-coloring of G in two passes and
O(nlogn) bits of space.

Our second algorithm builds on the ideas developed for the
first one and reduces the number of colors to O(A), at the cost of
increasing the number of passes to O(log A).

270

THEOREM 3. There exists a deterministic algorithm that given any
n-vertex graph G with maximum degree A presented in an insertion-
only stream, can find an O(A)-coloring of G in O(log A) passes and
O(nlogn) bits of space.

Remark 5.1. We prove Theorem 3 with a leading constant of
6 in the O(A)-coloring, i.e., obtain a 6A-coloring of the graph in
O(log A) passes. This constant is in no way sacrosanct and is simply
chosen to eliminate the need to consider any corner cases (e.g., n
not being a power of 2 or A not being a prime and alike — this
will become clear from the algorithm). In fact, a somewhat more
detailed analysis of the same approach gives a (1 + ¢) - A coloring
algorithm in O(log A) passes for any constant ¢ > 0. However, as
this result is not the main focus of our work, we opted to present
the proof of the most direct approach in this theorem for brevity
and showcasing the main idea.

In the following, we first present two families of coloring func-
tions that create few monochromatic edges in different settings,
needed for our algorithms, and then present each of our algorithms.
Further extensions of our results such as to dynamic streams are
presented at the end of this section. These results collectively for-
malize Result 2.

5.1 Families of Coloring Functions with Few
Monochromatic Edges

We start with the following simple result that shows existence of a
fixed family of A-coloring functions that allows for coloring any
graph G with O(n) monochromatic edges via at least one of the
functions in the family. We use this result in our two-pass algorithm.

LEMMA 5.2. For any integersn, A > 1, there exists a family C :=
C(n, A) of size at most (2n) consisting of A-coloring functions such
that for any n-vertex graph G = (V, E) with maximum degree A,
there is a coloring function C € C such that G has at most (4n)
monochromatic edges under C. Moreover, each function in C can be
generated via O(log n) bits.

Proor. The proof is by a probabilistic method. Let p be the
smallest prime number larger than n and note that we have p < 2n
by Bertrand’s postulate. We simply pick C to be the following
standard family of near-universal hash functions:

{Ca(v) = ((a-vmod p)mod A) +1Vo eV |ac{0,1,....,p—1}}.

Deterministic Graph Coloring in the Streaming Model

As such, since C is a near-universal hash family, for any two vertices
u,0 € V, we have,
2

i (Cw) =C@) < % ®)

See the full version of the paper for the standard that proves Equa-
tion (5). Using Equation (5), for any graph G, we have,

E

2. [# of monochromatic edges of G under C]
€

2
Z Pr (C(u) = C(v)) < 2nA - = = 4n.
(u,v)eECEC A

Consequently, for any given graph G, there should exist a choice of
C € C with at most (4n) monochromatic edges. Finally, any coloring
function in C is specified uniquely by an integer in {0, 1,...,p — 1}
which requires O(log n) bits to store.] Lemma 5.2

We next present our second family of functions which is used in
our O(A) coloring algorithm.

Definition 5.3. Let C; : V. — [c] U{.L} be a partial c-coloring
function of a graph G = (V,E) that has no monochromatic
edges. Let C; : V. — [c] be a c-coloring function of V (not
necessarily a proper one). We define the extension of C; by
C, as the c-coloring function C3 : V. — [c] such that for any

veV,
] Ci(o)
Cs3(v) = {Cz(v)

i.e., C3 uses Cq to color vertices v with C;(v) #1 and use C; to
color the remaining vertices.

if C1(v) #L

otherwise

The following family of coloring functions has the following
property: for any graph G and a partial coloring Cy of G, there is a
coloring function C in the family with a small number of monochro-
matic edges in the extension of C; by C. Formally,

LEMMA 5.4. For anyn, A > 1, there is a family C* := C*(n, A)
of size at most (2n) consisting of (6AA)-coloring functions such that
the following is true. For any n-vertex graph G = (V, E) with max-
imum degree A and any partial coloring function C; of G with no
monochromatic edges, there is a (6A)-coloring function C € C* such

that extension of C1 by C has < (@) monochromatic edges where

no := |[{v € V| C1(v) =L1}|, is the number of uncolored vertices by
C1. Each function in C* can be generated via O(log n) bits.

