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We establish universality of cutoff for simple random walk on a class of
random graphs defined as follows. Given a finite graph G = (V,E) with |V |
even we define a random graph G∗ = (V,E ∪ E′) obtained by picking E′ to
be the (unordered) pairs of a random perfect matching of V . We show that for
a sequence of such graphs Gn of diverging sizes and of uniformly bounded
degree, if the minimal size of a connected component of Gn is at least 3 for all
n, then the random walk on G∗

n exhibits cutoff w.h.p. This provides a simple
generic operation of adding some randomness to a given graph, which results
in cutoff.

1. Introduction. This paper is motivated by the question of what types of randomness
one can add to a given family of graphs so that simple random walk on the resulting graph
would exhibit cutoff. In this work, we show that the operation of adding the edges of a random
perfect matching leads to cutoff with high probability. More precisely, suppose that G =
(V ,E) is a finite graph with |V | even. We define a random graph G∗ = (V ,E ∪ E′), where
E′ is a uniformly random perfect matching of V . While this random graph shares some
features of some classical random graph models, such as the configuration model, it differs
in that it retains some of the original structure G, and thus it has a richer local structure
than many random graph models, which are locally tree-like. Diaconis in [14], Section 5,
Question 4, posed the problem of determining the order of the mixing time in the case when G

is connected and regular of constant degree and a perfect matching (random or deterministic)
is added to G.

Let X be a simple random walk on a graph G with transition matrix P and invariant
distribution π . We define the ε-total variation mixing time

tmix(G, ε) = min
{
t ≥ 0 : max

x

∥∥P t (x, ·) − π
∥∥

TV ≤ ε
}
,

where for μ and ν two distributions we write ‖μ−ν‖TV =∑x |μ(x)−ν(x)|/2 for their total
variation distance. For a sequence of graphs (Gn), we say that the corresponding sequence of
random walks exhibits cutoff if

(1.1) ∀ε ∈ (0,1), lim
n→∞

tmix(Gn, ε)

tmix(Gn,1/4)
= 1.

We say that an event A happens with high probability (w.h.p.) if P(A) = 1 − o(1) as n → ∞.
When the graphs Gn are random graphs, we say that cutoff holds w.h.p. if (1.1) holds in
distribution. Our main result is the following.

THEOREM 1.1. Let Gn = (Vn,En) be a sequence of finite graphs of even diverging sizes

of maximal degree at most �, for some constant � ∈ N. Assume that the minimal size of a
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FIG. 1. An illustration of a quasi-tree. The blue vertices are the centers of the corresponding R-balls. The

internal adjacency structure inside each ball is identical to the one in the corresponding ball in Gn.

connected component of Gn is at least 3 for all n. Then the discrete time simple random walk

on G∗
n exhibits cutoff w.h.p. Moreover, for all ε ∈ (0,1/2) there exists a constant C(�,ε) > 0

so that w.h.p.

(1.2) tmix
(
G∗

n, ε
)
− tmix

(
G∗

n,1 − ε
)
≤ C(�,ε)

√
log |Vn|.

Finally, w.h.p. tmix(G
∗
n,1/4) ≍ log |Vn|.

We recall that for an irreducible reversible Markov chain on a finite state space with tran-
sition matrix P the absolute spectral gap γ is defined as

γ = 1 − max
{
|λ| : λ is an eigenvalue of P with λ 
= 1

}
.

PROPOSITION 1.2. In the setup of Theorem 1.1 there exists α = α(�) > 0 such that if

γn denotes the absolute spectral gap of simple random walk on G∗
n, then w.h.p.

γn ≥ α.

Proposition 1.2 immediately implies the last assertion of Theorem 1.1 using the Poincaré
inequality. It turns out that the mixing time has an entropic description, which is given in
terms of the random walk on some auxiliary infinite random graph, which we refer to as the
corresponding “quasi-tree” Tn defined as follows (see Figure 1).1 Pick a random ball of Gn

of radius R = Rn := ⌈C log log |Vn|⌉. We refer to the centre of this ball as the root. Each
vertex v in the ball, other than its centre, is connected by an edge to the centre of a random
ball Bv of radius R (in Gn). The balls Bv are picked independently. We refer to each such
ball as an R-ball. Repeat this operation inductively, where at each stage the centres of the
balls do not have an edge emanating from them, and the rest of the vertices in each ball have
a single edge emanating from them. Call the resulting graph Tn. The cutoff time is then given
by the time at which the entropy of simple random walk on Tn is log |Vn|. The fluctuations of
tmix(ε) around this time are given by (1.2) up to a constant factor. Indeed Remark 1.6 in [19]
implies that the cutoff window is 	(

√
tmix(G∗

n,1/4)/�).

REMARK 1.3. The assumption in Theorem 1.1 that |Vn| is even can be dropped by leav-
ing one vertex unmatched when |Vn| is odd. Our analysis can easily be extended to the graph

1When the sequence of graphs (Gn)n∈N has a Benjamini–Schramm limit G, one can define the entropic time
using G. This is discussed in Remark 3.16.
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obtained by “super-positioning” a configuration model of bounded degree on Gn, obtained
by adding to each vertex i, di ∈ [1,�′] half-edges (with

∑
i di even) and then adding to Gn

the edges corresponding to a random perfect matching of the half-edges.

REMARK 1.4. An inspection of the proofs of Theorem 1.1 and Proposition 1.2 reveals
that for the lazy or the continuous-time versions of the walk, we can allow the maximal degree
to be O((logn)c) for some sufficiently small c ∈ (0,1). In this case, the right-hand side of
(1.2) would become larger, but would still remain o(log |Vn|). We note that some condition
on the maximal degree is needed. The simplest example is obtained by taking Gn to be the
Cartesian product Kn/2 ×K2 where Km is a clique on m vertices. In fact, one can construct a

family of examples of degree as small as 
(
logn

log logn
). This construction is given in Section 5.1.

Our lower bound on tmix(G
∗
n,1 − ε), which as discussed above can be expressed using an

entropic time, in fact holds w.h.p. simultaneously for all starting points (see Remark 5.10).
As we note below, cutoff for random walk on random graphs at an entropic time defined

w.r.t. some auxiliary random walk is a paradigm that emerged in the last few years. An inter-
esting feature of our result is that the random graph is not tree-like and the auxiliary random
walk is not defined on a tree. The only other such cases that we are aware of in the literature
are [20, 21], which use completely different (group theoretic) methods.

1.1. Related work—cutoff at the entropic time for random instances paradigm. We now
put our results into a broader context. A recurring theme in the study of the cutoff phe-
nomenon is that random instances often exhibit cutoff. This was already observed by Aldous
and Diaconis in their seminal 1986 paper [1] where they coined the term cutoff. In this setup,
a family of transition matrices chosen from a certain family of distributions is shown to give
rise to a sequence of Markov chains, which exhibits cutoff w.h.p. In recent years, this has
been verified for random walk on various natural random graphs. Lubetzky and Sly estab-
lished the cutoff phenomenon for random walk on random regular graphs [25]. Together with
Berestycki and Peres [6], they established cutoff for a typical starting point at an entropic
time2 for the random walk on the giant component of an Erdős–Rényi graph as well as on
a random graph with a given degree sequence, satisfying some (very) mild assumptions on
the degrees. Cutoff for the nonbacktracking random walk on a random graph with a given
degree sequence was established independently by Ben-Hamou and Salez [5]. Ben-Hamou,
Lubetzky and Peres verified cutoff at the same entropic time also for a worst-case initial
point for the configuration model in [4]. Ben-Hamou in [3] also established cutoff for the
nonbacktracking random walk on a variant of the configuration model which incorporates a
community structure.

A few other notable examples, where cutoff has been proved at an entropic time include
random walks on a certain generalisation of Ramanujan graphs [9]. Cutoff for all Ramanu-
jan graphs was proven earlier by Lubetzky and Peres in [24], and on random lifts [9, 13] by
Bordenave and Lacoin and by Conchon–Kerjan. Two additional remarkable such examples,
due to Bordenave, Caputo and Salez, where the Markov chain is nonreversible and the sta-
tionary distribution is not well understood, are random walks on random digraphs [7] and
a large family of sparse Markov chains [8] obtained by permuting the entries of each row
of the transition matrix independently. A similar model, which is even closer to our model,
is studied by Chatterjee and Diaconis [11]. They showed that under mild assumptions on a
doubly-stochastic transition matrix P , if � is a random permutation matrix, then P� w.h.p.

2With respect to a random walk on the corresponding Benjamini–Schramm limit, which is the size-biased
version of a Poisson Galton–Watson tree.
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has mixing time which is logarithmic in the size of the state space. See Bordenave et al. [10]
for a related work about the second largest eigenvalue in absolute value of �P . We note
that while the last two examples bear some resemblance to our model, they differ in that
the Markov chains there are locally tree-like. Moreover, the approach we employ to prove
Proposition 1.2, involving a comparison with the configuration model, is different to the one
in [11], which is more combinatorial in nature.

