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We establish universality of cutoff for simple random walk on a class of
random graphs defined as follows. Given a finite graph G = (V, E) with |V|
even we define a random graph G* = (V, E U E’) obtained by picking E’ to
be the (unordered) pairs of a random perfect matching of V. We show that for
a sequence of such graphs G, of diverging sizes and of uniformly bounded
degree, if the minimal size of a connected component of G, is at least 3 for all
n, then the random walk on G}; exhibits cutoff w.h.p. This provides a simple
generic operation of adding some randomness to a given graph, which results
in cutoff.

1. Introduction. This paper is motivated by the question of what types of randomness
one can add to a given family of graphs so that simple random walk on the resulting graph
would exhibit cutoff. In this work, we show that the operation of adding the edges of a random
perfect matching leads to cutoff with high probability. More precisely, suppose that G =
(V, E) is a finite graph with |V| even. We define a random graph G* = (V, E U E’), where
E’ is a uniformly random perfect matching of V. While this random graph shares some
features of some classical random graph models, such as the configuration model, it differs
in that it retains some of the original structure G, and thus it has a richer local structure
than many random graph models, which are locally tree-like. Diaconis in [14], Section 5,
Question 4, posed the problem of determining the order of the mixing time in the case when G
is connected and regular of constant degree and a perfect matching (random or deterministic)
is added to G.

Let X be a simple random walk on a graph G with transition matrix P and invariant
distribution . We define the e-total variation mixing time

tmix(G, &) =min{t > 0: max || P’ (x, ) = 7 |1y e},

where for 1 and v two distributions we write || — vty = >_, [(x) — v(x)|/2 for their total
variation distance. For a sequence of graphs (G,), we say that the corresponding sequence of
random walks exhibits cutoff if

tmix (G,
(1.1) Vee O, 1), lim —mx{Gnf) _
1= tix (G, 1/4)
We say that an event A happens with high probability (w.h.p.) if P(A) =1 —0(1) asn — oo.
When the graphs G, are random graphs, we say that cutoff holds w.h.p. if (1.1) holds in
distribution. Our main result is the following.

THEOREM 1.1. Let G, = (V,, E,) be a sequence of finite graphs of even diverging sizes
of maximal degree at most A, for some constant A € N. Assume that the minimal size of a
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F1G. 1. An illustration of a quasi-tree. The blue vertices are the centers of the corresponding R-balls. The
internal adjacency structure inside each ball is identical to the one in the corresponding ball in Gy,.

connected component of G, is at least 3 for all n. Then the discrete time simple random walk
on G}, exhibits cutoff w.h.p. Moreover, for all € € (0, 1/2) there exists a constant C(A, €) >0
so that w.h.p.

(12) i (G, €) — i (Gl 1 =€) < C(A, ) log | V.
Finally, wh.p. tmix(Gy, 1/4) <log|V,|.

We recall that for an irreducible reversible Markov chain on a finite state space with tran-
sition matrix P the absolute spectral gap y is defined as

y =1 —max{|2| : A is an eigenvalue of P with A # 1}.

PROPOSITION 1.2. In the setup of Theorem 1.1 there exists « = a(A) > 0 such that if
Yn denotes the absolute spectral gap of simple random walk on G, then w.h.p.

Vn = Q.

Proposition 1.2 immediately implies the last assertion of Theorem 1.1 using the Poincaré
inequality. It turns out that the mixing time has an entropic description, which is given in
terms of the random walk on some auxiliary infinite random graph, which we refer to as the
corresponding “quasi-tree” T, defined as follows (see Figure 1).! Pick a random ball of G,
of radius R = R, := [Cloglog|V,|]. We refer to the centre of this ball as the root. Each
vertex v in the ball, other than its centre, is connected by an edge to the centre of a random
ball B, of radius R (in G,). The balls B, are picked independently. We refer to each such
ball as an R-ball. Repeat this operation inductively, where at each stage the centres of the
balls do not have an edge emanating from them, and the rest of the vertices in each ball have
a single edge emanating from them. Call the resulting graph 7},. The cutoff time is then given
by the time at which the entropy of simple random walk on 7, is log | V,,|. The fluctuations of
tmix (¢) around this time are given by (1.2) up to a constant factor. Indeed Remark 1.6 in [19]
implies that the cutoff window is Q (\/tmix (G}, 1/4)/A).

REMARK 1.3. The assumption in Theorem 1.1 that |V},| is even can be dropped by leav-
ing one vertex unmatched when |V;,| is odd. Our analysis can easily be extended to the graph

I'When the sequence of graphs (Gj),cN has a Benjamini—Schramm limit G, one can define the entropic time
using G. This is discussed in Remark 3.16.
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obtained by “super-positioning” a configuration model of bounded degree on G, obtained
by adding to each vertex i, d; € [1, A'] half-edges (with }_; d; even) and then adding to G,
the edges corresponding to a random perfect matching of the half-edges.

REMARK 1.4. An inspection of the proofs of Theorem 1.1 and Proposition 1.2 reveals
that for the lazy or the continuous-time versions of the walk, we can allow the maximal degree
to be O((logn)©) for some sufficiently small ¢ € (0, 1). In this case, the right-hand side of
(1.2) would become larger, but would still remain o(log|V;|). We note that some condition
on the maximal degree is needed. The simplest example is obtained by taking G, to be the

Cartesian product K, /> x K> where K, is a clique on m vertices. In fact, one can construct a
logn
loglogn

family of examples of degree as small as ® ( ). This construction is given in Section 5.1.

Our lower bound on #1,ix (G}, 1 — ¢), which as discussed above can be expressed using an
entropic time, in fact holds w.h.p. simultaneously for all starting points (see Remark 5.10).

As we note below, cutoff for random walk on random graphs at an entropic time defined
w.r.t. some auxiliary random walk is a paradigm that emerged in the last few years. An inter-
esting feature of our result is that the random graph is not tree-like and the auxiliary random
walk is not defined on a tree. The only other such cases that we are aware of in the literature
are [20, 21], which use completely different (group theoretic) methods.

1.1. Related work—cutoff at the entropic time for random instances paradigm. We now
put our results into a broader context. A recurring theme in the study of the cutoff phe-
nomenon is that random instances often exhibit cutoff. This was already observed by Aldous
and Diaconis in their seminal 1986 paper [1] where they coined the term cutoff. In this setup,
a family of transition matrices chosen from a certain family of distributions is shown to give
rise to a sequence of Markov chains, which exhibits cutoff w.h.p. In recent years, this has
been verified for random walk on various natural random graphs. Lubetzky and Sly estab-
lished the cutoff phenomenon for random walk on random regular graphs [25]. Together with
Berestycki and Peres [6], they established cutoff for a typical starting point at an entropic
time? for the random walk on the giant component of an Erdds—Rényi graph as well as on
a random graph with a given degree sequence, satisfying some (very) mild assumptions on
the degrees. Cutoff for the nonbacktracking random walk on a random graph with a given
degree sequence was established independently by Ben-Hamou and Salez [5]. Ben-Hamou,
Lubetzky and Peres verified cutoff at the same entropic time also for a worst-case initial
point for the configuration model in [4]. Ben-Hamou in [3] also established cutoff for the
nonbacktracking random walk on a variant of the configuration model which incorporates a
community structure.

A few other notable examples, where cutoff has been proved at an entropic time include
random walks on a certain generalisation of Ramanujan graphs [9]. Cutoff for all Ramanu-
jan graphs was proven earlier by Lubetzky and Peres in [24], and on random lifts [9, 13] by
Bordenave and Lacoin and by Conchon—Kerjan. Two additional remarkable such examples,
due to Bordenave, Caputo and Salez, where the Markov chain is nonreversible and the sta-
tionary distribution is not well understood, are random walks on random digraphs [7] and
a large family of sparse Markov chains [8] obtained by permuting the entries of each row
of the transition matrix independently. A similar model, which is even closer to our model,
is studied by Chatterjee and Diaconis [11]. They showed that under mild assumptions on a
doubly-stochastic transition matrix P, if IT is a random permutation matrix, then PIT w.h.p.

2Wwith respect to a random walk on the corresponding Benjamini—Schramm limit, which is the size-biased
version of a Poisson Galton—Watson tree.
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has mixing time which is logarithmic in the size of the state space. See Bordenave et al. [10]
for a related work about the second largest eigenvalue in absolute value of ITP. We note
that while the last two examples bear some resemblance to our model, they differ in that
the Markov chains there are locally tree-like. Moreover, the approach we employ to prove
Proposition 1.2, involving a comparison with the configuration model, is different to the one
in [11], which is more combinatorial in nature.

Cutoff at an entropic time was recently established also for random walk on random Cayley
graphs for all Abelian groups [21] as well as for the group of unit upper triangular matrices
with entries in Z, [20]. Eberhard and Varju [17] established cutoff at an entropic time for the
Chung-Diaconis—Graham random walk. Another recent application of “the entropic method”
for a problem related to repeated averages can be found in [12]. Lastly, we mention that cutoff
was established also for random birth and death chains [15, 32]. It would be interesting to
establish the same for a natural model of a random walk on a random weighted tree.

A recurring idea in the aforementioned works is that the cutoff time can be described in
terms of entropy. One can look at some auxiliary random process, which up to the cutoff time
can be coupled with, or otherwise related to, the original Markov chain—often in the above
examples this is the random walk on the corresponding Benjamini—Schramm local limit. The
cutoff time is then shown to be (up to smaller order terms) the entropic time, defined as
the time at which the entropy of the auxiliary process equals the entropy of the invariant
distribution of the original Markov chain.

We finish this discussion with two very recent instances in which the entropic method
was used to prove cutoff in setups where the Markov chain is nonrandom and the entropy is
considered directly w.r.t. the chain, rather than some auxiliary “limiting” chain. Ozawa [29]
gave recently an entropic proof of the aforementioned result of Lubetzky and Peres [24] that
random walks on Ramanujan graphs exhibit cutoff (see also [9, 18]). His proof gives a certain
general condition in terms of concentration of —log P’(x, -) around the entropy of P’(x, -),
which implies cutoff for random walks on expanders. In a recent breakthrough, Salez [31]
develops a more general connection between such a concentration and cutoff involving the
varentropy. His formulation is actually done in terms of relative entropy. He then applies it to
give sufficient conditions for cutoff for chains with nonnegative curvature. In particular, he
shows that random walks on expander Cayley graphs of Abelian groups exhibit cutoff.

1.2. Organisation. In Section 2, we give an overview of the ideas and techniques in-
volved in the proof of Theorem 1.1. In Section 3, we define the notion of quasi-trees and
prove results concerning the speed and entropy of a random walk on them, as well as some
concentration estimates around the entropy. In Section 5, we define a coupling of a portion
of the random graph G} and a quasi-tree and of the random walks on them. The coupling
involves a certain truncation event defined and studied in Section 4. This coupling is then
used to conclude the proof of Theorem 1.1. Finally, in Section 6 we prove Proposition 1.2.

2. Overview. Recall the construction of the quasi-tree 7' that we described after the
statement of Proposition 1.2. Let (X;) be a random walk on it starting from its root. Let
(X;) be an independent copy of (X;), given T. Loosely speaking, the first stage of the anal-
ysis is to show —%log]P’(Xt = X; | X;, T) converges as t — 00 to some value 6, and has
variance O (t). Note that the randomness here is jointly over T and the walk (X;). As we
later explain, we first establish this for a certain notion of loop-erased walk, and then deduce
arelated statement for the random walk, whereas the above statement is never proven explic-
itly and is not used. In the case that T is a Galton—Watson tree, the convergence is classical
[26], and this variance estimate is proven in [6].
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We take an elementary approach to the problems of extending some of the known er-
godic theory for random walks on Galton—Watson trees to the setup of quasi-trees and of
establishing the above variance estimate. Our approach involves exploiting a certain i.i.d.
decomposition of the walk and the quasi-tree (see Lemma 3.6), using a natural analogue of
the notion of regeneration times used to prove a similar decomposition for random walks on
Galton-Watson trees (see the discussion before Lemma 3.6). From a high-level perspective,
our conceptual contribution here is two-fold:

(i) The observation that such a decomposition can be used also when T is not a Galton—
Watson tree, corresponding to the case that the random graph is not “tree-like”.

(i) The observation that such a decomposition is powerful enough to deduce concentra-
tion for —% logP(X; = X; | X;, T).