ProorF. The proof is again by the probabilistic method similar to
that of Lemma 5.2. Let p be the smallest prime number larger than
n and note that we have p < 2n by Bertrand’s postulate. We pick
C* to be the following family of near-universal hash functions:

{Cq(v) = ((a-vmod p)mod 6A)+1VYo eV |ac{0,...,p—1}}.

Since C* is a near-universal hash family, for any two vertices
u,v € V and any fixed color ¢ € [6A],

6A

P QW =G < 5= o

A (6)

Pr (C =¢) <
P (@) =0

271

STOC 22, June 20-24, 2022, Rome, Italy

The proof is similar to Equation (5) (see the full version).

For any edge (u,v) € E to be monochromatic in the extension Cs
of C1 by Cy, we should have that at least one of C; (u) or Cy (v) is L;
otherwise, both retain u and v their colors in C; which contains no
monochromatic edges. By symmetry suppose C;(u) =L and so u
will be colored by C; in the extension Cs. If C; (v) =L also, then to
get a monochromatic edge, we need C2(u) = C(v) which happens
with probability at most 1/3A by the first part of Equation (6).
Conversely, if C1(v) #.1, then to get a monochromatic edge, we
need C(u) = Cy(v) which again happens with probability at most
1/3A by the second part of Equation (6). All in all, only edges
incident on {v € V | C1(v) =1} can be monochromatic and each
one will become so with probability at most 1/3A. Hence,

E

o B [# of monochromatic edges of G in extension of C; by Cy
2€

<

—=np-A
0:C1(v)=L ueN (v) 3A
Hence, for any G and Cj, there should exist a choice of Cy € C
with at most (np/3) monochromatic edges in the extension of C;
by C,. Also, any coloring function in C is specified uniquely by
an integer in {0, 1, ..., p — 1} which requires O(log n) bits to store,
concluding the proof. B Lemma 5.4

5.2 A Two-Pass O(A?)-Coloring Algorithm

We now present our two-pass semi-streaming algorithm for O(A?)
coloring and prove Theorem 2. The key tool we use in this result is
the coloring functions of Lemma 5.2.

Algorithm 1. A two-pass deterministic semi-streaming algorithm
for O(A?) coloring.

(i) Let C = C(n,A) ={Cy,...,Cr} be the family of A-coloring
functions guaranteed by Lemma 5.2 for some k < 2n.

(ii) In the first pass, for any i € [k], maintain a counter ¢; that
counts the number of monochromatic edges of G under the
coloring Cj, i.e.,

$i = {(w,0) € G| Ci(u) = Ci(v)}] .
Let C;j» € C be the coloring function with the smallest value
of ¢, ie., i* € arg min;epx] ¢i.
(iii) Inthe second pass, store all monochromatic edges of G under
Cj». Compute a (A + 1) coloring C of the stored edges and
return the following coloring function C* as the answer:

forallo € V: C*(v) = (Cjx (v) = 1) - (A +1) + C(v).

LEMMA 5.5. Space complexity of Algorithm 1 is O(nlogn) bits.

Proor. The first pass of this algorithm requires storing O(n)
counters of size O(logn) bits each, and can be implemented in
O(nlog n) bits of space. The second pass requires storing only O(n)
edges by the guarantee of Lemma 5.2 which again can be done in
O(nlogn) bits of space. P Lemma 5.5

We now argue that the final coloring C* returned by the al-
gorithm is a proper coloring of G, i.e., it does not contain any
monochromatic edges.

STOC ’22, June 20-24, 2022, Rome, Italy

LEMMA 5.6. Algorithm 1 always outputs a proper O(A?) coloring
of any given input graph with maximum degree A.

Proor. Firstly, since maximum degree of G is A, we clearly have
that maximum degree of stored edges is also at most A, and con-
sequently, the algorithm can always find a (A + 1) coloring of the
stored edges. For any edge (u,v) € G, if Cix(u) # Cix (v),

|C* () = C*(@)] 2 Cix () = Cix (0)] - (A+1) = |C(w) = C(v)]
>(A+1)-A=1,

thus C*(u) # C*(v) and so (u,v) will not be monochromatic. For
any edge (u,v) € G with Cjx(u) = C;x(v), the algorithm stores
(u,v) in the second pass and thus by the coloring it finds, we have
C(u) # C(v), making C*(u) # C*(v) also.

Finally, since the total number of colors used by C* is A - (A +1),
we obtain an O(A?) coloring as desired. | y—

This concludes the proof of Theorem 2.