Cutoff at an entropic time was recently established also for random walk on random Cayley
graphs for all Abelian groups [21] as well as for the group of unit upper triangular matrices
with entries in Zp [20]. Eberhard and Varjú [17] established cutoff at an entropic time for the
Chung–Diaconis–Graham random walk. Another recent application of “the entropic method”
for a problem related to repeated averages can be found in [12]. Lastly, we mention that cutoff
was established also for random birth and death chains [15, 32]. It would be interesting to
establish the same for a natural model of a random walk on a random weighted tree.

A recurring idea in the aforementioned works is that the cutoff time can be described in
terms of entropy. One can look at some auxiliary random process, which up to the cutoff time
can be coupled with, or otherwise related to, the original Markov chain—often in the above
examples this is the random walk on the corresponding Benjamini–Schramm local limit. The
cutoff time is then shown to be (up to smaller order terms) the entropic time, defined as
the time at which the entropy of the auxiliary process equals the entropy of the invariant
distribution of the original Markov chain.

We finish this discussion with two very recent instances in which the entropic method
was used to prove cutoff in setups where the Markov chain is nonrandom and the entropy is
considered directly w.r.t. the chain, rather than some auxiliary “limiting” chain. Ozawa [29]
gave recently an entropic proof of the aforementioned result of Lubetzky and Peres [24] that
random walks on Ramanujan graphs exhibit cutoff (see also [9, 18]). His proof gives a certain
general condition in terms of concentration of − logP t (x, ·) around the entropy of P t (x, ·),
which implies cutoff for random walks on expanders. In a recent breakthrough, Salez [31]
develops a more general connection between such a concentration and cutoff involving the
varentropy. His formulation is actually done in terms of relative entropy. He then applies it to
give sufficient conditions for cutoff for chains with nonnegative curvature. In particular, he
shows that random walks on expander Cayley graphs of Abelian groups exhibit cutoff.

1.2. Organisation. In Section 2, we give an overview of the ideas and techniques in-
volved in the proof of Theorem 1.1. In Section 3, we define the notion of quasi-trees and
prove results concerning the speed and entropy of a random walk on them, as well as some
concentration estimates around the entropy. In Section 5, we define a coupling of a portion
of the random graph G∗

n and a quasi-tree and of the random walks on them. The coupling
involves a certain truncation event defined and studied in Section 4. This coupling is then
used to conclude the proof of Theorem 1.1. Finally, in Section 6 we prove Proposition 1.2.

2. Overview. Recall the construction of the quasi-tree T that we described after the
statement of Proposition 1.2. Let (Xt ) be a random walk on it starting from its root. Let
(X′

t ) be an independent copy of (Xt ), given T . Loosely speaking, the first stage of the anal-
ysis is to show −1

t
logP(Xt = X′

t | Xt , T ) converges as t → ∞ to some value ĥ, and has
variance O(t). Note that the randomness here is jointly over T and the walk (Xt ). As we
later explain, we first establish this for a certain notion of loop-erased walk, and then deduce
a related statement for the random walk, whereas the above statement is never proven explic-
itly and is not used. In the case that T is a Galton–Watson tree, the convergence is classical
[26], and this variance estimate is proven in [6].
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We take an elementary approach to the problems of extending some of the known er-
godic theory for random walks on Galton–Watson trees to the setup of quasi-trees and of
establishing the above variance estimate. Our approach involves exploiting a certain i.i.d.
decomposition of the walk and the quasi-tree (see Lemma 3.6), using a natural analogue of
the notion of regeneration times used to prove a similar decomposition for random walks on
Galton-Watson trees (see the discussion before Lemma 3.6). From a high-level perspective,
our conceptual contribution here is two-fold:

(i) The observation that such a decomposition can be used also when T is not a Galton–
Watson tree, corresponding to the case that the random graph is not “tree-like”.

(ii) The observation that such a decomposition is powerful enough to deduce concentra-
tion for −1

t
logP(Xt = X′

t | Xt , T ).

The above concentration implies that if t = (log |Vn| − Cε

√
log |Vn|)/ĥ, for a suitable

choice of Cε , then we can write the law of Xt as (1 − ε)μ+ εν, where for all x in the support
of μ,

μ(x) ∈
[
|Vn|−1 exp

(
C′
√

log |Vn|
)
, |Vn|−1 exp

(
2C′
√

log |Vn|
)]

for a positive constant C′. If the same applies for the graph G∗
n, then this shows that the

random walk is not mixed at time t , as with probability at least 1 − ε it is supported on a set
whose size is at most

|Vn| exp
(
−C′
√

log |Vn|
)
= o
(
|Vn|
)

To see this note that the support of a distribution μ′ with minx:μ′(x)>0 μ′(x) ≥ δ has size at
most 1/δ; use this with μ′ = μ and by the bounded degree assumption a set of size o(|Vn|)
has stationary measure o(1). Moreover, since we show (Proposition 1.2) that G∗

n is w.h.p. an
expander, a standard application of the Poincaré inequality3 shows that this would imply that
the random walk on G∗

n is well mixed at time t + C̃
√

log |Vn|.
Motivated by the above, we shall couple a portion of the random graph G∗

n rooted at a
vertex x with a portion of a quasi-tree in a certain manner that will facilitate a coupling of
the random walks on these graphs up to the above time t . Several difficulties arise when
implementing this approach. The first is that while the random graph G∗

n rooted at a vertex x

is typically (i.e., for most x) locally indistinguishable from a quasi-tree from the perspective
of the random walk, this fails for some x ∈ Vn. This turns out to not be a substantial obstacle.
Following [4], loosely speaking, we argue that w.h.p. G∗

n is such that for all starting points x

the walk is likely to reach a “good” starting point for which the aforementioned coupling is
successful with probability close to 1. The good starting points will be ones that are locally
“quasi-tree like” in some precise sense.

The second difficulty is that there is a limit to how one may hope to successfully couple a
portion of the random graph G∗

n rooted at x with a portion of a quasi-tree. Indeed, the R-balls
in the quasi-tree are sampled at each stage at random with replacements, and in G∗

n without
replacements. We attempt to couple the two graphs one ball at a time, using a maximal (i.e.,
optimal) coupling for the distribution of the balls. However, these maximal couplings may fail
on some occasions, and they do so more often as the size of the portions of the two graphs
we revealed exceeds

√
|Vn|, and becomes closer and closer to size |Vn|. When the maximal

coupling fails, we may even get two R-balls in the portion of the random graph we revealed
that overlap.

3Write the law of the walk at time t as a mixture εν + (1 − ε)μ, with μ having L2 distance at most
O(exp(C′√log |Vn|)) from the stationary distribution, and then apply the Poincaré inequality to μ.
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To overcome this difficulty, we argue that starting from a good vertex the random walk is
unlikely to visit, by time t defined above, any R-ball for which the coupling fails. Following
[6], loosely speaking, we truncate both the quasi-tree and the portion of the random graph
around x which we reveal at edges with the property that the probability that the random
walk crosses them by time t is “too small”, say less than |Vn|−1 exp(1

2C′√log |Vn|). This is
crucial in avoiding revealing too many vertices, which would result in the coupling of the
balls failing “too often”, while being able to couple the walks on the two graphs by time t

with a large success probability. The actual details of the argument vary slightly from this
simplified description.

We now explain in more detail how we study the random walk on the quasi-tree. We refer
to the edges connecting a vertex to a new R-ball as long range edges. One can consider the
induced walk on the long range edges, which is the walk viewed only at times when it crosses
long range edges. One can then define the loop erasure of this induced chain in a natural
manner (see Definition 3.12). We say that a long range edge e = (x, y) is a regeneration

edge if it is crossed, and after it is first crossed the random walk never returns to x. For a
regeneration edge e, the time it is crossed is then called a regeneration time. It is this notion
which gives us the aforementioned decomposition of the walk and the quasi-tree into i.i.d.
blocks (see Lemma 3.6 for a precise statement). Using this decomposition, we derive the
concentration of the analogue of (ii) above w.r.t. the loop erasure. We then translate this into
a corresponding claim concerning the random walk.

We use the fact that the connected components of Gn are of size at least 3 to deduce that:

• the walk on the quasi-tree has a positive speed, where distance is measured in the number
of long range edges separating a point and the root of the quasi-tree, and

• that the spacings between the regeneration times have an exponentially decaying tail.

This plays a role both in deriving the aforementioned concentration estimate for the loop
erasure, as well as in translating it back to one concerning the random walk on the quasi-tree.
For the sake of being precise, we note that we do not explicitly translate it exactly to the claim
(ii) above, although this could be done without too much additional effort. We do not require
this exact formulation, and thus do not pursue it.

We now provide an alternative description of the cutoff time. Let (ξk) and (ξ ′
k) be inde-

pendent (given T ) loop-erased random walks on T in the above sense started from its root.
We show that −1

k
logP(ξk = ξ ′

k | ξ, T ) converges a.s. to some constant h as k → ∞. We also
show that the ‘speed’ of the random walk (Xt ) on T , measured in the ‘long range distance’
(the long range distance of x from the root is the level to which x belongs) converges to some
constant ν. The cutoff time is then logn

νh
. We comment about the possibility of defining ν and

h in terms of a Benjamini–Schramm limit in Remark 3.16. The cutoff time resembles that in
[6]. We note that this is a consequence of our definitions for loop-erased random walk and
for speed, which are not the standard ones.