The above concentration implies that if t = (log|V,| — Ce+/log|V,])/ 6, for a suitable
choice of C,, then we can write the law of X; as (1 — &)u + ev, where for all x in the support

of u,
1(x) € [IVal " exp(C'\/log | Vi), |Vul ™' exp(2C”\/log | V,])]

for a positive constant C’. If the same applies for the graph G, then this shows that the
random walk is not mixed at time ¢, as with probability at least 1 — ¢ it is supported on a set

whose size is at most
|Vl exp(—C'\/1og |V |) = o(|Val)

To see this note that the support of a distribution p’ with min,.,’(x)~o ' (x) > 8 has size at
most 1/8; use this with 4’ = u and by the bounded degree assumption a set of size o(|V,,|)
has stationary measure o(1). Moreover, since we show (Proposition 1.2) that G, is w.h.p. an
expander, a standard application of the Poincaré inequality® shows that this would imply that
the random walk on G} is well mixed at time ¢ + Cy log |V, ].

Motivated by the above, we shall couple a portion of the random graph G rooted at a
vertex x with a portion of a quasi-tree in a certain manner that will facilitate a coupling of
the random walks on these graphs up to the above time ¢. Several difficulties arise when
implementing this approach. The first is that while the random graph G} rooted at a vertex x
is typically (i.e., for most x) locally indistinguishable from a quasi-tree from the perspective
of the random walk, this fails for some x € V,,. This turns out to not be a substantial obstacle.
Following [4], loosely speaking, we argue that w.h.p. G} is such that for all starting points x
the walk is likely to reach a “good” starting point for which the aforementioned coupling is
successful with probability close to 1. The good starting points will be ones that are locally
“quasi-tree like” in some precise sense.

The second difficulty is that there is a limit to how one may hope to successfully couple a
portion of the random graph G rooted at x with a portion of a quasi-tree. Indeed, the R-balls
in the quasi-tree are sampled at each stage at random with replacements, and in G}, without
replacements. We attempt to couple the two graphs one ball at a time, using a maximal (i.e.,
optimal) coupling for the distribution of the balls. However, these maximal couplings may fail
on some occasions, and they do so more often as the size of the portions of the two graphs
we revealed exceeds +/|V, |, and becomes closer and closer to size |V, |. When the maximal
coupling fails, we may even get two R-balls in the portion of the random graph we revealed
that overlap.

3Write the law of the walk at time 7 as a mixture v + (1 — &), with p having L, distance at most
O (exp(C’/Tog|V,])) from the stationary distribution, and then apply the Poincaré inequality to .
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To overcome this difficulty, we argue that starting from a good vertex the random walk is
unlikely to visit, by time ¢ defined above, any R-ball for which the coupling fails. Following
[6], loosely speaking, we truncate both the quasi-tree and the portion of the random graph
around x which we reveal at edges with the property that the probability that the random
walk crosses them by time ¢ is “too small”, say less than |V,,|~! exp(%C "J10g[V,,]). This is
crucial in avoiding revealing too many vertices, which would result in the coupling of the
balls failing “too often”, while being able to couple the walks on the two graphs by time ¢
with a large success probability. The actual details of the argument vary slightly from this
simplified description.

We now explain in more detail how we study the random walk on the quasi-tree. We refer
to the edges connecting a vertex to a new R-ball as long range edges. One can consider the
induced walk on the long range edges, which is the walk viewed only at times when it crosses
long range edges. One can then define the loop erasure of this induced chain in a natural
manner (see Definition 3.12). We say that a long range edge e = (x, y) is a regeneration
edge if it is crossed, and after it is first crossed the random walk never returns to x. For a
regeneration edge e, the time it is crossed is then called a regeneration time. It is this notion
which gives us the aforementioned decomposition of the walk and the quasi-tree into i.i.d.
blocks (see Lemma 3.6 for a precise statement). Using this decomposition, we derive the
concentration of the analogue of (ii) above w.r.t. the loop erasure. We then translate this into
a corresponding claim concerning the random walk.

We use the fact that the connected components of G, are of size at least 3 to deduce that:

o the walk on the quasi-tree has a positive speed, where distance is measured in the number
of long range edges separating a point and the root of the quasi-tree, and
o that the spacings between the regeneration times have an exponentially decaying tail.

This plays a role both in deriving the aforementioned concentration estimate for the loop
erasure, as well as in translating it back to one concerning the random walk on the quasi-tree.
For the sake of being precise, we note that we do not explicitly translate it exactly to the claim
(ii) above, although this could be done without too much additional effort. We do not require
this exact formulation, and thus do not pursue it.

We now provide an alternative description of the cutoff time. Let (§;) and (5,2) be inde-
pendent (given T') loop-erased random walks on 7 in the above sense started from its root.
We show that —% logP(& = &, | £, T) converges a.s. to some constant b as k — oco. We also
show that the ‘speed’ of the random walk (X;) on 7', measured in the ‘long range distance’
(the long range distance of x from the root is the level to which x belongs) converges to some
constant v. The cutoff time is then l(lgh" . We comment about the possibility of defining v and
b in terms of a Benjamini—Schramm limit in Remark 3.16. The cutoff time resembles that in
[6]. We note that this is a consequence of our definitions for loop-erased random walk and
for speed, which are not the standard ones.

The assumption on the minimal size of a connected component of G, is also used in
bounding the spectral gap of G;;. We essentially compare it to that of a random graph sampled
from the configuration model with minimal degree at least 3 and bounded maximal degree.
More effort is needed to bound the absolute spectral gap.

NOTATION. For functions f and g, we will write f(n) < g(n) if there exists a constant
¢ > 0 such that f(n) < cg(n) for all n. We write f(n) 2 g(n) if g(n) < f(n). Finally, we
write f(n) < g(n) if both f(n) < g(n) and f(n) = g(n). Let G = (V, E) be a graph and
let A C V. We write dA for the internal vertex boundary of A, thatis, A ={x € A:3y ¢
A st {x,y} € E}.
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3. Speed and entropy of simple random walk on quasi trees. We start this section by
recalling the construction of a quasi-tree 7 = T,, from the Introduction (see Figure 1). This
will serve as an infinite approximation to the graph G;;. Then we will prove scaling limit and
fluctuation results for the entropy and the speed of simple random walk on 7.

DEFINITION 3.1.  Let C; > 0 be a constant. We define a (random) quasi-tree T = T¢, to
be an infinite graph constructed as follows. Let B be a random ball (in the graph distance of
G ) obtained by first sampling a uniform vertex and then considering its R = [C; loglogn|
neighbourhood. We call such a ball a T-R-ball.

Let p be its centre and we call it the root of 7. Next, join by an edge each other vertex v
of B (except for the root) to the centre of an i.i.d. copy B, of B, that is, the balls are sampled
independently with replacement. Repeat the same procedure for every vertex of the new balls
except for their centres. We call edges joining different balls long range edges.

The quasi-tree is a random variable taking values in the topological space 7 defined as
the space of all rooted locally finite unlabelled connected graphs with a collection of distin-
guished edges, called long range edges, with the property that every simple path between a
pair of vertices must cross the same collection of long range edges. In other words, the long
range edges give rise to a tree structure.

For x,y € T, we write dr(x, y) or simply d(x, y) when T is clear from context, for the
number of long range edges on the shortest path from x to y. Note that this is not the usual
graph distance on T, but for us this will be a useful notion of distance. One can think of
this distance as “the long range distance”, but since we rarely consider the graph distance on
T, we do not use this terminology. A level consists of all vertices at the same distance from
o, that is, when d(p, x) = r, then x belongs to the rth level. We write B,(x) = B(x,r) =
{y :dr(x, y) <r} for the ball of radius r centred at x. We also write 7 (x) for the subgraph
of T rooted at x. More precisely, T (x) is the induced graph on the vertices y satisfying
d(p,y) =d(p,x) +d(x,y). The vertices of T (x) are called the descendants or offspring
of x.

REMARK 3.2.  We now explain the choice of R. We are going to define a coupling of the
walk on the random graph with a walk on a quasi-tree up to time ¢ of order logn. In order for
the coupling to succeed, we need to ensure that the walk on the quasi-tree does not reach the
boundary of a T'-R-ball by time ¢. In order to achieve this, we need to take R of order at least
loglogn. The coupling also involves an exploration of a portion of the random graph at the
same time with the corresponding quasi-tree (for both graphs we are primarily interested in
the portion of the graph where the walk is likely to be by time ¢). As will become apparent,
in order for this to succeed, we also need to ensure that by time ¢ we only reveal o(n) vertices
of G;; and that typically the other endpoint of long range edges we reveal satisfy that the
balls of radius R around them in G, are disjoint from the previously exposed such balls (as
is the case for a quasi-tree). This motivates us to take R to be as small as possible. We note
that our results in this section about speed and entropy of random walk on quasi-tree are not
limited to this choice of R. For the sake of our results on speed and entropy of the walk,
we could have taken R to be the diameter of the graph. In the case that the sequence (G,),
has a Benjamini—Schramm limit (for the aforementioned purposes), we could have taken the
balls in the construction to be i.i.d. rooted copies of the Benjamini—Schramm limit. In fact,
with a bit more care, one can derive from our analysis that up to subleading order terms the
speed of the walk and its entropy would be the same in these cases, as in our construction,
and similar concentration bounds hold also in these cases. Taking R to be the diameter or
using the Benjamini—Schramm limit (when it exists) may seem more natural, at least from
the perspective that results about the speed and entropy of the walk in these cases are of
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interest in their own right. However, as will become clear, for the sake of proving cutoff our
choice of R is natural.

For a Markov chain X and a vertex x, we denote the first hitting time of x by 7, = inf{r >
0: X, =x}and by 7 =inf{t > 1: X, = x} the first return time to x.

LEMMA 3.3. Let T be a quasi-tree as in Definition 3.1. Let X be a simple random walk
onT. Forevery x € T,whichis not in the T - R-ball of the root, we write p(x) for the “parent”
of the centre of the T -R-ball containing x, that is, p(x) satisfies d(p, p(x)) =d(p,x) — 1.
For x in the T-R-ball of the root, we set p(x) = p. Let Py denote the law of the random walk
on T started from x. Then there exists a positive constant c so that for all n and for every
realisation of T

P, (r;r(x) ATt = o0)>c¢, forallxeT.

PROOF. It will be useful in the proof to think of vertices of T lying in half and full
levels as follows. All centres at the same distance from the root are placed in the same half
level. Their neighbours in the corresponding balls are placed in the same full level. We now
change the definition of distance to take into account half levels, that is, the distance between
a centre and other points in its ball is equal to % and the distance between two endpoints of a

long range edge is also % We denote this distance by d and it satisfies d(p, x) = d(p, x) —
1(x is a centre of a T-R-ball) /2. We next claim that for all x we have

3.1) E[d(p, X1) —d(p,x) | Xo=1x] > 0.

Suppose first that x is a vertex which is neither a centre nor a neighbour of a centre. Then
~ ~ 1

32 Eld(p, X1) —d(p, Xo=x|>——,

(3.2) [d(p, X1) —d(p,x) | Xo x]_Z(A—i-l)

that is, there is positive drift downwards. If x is a centre with at least two neighbours in its
corresponding ball, then

(33) E[d(p, X1) —d(p,x) | Xo=x] =

AN =

Finally, suppose that x is either a centre of degree equal to 2 or x is a neighbour of a centre.
In both cases, we have

E[d(p, X1) —d(p,x) | Xo=x]=0.

This concludes the proof of (3.1). We now look at the distance from the root at times that
are multiples of 3, that is, we consider Y; = d(p, X3;) and write F; = o (X;,i < 3t). We next
show that there exists a positive constant § such that

34 ElYi41 — Y | F]=6>0.
We start by writing the conditional expectation above as follows:
ELY;11 — Y, | il = E[d(p, X3143) —d(p. X3142) | Fi]
+E[d(p, X3142) —d(p. X3141) | Fi]
+E[d(p, X3i41) —d(p. X3) | F1].