5.3 An O(log A)-Pass O(A)-Coloring Algorithm

This section includes our O(log A)-pass semi-streaming algorithm
for O(A) coloring, i.e., the proof of Theorem 3. The key tool we use
in this result is the coloring functions of Lemma 5.4.

Algorithm 2. An O(log A)-pass deterministic semi-streaming al-
gorithm for (6A) coloring.

(i) Let C* = C*(n,A) = {Cy,...,Ci} be the family of (6A)-
coloring functions guaranteed by Lemma 5.4 for some k <
2n.

(i) Let C be a partial coloring function, initially set to map all
vertices to L.

(iii) While C has more than n/A uncolored vertices:

(a) In one pass, for any i € [k], maintain a counter ¢; that
counts the number of monochromatic edges of G under
the extension le of Cby Cj, ie,

¢i = |{(w0) € G| C/(w) =C/(v)}].
Let C;jx € C be the coloring function with the smallest
¢ix, Le., I* € argmin;e(x) §; and C/, be the extension of
C by Ci* .
(b) In another pass, store all monochromatic edges of G under
C lf*. For any vertex v € V, if no monochromatic edges
incident on v are stored, then set C(v) = le* (v).

(iv) In the last pass, store all edges incident on the uncolored

vertices of C. Greedily color all the remaining uncolored
vertices with a color not assigned to their neighbors.

We first note a direct invariant of the algorithm that will be used
in our analysis.

LEMMA 5.7. At any point of time in Algorithm 2, there are no
monochromatic edges between vertices colored by C.

Proor. This is simply because we always work with the exten-
sions of C and thus if a vertex is colored by C, we never change its

272

Sepehr Assadi, Andrew Chen, and Glenn Sun

color, and since we only color a vertex by C if it does not have any

monochromatic edges. | Je——

Note that if the while-loop finishes, then the coloring C com-
puted greedily by the algorithm is a proper (6A) coloring of G as
C contained no monochromatic edges throughout (by Lemma 5.7),
and the last step of using greedy coloring, only requires (A + 1)
colors since we have stored all edges incident on uncolored vertices.
We thus want to show that the while-loop indeed finishes. This is
the main part of the analysis.

LEmMMA 5.8. There are O(log A) iterations of the while-loop in Al-
gorithm 2 before it terminates.

Proor. Fix an iteration of the while-loop and let
no = [{o € V| C(v) =L}

denote the number of uncolored vertices by C at the beginning of
this iteration. By the guarantee of Lemma 5.4 (and since Lemma 5.7
verifies the hypothesis of this lemma), we know that the coloring
le* computed by the algorithm in this iteration has at most ng/3
monochromatic edges. This means that at least ng — 2no/3 = no/3
vertices not colored by C have zero monochromatic edges under C lf* .
All these vertices will be colored by C at the end of this iteration.

By the above discussion, the number of uncolored vertices re-
duces by a factor of at most 2/3 in each iteration. As a result, after
O(log A) iterations, the number of uncolored vertices by C drops
below n/A and thus the while-loop terminates. Bienmass

Finally, we analyze the space complexity of the algorithm.

LEMMA 5.9. Space complexity of Algorithm 2 is O(nlogn) bits.

Proor. The first pass of each iteration of while-loop of Algo-
rithm 2 requires maintaining O(n) counters of size O(log n) bits
each, and can be implemented in O(nlogn) bits of space. The
second pass requires storing only O(n) edges by the guarantee
of Lemma 5.4 (and since Lemma 5.7 verifies the hypothesis of this
lemma) which again can be done in O(n log n) bits of space. Finally,
at the end we are storing at most A edges for each of the remaining
n/A uncolored vertices and thus we can store them in O(nlogn)

bits as well. | Lemma 5.0

This concludes the proof of Theorem 3.

5.4 Further Extensions: Dynamic Streams and
Unknown A

Dynamic streams. In order to implement our algorithms in dy-
namic streams, we simply need a way of recovering the O(n)
monochromatic edges in each step of each one. (Maintaining the
counters is straightforward by simply adding and subtracting their
values based on insertion and deletion of monochromatic edges
- recall that we already know the coloring we need to work with
and thus upon update of an edge, we know whether or notitisa
monochromatic edge).