The assumption on the minimal size of a connected component of Gn is also used in
bounding the spectral gap of G∗

n. We essentially compare it to that of a random graph sampled
from the configuration model with minimal degree at least 3 and bounded maximal degree.
More effort is needed to bound the absolute spectral gap.

NOTATION. For functions f and g, we will write f (n) � g(n) if there exists a constant
c > 0 such that f (n) ≤ cg(n) for all n. We write f (n) � g(n) if g(n) � f (n). Finally, we
write f (n) ≍ g(n) if both f (n) � g(n) and f (n) � g(n). Let G = (V ,E) be a graph and
let A ⊆ V . We write ∂A for the internal vertex boundary of A, that is, ∂A = {x ∈ A : ∃y /∈
A s.t. {x, y} ∈ E}.
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3. Speed and entropy of simple random walk on quasi trees. We start this section by
recalling the construction of a quasi-tree T = Tn from the Introduction (see Figure 1). This
will serve as an infinite approximation to the graph G∗

n. Then we will prove scaling limit and
fluctuation results for the entropy and the speed of simple random walk on T .

DEFINITION 3.1. Let C1 > 0 be a constant. We define a (random) quasi-tree T = TC1 to
be an infinite graph constructed as follows. Let B be a random ball (in the graph distance of
Gn) obtained by first sampling a uniform vertex and then considering its R = ⌈C1 log logn⌉
neighbourhood. We call such a ball a T -R-ball.

Let ρ be its centre and we call it the root of T . Next, join by an edge each other vertex v

of B (except for the root) to the centre of an i.i.d. copy Bv of B , that is, the balls are sampled
independently with replacement. Repeat the same procedure for every vertex of the new balls
except for their centres. We call edges joining different balls long range edges.

The quasi-tree is a random variable taking values in the topological space T defined as
the space of all rooted locally finite unlabelled connected graphs with a collection of distin-
guished edges, called long range edges, with the property that every simple path between a
pair of vertices must cross the same collection of long range edges. In other words, the long
range edges give rise to a tree structure.

For x, y ∈ T , we write dT (x, y) or simply d(x, y) when T is clear from context, for the
number of long range edges on the shortest path from x to y. Note that this is not the usual
graph distance on T , but for us this will be a useful notion of distance. One can think of
this distance as “the long range distance”, but since we rarely consider the graph distance on
T , we do not use this terminology. A level consists of all vertices at the same distance from
ρ, that is, when d(ρ, x) = r , then x belongs to the r th level. We write Br(x) = B(x, r) =
{y : dT (x, y) ≤ r} for the ball of radius r centred at x. We also write T (x) for the subgraph
of T rooted at x. More precisely, T (x) is the induced graph on the vertices y satisfying
d(ρ, y) = d(ρ, x) + d(x, y). The vertices of T (x) are called the descendants or offspring

of x.

REMARK 3.2. We now explain the choice of R. We are going to define a coupling of the
walk on the random graph with a walk on a quasi-tree up to time t of order logn. In order for
the coupling to succeed, we need to ensure that the walk on the quasi-tree does not reach the
boundary of a T -R-ball by time t . In order to achieve this, we need to take R of order at least
log logn. The coupling also involves an exploration of a portion of the random graph at the
same time with the corresponding quasi-tree (for both graphs we are primarily interested in
the portion of the graph where the walk is likely to be by time t). As will become apparent,
in order for this to succeed, we also need to ensure that by time t we only reveal o(n) vertices
of G∗

n and that typically the other endpoint of long range edges we reveal satisfy that the
balls of radius R around them in Gn are disjoint from the previously exposed such balls (as
is the case for a quasi-tree). This motivates us to take R to be as small as possible. We note
that our results in this section about speed and entropy of random walk on quasi-tree are not
limited to this choice of R. For the sake of our results on speed and entropy of the walk,
we could have taken R to be the diameter of the graph. In the case that the sequence (Gn)n
has a Benjamini–Schramm limit (for the aforementioned purposes), we could have taken the
balls in the construction to be i.i.d. rooted copies of the Benjamini–Schramm limit. In fact,
with a bit more care, one can derive from our analysis that up to subleading order terms the
speed of the walk and its entropy would be the same in these cases, as in our construction,
and similar concentration bounds hold also in these cases. Taking R to be the diameter or
using the Benjamini–Schramm limit (when it exists) may seem more natural, at least from
the perspective that results about the speed and entropy of the walk in these cases are of



210 J. HERMON, A. SLY AND P. SOUSI

interest in their own right. However, as will become clear, for the sake of proving cutoff our
choice of R is natural.

For a Markov chain X and a vertex x, we denote the first hitting time of x by τx = inf{t ≥
0 : Xt = x} and by τ+

x = inf{t ≥ 1 : Xt = x} the first return time to x.

LEMMA 3.3. Let T be a quasi-tree as in Definition 3.1. Let X be a simple random walk

on T . For every x ∈ T , which is not in the T -R-ball of the root, we write p(x) for the “parent”

of the centre of the T -R-ball containing x, that is, p(x) satisfies d(ρ,p(x)) = d(ρ, x) − 1.
For x in the T -R-ball of the root, we set p(x) = ρ. Let Px denote the law of the random walk

on T started from x. Then there exists a positive constant c so that for all n and for every

realisation of T

Px

(
τ+
p(x) ∧ τ+

x = ∞
)
≥ c, for all x ∈ T .

PROOF. It will be useful in the proof to think of vertices of T lying in half and full
levels as follows. All centres at the same distance from the root are placed in the same half
level. Their neighbours in the corresponding balls are placed in the same full level. We now
change the definition of distance to take into account half levels, that is, the distance between
a centre and other points in its ball is equal to 1

2 and the distance between two endpoints of a
long range edge is also 1

2 . We denote this distance by d̃ and it satisfies d̃(ρ, x) = d(ρ, x) −
1(x is a centre of a T -R-ball)/2. We next claim that for all x we have

E
[
d̃(ρ,X1) − d̃(ρ, x) | X0 = x

]
≥ 0.(3.1)

Suppose first that x is a vertex which is neither a centre nor a neighbour of a centre. Then

E
[
d̃(ρ,X1) − d̃(ρ, x) | X0 = x

]
≥ 1

2(� + 1)
,(3.2)

that is, there is positive drift downwards. If x is a centre with at least two neighbours in its
corresponding ball, then

E
[
d̃(ρ,X1) − d̃(ρ, x) | X0 = x

]
≥ 1

6
.(3.3)

Finally, suppose that x is either a centre of degree equal to 2 or x is a neighbour of a centre.
In both cases, we have

E
[
d̃(ρ,X1) − d̃(ρ, x) | X0 = x

]
= 0.

This concludes the proof of (3.1). We now look at the distance from the root at times that
are multiples of 3, that is, we consider Yt = d̃(ρ,X3t ) and write Ft = σ(Xi, i ≤ 3t). We next
show that there exists a positive constant δ such that

E[Yt+1 − Yt | Ft ] ≥ δ > 0.(3.4)

We start by writing the conditional expectation above as follows:

E[Yt+1 − Yt | Ft ] = E
[
d̃(ρ,X3t+3) − d̃(ρ,X3t+2) | Ft

]

+E
[
d̃(ρ,X3t+2) − d̃(ρ,X3t+1) | Ft

]

+E
[
d̃(ρ,X3t+1) − d̃(ρ,X3t ) |Ft

]
.

It then follows from (3.1) that all terms appearing on the right-hand side above are always
nonnegative. We now consider different cases for X3t in order to show that at least one of
the three terms in the right-hand side is strictly positive. Let K be the set of vertices of T
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that are centres and let K2 be the subset of K consisting of those centres, which have at least
two neighbours in their corresponding balls. Let also N be the set of vertices of T that are
neighbours of centres. We write A = (Kc ∩ Nc) ∪ K2. Then on the event {X3t ∈ A} we have

E
[
d̃(ρ,X3t+1) − d̃(ρ,X3t ) | Ft

]
≥ min

(
1

6
,

1

2(� + 1)

)
.

On the event {X3t ∈ N}, we get that there exists x ∈ A with P(X3t , x) ≥ 1/(� + 1), where
P stands for the transition matrix of X (indeed, either the centre of the ball to which X3t

belongs is in K2, or X3t has a neighbour in the same ball which is not adjacent to the centre
of the ball). So, writing p1 = min( 1

6(�+1)
, 1

2(�+1)2 ) on the event {X3t ∈ N} we get

E
[
d̃(ρ,X3t+2) − d̃(ρ,X3t+1) | Ft

]

=
∑

z

P(X3t , z)E
[
d̃(ρ,X1) − d̃(ρ, z) | X0 = z

]
≥ p1,

where we also used again (3.1). On the event {X3t ∈ K \ K2} we get that there exists x ∈ A

with P 2(X3t , x) ≥ 1/(� + 1)2, and hence this gives that on {X3t ∈ K \ K2}
E
[
d̃(ρ,X3t+3) − d̃(ρ,X3t+2) | Ft

]

=
∑

z

P 2(X3t , z)E
[
d̃(ρ,X1) − d̃(ρ, z) | X0 = z

]
≥ p2,

where p2 = min( 1
6(�+1)2 , 1

2(�+1)3 ). This concludes the proof of (3.4). Let t ∈ N to be deter-
mined. Consider now the Doob martingale

Mℓ = Yt+ℓ − Yt −
ℓ∑

i=1

E[Yt+i − Yt+i−1 | Fi−1].