It then follows from (3.1) that all terms appearing on the right-hand side above are always
nonnegative. We now consider different cases for X3; in order to show that at least one of
the three terms in the right-hand side is strictly positive. Let K be the set of vertices of T
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that are centres and let K, be the subset of K consisting of those centres, which have at least
two neighbours in their corresponding balls. Let also N be the set of vertices of T that are
neighbours of centres. We write A = (KN N€) U K;. Then on the event {X3; € A} we have

E[d(p, X3141) —d(p, X31) | Fi] = mi“(g’ m)

On the event {X3; € N}, we get that there exists x € A with P(X3;,x) > 1/(A + 1), where
P stands for the transition matrix of X (indeed, either the centre of the ball to which X3,
belongs is in K3, or X3; has a neighbour in the same ball which is not adjacent to the centre

of the ball). So, writing p; = min(6(A1+l), 2(A}|—1)2) on the event {X3; € N} we get

E[d(p. X3142) —d(p, X3:41) | Fi]
=Y P(X3. 9)E[d(p, X1) —d(p.2) | Xo=2] = p1.
Zz

where we also used again (3.1). On the event {X3; € K \ K} we get that there exists x € A
with P2(X3,, x) > 1/(A+ 1)2, and hence this gives that on {X3; € K \ K3}

E[d(p, X3143) —d(p, X3142) | Fi]
=Y PX(X3, 2)E[d(p. X)) —d(p.2) | Xo=2] = p2.
Z

m, M). This concludes the proof of (3.4). Let t € N to be deter-

mined. Consider now the Doob martingale

where pp = min(

4

My=Yiie—Y =Y ElYiyi — Yigio1 | Ficil.
i=1
This has bounded increments, as the distance can only change by at most 3/2 in 3 steps of
the walk.
There exist positive constants c1, ¢ € (0, 1) so that

3 3
P(D| Xo=x)>cy, WhereD:={Ys ZYO—I—Eforallsft, Yt2Y0+czt+§},

2¢yt

where ¢; may depend on our choice of 7. Let r = =5=. By Azuma-Hoeffding and using (3.4)

P(Yz.’.( S Yz —C2t | XO =X, D)
3.5
<P(My < —cat — 80| Xo=x,D)1L{L>r} <e “1{t >r)},

for some constant ¢ > 0. Therefore, taking ¢ large enough and summing over £ we get that
there exists a positive constant ¢3 so that

3
(3.6) IP’(YS>Y0+§f0ralls2t‘X0=x,D>203.
Therefore,

Py (tpn) AT =00) > c1e3 > 0,

and this concludes the proof. [

REMARK 3.4. Note that the above proof also gives that there exist positive constants ¢
and ¢; so that for all ¢,

P(d(p, X;) <cit) <e” .
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DEFINITION 3.5. Let T be a quasi-tree as in Definition 3.1 and let X be a simple ran-
dom walk on T. A random time o is called a regeneration time for X if the long range
edge {Xs—1, Xo} is crossed for the first and last time at time o. (We use {a, b} to denote an
undirected edge connecting a and b, whereas (a, b) to denote a directed edge from a to b.)

Using Lemma 3.3 together with Remark 3.4, we get that there are infinitely many regen-
eration times almost surely.

The authors of [6] attribute to Kesten the “tree analogue” (i.e., the case where T is taken to
be a Galton—Watson tree) of the following lemma. The tree analogue was reproduced in [30].
A similar statement is proved in [27], Proposition 3.4, and our proof is similar to theirs. We
include the proof here for the sake of completeness. Recall that d denotes the “long range”
distance, and not the graph distance.

LEMMA 3.6. Let T be a quasi-tree as in Definition 3.1 with root p. Fix K > 0 and let
To be a realisation of the first K levels of T. Let X be a simple random walk on T started
from the root. Let T® be the graph obtained by joining the root of T to a new vertex p® by a
single edge and let X bea simple random walk on T started from p. Let oq be the first time
that X reaches 0Bk (p). Let o; be the ith regeneration time satisfying ¢; =d(p, Xs;) > K
(i.e., (07)72, are the regeneration times after the last visit to Bk (p)). Then conditional on
B(p, K) = Ty, we have that:

o (T(Xo)\T(Xg;,1)s (Xt)o;<t<0,y) are iid. fori > 1, and are jointly independent of (T \
T(Xal), (Xt)0§t§a1)a

e (0; —0i—1)i>1 and (¢; — @i—1)i>1 have exponential tails and

o foralli > 1, the pair (T (Xs,), (X{)i>0,;) has the law of (T, X) given that X never visit pe.
(Note that this conditioning also affects the law of T.)

We emphasise that above we view T and T (X,,) as rooted graphs defined up to graphs
isomorphisms which preserve the root.

REMARK 3.7. The conditioning on B(p, K) = Ty is not needed either for the i.i.d.
decomposition or for deriving the later results about the speed, entropy and concentration
around the entropy for the walk. However, the fact that such results hold even under the
conditioning on B(p, K) = Tp, will be useful for the cutoff analysis later on.

PROOF. Following [26], we define the set (Q below stands for “quasi”)

3.7) PathsInQTrees = {(7, (x;)i>0) : T € T, (xi)i>o0 is apath in T
7 - B
starting from its root},

where we recall that 7 was defined in Definition 3.1. We equip the space PathsInQTrees with
the o -algebra generated by (7', X), where T is the random quasi-tree from Definition 3.1 and
X = (X;)i>0 is a simple random walk on T started from its root.

Using Lemma 3.3 together with Remark 3.4, we get the existence of the infinite sequence
of regeneration times with the property that (o; — 0;_1);>1 and (¢; — ¢;_1);>1 have expo-
nential tails. Analogously to (3.7), we define

PathsInAugQTrees = {(T, (x;)i>0) : T € T, (xi)i>0 is a path in

T starting from its root}
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and equip it with the o -algebra generated by (7', X), where T is a (random) quasi-tree, and
X is simple random walk on 7 started from its root. For a set A C PathslnAugQTrees, we
write

Q(A)=P,((T,X) € A, 1p0 =00),

where X is a simple random walk on 7¢ started from p. For a vertex v which is a centre of
some T - R-ball, we write T, for the tree obtained by removing from 7 all of 7' (v) other than
v itself (T, has the same root as 7). In order to prove the i.i.d. property, it suffices to show that
conditional on Bk (p) = To, for all i > 1 we have that (T (X,), (Xi)k>0,) is independent of
(Tx,., (Xr)k<o,) and to verify the stationarity of (T (X, ), (X;)t>0;)i>1. The stationarity will
follow from the proof of independence. Let A C PathsInAugQTrees and B C PathsInQTrees.
To simplify notation, we write [Pz, (-) for the probability measure P(- | Bx (p) = Tp). We then
have

Pr, (T (X6,), (Xk=z0;) € A, (Tx,,,» (Xik=o;) € B)

= Pr (0 =1. (T (X)), (Xihk=r) € AN [tk = 00}, (Tx,, (Xi)k=) € B).
t

where r; =inf{{ >t : X, = y} denotes the first hitting time of y by the chain (Xy)¢>; and
we treat X, as the new vertex (X{ in the above notation) we attach to 7'(X;). We say that a
time ¢ is fresh if the walk visits X, for the first time at time #. Let Ay ; be the event that there
are exactly k regeneration times before ¢+ when we only consider the walk up to time ¢. (By
this, we mean that the notion of being a regeneration time is now defined with respect to the
length ¢ walk.) Then we have

Pry(oi =1, (T (X1), Xi)rzr) € ANy, =00}, (Tx,, (Xi)k<) € B)

=Pr, (¢ fresh, A;—1+, (T (Xs), Xp)k>r) € AN {t}’(H =00}, (Tx,, (X)k<t) € B)

=Pr,((T(Xs), Xi)k>r) €AN {r)’(H =oo} | t fresh, Aj_1 s, (Tx,, (Xi)k<:) € B)
x Pr, (¢ fresh, Ai—1, (Tx,, (Xk)k<t) € B)

= Q(A)Py, (¢ fresh, A;i_1 4, (Tx,, (Xr)k<t) € B).

Taking now the sum over all times ¢ of the last probability above gives
> Pyt fresh, Aj_1, (Tx,. (Xi)k=/) € B)
t

_y Pry(oi =1, (Tx,» Xhk=) € B) _ Pr1y((Tx,» (Xi)k<or) € B)‘
t Q(tpa = 00) Q(tpa = 00)

(We note that Q(7,« = 00) = Q(PathsInAugQTrees) = PP, (7« = 00).) Therefore, putting
everything together gives

PTO((T(XU[)’ (Xk)kZO',‘) € Aa (TXo'l»’ (Xk)kfo',‘) € B)
Q(A)

T Qg =)

and hence this proves the claimed independence. Taking B to be the whole space also proves
the claimed stationarity of (7' (Xy,), (X;)r>0,)i>1 and confirms the description of the law of
(T (Xs;), (Xt)t=0;) fori > 1 described in the last sentence in the statement of the lemma. Us-
ing similar reasoning, one can verify that (7 (Xs,), (X;)r>0,) and (T \ T (X4,), (X:)o<i<o,)
are independent (proof omitted). This completes the proof. [

Pr(Tx,,» Xk<o;) € B),
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REMARK 3.8. We note that from the proof of Lemma 3.6 we see that for every realisation
tof T we have that (o; — 0;,—1);>1 and (¢; — ¢;—1);>1 have exponential tails.

DEFINITION 3.9. Asin Lemma 3.6, we write oy for the first time that X reaches 0Bk (p),
(0;)i>1 for the sequence of regeneration times of X occurring after time o and ¢; for the
depth of X, for each i, when we condition on the event Bg (p) = Tp.

CLAIM 3.10. Let T be a quasi-tree with root p as in Definition 3.1. Fix K > 0 and let
To be a realisation of the first K levels of T . For each k € N, let
Ny =max{i >0:¢; <k+ K}

be the number of regeneration times occurring before level k + K + 1. (As always, regenera-
tion times are defined after time oy — 1.) Then almost surely
Ni
— ﬁ —
k  Elgz— o1l

Moreover, for all € > 0, there exists C sufficiently large such that for all k > K?

as k — oo.

]P’(’Nk L P/ \ Bk (p) = To> <e.
Elpz — ¢1]

PROOF. The almost sure convergence follows directly from the renewal theorem together
with Lemma 3.6.

For the second statement, we only prove one bound. The other one follows in exactly the
same way. Let

k
= —— C\//;J,
LE[wz—sol] *

where C is a constant to be determined later. Set {; = ¢; — ¢;—1 fori > 2 and {1 = ¢1. We
then have

P(Nx > €| Bk (p) = To)

¢
=P<Z§i <k+K‘BK(P):TO>

i=1

£ £
< P(Z g — E[Z cl} <2E[¢] — El¢1] — CE[QIVk + K \ Bk (p) = To)-

i=1 i=1
4 L
i=1 i=1

Since by Lemma 3.6 ¢, and ¢ have exponential tails (in fact, since K> < k, for ¢ it
suffices to use below the bound Var(¢;) < K 2y and (&i)i=2 are i.i.d. and independent of {1,
using Chebyshev’s inequality this last probability can be bounded by

‘ ‘ Var(YCi ) ¢
P(?"‘E[g“} PR

> C'Vk \ Bk (p) = To) <

for a positive constant C’, where the last equivalence follows again from Lemma 3.6. Taking
C large enough, which implies that C’ is large, this last probability can be made smaller
thane. O
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LEMMA 3.11. Let X be a simple random walk on T . Then for v = M almost surely

Elop—
dr(p, Xy)
t

—V ast— 0.

Moreover, for all € > QO there exists a positive constant C so that for all t sufficiently large

P(|dr (o, X;) — vt| > C/1) <& and IP’(sup dr(p, X;) > vt +2C\/Z) <e.

S8 <t

PROOF. The first and second claims follow easily using the regeneration structure from
Lemma 3.6 together with Claim 3.10.
For the final claim, let C be such that the first inequality holds. Then we have

IP’(sup dr(p, Xs) > vt +2C\/Z)

S8 <t

< IP’(dT(p, X;) <vt+ C+/t, sup dr(p, Xs) > vt +2C\/Z) +¢

sis<t

< Y P(dr(p, Xy) > vt +2C/t,dr(p. X;) <vi+ C/t) +¢

st
<t. g~V 4 e,

where c is a positive constant and where for the final inequality we used that by Lemma 3.3
the probability that the walk goes up i levels decays exponentially ini. [

DEFINITION 3.12. Let T be a quasi-tree as in Definition 3.1. A loop- erased random
walk & on T is defined as follows: we run a simple random walk on 7T for infinite time
and we erase loops in the chronological order in which they are created. Usually one calls the
obtained random simple path the loop-erased random walk, however we employ the following
different convention: for each i we define &; to be the ith long range edge crossed by this loop
erasure. Unless otherwise specified, the loop-erased walk & is considered with respect to a
walk started from the root of T'.

The following lemma is a direct consequence of the domain Markov property for the loop-
erased walk £. We state it separately, since we will refer to it several times in the following
proofs.

LEMMA 3.13. Let T be a quasi-tree and let Ty be its first M levels for some M > 0. Let
X be a simple random walk on T (resp., killed when exiting Tp) and let & be its loop erasure
as in Definition 3.12. Let (e; = (x;, yi))ieN be long range edges satisfying d(p, x;) < d(p, yi)
and xjy1 is in the T-R-ball centred at y; for all i. Then for every realisation of T, setting
y ={e1, ..., er} we have for all k that

P&t = exi1 | EDick = ¥) =Py B = 1) = Py (X1 = xp41),

where X is a simple random walk on T (yi) (resp., on T (yi) N To) started from yi whose loop
erasure is &€ and L is the last time (resp., before exiting Ty) that X is in the T-R-ball centred

at yi.