To recover these O(n) monochromatic edges, we can simply use
any standard deterministic sparse recovery algorithm [26] over

Deterministic Graph Coloring in the Streaming Model

dynamic streams. The following result is folklore (we provide a
short proof sketch for completeness).

PROPOSITION 5.10 (FOLKLORE; CF. [21, 26]). There exists a de-
terministic algorithm that given an integer k > 1 and a dynamic
stream of of edge insertions and deletions that define an n-vertex
graph G = (V,E), uses O(k - logn) bits of space and at the end of
the stream recovers all edges under the promise that G has at most k
edges (the answer can be arbitrary if the promise is not satisfied).

Proor SKETCH. Consider the characteristic vector x € {0, 1}(3)
of edges of G being updated in the stream. The promise of the
proposition is that x is going to be k-sparse.

Let p be a prime larger than m := (};) and consider the field F,,.
Let A be the (transpose) of Vandermonde matrix over F, defined
as follows:

11 1 1
1 2! 3t o oml
A=l 2 32 ... om?
Lokt ghet L gkt

where or for all i € [2k] and j € m, we set A;; = 771 mod p.

Given that A can be described explicitly using only O(log m) bits,
we can maintain y = A - x throughout the stream by linearity: for
any update to the i-th entry of x, we simply add or subtract the i-th
column of A from y to have the updated value of A - x.

We now argue that at the end of the stream, one can recover x
from A - x. Consider any two k-sparse vectors x1 # x2 € qu We
argue that A-x; # A-x2. Suppose not, then we have A- (x1 —x2) = 0.
This in turn means that the at most 2k columns of A corresponding
to the union of the support of x; and x, are not linearly independent.
But this is a contradiction as in the Vandermonde matrix, every 2k

columns are linearly independent. This already implies that unique

recovery of x is possible from A - x for any k-sparse vector x € 1(,2).
Finally, one can also use syndrome decoding from coding theory
to implement this decoding step in polynomial time. We refer the
interested reader to, e.g. [21], for more details. |

As in Algorithm 1 and Algorithm 2, we need to find monochro-
matic edges that are guaranteed to be at most O(n) many, we can
simply use Proposition 5.10 to recover these edges in O(n log n) bits
even in dynamic streams (we only need to define the underlying
graph as insertions and deletions between monochromatic pairs and
set k = O(n) and apply the proposition).

This immediately extends both our Theorems 2 and 3 to dynamic

streams with the same asymptotic space complexity and the same
exact number of passes.

Removing the knowledge of A. Our algorithms in the previous
part are described assuming the knowledge of A. For our O(A)
coloring algorithm this is simply without loss of generality as we
can increase the number of passes by one and compute A in the first
pass—given that we report the number of passes asymptotically
anyway, this does not change anything. But the same approach for

273

STOC 22, June 20-24, 2022, Rome, Italy

our O(A?) coloring algorithm increases the number of passes to
three instead.

Nevertheless, there is a simple way to fix O(A?) coloring algo-
rithm without changing the number of passes. In the first pass,
pick O(log n) choices of for A in geometrically increasing values
and maintain the counters for C(n, -) for these O(logn) choices; in
parallel, also compute A in this pass. At the end of the first pass, we
know A and can focus on the right choice of counters for C(n, A”)
where A" > A > % - A’ The rest of the algorithm and its proof are
exactly as before.

ACKNOWLEDGEMENT

Sepehr Assadi would like to thank Amit Chakrabarti, Prantar Ghosh,
and Manuel Stoeckl for helpful discussions regarding [15] and its
connection to our work. We thank the organizers of DIMACS REU
in Summers 2020 and 2021, in particular Lazaros Gallos, for making
this collaboration possible and all their help and encouragements
along the way. We are also thankful to the anonymous reviewers
of STOC 2022 for their helpful comments.

REFERENCES

[1] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. 2019. Smaller
Cuts, Higher Lower Bounds. CoRR abs/1901.01630 (2019).

Noga Alon and Sepehr Assadi. 2020. Palette Sparsification Beyond (A + 1) Vertex
Coloring. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual
Conference (LIPIcs, Vol. 176), Jaroslaw Byrka and Raghu Meka (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum fir Informatik, 6:1-6:22.

Sepehr Assadi, Yu Chen, and Sanjeev Khanna. 2019. Sublinear Algorithms for (A +
1) Vertex Coloring. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019.
767-1786.