This has bounded increments, as the distance can only change by at most 3/2 in 3 steps of
the walk.

There exist positive constants c1, c2 ∈ (0,1) so that

P(D | X0 = x) ≥ c1, where D :=
{
Ys ≥ Y0 + 3

2
for all s ≤ t, Yt ≥ Y0 + c2t + 3

2

}
,

where c1 may depend on our choice of t . Let r = 2c2t
3 . By Azuma–Hoeffding and using (3.4)

P(Yt+ℓ ≤ Yt − c2t | X0 = x,D)

≤ P(Mℓ ≤ −c2t − δℓ | X0 = x,D)1{ℓ ≥ r} ≤ e−cℓ1{ℓ ≥ r},
(3.5)

for some constant c > 0. Therefore, taking t large enough and summing over ℓ we get that
there exists a positive constant c3 so that

P

(
Ys > Y0 + 3

2
for all s ≥ t

∣∣∣X0 = x,D

)
≥ c3.(3.6)

Therefore,

Px

(
τp(x) ∧ τ+

x = ∞
)
≥ c1c3 > 0,

and this concludes the proof. �

REMARK 3.4. Note that the above proof also gives that there exist positive constants c1
and c2 so that for all t ,

P
(
d(ρ,Xt ) ≤ c1t

)
≤ e−c2t .
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DEFINITION 3.5. Let T be a quasi-tree as in Definition 3.1 and let X be a simple ran-
dom walk on T . A random time σ is called a regeneration time for X if the long range
edge {Xσ−1,Xσ } is crossed for the first and last time at time σ . (We use {a, b} to denote an
undirected edge connecting a and b, whereas (a, b) to denote a directed edge from a to b.)

Using Lemma 3.3 together with Remark 3.4, we get that there are infinitely many regen-
eration times almost surely.

The authors of [6] attribute to Kesten the “tree analogue” (i.e., the case where T is taken to
be a Galton–Watson tree) of the following lemma. The tree analogue was reproduced in [30].
A similar statement is proved in [27], Proposition 3.4, and our proof is similar to theirs. We
include the proof here for the sake of completeness. Recall that d denotes the “long range”
distance, and not the graph distance.

LEMMA 3.6. Let T be a quasi-tree as in Definition 3.1 with root ρ. Fix K ≥ 0 and let

T0 be a realisation of the first K levels of T . Let X be a simple random walk on T started

from the root. Let T a be the graph obtained by joining the root of T to a new vertex ρa by a

single edge and let X̃ be a simple random walk on T a started from ρ. Let σ0 be the first time

that X reaches ∂BK(ρ). Let σi be the ith regeneration time satisfying ϕi = d(ρ,Xσi
) > K

(i.e., (σi)
∞
i=1 are the regeneration times after the last visit to BK(ρ)). Then conditional on

B(ρ,K) = T0, we have that:

• (T (Xσi
) \ T (Xσi+1), (Xt )σi≤t≤σi+1) are i.i.d. for i ≥ 1, and are jointly independent of (T \

T (Xσ1), (Xt )0≤t≤σ1),
• (σi − σi−1)i≥1 and (ϕi − ϕi−1)i≥1 have exponential tails and

• for all i ≥ 1, the pair (T (Xσi
), (Xt )t≥σi

) has the law of (T , X̃) given that X̃ never visit ρa .
(Note that this conditioning also affects the law of T .)

We emphasise that above we view T and T (Xσi
) as rooted graphs defined up to graphs

isomorphisms which preserve the root.

REMARK 3.7. The conditioning on B(ρ,K) = T0 is not needed either for the i.i.d.
decomposition or for deriving the later results about the speed, entropy and concentration
around the entropy for the walk. However, the fact that such results hold even under the
conditioning on B(ρ,K) = T0, will be useful for the cutoff analysis later on.

PROOF. Following [26], we define the set (Q below stands for “quasi”)

PathsInQTrees =
{(

T , (xi)i≥0
)
: T ∈ T , (xi)i≥0 is a path in T

starting from its root
}
,

(3.7)

where we recall that T was defined in Definition 3.1. We equip the space PathsInQTrees with
the σ -algebra generated by (T ,X), where T is the random quasi-tree from Definition 3.1 and
X = (Xi)i≥0 is a simple random walk on T started from its root.

Using Lemma 3.3 together with Remark 3.4, we get the existence of the infinite sequence
of regeneration times with the property that (σi − σi−1)i≥1 and (ϕi − ϕi−1)i≥1 have expo-
nential tails. Analogously to (3.7), we define

PathsInAugQTrees =
{(

T , (xi)i≥0
)
: T ∈ T , (xi)i≥0 is a path in

T a starting from its root
}



UNIVERSALITY OF CUTOFF 213

and equip it with the σ -algebra generated by (T ,X), where T is a (random) quasi-tree, and
X is simple random walk on T a started from its root. For a set A ⊂ PathsInAugQTrees, we
write

Q(A) = Pρ

(
(T ,X) ∈ A,τρa = ∞

)
,

where X is a simple random walk on T a started from ρ. For a vertex v which is a centre of
some T -R-ball, we write Tv for the tree obtained by removing from T all of T (v) other than
v itself (Tv has the same root as T ). In order to prove the i.i.d. property, it suffices to show that
conditional on BK(ρ) = T0, for all i ≥ 1 we have that (T (Xσi

), (Xk)k≥σi
) is independent of

(TXσi
, (Xk)k≤σi

) and to verify the stationarity of (T (Xσi
), (Xt )t≥σi

)i≥1. The stationarity will
follow from the proof of independence. Let A ⊂ PathsInAugQTrees and B ⊂ PathsInQTrees.
To simplify notation, we write PT0(·) for the probability measure P(· | BK(ρ) = T0). We then
have

PT0

((
T (Xσi

), (Xk)k≥σi

)
∈ A,
(
TXσi

, (Xk)k≤σi

)
∈ B
)

=
∑

t

PT0

(
σi = t,

(
T (Xt ), (Xk)k≥t

)
∈ A ∩

{
τ t
Xt−1

= ∞
}
,
(
TXt , (Xk)k≤t

)
∈ B
)
,

where τ t
y = inf{ℓ ≥ t : Xℓ = y} denotes the first hitting time of y by the chain (Xk)k≥t and

we treat Xt−1 as the new vertex (Xa
t in the above notation) we attach to T (Xt ). We say that a

time t is fresh if the walk visits Xt for the first time at time t . Let Ak,t be the event that there
are exactly k regeneration times before t when we only consider the walk up to time t . (By
this, we mean that the notion of being a regeneration time is now defined with respect to the
length t walk.) Then we have

PT0

(
σi = t,

(
T (Xt ), (Xk)k≥t

)
∈ A ∩

{
τ t
Xt−1

= ∞
}
,
(
TXt , (Xk)k≤t

)
∈ B
)

= PT0

(
t fresh,Ai−1,t ,

(
T (Xt ), (Xk)k≥t

)
∈ A ∩

{
τ t
Xt−1

= ∞
}
,
(
TXt , (Xk)k≤t

)
∈ B
)

= PT0

((
T (Xt ), (Xk)k≥t

)
∈ A ∩

{
τ t
Xt−1

= ∞
}
| t fresh,Ai−1,t ,

(
TXt , (Xk)k≤t

)
∈ B
)

× PT0

(
t fresh,Ai−1,t ,

(
TXt , (Xk)k≤t

)
∈ B
)

= Q(A)PT0

(
t fresh,Ai−1,t ,

(
TXt , (Xk)k≤t

)
∈ B
)
.

Taking now the sum over all times t of the last probability above gives
∑

t

PT0

(
t fresh,Ai−1,t ,

(
TXt , (Xk)k≤t

)
∈ B
)

=
∑

t

PT0(σi = t, (TXt , (Xk)k≤t ) ∈ B)

Q(τρa = ∞)
=

PT0((TXσi
, (Xk)k≤σi

) ∈ B)

Q(τρa = ∞)
.

(We note that Q(τρa = ∞) = Q(PathsInAugQTrees) = Pρ(τρa = ∞).) Therefore, putting
everything together gives

PT0

((
T (Xσi

), (Xk)k≥σi

)
∈ A,
(
TXσi

, (Xk)k≤σi

)
∈ B
)

= Q(A)

Q(τρa = ∞)
· PT0

((
TXσi

, (Xk)k≤σi

)
∈ B
)
,

and hence this proves the claimed independence. Taking B to be the whole space also proves
the claimed stationarity of (T (Xσi

), (Xt )t≥σi
)i≥1 and confirms the description of the law of

(T (Xσi
), (Xt )t≥σi

) for i ≥ 1 described in the last sentence in the statement of the lemma. Us-
ing similar reasoning, one can verify that (T (Xσ1), (Xt )t≥σ1) and (T \ T (Xσ1), (Xt )0≤t≤σ1)

are independent (proof omitted). This completes the proof. �
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REMARK 3.8. We note that from the proof of Lemma 3.6 we see that for every realisation
t of T we have that (σi − σi−1)i≥1 and (ϕi − ϕi−1)i≥1 have exponential tails.