PROOF. The lemma follows directly from the domain Markov property of loop-erased
random walk together with the “tree-like” structure of the quasi-tree 7. [J
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LEMMA 3.14. There exist positive constants (C¢)¢>1 and C’ so that the following hold:
let T be a quasi-tree with root p as in Definition 3.1. Fix K > 0 and let Ty be a realisation of
the first K levels of T. Let X be a simple random walk on T started from p and let & be an
independent loop- erased random walk on T . For k > 1, define

Yi = —10gP((Xop—1, Xo,) €E | X, T) +10gP((Xo_,—1, Xo_ ) €E | X, T).
Then the sequence (Yi)k>2 is stationary and independent of Bk (p). Moreover, for all £ > 1,

(3.8) E[(—1og P((Xop—1, Xop) €E | X, T))" | Bk (p) = To] < Ce(RK)*
and for all k > 2,
(3.9) E[(Y0)" | Bk (p)=To] <C¢ and E[IY1]] < Cy.

In addition, there exists a positive constant C' so that for all k > 1 we have

k
(3.10) Var (Z Yi

i=1

Bk (p) = To) <Ck.

PROOF. To simplify notation, we identify X, with the long range edge (X,_1, X5 ). Re-
call that the regeneration times were defined to be the times when a long range edge is crossed
for the first and last time. This definition together with the fact that £ is only considered when
the loop erasure crosses long range edges give that if for some k£ > 2 we have X,, € £, then
also X, | € E. Using this and recalling that ¢y is the depth of X, , we obtain

P(Xp, €& | X, T)=P(Xo, €&, X5, €& | X, T)
=E[P(Xo, €&, Xop_, €E | X, T, E)o<g,) | X, T]

=E[1(Xo, , €E)P(Xo, €& | X, T, Eo)e<g ;) | X, T].

Using Lemma 3.13 we obtain
1(Xoy =&y JP(Xoy, €E1X, T, E)e<gy ;)

=1(Xop | =&y )P(Xo €50 | X, T),
where &(k) = (§(k);)i>0 is a loop-erased random walk on the subgraph T (X,, ,) started
from its root, X, ,, and evolves independently of X. Therefore, we obtain
P(Xo, €€ X, T)=P(Xo, €£(k) | X, T)P(Xo,_, €E | X, T),
and hence this gives for all kK > 2
Vi =—logP(Xy, €&(k) | X, T) = —logP(Xo, € £k) | (X0)iz01_1» T Xy _y))-

Since Yy is a measurable function of ((X;);>¢, ,» T (Xg,_,)), using Lemma 3.6 we conclude
that even conditional on {Bg (p) = To}, the sequence (Yj)i>2 is stationary.

We now prove the bound on the moments of ¥;. The moments of |¥;| can be bounded
using similar arguments. Let X be a simple random walk on 7 (X,,)“ started from X, and
conditioned on never visiting X (“,1 . Let &1 be the first regeneration time of X , that is, the first
time that X crosses a long range edge for the first and last time. It is convenient to identify
Xg, with the parent of X, in 7', so that X is a walk on a subgraph of 7' (one can even define

)?k = X4, 4« for all kK > 0, and then }?51 = Xo,). By Lemma 3.6, we get
E[(Y2)" | B (p) = To)]

=E| > P(J?alzx|T(X(,1))(—1og19>(xes(2)|T(Xgl)))@]
xeT (Xo,)
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and similarly
E[(~logP(Xe, €& | X, T))" | Bk (p) = To}

—E| 3 P(Xay = | Br(p) = T0)(~ logPEx—1 =1 )’ | Bi(p) = o |
xedTy

where we write d7g = {x : d(p, x) = K}. Write P¢(-) for the probability measure when 7" =
t. Abusing notation, when considering X and £(2) we also write P¢(-) for the probability
measure when T'(X,,) is given by t. It suffices to prove that for all £ € N there exists a
positive constant C so that for every realisation t of 7 (X,) and every realisation ' of 7 with
Bg (p) = Ty we have

(3.11) > Pi(Xz = x)(~logPy(x € (2))) < C
xet

(3.12) > Py(Xoy = x)(~logPyEx—1 =x))" < C(RK)",
xet

where x € t (resp. x € t') ranges over long range edges of t (resp., t'). We start by proving
(3.11). Let X’ be a simple random walk on t* started from the root p’ of t We denote the
first regeneration time of X’ by o{. Note that it suffices to prove (3.11) for the walk X', since
using the definition of X we obtain for a positive constant ¢ that

R N UFUR
=X)= =~ t P =X),
Pt(‘f(p ya = 00 | XO = /) 91

Py(X3,

where the last inequality follows from Lemma 3.3.
We write d, (a, b) for the graph distance between a and b in the graph t, that is, not count-
ing only the long range edges as for d(a, b). For every r, we set

Ay ={w=(wi,w) €t:dy(p, wr) =r},

where again w ranges over long range edges of t. Then we have

Y P(X,, =) (-~ logPi(x €£))"

xet

=) > P(X (—logPy(w € £(2)))".

r weA,

The proof of (3.11) will be complete once we show the existence of two positive constants c
and ¢ so that forall r and all w € A,,

(3.13) P(w €§(2) =c1e™ " and PyX, € A;) <e” .
1

For the first bound, take a path of vertices that connect p to w. The probability that this is the
path taken by the walk that generates the loop erasure is at least e~“!" for a positive constant
c1. Indeed, this follows from the bounded degree assumption. Now, by Lemma 3.3, once w
is reached by the walk, the probability that it is in £(2) is at least c;. For the second bound in
(3.13), using that o{ has exponential tails from Remark 3.8 we have

IP’t(X;l, € Ar) < Pt((ﬁ/ > I") < e "

for a positive constant c». 5
For the proof of (3.12), note that Py (§x—1 = x) > e RK fora positive constant c3, since
we can take a path of long range edges of length K and require that the walk creating the loop
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erasure takes this path and then escapes, similar to the proof of the first inequality in (3.13).
So we now get that

3 Pi(Xoy =) (—logPyGr—1 =) S (RK)E Y Py(Xo, =x) = (RK)".
xet xet

It remains to prove (3.10). To simplify notation, we write [Pz, (-) for the probability measure
conditional on Bk (p) = Tp, and similarly Eg,[-], Varg, and Covr,. With this notation, we
have

k k

Varr, (Z Y,-) =) Vargy(¥;) +2)_ Covyy (¥;, Y)).
i=1 i=1 i<j

Using (3.9), we get that Zle Varg, (Y;) < k, and hence it suffices to prove that

(3.14) Y Covy, (Y;, Y)) Sk.

i<j
In order to prove this, for j > i we are going to define random variables Y; ; and events
B(i, j) so that:

(1) Y; j1(B(, j)) and B(i, j) are independent of Y,
(ii) Pr,(B(, j)°) < e~<U~= for a positive constant ¢ and
@ii) |Y; = Y; j11(B@, j)) < e~<' U= for another positive constant ¢’.

Therefore, assuming that we have defined Y; ; and B(i, j) satisfying the above conditions we
can complete the proof, since

Covr, (Yi, Yj) =Eq[(Yi — Eq [Y;1)(Y; — Eq, [Y;1)1(BG, /)]
+Eg, [(Yi —Eg [Yi])(Y; — Eq, [Y;1) (B, )]
SEr[(Yi — Er[Yi1)(Y; — B [Y;1)L(BG, j))] + e~ 0U=D/CO
[

=Eq[(Yi — Y, ))Y;1(B(, /)] — Eq[(Yi — Yi, )L(BG, j))]|Er, [Y;]
+ e—ﬂ(j—i)/(ZC)’
where for the inequality we used Cauchy—Schwarz together with (3.9) and (ii) and for the last
equality we used (i). Using (3.9) and (iii) gives
Er[(Yi — Yi )Y;1(BG, /)] Se U™ and

Ez,[(Yi — Y; ) L(BG, j)|Eg,[¥Y;1 S e U0,

Taking the sum over j > i yields (3.14) and completes the proof. So we now turn to define
Y; jand B(i, j) for j > i.

For each i, let X' be the walk that generates the loop-erased path £(i), that is, X' is a
simple random walk in the subtree T (X, ,) started from X,, , and £(i) is obtained by only
considering the times when X' crosses long range edges and erasing loops in the chronolog-
ical order in which they are created. Now for i < j we let £(i, j) be the loop-erased path
(across long range edges) obtained from the path X’ when we run it until the first time that
X' reaches the level of X oj - We set

Zi =]P)T0(XO',* € 5(1) | T(Xo'ifl)a X)s
Zl.y,/.:IP)T()(XOi 65(17]) | T(XU,'_l)vX) and
Yij=—logZ ;.
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Note that by the definition of £ (i, j) we have that
Zij =Pr,(Xo, €6, )) | TXor_ )\ T (Xo;_), (X0 Lor )

Let A(i, j) be the event that X ! returns to X o; after reaching the level of X, i1 for the first
time. Then we have

1Zi — Zi j| = [Pry(Xo; €6G) | T (X 1), X) — Pry(Xo, €£G, J) | T(Xo,), X))
= [P1y(Xo, €6, Xo, $ £, J) | T (X)), X)
— Py (Xo; 6(0), Xy €60, ) | T(Xo;_), X))
<P (AG DI T (KXo, X).-
Using Lemma 3.3, we obtain that there exists a positive constant ¢ so that
Pr,(AG, j) | T(Xo;_,), X) <e U7,

Using that |logx — logy| < |x — y|/(x A y), we now obtain
) ) |Zi; — Zi]
|Yij —Yil=|logZ; ; —log Z;| < m
Let B(i, j) = {d¢(Xo;, Xo;_,) < [(j —i)/C]} for alarge positive constant C. On B(i, j), we
have

ZijAZi=c(A+1)"UD/C

where c is the positive constant from Lemma 3.3 and A is the maximum degree. Indeed,
the right-hand side above is a lower bound on the probability that X’ visits Xo; without
backtracking until the first such visit and then escapes. Therefore, choosing C sufficiently
large we get that

(3.15) Yi i — Yi|L(BG, j)) <e <UD,
where ¢” is a positive constant. Using next Lemma 3.6, we get that for a positive constant ¢
(3.16) P(B(i, j)°) < e~ 1lU=0/C],

Finally, we note that ¥; ;1(B(i, j)) and B(i, j) are independent of Y;, since they depend
on independent parts of the tree by the definition of regeneration times. This completes the
proof. [

PROPOSITION 3.15. Let T be a quasi-tree as in Definition 3.1 and let & and £ be two
independent loop-erased random walks on T both started from the root. Then there exists a
positive constant h) = b, so that almost surely

—logP(§ €€ T,
—
k
Fix K > 0 and let Ty be a realisation of the first K levels of T. For all ¢ > 0, there exists a
positive constant C so that for all k > (RK )2

P(|—logP(& € £ | T, &) — hk| > CVk | Bx(p) = Tp) < e.

h ask— oo.

PROOF. Again to simplify notation, we write Pz, (-) for the probability measure P(- |
Bk (p) = Tp). Let X be the simple random walk on T that generates the loop erasure & and
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let (ox)k>1 be its regeneration times after time oo and o be the hitting time of 97 as in
Lemma 3.6. Then we get

k
_log]P)((XUk—l’ X(Tk) € "i: | X, T) = Z Y — IOgP((Xao—l, XU()) € S | X, T)’
i=1

where Y; are the variables of Lemma 3.14 and which are stationary for i > 2 and E[|Y;|] < C
for all i > 1. Therefore, applying the ergodic theorem and using also (3.8) we deduce that
there exists a constant y so that almost surely

g P((Xoy—1, Xo) €€ X, T)

k

Let o =d(p, X5,). Then &, = (X4,—1, Xo,), and hence from the above almost surely as
k — oo,

as k — oo.

logP(5,, €£ | X, T)

Lemma 3.6 now gives that almost surely ¢/ k — E[p> — ¢1] as k — oo with E[gy — ¢1] <
oo. This now implies that

_logPE€€|ET) v
k Elg2 — ¢1]

We turn to the proof of the fluctuations. Using the bound on the variance of Zle Y; from
Lemma 3.14 together with (3.8) and Chebyshev’s inequality we obtain that for all € > 0 there
exists a positive constant C so that for all k > (K R)?,

Pry(|—log P&y €& | €, T) — yk| = CVk) <.