Sepehr Assadi and Aditi Dudeja. 2021. Ruling Sets in Random Order and Adver-
sarial Streams. In 35th International Symposium on Distributed Computing, DISC
2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference) (LIPIcs, Vol. 209),
Seth Gilbert (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 6:1-6:18.
Sepehr Assadi and Aditi Dudeja. 2021. A Simple Semi-Streaming Algorithm for
Global Minimum Cuts. In 4th Symposium on Simplicity in Algorithms, SOSA 2021,
Virtual Conference, January 11-12, 2021, Hung Viet Le and Valerie King (Eds.).
SIAM, 172-180.

Sepehr Assadi, Sanjeev Khanna, and Yang Li. 2016. Tight bounds for single-pass
streaming complexity of the set cover problem. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA,
USA, June 18-21, 2016. 698-711.

Sepehr Assadi, Pankaj Kumar, and Parth Mittal. 2022. Brooks’ Theorem in
Graph Streams: A Single-Pass Semi-Streaming Algorithm for A-Coloring. CoRR
abs/2203.10984. In STOC 2022. (2022).

Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina
Knittel, and Hamed Saleh. 2019. Streaming and Massively Parallel Algorithms
for Edge Coloring. In 27th Annual European Symposium on Algorithms, ESA 2019,
September 9-11, 2019, Munich/Garching, Germany (LIPIcs, Vol. 144), Michael A.
Bender, Ola Svensson, and Grzegorz Herman (Eds.). Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 15:1-15:14.

Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. 2020.
A Framework for Adversarially Robust Streaming Algorithms. In Proceedings
of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2020, Portland, OR, USA, June 14-19, 2020, Dan Suciu, Yufei Tao,
and Zhewei Wei (Eds.). ACM, 63-80.

Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. 2020. Graph Coloring via
Degeneracy in Streaming and Other Space-Conscious Models. In 47th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2020, July
8-11, 2020, Saarbriicken, Germany (Virtual Conference). 11:1-11:21.

Suman Kalyan Bera and Prantar Ghosh. 2018. Coloring in Graph Streams. CoRR
abs/1807.07640 (2018).

Anup Bhattacharya, Arijit Bishnu, Gopinath Mishra, and Anannya Upasana. 2021.
Even the Easiest(?) Graph Coloring Problem Is Not Easy in Streaming!. In 12th
Innovations in Theoretical Computer Science Conference, ITCS 2021, January 6-8,

[2]

[11

[12

STOC ’22, June 20-24, 2022, Rome, Italy

[13]

[14]

[15

[16]

[17]

(18]

[19]

[20

[21]

[22]

[23

[24]

2021, Virtual Conference (LIPIcs, Vol. 185), James R. Lee (Ed.). Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 15:1-15:19.

Rowland Leonard Brooks. 1941. On colouring the nodes of a network. In Mathe-
matical Proceedings of the Cambridge Philosophical Society, Vol. 37. Cambridge
University Press, 194-197.

Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. 2020. Deran-
domizing local distributed algorithms under bandwidth restrictions. Distributed
Comput. 33, 3-4 (2020), 349-366.

Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. 2022. Adversarially
Robust Coloring for Graph Streams. 215 (2022), 37:1-37:23.

Graham Cormode, Jacques Dark, and Christian Konrad. 2018. Approximating
the Caro-Wei Bound for Independent Sets in Graph Streams. In Combinatorial
Optimization - 5th International Symposium, ISCO 2018, Marrakesh, Morocco, April
11-13, 2018, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 10856),
Jon Lee, Giovanni Rinaldi, and Ali Ridha Mahjoub (Eds.). Springer, 101-114.
Graham Cormode, Jacques Dark, and Christian Konrad. 2019. Independent Sets in
Vertex-Arrival Streams. In 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece (LIPIcs, Vol. 132),
Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 45:1-45:14.

Artur Czumaj, Peter Davies, and Merav Parter. 2020. Simple, Deterministic,
Constant-Round Coloring in the Congested Clique. In PODC °20: ACM Symposium
on Principles of Distributed Computing, Virtual Event, Italy, August 3-7, 2020, Yuval
Emek and Christian Cachin (Eds.). ACM, 309-318.

Artur Czumaj, Peter Davies, and Merav Parter. 2021. Graph Sparsification for
Derandomizing Massively Parallel Computation with Low Space. ACM Trans.
Algorithms 17, 2 (2021), 16:1-16:27.