DEFINITION 3.9. As in Lemma 3.6, we write σ0 for the first time that X reaches ∂BK(ρ),
(σi)i≥1 for the sequence of regeneration times of X occurring after time σ0 and ϕi for the
depth of Xσi

for each i, when we condition on the event BK(ρ) = T0.

CLAIM 3.10. Let T be a quasi-tree with root ρ as in Definition 3.1. Fix K ≥ 0 and let

T0 be a realisation of the first K levels of T . For each k ∈ N, let

Nk = max{i ≥ 0 : ϕi ≤ k + K}
be the number of regeneration times occurring before level k + K + 1. (As always, regenera-

tion times are defined after time σ0 − 1.) Then almost surely

Nk

k
→ 1

E[ϕ2 − ϕ1]
as k → ∞.

Moreover, for all ε > 0, there exists C sufficiently large such that for all k ≥ K2

P

(∣∣∣∣Nk − k

E[ϕ2 − ϕ1]

∣∣∣∣> C
√

k
∣∣∣ BK(ρ) = T0

)
≤ ε.

PROOF. The almost sure convergence follows directly from the renewal theorem together
with Lemma 3.6.

For the second statement, we only prove one bound. The other one follows in exactly the
same way. Let

ℓ =
⌊

k

E[ϕ2 − ϕ1]
+ C

√
k

⌋
,

where C is a constant to be determined later. Set ζi = ϕi − ϕi−1 for i ≥ 2 and ζ1 = ϕ1. We
then have

P
(
Nk > ℓ | BK(ρ) = T0

)

= P

(
ℓ∑

i=1

ζi < k + K
∣∣∣ BK(ρ) = T0

)

≤ P

(
ℓ∑

i=1

ζi −E

[
ℓ∑

i=1

ζi

]
< 2E[ζ2] −E[ζ1] − CE[ζ2]

√
k + K

∣∣∣ BK(ρ) = T0

)
.

≤ P

(
ℓ∑

i=1

ζi −E

[
ℓ∑

i=1

ζi

]
< 2E[ζ2] − CE[ζ2]

√
k
∣∣∣ BK(ρ) = T0

)
.

Since by Lemma 3.6 ζ2 and ζ1 have exponential tails (in fact, since K2 � k, for ζ1 it
suffices to use below the bound Var(ζ1) � K2) and (ζi)i≥2 are i.i.d. and independent of ζ1,
using Chebyshev’s inequality this last probability can be bounded by

P

(∣∣∣∣∣

ℓ∑

i=1

ζi −E

[
ℓ∑

i=1

ζi

]∣∣∣∣∣> C′√k
∣∣∣ BK(ρ) = T0

)
≤ Var(

∑ℓ
i=1 ζi)

(C′)2k
≍ ℓ

(C′)2k
,

for a positive constant C′, where the last equivalence follows again from Lemma 3.6. Taking
C large enough, which implies that C′ is large, this last probability can be made smaller
than ε. �
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LEMMA 3.11. Let X be a simple random walk on T . Then for ν = E[ϕ2−ϕ1]
E[σ2−σ1] almost surely

dT (ρ,Xt)

t
→ ν as t → ∞.

Moreover, for all ε > 0 there exists a positive constant C so that for all t sufficiently large

P
(∣∣dT (ρ,Xt ) − νt

∣∣> C
√

t
)
≤ ε and P

(
sup
s:s≤t

dT (ρ,Xs) > νt + 2C
√

t
)

≤ ε.

PROOF. The first and second claims follow easily using the regeneration structure from
Lemma 3.6 together with Claim 3.10.

For the final claim, let C be such that the first inequality holds. Then we have

P

(
sup
s:s≤t

dT (ρ,Xs) > νt + 2C
√

t
)

≤ P

(
dT (ρ,Xt ) < νt + C

√
t, sup

s:s≤t
dT (ρ,Xs) > νt + 2C

√
t
)

+ ε

≤
∑

s:s≤t

P
(
dT (ρ,Xs) > νt + 2C

√
t, dT (ρ,Xt) < νt + C

√
t
)
+ ε

≤ t · εe−c
√

t + ε,

where c is a positive constant and where for the final inequality we used that by Lemma 3.3
the probability that the walk goes up i levels decays exponentially in i. �

DEFINITION 3.12. Let T be a quasi-tree as in Definition 3.1. A loop- erased random

walk ξ on T is defined as follows: we run a simple random walk on T for infinite time
and we erase loops in the chronological order in which they are created. Usually one calls the
obtained random simple path the loop-erased random walk, however we employ the following
different convention: for each i we define ξi to be the ith long range edge crossed by this loop
erasure. Unless otherwise specified, the loop-erased walk ξ is considered with respect to a
walk started from the root of T .

The following lemma is a direct consequence of the domain Markov property for the loop-
erased walk ξ . We state it separately, since we will refer to it several times in the following
proofs.

LEMMA 3.13. Let T be a quasi-tree and let T0 be its first M levels for some M > 0. Let

X be a simple random walk on T (resp., killed when exiting T0) and let ξ be its loop erasure

as in Definition 3.12. Let (ei = (xi, yi))i∈N be long range edges satisfying d(ρ, xi) < d(ρ, yi)

and xi+1 is in the T -R-ball centred at yi for all i. Then for every realisation of T , setting

γ = {e1, . . . , ek} we have for all k that

P
(
ξk+1 = ek+1 | (ξi)i≤k = γ

)
= Pyk

(̃ξ1 = ek+1) = Pyk
(X̃L = xk+1),

where X̃ is a simple random walk on T (yk) (resp., on T (yk)∩T0) started from yk whose loop

erasure is ξ̃ and L is the last time (resp., before exiting T0) that X̃ is in the T -R-ball centred

at yk .

PROOF. The lemma follows directly from the domain Markov property of loop-erased
random walk together with the “tree-like” structure of the quasi-tree T . �
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LEMMA 3.14. There exist positive constants (Cℓ)ℓ≥1 and C′ so that the following hold:
let T be a quasi-tree with root ρ as in Definition 3.1. Fix K ≥ 0 and let T0 be a realisation of

the first K levels of T . Let X be a simple random walk on T started from ρ and let ξ̃ be an

independent loop- erased random walk on T . For k ≥ 1, define

Yk = − logP
(
(Xσk−1,Xσk

) ∈ ξ̃ | X,T
)
+ logP

(
(Xσk−1−1,Xσk−1) ∈ ξ̃ | X,T

)
.

Then the sequence (Yk)k≥2 is stationary and independent of BK(ρ). Moreover, for all ℓ ≥ 1,

E
[(

− logP
(
(Xσ0−1,Xσ0) ∈ ξ̃ | X,T

))ℓ | BK(ρ) = T0
]
≤ Cℓ(RK)ℓ(3.8)

and for all k ≥ 2,

E
[
(Yk)

ℓ | BK(ρ) = T0
]
≤ Cℓ and E

[
|Y1|ℓ
]
≤ Cℓ.(3.9)

In addition, there exists a positive constant C′ so that for all k ≥ 1 we have

Var

(
k∑

i=1

Yi

∣∣∣ BK(ρ) = T0

)
≤ C′k.(3.10)

PROOF. To simplify notation, we identify Xσ with the long range edge (Xσ−1,Xσ ). Re-
call that the regeneration times were defined to be the times when a long range edge is crossed
for the first and last time. This definition together with the fact that ξ̃ is only considered when
the loop erasure crosses long range edges give that if for some k ≥ 2 we have Xσk

∈ ξ̃ , then
also Xσk−1 ∈ ξ̃ . Using this and recalling that ϕk is the depth of Xσk

, we obtain

P(Xσk
∈ ξ̃ | X,T ) = P(Xσk

∈ ξ̃ ,Xσk−1 ∈ ξ̃ | X,T )

= E
[
P
(
Xσk

∈ ξ̃ ,Xσk−1 ∈ ξ̃ | X,T , (̃ξℓ)ℓ≤ϕk−1

)
| X,T

]

= E
[
1(Xσk−1 ∈ ξ̃ )P

(
Xσk

∈ ξ̃ | X,T , (̃ξℓ)ℓ≤ϕk−1

)
| X,T

]
.

Using Lemma 3.13 we obtain

1(Xσk−1 = ξ̃ϕk−1)P
(
Xσk

∈ ξ̃ | X,T , (̃ξℓ)ℓ≤ϕk−1

)

= 1(Xσk−1 = ξ̃ϕk−1)P
(
Xσk

∈ ξ(k) | X,T
)
,

where ξ(k) = (ξ(k)i)i≥0 is a loop-erased random walk on the subgraph T (Xσk−1) started
from its root, Xσk−1 , and evolves independently of X. Therefore, we obtain

P(Xσk
∈ ξ̃ | X,T ) = P

(
Xσk

∈ ξ(k) | X,T
)
P(Xσk−1 ∈ ξ̃ | X,T ),

and hence this gives for all k ≥ 2

Yk = − logP
(
Xσk

∈ ξ(k) | X,T
)
= − logP

(
Xσk

∈ ξ(k) | (Xt )t≥σk−1, T (Xσk−1)
)
.