We now need to transfer the fluctuations result to the process —logP(&x € E|&,T). As in
Claim 3.10 for each k € N let

N =max{i > 0:¢; <k +K}.
Then we have
Pr,(|—logP(& € £ | €, T) — bk| > CVk)
<Pry(—logP(Egy,,, €515, T) > bk + CVk)
+Pry(—logP(&,y, €€ 1§, T) < bk — CVk).

Using again the monotonicity, in the sense that if & € £, then also & j € £ for every j <1i,
and the concentration of Nj from Claim 3.10 proves the result for the suitable choice of the
constant C. [

REMARK 3.16. We note that both the entropy constant h and the speed constant v ap-
pearing in Proposition 3.15 and Lemma 3.11 depend on n but are both of order 1. We recall
that by the bounded degree assumption (G,,) has a subsequence converging in the Benjamini—
Schramm sense. To prove cutoff w.h.p., it suffices to show that any subsequence has a further
subsequence for which cutoff holds w.h.p. We may thus assume such a limit exists. One can
show that if (G,,) has a Benjamini—Schramm limit then the entropy and speed constants con-
verge to the corresponding constants when the quasi-tree 7 is defined w.r.t. the limit (with
R = 00). In general, the rate of convergence can be arbitrary, and so in order to obtain any
control on the cutoff window it is important to work with our v and b, rather than with their
limit.
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4. Truncation.

DEFINITION 4.1. Let e be a long range edge of T and let £ be a loop- erased random
walk started from the root of 7" as in Definition 3.12. We define

Wr(e) =—logP(ec& | T).
For a long range edge e = (x, y) with d(p, x) <d(p, y), we write £(e) =d(p, y). We define
Wr(e) = —IOg]P)((X.[Z(e)_l, X o) =e| T),

where X is a simple random walk on 7T started from the root and 7% = inf{r > 0 :
d(p, Xy) =Lt(e)}.

REMARK 4.2. In the definition W above, we are requiring the walk X to first hit level
£(e) by crossing e. Note that in this way W only depends on the first £(e) levels of the tree.

LEMMA 4.3. There exists a positive constant ¢ so that for all realisations of T and all
edges e of T we have

Wr(e) > Wr(e) — cR>.

PROOF. In this proof, we fix the graph T and so we drop the dependence on T from the
notation.

Let X be a simple random walk on T started from the root p and let £(e) be the loop
erasure of the path of X until the first time that it hits level £(e). Then we clearly have

{(Xte(")—l’ X)) = e} = {e € 5(6)}

It suffices to show that there exists a positive constant ¢ so that

(4.1) Ple c&(e)) > e K . Pleck),

since taking logarithms of both sides proves the lemma. To simplify notation, we write £ =
2(e) (and t¥ = inf{r > 0:d(p, X;) = £} as above). Let eq, ..., e, = e be the sequence of long
range edges leading to e. Letting e¢; = (x;, y;) withd(p, x;) <d(p, y;) and using Lemma 3.13
for the transition probabilities of the loop—erased random walk we now get

(4.2) Plec&(e)) = 1‘[ Py (X} =xit1),

where yp = p and for each i, X' is a simple random walk on 7' (y;) and Lf denotes the
last time before reaching level £ of T that X' is in the ball centred at y;. Similarly, for the
loop-erasure & we have

-1
4.3) Plee&)=[]Py (X}, =xit1).
i=0

where now L; is the last time that X is in the ball centred at Vi
Using the last exit decomposition formula, we obtain

Py, (ta;y, < 129
+

Xi+1 (.,:E < Txi+1)

Py; (Tx;yy < 00)

+
Py y i (Taiy = 00)

Py, (}?IL =Xit1) = P (i, Yiet) Py (T, > Te)’

4.4)

Py, ()?tL, =Xit1) = P(xit1, yit+1) - Py, (Ta;,, = 00)
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1
%11 (T =00)
is the expected number of such visits before time 7¢. We need to compare

where is the expected number of visits to x;11, once it is reached, while
Py (Tl<f;zr‘+1)
the ratios of the terms appearing in the two expressions above.
For the last two terms, we have Py, (1., > %) > Py, (1y,,, = 00). We now explain
that it suffices to prove that there exist constants c1, c» and c¢3 so that forall i < ¢,
P

x1+1( Xit+1
(4.5 > o
Pyt (Txi+1 > 1) T 14 cpem D)

= 00) 1

fori <f—c3R,

L
(4.6) Py, (Txiy <7 > 1 N
Py, (ty;,, <00) — 1 —e—c1t=0)/

while forall i < ¢,
Py, (Tx,y, < 29) - 1 .
Py, (tx; <00) — (A + )R

Indeed, once these bounds are established, we can easily complete the proof, since for all i
satisfying £ — c3R < i </ plugging the bounds (4.5) and (4.7) into (4.4) we get

1

T 1+cpeal=) (A+ DR
For i satisfying i < £ — c3R plugging the bounds (4.5) and (4.6) into (4.4) gives
1 — e—C1=0)/2

From these two inequalities together with (4.2) and (4.3), we now deduce

(4.7)

Py, (Xyp =xig1) = Py, (X}, = xi+1).

IP)’i(sze —xl+1) ]P’yi(iiL,- =x,-+1).

-1 o—C1i/2
1 —e1i/ Pecé)
P(e € € - > ,
(ect@) = 1)c 5 Plecd) H [T X (A g ol
which proves (4.1), and hence completes the proof of the lemma. It thus remains to prove
(4.5), (4.6) and (4.7).
We start with (4.5). We have

IEDxile (.’:‘Z < T;__H) th+l( ;_-H - OO) + PXH»I (T < T;__H < OO)

Using Lemma 3.3, we get that there exists a positive constant ¢ such that

€ _ + —c1(e—i)
Py, (5 <70, <o0)<e :

Using Lemma 3.3 again, we get that there exists a positive constant ¢ so that

Py (.[E <t ) <Py, (f+ = OO)(I + C2€_Cl(e_i)),

Xit1 Xi+1
therefore establishing (4.5).
Suppose that i is such that i < £ — c3R for a positive constant ¢3 to be determined later.
Then using Lemma 3.3 we have

Py, (txy, < 00) =Py, (tyy, < ) + Py (7 < Ty < 00)
<Py (tny, < ) e
1

¢ —ci(t—i)/2
<Py (Tay, <T°)+e B DE
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where the last inequality follows by choosing c3 as a function of A and c;. Using that

Py, (tx,, <00) = BIDE
we obtain
Py (Txyy < 00) <Py (T, < ) + e_cl(z_i)/zpyi (Tx;py < 00).
Rearranging this gives
(1- e_cl(g_i)/z)Pyi(fxiH <00) =Py, (T < ),
thus establishing (4.6).
Finally, for all i, we also have
Py, (ty,, <7°) > ! > ! Py (T4, < 00)
i i+1 _(A+1)R_(A+1)R Yi \EXi41 ’

proving (4.7). This completes the proof of the lemma. [

DEFINITION 4.4, Let A > 0and K = [C>loglogn] for a constant C, to be determined.
For a long range edge e of T, we define the “truncation event” Tr(e, A) to be

Tr(e, A) = [Wr(e) > logn — A,/logn} N {€(e) > K},

where £(e) stands for the level of e.

In the next section, where we construct the coupling of the walk on 7" with the walk on G}
we will need to truncate the edges of T that satisfy the “truncation criterion” above. We will
then need to ensure that the random walk on 7" does not visit truncated edges by the relevant
time ¢ with large probability. We achieve this in the following lemma.

LEMMA 4.5. Let K be as in Definition 4.4 and let Ty be a realisation of the first K levels
of T. Let X be a simple random walk on T started from its root and set t = I(Lgh" — B./logn,
where v and Y are given in Lemma 3.11 and Proposition 3.15, respectively. Then for all

& € (0, 1) there exist B and A (depending on ¢ and B) sufficiently large so that

P(U Tr((Xx—1, Xk), A) | Bx (p) = To) <e.

k<t

PROOF. Using Lemma 3.11, there exists a positive constant C so that if

D= {supd(,o,Xs) <vt +C«/;},

s<t

then P(D) > 1 — ¢. To simplify notation, we write again [Pz, (-) for the probability measure
P(-| Bk (p) = Tp). We now get

Pz, (U Tr((Xk—1, Xg), A)) <Py, <U Tr((Xx—1, Xx), A), D) +e.
k<t k<t

Define F(e) to be the event that e is the first edge crossed by the walk for which the event
Tr(e, A) holds. Then we have

Pr, (U TH((Xe_1. X0, A). D) < PTO( U F(e))

k<t ecT:d(p,e)<vi+C./t

= > Pz, (F(e)).

ecT:d(p,e)<vt+CA/t
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Let £ be the loop erasure of X (considered when it crosses long range edges) and define F(e)
to be the event that e is the first long range edge crossed by the loop-erasure & for which the
event Tr(e, A) holds. For a long range edge ¢ = (e—, e ), let T(e) be the first return time to e
by X after the first time X crosses e¢. Then for every realisation t of 7' for which Bk (p) = Ty
we have

P((F(e), T(e) = 00) =Py(F (e), e € §) <P((F(e), e € £),
where in the notation above we have fixed T to be t. By Lemma 3.3, we now get
Py(F(e)) SPy(F(e), T(e) = 00),

and hence putting all things together we deduce

IP’T()(U Tr((Xi—1, Xx), A), D) < > Pr, (F(e))

k<t ecT:d(p,e)<vi+C./t

e U Fe)

ecT:d(p,e)<vt+CA/t

=pp( U TG ).

k<vt+C/t

where the first equality follows since by definition the events F(e) are disjoint. By
Lemma 4.3, we have that on the event Tr(&, A),

Wr (&) > logn — A,/logn — cR?.

Using that Wr (&) < W7 (&x+1) (since the loop erasure is only considered when it crosses
long range edges) gives that on the event | ;- Tr(§, A) with L =vt +C V/t we have

Wr (&) > logn — A/logn — cR?.
This together with Proposition 3.15 conclude the proof. [l

S. Coupling. Recall that we refer to the edges of the perfect matching of G as long
range edges.

DEFINITION 5.1. In the graph G, we define the (long range) distance between x and
y to be the minimal number of long range edges needed to cross to go from x to y, when we
only allow at most R consecutive edges of G, in the path from x to y and we do not allow
any long range edge (here considered as undirected) to be crossed more than once. (The first
constraint is put in order to avoid having long range distance 0 between all pairs of vertices
whose graph distance in G, is R + 1, whereas without the second constraint the distance
between such pairs would be always at most 2.) Like for the quasi-tree T, we rarely use the
regular graph distance on G, so the term “distance” below will refer to the aforementioned
distance, unless otherwise specified.

We write By (x) to denote the ball of radius K and centre x in this metric. We write
Bg, (x, r) for a ball centred at x of radius r in the graph metric of G,. When r = R, we call
it the G- R-ball centred at x.

As in Lemma 4.5, we set
logn
(5.1) t = — B,/logn
vh

for a constant B to be determined and let A be as in Lemma 4.5.
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DEFINITION 5.2.  We call a vertex x a K -root of G}, if By (x) is a possible realisation of
the first K levels of the quasi-tree T (corresponding to G,). If x is a K-root and i < K, we
denote by 03] (x) the collection of vertices of (long range) distance i from x. (Note that this
is a slight abuse of notation, since 98] (x) is not the internal vertex boundary of B (x) as the
internal vertex boundary does not contain the centres of the 7-R-balls at distance i from x.)

We next define an exploration process of G, and a coupling between the walk X on G,
and a walk X on the quasi-tree T corresponding to G,.