Artur Czumaj, Peter Davies, and Merav Parter. 2021. Improved Deterministic (A
+ 1) Coloring in Low-Space MPC. In PODC °21: ACM Symposium on Principles of
Distributed Computing, Virtual Event, Italy, July 26-30, 2021, Avery Miller, Keren
Censor-Hillel, and Janne H. Korhonen (Eds.). ACM, 469-479.

Abhik Kumar Das and Sriram Vishwanath. 2013. On finite alphabet compressive
sensing. In 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE, 5890-5894.

Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of Mea-
sure for the Analysis of Randomized Algorithms. Cambridge University
Press.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. 2005. On graph problems in a semi-streaming model. Theor. Comput. Sci.
348, 2-3 (2005), 207-216.

Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian
Zhang. 2008. Graph Distances in the Data-Stream Model. SIAM J. Comput. 38, 5

274

[25

[26

[27

[29

[30

[33

(34

]

Sepehr Assadi, Andrew Chen, and Glenn Sun

(2008), 1709-1727.

Mohsen Ghaffari and Fabian Kuhn. 2020. Deterministic Distributed Vertex Color-
ing: Simpler, Faster, and without Network Decomposition. CoRR abs/2011.04511.
To appear in FOCS 2021 (2020).

Anna C. Gilbert and Piotr Indyk. 2010. Sparse Recovery Using Sparse Matrices.
Proc. IEEE 98, 6 (2010), 937-947.

Sudipto Guha, Andrew McGregor, and David Tench. 2015. Vertex and Hyper-
edge Connectivity in Dynamic Graph Streams. In Proceedings of the 34th ACM
Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria,
Australia, May 31 - June 4, 2015. 241-247.

Bjarni V. Halldorsson, Magniis M. Halldorsson, Elena Losievskaja, and Mario
Szegedy. 2016. Streaming Algorithms for Independent Sets in Sparse Hypergraphs.
Algorithmica 76, 2 (2016), 490-501.

Magnus M. Halldérsson, Xiaoming Sun, Mario Szegedy, and Chengu Wang.
2012. Streaming and Communication Complexity of Clique Approximation. In
Automata, Languages, and Programming - 39th International Colloquium, ICALP
2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 7391), Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger
Wattenhofer (Eds.). Springer, 449-460.

Christian Konrad, Sriram V. Pemmaraju, Talal Riaz, and Peter Robinson. 2019. The
Complexity of Symmetry Breaking in Massive Graphs. In 33rd International Sym-
posium on Distributed Computing, DISC 2019, October 14-18, 2019, Budapest, Hun-
gary (LIPIcs, Vol. 146), Jukka Suomela (Ed.). Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 26:1-26:18.

Andrew McGregor. 2014. Graph stream algorithms: a survey. SIGMOD Rec. 43, 1
(2014), 9-20.

Merav Parter. 2018. (A + 1) Coloring in the Congested Clique Model. In 45th
International Colloquium on Automata, Languages, and Programming, ICALP 2018,
July 9-13, 2018, Prague, Czech Republic (LIPIcs, Vol. 107), Ioannis Chatzigiannakis,
Christos Kaklamanis, Daniel Marx, and Donald Sannella (Eds.). Schloss Dagstuhl
- Leibniz-Zentrum fiir Informatik, 160:1-160:14.

Ami Paz and Gregory Schwartzman. 2017. A (2+¢)-Approximation for Max-
imum Weight Matching in the Semi-Streaming Model. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-19, Philip N. Klein (Ed.). SIAM,
2153-2161.

Andrew Chi-Chih Yao. 1977. Probabilistic Computations: Toward a Unified
Measure of Complexity (Extended Abstract). In 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November
1977. IEEE Computer Society, 222-227.

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques
	1.3 Recent Related Work
	1.4 Further Related Work

	2 High-Level Overview
	2.1 Lower Bound of res:lower
	2.2 Algorithms of res:upper

	3 Preliminaries
	4 The Lower Bound
	4.1 A Random Graph Distribution
	4.2 The Coloring Communication Game
	4.3 A Communication Lower Bound for Coloring

	5 The Algorithms
	5.1 Families of Coloring Functions with Few Monochromatic Edges
	5.2 A Two-Pass O(2)-Coloring Algorithm
	5.3 An O(log)-Pass O()-Coloring Algorithm
	5.4 Further Extensions: Dynamic Streams and Unknown

	References