Since Yk is a measurable function of ((Xt )t≥σk−1, T (Xσk−1)), using Lemma 3.6 we conclude
that even conditional on {BK(ρ) = T0}, the sequence (Yk)k≥2 is stationary.

We now prove the bound on the moments of Y2. The moments of |Y1| can be bounded
using similar arguments. Let X̃ be a simple random walk on T (Xσ1)

a started from Xσ1 and
conditioned on never visiting Xa

σ1
. Let σ̃1 be the first regeneration time of X̃, that is, the first

time that X̃ crosses a long range edge for the first and last time. It is convenient to identify
Xa

σ1
with the parent of Xσ1 in T , so that X̃ is a walk on a subgraph of T (one can even define

X̃k = Xσ1+k for all k ≥ 0, and then X̃σ̃1 = Xσ2 ). By Lemma 3.6, we get

E
[
(Y2)

ℓ | BK(ρ) = T0
]

= E

[ ∑

x∈T (Xσ1 )

P
(
X̃σ̃1 = x | T (Xσ1)

)(
− logP

(
x ∈ ξ(2) | T (Xσ1)

))ℓ
]
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and similarly

E
[(

− logP(Xσ0 ∈ ξ̃ | X,T )
)ℓ | BK(ρ) = T0

]

= E

[ ∑

x∈∂T0

P
(
Xσ0 = x | BK(ρ) = T0

)(
− logP(̃ξK−1 = x | T )

)ℓ ∣∣∣ BK(ρ) = T0

]
,

where we write ∂T0 = {x : d(ρ, x) = K}. Write Pt(·) for the probability measure when T =
t. Abusing notation, when considering X̃ and ξ(2) we also write Pt(·) for the probability
measure when T (Xσ1) is given by t. It suffices to prove that for all ℓ ∈ N there exists a
positive constant C so that for every realisation t of T (Xσ1) and every realisation t′ of T with
BK(ρ) = T0 we have

∑

x∈t
Pt(X̃σ̃1 = x)

(
− logPt

(
x ∈ ξ(2)

))ℓ ≤ C,(3.11)

∑

x∈t′
Pt′(Xσ0 = x)

(
− logPt′ (̃ξK−1 = x)

)ℓ ≤ C(RK)ℓ,(3.12)

where x ∈ t (resp. x ∈ t′) ranges over long range edges of t (resp., t′). We start by proving
(3.11). Let X′ be a simple random walk on ta started from the root ρ′ of t We denote the
first regeneration time of X′ by σ ′

1. Note that it suffices to prove (3.11) for the walk X′, since
using the definition of X̃ we obtain for a positive constant c that

Pt(X̃σ̃1 = x) ≤
Pt(X

′
σ ′

1
= x)

Pt(τ(ρ′)a = ∞ | X′
0 = ρ′)

≤ 1

c
· Pt

(
X′

σ ′
1
= x
)
,

where the last inequality follows from Lemma 3.3.
We write dg(a, b) for the graph distance between a and b in the graph t, that is, not count-

ing only the long range edges as for d(a, b). For every r , we set

Ar =
{
w = (w1,w2) ∈ t : dg(ρ,w1) = r

}
,

where again w ranges over long range edges of t. Then we have
∑

x∈t
Pt

(
X′

σ ′
1
= x
)(

− logPt

(
x ∈ ξ(2)

))ℓ

=
∑

r

∑

w∈Ar

Pt

(
X′

σ ′
1
= w
)(

− logPt

(
w ∈ ξ(2)

))ℓ
.

The proof of (3.11) will be complete once we show the existence of two positive constants c1
and c2 so that for all r and all w ∈ Ar ,

Pt

(
w ∈ ξ(2)

)
≥ c1e

−c1r and Pt

(
X′

σ ′
1
∈ Ar

)
≤ e−c2r .(3.13)

For the first bound, take a path of vertices that connect ρ to w. The probability that this is the
path taken by the walk that generates the loop erasure is at least e−c1r for a positive constant
c1. Indeed, this follows from the bounded degree assumption. Now, by Lemma 3.3, once w

is reached by the walk, the probability that it is in ξ(2) is at least c1. For the second bound in
(3.13), using that σ ′

1 has exponential tails from Remark 3.8 we have

Pt

(
X′

σ ′
1
∈ Ar

)
≤ Pt

(
σ ′

1 ≥ r
)
≤ e−c2r

for a positive constant c2.
For the proof of (3.12), note that Pt′ (̃ξK−1 = x) ≥ e−c3RK for a positive constant c3, since

we can take a path of long range edges of length K and require that the walk creating the loop
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erasure takes this path and then escapes, similar to the proof of the first inequality in (3.13).
So we now get that

∑

x∈t′
Pt(Xσ0 = x)

(
− logPt′ (̃ξK−1 = x)

)ℓ
� (RK)ℓ

∑

x∈t′
Pt′(Xσ0 = x) = (RK)ℓ.

It remains to prove (3.10). To simplify notation, we write PT0(·) for the probability measure
conditional on BK(ρ) = T0, and similarly ET0[·], VarT0 and CovT0 . With this notation, we
have

VarT0

(
k∑

i=1

Yi

)
=

k∑

i=1

VarT0(Yi) + 2
∑

i<j

CovT0(Yi, Yj ).

Using (3.9), we get that
∑k

i=1 VarT0(Yi)� k, and hence it suffices to prove that
∑

i<j

CovT0(Yi, Yj )� k.(3.14)

In order to prove this, for j > i we are going to define random variables Yi,j and events
B(i, j) so that:

(i) Yi,j1(B(i, j)) and B(i, j) are independent of Yj ,
(ii) PT0(B(i, j)c) ≤ e−c(j−i) for a positive constant c and

(iii) |Yi − Yi,j |1(B(i, j)) ≤ e−c′(j−i) for another positive constant c′.

Therefore, assuming that we have defined Yi,j and B(i, j) satisfying the above conditions we
can complete the proof, since

CovT0(Yi, Yj ) = ET0

[(
Yi −ET0[Yi]

)(
Yj −ET0[Yj ]

)
1
(
B(i, j)

)]

+ET0

[(
Yi −ET0[Yi]

)(
Yj −ET0[Yj ]

)
1
(
Bc(i, j)

)]

� ET0

[(
Yi −ET0[Yi]

)(
Yj −ET0[Yj ]

)
1
(
B(i, j)

)]
+ e−c1(j−i)/(2C)

= ET0

[
(Yi − Yi,j )Yj1

(
B(i, j)

)]
−ET0

[
(Yi − Yi,j )1

(
B(i, j)

)]
ET0[Yj ]

+ e−c1(j−i)/(2C),

where for the inequality we used Cauchy–Schwarz together with (3.9) and (ii) and for the last
equality we used (i). Using (3.9) and (iii) gives

ET0

[
(Yi − Yi,j )Yj1

(
B(i, j)

)]
� e−c′′(j−i) and

ET0

[
(Yi − Yi,j )1

(
B(i, j)

)]
ET0[Yj ] � e−c′′(j−i).

Taking the sum over j > i yields (3.14) and completes the proof. So we now turn to define
Yi,j and B(i, j) for j > i.

For each i, let Xi be the walk that generates the loop-erased path ξ(i), that is, Xi is a
simple random walk in the subtree T (Xσi−1) started from Xσi−1 and ξ(i) is obtained by only
considering the times when Xi crosses long range edges and erasing loops in the chronolog-
ical order in which they are created. Now for i < j we let ξ(i, j) be the loop-erased path
(across long range edges) obtained from the path Xi when we run it until the first time that
Xi reaches the level of Xσj−1 . We set

Zi = PT0

(
Xσi

∈ ξ(i) | T (Xσi−1),X
)
,

Zi,j = PT0

(
Xσi

∈ ξ(i, j) | T (Xσi−1),X
)

and

Yi,j = − logZi,j .
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Note that by the definition of ξ(i, j) we have that

Zi,j = PT0

(
Xσi

∈ ξ(i, j) | T (Xσi−1) \ T (Xσj−1), (Xt)
σj−1
t=σi−1

)

Let A(i, j) be the event that Xi returns to Xσi
after reaching the level of Xσj−1 for the first

time. Then we have

|Zi − Zi,j | =
∣∣PT0

(
Xσi

∈ ξ(i) | T (Xσi−1),X
)
− PT0

(
Xσi

∈ ξ(i, j) | T (Xσi−1),X
)∣∣

=
∣∣PT0

(
Xσi

∈ ξ(i),Xσi
/∈ ξ(i, j) | T (Xσi−1),X

)

− PT0

(
Xσi

/∈ ξ(i),Xσi
∈ ξ(i, j) | T (Xσi−1),X

)∣∣

≤ PT0

(
A(i, j) | T (Xσi−1),X

)
.

Using Lemma 3.3, we obtain that there exists a positive constant c so that

PT0

(
A(i, j) | T (Xσi−1),X

)
≤ e−c(j−i−1).