DEFINITION 5.3. Let K = [Czloglogn] for a constant C3 to be determined as in Def-
inition 4.4, and suppose we work conditional on the event that xo is a K-root and that
B (xo) = Tp, where T is a realisation of the first K levels of a quasi-tree. Let {z1,..., 2.} C
0Bk /2(X0) be the collection of centres of 7T-R-balls at long range distance K /2 from xp,
where L < [dB% ) (x0)|. For each z € 0B% /2 (x0) we denote by V, the set of offspring of z on
0Bk (xo). Let z € By 2 (x0). We now describe the exploration process of G, corresponding
to the set V; by constructing a coupling of a subset of G with a subset of a quasi-tree T
conditioned on the first K levels of T being equal to 7p. We first reveal all long range edges
of T with one endpoint in d7p, that is, with one endpoint at long range distance K from xg.
For the long range edges originating in V, we couple them with the long range edges of G,
by using the optimal coupling between the two uniform distributions at every step. (At every
step in G}, we choose an endpoint at random among all those that have not been selected
yet.) If at some point one of these couplings fails, then we truncate the edge where this hap-
pened and stop the exploration for this edge in G}, but we continue it in 7. We also truncate
an edge and stop the exploration in G, if the G- R-ball around the newly revealed endpoint
of the edge intersects an already revealed G- R-ball (whenever we reveal the other endpoint
of a long range edge, we reveal the ball of radius R around it in the graph metric of G,;
coupling this endpoint between 7 and G}, is the same as coupling the two R-balls). In the
case where the G- R-ball centred at the endpoint intersects an already revealed G- R-ball,
then we also truncate the edge leading to its centre and stop the exploration there too even
though we may have already revealed some of its offspring. We always continue the explo-
ration for 7. Once all long range edges joining levels K and K + 1 of T have been revealed,
we examine which of those satisfy the truncation criterion Tr(e, A) (which is defined w.r.t.
T, not G}). We then stop the exploration at these edges for the graph G, but we do continue
the exploration of their offspring for the quasi-tree 7. Suppose we have explored all k level
edges of the quasi-tree 7 and also the corresponding ones in G}, that have not been truncated.
Then for the edges of level k + 1 we explore all of them in 7" and we use the optimal coupling
to match the ones that come from nontruncated edges in G, with the corresponding ones of
T. We truncate an edge and stop the exploration process at this edge if the optimal coupling
between the two uniform distributions fails at the endpoint of the edge or if the G};-R-ball
centred at the endpoint intersects an already revealed G- R-ball. In the case where the G-
R-ball centred at the endpoint intersects an already revealed G- R-ball, then we also truncate
the edge leading to its centre and stop the exploration there too even though we may have al-
ready revealed some of its offspring. We always continue the exploration for 7. We continue
the exploration process for ¢ levels.

We now describe a coupling of the walk X on G} starting from x € V, with a walk X on
T starting from x as follows: we move X and X together for ¢ steps as long as none of the
following happen:

(i) X crosses a truncated edge;
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(ii) There exists a vertex v such that X visits v and then reaches the internal vertex bound-
ary of the T-R-ball centred at v (i.e., it reaches a vertex in the 7 - R-ball centred at v which is
at distance R (in the graph metric of G,) from v) and does so by time ¢, or

(iii) X visits a vertex w € dB% /z(xo) for some w # z.

If none of these occurs by time ¢, we say the coupling is successful.

We write F; for the o -algebra generated by 7y and the exploration processes starting from
all the vertices of V,,..., V,. We call z; € 0B% /2()‘0) good if none of its descendants in
a7y (i.e., those vertices y € Ty such that d(xg, y) = d(xo, z;) + d(z;, y)) has been explored
during the exploration processes corresponding to the sets V;,,..., V;,_,. Otherwise, z; is
called bad. Note that the event {z; is bad} is F;_; measurable. Finally, we denote by D; the
collection of vertices of G}, explored in the exploration process of the set V_,.

REMARK 5.4.  We note that if the coupling between X and X starting from x € V,,
where z; € 0By 2 (x0), succeeds for ¢ steps, then X € D; forall s <¢.

LEMMA 5.5. In the setup of Definition 5.3, deterministically, |D;| < N = nexp(—A X
Jlogn/3) foralli € L (for all sufficiently large n). Moreover, there exists a positive constant
C (independent of Ty) so that the number Bad of bad vertices z satisfies

1
P(Bad > C,/logn | By (xo) = Tp) < e

PROOF. Letx € V; andlet T be the quasi-tree rooted at x obtained during the exploration
process of G. Let k > 0 and Sy be the set of long range edges with one endpoint at level
k — 1 and the other one at level k£ of 7. Consider now

Sk = |e € S : Tr(e, A)€ holds}.
Recalling the definition of WT and of 74(,) from Definition 4.1, we have
Y exp(=Wr(e) = Y P((Xyeo-1, Xpuw) =e | T) < 1.
e€§k eegk

Therefore, using the bound on WT from the truncation event, we obtain

Sk < nexp(—A,/logn),

where A is as in Lemma 4.5. Since every long range edge we explore has a neighbourhood of
radius R around it, this means that when we reach distance k from the root, we have revealed
at most AR|Sy| vertices, which is at most n exp(—A+/logn/2) for n sufficiently large (recall
that R < loglogn). Since the exploration process continues for ¢ < logn levels, the number
of explored vertices is at most

N =nexp(—A,/logn/3).

At every step of the exploration process the probability of intersecting a vertex of 07y is upper
bounded by

2
Cl(A)R(K+1)/n S A2C1C2(10glogn) /n’
where ¢ is a positive constant. We therefore obtain

N )<A2C1C2(loglogn)2> Jlogn

P(B 1 <
(Bad > C ogn)_(c logn

2C1 Ca(loglogn)? \ C/Togn
SNC*/@<A 12(0g08")) ogn iz

n
by taking C sufficiently large and using the definition of N. [J
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LEMMA 5.6. In the same setup as in Definition 5.3, for all ¢ > 0, there exist B (in the
definition of t) and A (in the definition of the truncation criterion, depending on ¢ and B)
sufficiently large so that for all n large enough, on the event {B (xo) = To}, for all i and all
descendants x € dB% (xo) of z;, the coupling of Definition 5.3 satisfies

P, (the coupling of X and X succeeds | Fi—1) = 1(z; is good) - (1 — ¢€).

PROOF. We say that an overlap occurs at a vertex y during the exploration process, when
the ball Bg, (v, R) (the ball of radius R centred at y w.r.t. G,,) revealed when exploring y (i.e.,
when exploring some long range edge leading to y) intersects an already revealed G- R-ball.
We say that the optimal coupling at a vertex has failed, if when revealing the endpoint of the
long range edge coming out of it, the optimal coupling between the uniform distributions on
the graph and the quasi-tree fails.

We define F to be the event that the walk X crosses an edge of T whose corresponding
edge in G was truncated due to an overlap or because the optimal coupling failed. We first
bound the probability of F. As in [6], Section 3.2, we note that the event F' does not happen
if the following occur: for each i if the first time that X reaches level K + i there is no
overlap and the optimal couplings succeed both at the current vertex and at all other vertices
of T at distance 2K from the walk at this time and in addition, if the walk never (by time #)
revisits any vertex after visiting its depth K descendants. (Indeed, if the walk never revisits
any vertex after visiting its depth K descendants, then each ball visited by the walk by time ¢,
say at level £, must be at distance at most 2K from the first ball to be visited at level £.) This
last event has failure probability at most ze~“X by Lemma 3.3 and a union bound. Therefore,
by choosing the constant C; in the definition of K sufficiently large, this probability can be
made o(1). Since by Lemma 5.5 the total number of explored vertices in G is upper bounded
by N (from Lemma 5.5), the probability that the optimal coupling fails when the walk first
visits level K + i is at most* N/n and the probability that there is an overlap either there or
at some vertex of the same level within distance 2K from it, is upper bounded by

R
ARCQK+D) AN
n—N
By the union bound over all ¢ levels, we get that the probability that the event F' occurs is at
most

/. ARCK+1) | Ml 1. ARQKHD) N Fr-e K = o(1),
n—N n

by choosing the constant C in the definition of K sufficiently large.

The coupling fails if the walk X visits a truncated edge before time ¢ or if it visits a vertex
w e By /z(xo) with w # z;. But from Lemma 4.5 (used to control the probability that the
walk crosses an edge that got truncated due to the truncation criterion Tr(e, A); edges that
were truncated for other reasons were treated above), by choosing A in the definition of the
truncation criterion in terms of ¢ and B, we see that the first event has probability at most
£/2. The probability that X visits a vertex w € 0Bk /z(xo) with w # z; is at most e K for

a positive constant ¢ by Lemma 3.3, which is again o(1) (recall that X starts from x € 37Ty
where x is a descendant of z;).

Finally, another way for the coupling to fail is if the walk X visits the boundary of a T-R-
ball before time ¢. Let a be a centre of a T-R-ball in T and let H; be the event that X ever

4We are using the fact that the total variation distance between the uniform distributions on a set of size n and
on a subset of it of size n —m is m/n.
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visits the boundary of this 7'- R-ball after having first visited its centre a. Writing H, for the
event that X visits this boundary after time R — 1, we have

Py (H1) <P, (d(a, Xr_1) = c1R, Ha) + Py(d(a, Xg_1) < c1R) S e 2K,

where the last inequality follows from Lemma 3.3 and Remark 3.4. Since by time ¢ < logn,
the walk will visit at most ¢ different centres of balls, by taking a union bound and choosing
the constant in the definition of R sufficiently large, we get that the probability of this event
happening is at most te 2R = o(1). O

We denote by #,¢1(G) the absolute relaxation time of simple random walk on a finite graph
G, defined as the inverse of the absolute spectral gap (it equals +oo if G is bipartite or not
connected).

PROPOSITION 5.7. In the same setup as in Definition 5.3, for all ¢ > 0, there exist B
(in the definition of t), A (in the definition of the truncation criterion) depending on ¢ and B
and a positive constant T sufficiently large such that for all n sufficiently large, on the event
{Bx (x0) = To}, for all i and all x € dB% (xo) descendants of z; € 88?{/2()60), on the event
{zi is good} we have for all s > 0 that

s JA
P(dx(t +s)<e tel(GR) . l—eXp(F logn) +¢ ’ ]:,'_1> >1-2e,
—&
where d(r) = |Py(X, € - | G) — 7|y for every r € N.

PROOF. Weset £ =logn/h —2vB.4/logn and recall that ¢t =logn/(vh) — B4/logn.

Let T be the quasi-tree with root x( that we reveal during the exploration process of G,
starting from x and which satisfies that B (xo) = Tp. Let £ be a loop-erased random walk
on T started from z; as in Definition 3.12, that is, it is considered only when it crosses long
range edges. As in the proof of Lemma 5.5, we let S; be the set of long range edges of T
at distance k from the root that do not satisfy the truncation criterion. For a constant I" to be
determined, we define

—~ ~ 1
B=3ec S :P=e|T)< —exp(F 1ogn)}.

Let X be a simple random walk on G started from x and let Xbea simple random walk on
T started from x coupled with X as in Definition 5.3. Let € be the loop-erased random walk
on T obtained by erasing loops from X. Using Proposition 3.15 and Lemma 4.5 (for the event
that & ¢ Sp) we get that there exist B in the definition of # depending on &, A in the definition
of the truncation criterion (depending on ¢ and B) and I' (depending on ¢) sufficiently large
such that

(5.2) P(¢ € B| Fi_1) > 1 —&2/3.

We define the following events:
~ vB
= {d(xo, X)) =0+ 5 logn},
Ay = {& = (loop-erased trace of (X,),<, viewed on long range edges) o

Az = {the coupling of X and X succeeds for ¢ steps} N {Eg €B 1.

Lemma 3.11 shows that for B sufficiently large we have P(A; | Fi_1) > 1 — £2/3. Using
Lemma 3.3, we get that for a positive constant ¢ we have

P(AS | Fi—1) <exp(—cB,/logn) = o(1).
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Using Lemma 5.6 and (5.2) for the probability of the event AS, we deduce that if S =
ﬂ?zl A;, then on the event {z; is good} we have P(S | F;_1) > 1 — 2. Therefore, setting

G={G:P(SIG;,=G)>1—¢}
and using Markov’s inequality and the tower property we obtain that on the event {z; is good}
P(GreG|Fi-1)>1—e.
Let s > 0 to be determined later. The above inequality now gives on the event {z; is good}
P([Px(Xi4s € 1Gr) — 7|y

=1(G;, €G)|Px(Xi4s €1 Gy) =7 py | Fic)) = 1 —e.

5.3)

‘We now have

(54) 1(G, € G)|Pe(Xiys €-1Gy) =7 |1y
(5.5) =Y 1(G;=06)|Px(Xi45 € 1G;=G) — 7|1y
Geg

and hence for each G € G, by conditioning on the event S and using the definition of G, we
obtain

(5:6)  |Px(Xr4s €16y =G) =x|py < [Pa(Xiss €15, Gy = G) = x|y +e.

We next bound the first term appearing on the right-hand side above. By the Poincaré in-
equality and the fact that conditional on X, the event § is independent of (X,,),>; we have

5 |Px(Xi4s €18, Gy = G) = 7|py < |Px(Xigs €1 5. G, = G) — 7,
' <e W@ |Py(X, €-|5, G =G)

For every vertex v € T with d(xg,v) > £, there is a unique “ancestor edge” ¢(v) =
((p(v):, @(v)™) with d(xg, 9(v)™) = £. On the event S, the walk X is coupled successfully
with X for ¢ steps, and hence we get

maxP,(X; =v |G =G,S)

veV,
_ o BILGE = G)P(X, =, S | T, G})]
eV, P,(G: =G, )
E[1(G} = G)P:(X; =v,5| T, G})]
— max
veT P.(G* =G, S)
_ . ElLG =GP =¢).S|T.G})]
< max )
vel P.(G;=G.S)

where in the last inequality we used that on the event S C A2 we have & = (V). Using the
definition of the set B and of S, we have forallv e T,

E[1(G: =GPy (5, =¢(v), S| T, G})]
=E,[1(G: = G)1(p(v) € B)Px (5 = 0(v), S | T, G})]

l *
< —exp(I'y/logn)P (G} = G).
n
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Therefore, for G € G this gives

1 1
mélX]P)x(Xt = | G: = G, S) < m;exp(l" logn)

< —exp(l"y/lo ,

=dom p(I'y/logn)

where for the last inequality we used the definition of G. Using that 7 is the degree biased
distribution and that G, is a graph with maximum degree A, we obtain that 7 (v) > 1/(An)
for all v. Therefore, we obtain

A
IPv(X;€-1G;=G,S)—x|, < 1\/_ exp(I'y/logn).

—¢
Plugging this into (5.7) and using (5.6), (5.4) and (5.3), we obtain on the event {z; is good}

_ s - A
P(dx (t+s)<e tre](Gn) . 1\/_
— &

exp(I'y/logn) + ¢ | .7-",-_1> >1-—2¢
and this concludes the proof. [J

LEMMA 5.8. There exists a positive constant ¢ so that for all quasi trees T rooted at p,
all £ e N and all x with d(p,x) = ¢, if X is a simple random walk started from p and 7y is
the first hitting time of level £, then

P(X,, =x) < e <.
PROOF. Let & be the loop erasure of the path {Xo, ..., X, }. Let e be the long range edge
whose endpoint further from the root is x. Then
P(Xe =x) =P =e).
We let ey, ..., e, = e be the sequence of long range edges leading from p to e. We write
ei = (xj, y;) withd(p, x;j) <d(p, y;). Using Lemma 3.13, we obtain

4

(5.8) Ple € &) =[Py (X}, =xit1).
i=1
where X' is a simple random walk on 7 (y;) and L; is the last time before reaching level £ of

T that X' is in the 7-R-ball centred at y; as in Lemma 3.13. Writing E; for the first time X i
leaves the T-R-ball centred at y;, we get

Py, (XL =xiy1)=1- Z Py, (Xil- =2)

TFXi+1

=1- Z Pyi(XiY,' =Z,‘EZZ:=OO)
ZFXi+1
<1 - cPy, (Xf, #xit1),

where rzi stands for the first return time to z after E; and in the last inequality we used
Lemma 3.3. Using the bounded degree assumption and that every connected component of
G,, contains at least 3 vertices, we deduce

Py, (X, # xit1) = ¢,
where ¢’ is a positive constant. Therefore, this now implies that
Py, (X}, = xi1) <1 —cc'

and hence plugging this into (5.8) completes the proof. [J
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LEMMA 5.9. There exists a positive constant «, so that starting from any vertex the
random walk will hit a K -root by time a K with probability 1 — o(1) as n — oc.

PROOF. Let 8 > 3 and suppose the random walk starts from x. We say that an overlap
appears in B;’; x (x), if there exist distinct vertices y, z € Bfg x (x) and a pair of long range edges

(v, ) and (z, Z') such that Bg, (y', R) N Bg, (z', R) # @. Let M < APRE+1 be the number
of points in BE x (). The probability that an overlap appears when exploring the long range

edge attached to a vertex y is upper bounded by AR M /n. Therefore, the number of overlaps
I in BE x (x) is stochastically dominated by a binomial random variable Bin(M, ARM /n),

and we have
R 2 2R 143
P(I>2) < M\ [ AM <A M =n_2+0(1),
-7\ 2 n - n?

using that R + K = O(loglogn). Taking a union bound over all vertices of G we get that
with probability 1 — o(1) the number of overlaps in the BK ball around every vertex is at
most 1. Therefore, if there is no overlap in B;; x (x), then the vertex x is a K-root and we are
done. If there is one overlap, then we consider the downward distance from the overlap at
times that are multiples of 3 exactly in the same way as in the proof of Lemma 3.3. The rest
of the proof of Lemma 3.3 follows verbatim, since having two centres in the overlap does not
affect the proof that the drift is strictly positive. [

PROOF OF THEOREM 1.1. Recall the definition of ¢ from (5.1)
lo
= en

— B,/logn,
o ogn

where B is a positive constant to be chosen later. We first prove the upper bound on the
mixing time. Let s = t,¢1(G};)[I"y/logn + log %], where I is as in Proposition 5.7 so that

S

. A
e elGh) . T exp(I'y/logn) =e.
—¢

We claim that it suffices to prove that w.h.p.
(5.9 tmix(G}, 7€) <t +s+ (@ +o)K,

where « is as in Lemma 5.9 and c is a positive constant to be determined later. Indeed, one can
then easily complete the proof, since by Proposition 1.2 (whose proof is deferred to Section 6)
there exists some constant & > 0 such that w.h.p. its absolute relaxation time #.1(G};) is at
most 1/a. Hence this together with (5.9) gives the desired upper bound on tiix (G}, €).

We now prove (5.9). By Lemma 5.9, the strong Markov property (applied to the first hitting
time of a K -root) and the fact that the total variation distance from stationarity is nonincreas-
ing, we have w.h.p.

m)?xHIP’x (Xi+st+@+ok € 1Gy) = 7|1y

< max [Py (Xipsrex €-1G) =7y +o(D).

From now on, we fix xo a K-root of G, and set
V ={x € Bk (x0) : dx(s + 1) > 2¢}.

(Note that this is a random set which depends on G;.) Letting tx be the first hitting time of
0B (xo), we claim that it suffices to prove that

1
(5.10) P(Py, (X € V | G)) > 4¢, xo is a K-root) < 3
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Indeed, this will imply that
1
P(3a K -rootx : Py (X7 € V| G}) > 4e) < —
n

and then the proof will follow easily, since using the strong Markov property and the nonde-
creasing property of the total variation distance from stationarity we get for any K-root xg
and any Tp, on the event {B (xo) = To},
”IPX()(XI-FS-I-CK =-| G:) - n”TV
<P (tsr, > cK | G})
+ D Pu(Xrg, =21Gp) - [P (Xegs = | Gy) = 7 gy

z€dTy
<o(1) + Py (Xe € V| GE) + 26,

where the second inequality follows from taking c sufficiently large and using Lemma 3.3 for
the first term and the definition of the set V for the bound on the sum.

We now prove (5.10). We write i (x) =Py (X, =x | G}) to simplify notation. As in Def-
inition 5.3 let V;, be the set of descendants of z; in dB% (xo) and L = |08} /z(xo)l. Recalling
from the same definition the notions of bad and good vertices on 9B% 2 (x0), we get

L
h(V)= ) h(VNV;)
i=1

L
(5.11) = > h(VNV,)1(z is good)
i=1

N
+ Y h(V N V;)1(z is bad).

i=1
Let & denote the loop erasure of (X;);<¢,. Then by Lemma 3.3 on the event {B% (xo) = To},
we have

]P)X()(X‘EK € Vzi I GZ) - PX()(SK—] S VZ,‘ | G:) — ]PDX()(SK/Z—I =Zi | G;}:) =< e—CK/Z’
where the last inequality follows from Lemma 5.8 and c is a positive constant. Choosing the

constant C; in the definition of K sufficiently large, we get that for all 7,

(5.12) h(Vy) < W.

Using also Lemma 5.5, we now obtain
L C 1
(5.13) P h(VNV)1(ziisbad) < —— | Bx(xo)=To | > 1 — =,
; e (logn)3/2 ' 7K n?

where C is the constant from Lemma 5.5. We now turn to the first term on the right-hand side
of (5.11). We start by writing each term of the sum as

h(V N V;)1(z; is good) = Z h(x)1(dy(t +5) > 2¢)1(z; is good).

XeVy
So by Proposition 5.7 and our choice of s, we have

(5.14) E[h(V N V.,)1(z; is good) | Fi_1]1(Bj (x0) = To) < 2eh(Vy,).
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Writing R; for the random variable appearing in the conditional expectation above, we con-
sider the martingale defined conditionally on B} (xo) = Tp via My =0and for 1 <k <L,

k
M=) (Ri —E[R; | Fi_1)).
i=1
Applying then the Azuma—Hoeffding inequality to this martingale, we obtain that for a posi-
tive constant c,

L
P(Zh(v N V;,)1(z; is good) > 3¢ | By (x0) = T0>
i=1

6‘82

iz (h(V;))?
where for the first inequality we used (5.14) and for the last inequality we used that

<P(Mp > ¢e|Bx(xo) =Tp) < exp(— ) < exp(—ce?(logn)?),

L ) 1 & 1
)< ) p—
;(k(Vz,)) = Gogn)? ;h(Vz,) oz’
which follows from (5.12) (we also used that |[M; — M;_| < h(V_;) for all i < L and con-
ditioned on B (xo) = Tp, we have that h(V;,) is deterministic). This shows that h(V) <
3¢ 4 o(1) with probability at least 1 —2/n?, thus concluding the proof of the upper bound on
the mixing time.

We now prove the lower bound. We employ the same notation as in the proof of the upper
bound. Suppose the walk starts from a vertex xg, which is a K -root. Recall that D; is collec-
tion of vertices of G} explored in the exploration process of the set V... On the event that x¢
is a K -root, set

VvV = {Zi € 867(/2()60) :IP)Z,‘ (T(D[UB* (x0))¢ <t, XTK € VZ[ | G*) > 28}

(recall that tx is the first hitting time of 0B% (x0)). Let D(xg) = (U 1 Di) U By (x0) and
V= U,ev’ V;. By the strong Markov property, as well as the fact that 1f Xois a K -root and
7 € 0B 2(xo) then starting from x¢ a walk must visit z; prior to time tx in order to have
that X, e V.;, on the event that x¢ is a K-root, we get that

Pro(Tox)e <1, Xex € Ve 1 Gp) <P (Tipusy ropye <15 Xog € Vo | G).
Recalling that h(x) = h,%: (x) =Py (X = x| G};), and summing over i € [L] we see that

Poo (Togy <11 GY) <26+ Py (Xep € V| GF) =26 + ho (V)
(on the event that xq is a K-root). We claim that it suffices to prove that
1
(5.15) P(h xo (V) > 4g, xq is a K-root) < .
n
Indeed, by a union bound, this will imply that

P(Ja K -rootxq : Py, (X; ¢ D(x0) | G}) > 6¢) < —

The proof of the lower bound could then be concluded by noting that (i) by Lemma 5.9 K-
roots exist w.h.p., and (ii) by Lemma 5.5 |D(xg)| = o(n), and hence by the bounded degree
assumption 7 (D(xg)) = o(1). Indeed, we would get that with probability 1 —o(1) there exists
a K -root xq so that

IPoo(Xi €1 GE) = 7| py = Puy(X: € D(x0) | G¥) — 7(D(x0)) = 1 — 66 — o(1).
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So it remains to prove (5.15). Using Remark 5.4 together with Lemma 5.6, we obtain
E[A(V;)1(z; € V' and is good) | F;—1]1(Bk (x0) = To) < 2eh(Vy,).

Writing R; for the random variable appearing in the conditional expectation above, we con-
sider the martingale defined conditional on B (xo) = T as M =0 and M; = Zle(le —
E[R;] | Fi—1]) for 1 <k < L. Applying the Azuma—Hoeffding inequality to this martingale,
we obtain exactly as in the proof of the upper bound that for some positive constant ¢ we
have that

L
]P’(Zh(VZi)l(zi € V' and is good) > 3¢ | By (x0) = TO>
i=1

C82

YL (h(V,))?

Using h(V) < Z;‘L:l h(V;)1(z; € V' and is good) + Z,‘L:1 h(V;)1(z; is bad) (analogously
to (5.11)) together with (5.13) concludes the proof of (5.15) and thus of the lower bound. [J

<P(M} >¢|Bx(xo) =Tp) < exp(— > < exp(—ce?(logn)?).

REMARK 5.10. It is not hard to show that w.h.p. G}, satisfies for some constant 8 > 3
that for all x we have that if W, is the collection of K-roots at distance at most K from x
then

]P’X(Xte U D(w)|G;‘;)31—7s.

weW,

This means that w.h.p. min, d,(¢) > 1 — 8¢ (as deterministically maxy | UweWx D(w)| =

o(n)).