Using that | logx − logy| ≤ |x − y|/(x ∧ y), we now obtain

|Yi,j − Yi | = | logZi,j − logZi | ≤
|Zi,j − Zi |
Zi,j ∧ Zi

Let B(i, j) = {dg(Xσi
,Xσi−1) ≤ ⌊(j − i)/C⌋} for a large positive constant C. On B(i, j), we

have

Zi,j ∧ Zi ≥ c(� + 1)−(j−i)/C,

where c is the positive constant from Lemma 3.3 and � is the maximum degree. Indeed,
the right-hand side above is a lower bound on the probability that Xi visits Xσi

without
backtracking until the first such visit and then escapes. Therefore, choosing C sufficiently
large we get that

|Yi,j − Yi |1
(
B(i, j)

)
≤ e−c′′(j−i),(3.15)

where c′′ is a positive constant. Using next Lemma 3.6, we get that for a positive constant c1

P
(
B(i, j)c

)
≤ e−c1⌊(j−i)/C⌋.(3.16)

Finally, we note that Yi,j1(B(i, j)) and B(i, j) are independent of Yj , since they depend
on independent parts of the tree by the definition of regeneration times. This completes the
proof. �

PROPOSITION 3.15. Let T be a quasi-tree as in Definition 3.1 and let ξ and ξ̃ be two

independent loop-erased random walks on T both started from the root. Then there exists a

positive constant h= hn so that almost surely

− logP(ξk ∈ ξ̃ | T , ξ)

k
→ h as k → ∞.

Fix K ≥ 0 and let T0 be a realisation of the first K levels of T . For all ε > 0, there exists a

positive constant C so that for all k ≥ (RK)2

P
(∣∣− logP(ξk ∈ ξ̃ | T , ξ) − hk

∣∣> C
√

k | BK(ρ) = T0
)
≤ ε.

PROOF. Again to simplify notation, we write PT0(·) for the probability measure P(· |
BK(ρ) = T0). Let X be the simple random walk on T that generates the loop erasure ξ and
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let (σk)k≥1 be its regeneration times after time σ0 and σ0 be the hitting time of ∂T0 as in
Lemma 3.6. Then we get

− logP
(
(Xσk−1,Xσk

) ∈ ξ̃ | X,T
)
=

k∑

i=1

Yi − logP
(
(Xσ0−1,Xσ0) ∈ ξ̃ | X,T

)
,

where Yi are the variables of Lemma 3.14 and which are stationary for i ≥ 2 and E[|Yi |] ≤ C

for all i ≥ 1. Therefore, applying the ergodic theorem and using also (3.8) we deduce that
there exists a constant γ so that almost surely

− logP((Xσk−1,Xσk
) ∈ ξ̃ | X,T )

k
→ γ as k → ∞.

Let ϕk = d(ρ,Xσk
). Then ξϕk

= (Xσk−1,Xσk
), and hence from the above almost surely as

k → ∞,

− logP(ξϕk
∈ ξ̃ | X,T )

k
→ γ.

Lemma 3.6 now gives that almost surely ϕk/k → E[ϕ2 − ϕ1] as k → ∞ with E[ϕ2 − ϕ1] <

∞. This now implies that

− logP(ξk ∈ ξ̃ | ξ, T )

k
→ γ

E[ϕ2 − ϕ1]
=: h.

We turn to the proof of the fluctuations. Using the bound on the variance of
∑k

i=1 Yi from
Lemma 3.14 together with (3.8) and Chebyshev’s inequality we obtain that for all ε > 0 there
exists a positive constant C so that for all k ≥ (KR)2,

PT0

(∣∣− logP(ξϕk
∈ ξ̃ | ξ, T ) − γ k

∣∣≥ C
√

k
)
≤ ε.

We now need to transfer the fluctuations result to the process − logP(ξk ∈ ξ̃ | ξ, T ). As in
Claim 3.10 for each k ∈ N let

Nk = max{i ≥ 0 : ϕi ≤ k + K}.
Then we have

PT0

(∣∣− logP(ξk ∈ ξ̃ | ξ, T ) − hk
∣∣> C

√
k
)

≤ PT0

(
− logP(ξϕNk+1 ∈ ξ̃ | ξ, T ) > hk + C

√
k
)

+ PT0

(
− logP(ξϕNk

∈ ξ̃ | ξ, T ) < hk − C
√

k
)
.

Using again the monotonicity, in the sense that if ξi ∈ ξ̃ , then also ξj ∈ ξ̃ for every j < i,
and the concentration of Nk from Claim 3.10 proves the result for the suitable choice of the
constant C. �

REMARK 3.16. We note that both the entropy constant h and the speed constant ν ap-
pearing in Proposition 3.15 and Lemma 3.11 depend on n but are both of order 1. We recall
that by the bounded degree assumption (Gn) has a subsequence converging in the Benjamini–
Schramm sense. To prove cutoff w.h.p., it suffices to show that any subsequence has a further
subsequence for which cutoff holds w.h.p. We may thus assume such a limit exists. One can
show that if (Gn) has a Benjamini–Schramm limit then the entropy and speed constants con-
verge to the corresponding constants when the quasi-tree T is defined w.r.t. the limit (with
R = ∞). In general, the rate of convergence can be arbitrary, and so in order to obtain any
control on the cutoff window it is important to work with our ν and h, rather than with their
limit.
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4. Truncation.

DEFINITION 4.1. Let e be a long range edge of T and let ξ be a loop- erased random
walk started from the root of T as in Definition 3.12. We define

WT (e) = − logP(e ∈ ξ | T ).

For a long range edge e = (x, y) with d(ρ, x) < d(ρ, y), we write ℓ(e) = d(ρ, y). We define

W̃T (e) = − logP
(
(Xτ ℓ(e)−1,Xτ ℓ(e)) = e | T

)
,

where X is a simple random walk on T started from the root and τ ℓ(e) = inf{t ≥ 0 :
d(ρ,Xt ) = ℓ(e)}.

REMARK 4.2. In the definition W̃ above, we are requiring the walk X to first hit level
ℓ(e) by crossing e. Note that in this way W̃ only depends on the first ℓ(e) levels of the tree.

LEMMA 4.3. There exists a positive constant c so that for all realisations of T and all

edges e of T we have

WT (e) ≥ W̃T (e) − cR2.

PROOF. In this proof, we fix the graph T and so we drop the dependence on T from the
notation.

Let X be a simple random walk on T started from the root ρ and let ξ(e) be the loop
erasure of the path of X until the first time that it hits level ℓ(e). Then we clearly have

{
(Xτ ℓ(e)−1,Xτ ℓ(e)) = e

}
=
{
e ∈ ξ(e)

}
.

It suffices to show that there exists a positive constant c so that

P
(
e ∈ ξ(e)

)
� e−cR2 · P(e ∈ ξ),(4.1)

since taking logarithms of both sides proves the lemma. To simplify notation, we write ℓ =
ℓ(e) (and τ ℓ = inf{t ≥ 0 : d(ρ,Xt) = ℓ} as above). Let e1, . . . , eℓ = e be the sequence of long
range edges leading to e. Letting ei = (xi, yi) with d(ρ, xi) < d(ρ, yi) and using Lemma 3.13
for the transition probabilities of the loop-erased random walk we now get

P
(
e ∈ ξ(e)

)
=

ℓ−1∏

i=0

Pyi

(
X̃i

Lℓ
i

= xi+1
)
,(4.2)

where y0 = ρ and for each i, X̃i is a simple random walk on T (yi) and Lℓ
i denotes the

last time before reaching level ℓ of T that X̃i is in the ball centred at yi . Similarly, for the
loop-erasure ξ we have

P(e ∈ ξ) =
ℓ−1∏

i=0

Pyi

(
X̃i

Li
= xi+1

)
,(4.3)

where now Li is the last time that X̃ is in the ball centred at yi .
Using the last exit decomposition formula, we obtain

Pyi

(
X̃i

Lℓ
i

= xi+1
)
= Pyi

(τxi+1 < τ ℓ)

Pxi+1(τ
ℓ < τ+

xi+1)
· P(xi+1, yi+1) · Pyi+1

(
τxi+1 > τ ℓ),

Pyi

(
X̃i

Li
= xi+1

)
= Pyi

(τxi+1 < ∞)

Pxi+1(τ
+
xi+1 = ∞)

· P(xi+1, yi+1) · Pyi+1(τxi+1 = ∞)

(4.4)
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where 1
Pxi+1 (τ+

xi+1=∞)
is the expected number of visits to xi+1, once it is reached, while

1
Pxi+1 (τ ℓ<τ+

xi+1 )
is the expected number of such visits before time τ ℓ. We need to compare

the ratios of the terms appearing in the two expressions above.
For the last two terms, we have Pyi+1(τxi+1 > τ ℓ) ≥ Pyi+1(τxi+1 = ∞). We now explain

that it suffices to prove that there exist constants c1, c2 and c3 so that for all i ≤ ℓ,

Pxi+1(τ
+
xi+1

= ∞)

Pxi+1(τ
+
xi+1 > τ ℓ)

≥ 1

1 + c2e−c1(ℓ−i)
,(4.5)

for i ≤ ℓ − c3R,

Pyi
(τxi+1 < τ ℓ)

Pyi
(τxi+1 < ∞)

≥ 1

1 − e−c1(ℓ−i)/2 ,(4.6)

while for all i ≤ ℓ,

Pyi
(τxi+1 < τ ℓ)

Pyi
(τxi+1 < ∞)

≥ 1

(� + 1)R
.(4.7)

Indeed, once these bounds are established, we can easily complete the proof, since for all i

satisfying ℓ − c3R < i ≤ ℓ plugging the bounds (4.5) and (4.7) into (4.4) we get

Pyi

(
X̃i

Lℓ
i

= xi+1
)
≥ 1

1 + c2e−c1(ℓ−i)
· 1

(� + 1)R
· Pyi

(
X̃i

Li
= xi+1

)
.