5.1. A family of examples demonstrating the necessity of the degree assumption. Con-
sider a random dj,-regular graph G/, of size n, where 102)53’;” < d, =n°Y. Now obtain a
new graph G, by adding a clique of size d,, and connecting a single vertex of the clique to
one vertex of G, by an edge. One can verify that the mixing time of G} is of order d,, and
that there is no cutoff since starting from the clique, the time it takes the walk to first exit
the clique stochastically dominates the Geometric distribution with mean d, /2. To see this,
observe that the walk on G, exits the clique in O(d),) steps, and is unlikely to return to it in
the following 2log; n = O(dy) steps. Hence for the following 2log, n steps, the walk can
be coupled with that on the induced graph (w.r.t. G}) on the vertices of G/,. This graph is
similar to a random graph with a given degree sequence in which n — d,, vertices have degree
dn + 1 while the rest have degree d,, (we write “similar” as it need not be a simple graph).
In fact, the walk is unlikely to visit any degree d, vertices during these 2log, n steps (other
than when just leaving the clique) or vertices belonging to cycles of size 2 by this time, and
thus the argument from [25], Corollary 4, (asserting the mixing time of arandom d,, + 1 > 1
regular graph on M vertices is (1 + o(1)) log, M) applies here.

6. Expander. In this section, we prove Theorem 6.1, which is a more quantified version
of Proposition 1.2.

We denote the second largest eigenvalue of a matrix P by A»(P) and its smallest eigen-
value by Anpin(P). When P is the transition matrix of simple random walk on a graph G, we
write A2(G) and Apin (G) for A2 (P) and Apin(P), respectively.
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THEOREM 6.1. Let G = (V, E) be an n-vertex graph of maximal degree A. Assume that
all connected components of G are of size at least 3. Let G* be the graph obtained from G
by picking a random perfect matching of V (if n is odd, one vertex remains unmatched) and
adding edges between matched vertices. Then there exists some a = a(A) € (0, 1) such that

P(1—=2(G") <a)<n™® and P(14 imin(G*) <a) Sn™°.

In the proof of the first inequality above, we are going to use the following result from
[28]. For a similar result, see also [22].

THEOREM 6.2 ([28], Theorem 1.1). Let X be a reversible Markov chain with transition
matrix P, invariant distribution w and spectral gap y. Let Vi, ..., Vy be a partition of V
and let P; be the transition matrix on V; with off-diagonal transitions P;(x,y) = P(x, y) for
all x #y € Vi and Pi(x,x) =1 =} cy\(x) P(x,2). Denote its spectral gap by y(P;) and
let yy ;= min;erpmy v (P;). Let P be a Markov chain on [M] with transition probabilities given
by

m(x)

(6.1) PG, j)=Pz(X1 € Vj| Xoe Vi) =) (V)

xeV;

P(x, Vj)

and spectral gap given by y. Then

(6.2) Y =V Vs

We now recall an extremal characterization of Apiy(P), which will be used in the proof of
the inequality for Ap;, in the proof of Theorem 6.1.

THEOREM 6.3 ([33], Theorems 3.1 and 3.2). Let P be a reversible transition matrix on
a finite state space V with invariant distribution & and Q(D, F) = ZdeD,feF m(d)P, f)
for D,F CV.ForasetSCYV,let

¢(S) = (S, A, B), where

min
A,B:AUB=S,ANB=0

Q(A,A)+ O(B,B)+ 0(S, S
7 (S)

and define {, = ming+gscy ¢(S). Then we have

(6.3) 1= /1 =¢2 <1+ Anin(P) < 4.

We also recall Cheeger’s inequality (see, for instance, [23], Chapter 13)

(6.4) 1—/1—=®2<1—iy(P)<2d,, where d,=

(S, A,B) =

(S),

min
S:0<m(S)<1/2

and & (S) = 255,
The next two lemmas will be used in the proof of Theorem 6.1. We defer their proofs to

the end of this section.

LEMMA 6.4. Assume that the minimal size of a connected component of G = (V, E) is
at least L. Then there exists a partition V1, ..., Vyr of V such that for all i € [M] the induced
graph on V; is connected and L < |V;| < L>A, where A is the maximal degree in G.
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LEMMA 6.5. Let Q2 be a set on n vertices and let A C Q be a set satisfying |A| = an
witha € (1/2—65,1/2+38) and § < 1/4. Pick a perfect matching on Q2 uniformly at random.
We then have

P(3 less than §n edges of perfect matching joining pairs of vertices of A)
<2 (—CON,

where C(§) is a constant depending on § satisfying limg_.o C(§) =

PROOF OF THEOREM 6.1. Taking L = 3, we can apply Lemma 6.4 to get a partition

Vi, ..., Vu of connected components of V (with respect to the graph structure of G) such
that 3 < |V;| < 9A for all i € [M]. We start by proving that there exists o > 0 such that
(6.5) P(1 —22(G*) <) Sn7“.

Let X be a simple random walk on G* and let P be the transition matrix as in (6.1). Let also
P; be the transition matrix on V; and ¥ and y, be as in the statement of Theorem 6.2.
Consider the multi-graph H = ([M], E), in which the number of edges joining vertices i
and j is equal to the number of edges of the perfect matching between V; and V; (and the
number of loops of vertex i is equal to the number of pairs of vertices of V; that are matched
to each other). Then this multi-graph is distributed as the configuration model on [M] where
vertex i has degree |V;|. Let K be the transition matrix of simple random walk on H. We
are going to compare P to K as well as their invariant distributions, and then using standard
comparison techniques, we will be able to compare their spectral gaps. Let E*(V;, V;) be the
number of edges of G* that join vertices of V; and V; and let E(V;, V;) be the number of
edges of G joining vertices of V; to vertices of V. Us1ng the definition of P and K, we get

for i # j,
~ E*(V;,V; E*(V;, Vi) — E(V;, V;
P EViVD k= BV V)~ EVL V).
2 vev; (deg(v) +1) Vil
and hence writing w5 and g for the corresponding invariant distributions we get for all
ie[M],

2vev; (deg(v) + 1) . Vil
and 7g(Q) = .
2|E|+n

Therefore, we obtain for all i, j € [M],

np(i) =

~ 1
P(i’j)zA—-i-lK(i’j) and 7p(i) = mk (i),

A+1

and hence using the extremal characterisation of the spectral gap in terms of the Dirichlet
form (see, for instance, [23], Chapter 13), we obtain

5o 1= 2a(K)

For the random walk on the configuration model, it is known (see, for instance, [16], pp.
149-150) that for some o > 0,

P(1 —x2(K) <a) Sn™%.

Using this, the inequality y, = (max; |V; |)_3 (see, for instance, [2], Chapter 6), Theorem 6.2
and (6.6) completes the proof of (6.5).
We now prove that there exists o > 0 so that

(6.7) P(1 + Amin(G*) <) Sn~°.
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We first argue that it suffices to consider only sets S of size at least (1 — §)n, for some constant
8 > 0, by showing that otherwise ¢ (S) is bounded away from O.
By (6.5) and (6.4), there exists 8 = B(A) > 0 such that

(6.8) P(d, <B) <nP.

Let § > O to be determined later. On the event {®, > S}, using Q(S, §) = Q(S¢, S) and
(6.3) we see that every S # @ with |S| < (1 — 8)n satisfies £(S) > ®(S) = §8. Defining

S={ScV:|S|= (1 ~8n} and &=minZ(s)

we see that it suffices to show that for some constant ¢ = c(A) > 0 we have
P(E <c8) Snl.

Let S € S and A, B be a partition of S. If there are at least én edges (either of the base graph
G, or of the random perfect matching) connecting pairs of vertices of A or pairs of vertices
of B, then for some c¢(§, A) > 0 we have that

(6.9) §(S,A,B) = Q(A, A) + Q(B, B) = c(8, A).

In particular, (6.9) holds if |A| > n(1 4+ 8)/2 or |B| > n(1 + §)/2, since then by simple
counting, there must exist at least §n/2 edges between pairs of vertices of A or B.

So from now on we restrict to partitions (A, B) of S, which satisfy |A|, |[B] € ((1/2 —
8)n, (1/2 + 6)n). Recall the definition of the partition Vi, ..., Vs of V. For each i, let U; (1)
and U; (2) be the partition of V; such that

o(Ui(D), Ui(D) + Q(Ui(2), Ui (2)) = v pl;ﬁlion ofv,»(Q(U’ U)+ Q(W, W)).

Since there can be at most one partition (up to relabeling of the two sets) for which the sum
above is equal to 0, which happens in the case of an induced bipartite graph, it follows that
for every other partition U, W of V; we have

1
6.10 Uu,u W, W)= —.
(6.10) o( )+ O( ) SE[+n
We call a partition (A, B) of S (satisfying |A|, |B| € ((1/2 —8)n, (1/2+ §)n)) good if the
number of i € [M] for which
6.11)  (Ui(1)CAUS“and U;(2) € B) or (Ui(2)CAUS and U;(1) € B)

is less than M — 8Aén.
Otherwise, (A, B) is called bad. Writing A; = AN V; and B; = B N V; and using that

Q(Ai, A)=Q((AUS)NV;, (AUS)NV;) — 0(S°NV, SNY)
—20(A;, S°NVy),
we get that if (A, B) is a good partition, then
¢(S,A,B)= Q(A,A) + Q(B, B)

M
> (Q(Ai. A)) + Q(B;. B)))
i=1
8Aén

> ——— —37(5) = 6.
2|E|+n
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Note that for the third inequality we used that for the indices i for which (6.11) does not hold,
the pair ((AU S)NV;, B;) is a partition of V; different to (U; (1), U;(2)), and hence for these
indices we can apply (6.10). For each partition (A, B), we define the event

L(A, B) = {number of edges of matching between pairs of
vertices of A or B is less than §n}.
We now deduce the following bound:
P(§ <¢8) <P(3S € S, 3 bad partition (A, B) of S: L(A, B))
<IS]- 1§1£1§|{(A, B) bad partition of S}|-P(L(A, B)).

We now claim that the number of bad partitions of S is upper bounded by 2"/ 3+COn for
some constant C’(8) > 0 with C’(8) — 0 as § — 0. Indeed, the sets A and B of the partition
are completely determined by the sets ((A;, B;)); <. Now for each i such that (6.11) holds,
the set A; must belong to the set {U; (1) NS, U;(2) N S}. Since |V; N S| < |V;| <9A, for the
indices i such that (6.11) holds we can pick A; in at most 2°2 different ways. Therefore, we
obtain forall S € S

|{(A, B) bad partition of S}| < > (A]:[> IM—k9Mk _ on/3 C'Gn.
k<8Asn

where C’(8) is a constant as claimed above and where we also used that M < n/3, since
|Vi] > 3 for all i. So we can now conclude using also Lemma 6.4,

P <c¢d) < (87;) .on/3 HC' @) ,27n~(%7C(8)) <n@

for some a = «(A) > 0, where the last inequality follows from taking § sufficiently small.
This now concludes the proof. [

PROOF OF LEMMA 6.4. We define the sets of the partition inductively, using a greedy
procedure. After defining Vi, ..., V; such that:

e forall i € [j] the induced graph on V; is connected and L < |V;| < L%A and
e all connected components of the induced graph on B := V' \ ;¢[; Vi are of size at least L,

we proceed to define V; 1 such that the same hold w.r.t. V1, ..., V;11. We pick an arbitrary
connected set A C B of size L. If all connected components of the induced graph on B \ A
are of size at least L, then we set V1 = A. Otherwise, we set V;; to be the union of A
with all the connected components of the induced graph on B \ A of size less than L. By the
induction hypothesis, each such connected component must be adjacent to A, and so indeed
|V;] < L?A as desired. This concludes the induction step. Note that the above description of
V11 can also be used to define V;. [

PROOF OF LEMMA 6.5. Write m = an. For the probability in question, we then have

P(3 less than én edges joining pairs of vertices of A)

5 (m) n—m)! Q) (-2m+2)  27(L)!
2] (n—=2m+20) 20l 25 mHA gy nl

m—%<i<én
where we use the convention that O! = 1. Using that for all n, we have

Y g ad I flx(1—x)
n!l=+2mn""2e " exp ,;,ak’ whereak=§ ) T h)2 dxflzkz,
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we obtain
(n—m)! @) (m—2m+42) 23!
(n—2m+20)! 2l 2h-mHE iy ol

< /n-20m -exp<n<(1 —a)log(l —a) — (% et ,%)10‘%(% et 1%)))

Now as § — 0 (which implies « — 1/2), we have that

(1—-a)log(l —a) — l—a—i—i log l—0t+i =—110g2+0(1).
2 n 2 n 2

Using this together with the entropy bound

m mH (26)
2 <2i) =27

i<én

since § < 1/4, with H(p) being the entropy of a Bernoulli random variable with parameter
p and using the continuity of H in p, gives

P(d less than §n edges joining pairs of vertices of A) < 2_"(%_C(5)),

where C(8) is a constant only depending on § satisfying C(6) - 0asé — 0. U
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