For i satisfying i ≤ ℓ − c3R plugging the bounds (4.5) and (4.6) into (4.4) gives

Pyi

(
X̃i

Lℓ
i

= xi+1
)
≥ 1 − e−c1(ℓ−i)/2

1 + c2e−c1(ℓ−i)
· Pyi

(
X̃i

Li
= xi+1

)
.

From these two inequalities together with (4.2) and (4.3), we now deduce

P
(
e ∈ ξ(e)

)
≥ 1

(� + 1)c3R
2 · P(e ∈ ξ) ·

ℓ−1∏

i=0

1 − e−c1i/2

1 + c2e−c1i
�

P(e ∈ ξ)

(� + 1)c3R
2 ,

which proves (4.1), and hence completes the proof of the lemma. It thus remains to prove
(4.5), (4.6) and (4.7).

We start with (4.5). We have

Pxi+1

(
τ ℓ < τ+

xi+1

)
= Pxi+1

(
τ+
xi+1

= ∞
)
+ Pxi+1

(
τ ℓ < τ+

xi+1
< ∞
)
.

Using Lemma 3.3, we get that there exists a positive constant c1 such that

Pxi+1

(
τ ℓ < τ+

xi+1
< ∞
)
≤ e−c1(ℓ−i).

Using Lemma 3.3 again, we get that there exists a positive constant c2 so that

Pxi+1

(
τ ℓ < τ+

xi+1

)
≤ Pxi+1

(
τ+
xi+1

= ∞
)(

1 + c2e
−c1(ℓ−i)),

therefore establishing (4.5).
Suppose that i is such that i ≤ ℓ − c3R for a positive constant c3 to be determined later.

Then using Lemma 3.3 we have

Pyi
(τxi+1 < ∞) = Pyi

(
τxi+1 < τ ℓ)+ Pyi

(
τ ℓ < τxi+1 < ∞

)

≤ Pyi

(
τxi+1 < τ ℓ)+ e−c1(ℓ−i)

≤ Pyi

(
τxi+1 < τ ℓ)+ e−c1(ℓ−i)/2 · 1

(� + 1)R
,
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where the last inequality follows by choosing c3 as a function of � and c1. Using that

Pyi
(τxi+1 < ∞) ≥ 1

(� + 1)R
,

we obtain

Pyi
(τxi+1 < ∞) ≤ Pyi

(
τxi+1 < τ ℓ)+ e−c1(ℓ−i)/2

Pyi
(τxi+1 < ∞).

Rearranging this gives
(
1 − e−c1(ℓ−i)/2)

Pyi
(τxi+1 < ∞) ≤ Pyi

(
τxi+1 < τ ℓ),

thus establishing (4.6).
Finally, for all i, we also have

Pyi

(
τxi+1 < τ ℓ)≥ 1

(� + 1)R
≥ 1

(� + 1)R
· Pyi

(τxi+1 < ∞),

proving (4.7). This completes the proof of the lemma. �

DEFINITION 4.4. Let A > 0 and K = ⌈C2 log logn⌉ for a constant C2 to be determined.
For a long range edge e of T , we define the “truncation event” Tr(e,A) to be

Tr(e,A) =
{
W̃T (e) > logn − A

√
logn
}
∩
{
ℓ(e) ≥ K

}
,

where ℓ(e) stands for the level of e.

In the next section, where we construct the coupling of the walk on T with the walk on G∗
n

we will need to truncate the edges of T that satisfy the “truncation criterion” above. We will
then need to ensure that the random walk on T does not visit truncated edges by the relevant
time t with large probability. We achieve this in the following lemma.

LEMMA 4.5. Let K be as in Definition 4.4 and let T0 be a realisation of the first K levels

of T . Let X be a simple random walk on T started from its root and set t = logn
νh

− B
√

logn,
where ν and h are given in Lemma 3.11 and Proposition 3.15, respectively. Then for all

ε ∈ (0,1) there exist B and A (depending on ε and B) sufficiently large so that

P

(⋃

k≤t

Tr
(
(Xk−1,Xk),A

)
| BK(ρ) = T0

)
< ε.

PROOF. Using Lemma 3.11, there exists a positive constant C so that if

D =
{
sup
s≤t

d(ρ,Xs) ≤ νt + C
√

t
}
,

then P(D) ≥ 1 − ε. To simplify notation, we write again PT0(·) for the probability measure
P(· | BK(ρ) = T0). We now get

PT0

(⋃

k≤t

Tr
(
(Xk−1,Xk),A

))
≤ PT0

(⋃

k≤t

Tr
(
(Xk−1,Xk),A

)
,D

)
+ ε.

Define F(e) to be the event that e is the first edge crossed by the walk for which the event
Tr(e,A) holds. Then we have

PT0

(⋃

k≤t

Tr
(
(Xk−1,Xk),A

)
,D

)
≤ PT0

( ⋃

e∈T :d(ρ,e)≤νt+C
√

t

F(e)

)

=
∑

e∈T :d(ρ,e)≤νt+C
√

t

PT0

(
F(e)
)
.
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Let ξ be the loop erasure of X (considered when it crosses long range edges) and define F̃ (e)

to be the event that e is the first long range edge crossed by the loop-erasure ξ for which the
event Tr(e,A) holds. For a long range edge e = (e−, e+), let τ̃ (e) be the first return time to e+
by X after the first time X crosses e. Then for every realisation t of T for which BK(ρ) = T0
we have

Pt

(
F(e), τ̃ (e) = ∞

)
= Pt

(
F(e), e ∈ ξ

)
≤ Pt

(
F̃ (e), e ∈ ξ

)
,

where in the notation above we have fixed T to be t. By Lemma 3.3, we now get

Pt

(
F(e)
)
� Pt

(
F(e), τ̃ (e) = ∞

)
,

and hence putting all things together we deduce

PT0

(⋃

k≤t

Tr
(
(Xk−1,Xk),A

)
,D

)
�

∑

e∈T :d(ρ,e)≤νt+C
√

t

PT0

(
F̃ (e)
)

= PT0

( ⋃

e∈T :d(ρ,e)≤νt+C
√

t

F̃ (e)

)

= PT0

( ⋃

k≤νt+C
√

t

Tr(ξk,A)

)
,

where the first equality follows since by definition the events F̃ (e) are disjoint. By
Lemma 4.3, we have that on the event Tr(ξk,A),

WT (ξk) > logn − A
√

logn − cR2.

Using that WT (ξk) ≤ WT (ξk+1) (since the loop erasure is only considered when it crosses
long range edges) gives that on the event

⋃
k≤L Tr(ξk,A) with L = νt + C

√
t we have

WT (ξL) > logn − A
√

logn − cR2.

This together with Proposition 3.15 conclude the proof. �

5. Coupling. Recall that we refer to the edges of the perfect matching of G∗
n as long

range edges.

DEFINITION 5.1. In the graph G∗
n, we define the (long range) distance between x and

y to be the minimal number of long range edges needed to cross to go from x to y, when we
only allow at most R consecutive edges of Gn in the path from x to y and we do not allow
any long range edge (here considered as undirected) to be crossed more than once. (The first
constraint is put in order to avoid having long range distance 0 between all pairs of vertices
whose graph distance in Gn is R + 1, whereas without the second constraint the distance
between such pairs would be always at most 2.) Like for the quasi-tree T , we rarely use the
regular graph distance on G∗

n, so the term “distance” below will refer to the aforementioned
distance, unless otherwise specified.

We write B∗
K(x) to denote the ball of radius K and centre x in this metric. We write

BGn(x, r) for a ball centred at x of radius r in the graph metric of Gn. When r = R, we call
it the G∗

n-R-ball centred at x.

As in Lemma 4.5, we set

t = logn

νh
− B
√

logn(5.1)

for a constant B to be determined and let A be as in Lemma 4.5.
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DEFINITION 5.2. We call a vertex x a K-root of G∗
n if B∗

K(x) is a possible realisation of
the first K levels of the quasi-tree T (corresponding to Gn). If x is a K-root and i ≤ K , we
denote by ∂B∗

i (x) the collection of vertices of (long range) distance i from x. (Note that this
is a slight abuse of notation, since ∂B∗

i (x) is not the internal vertex boundary of B∗
i (x) as the

internal vertex boundary does not contain the centres of the T -R-balls at distance i from x.)

We next define an exploration process of G∗
n and a coupling between the walk X on G∗

n

and a walk X̃ on the quasi-tree T corresponding to Gn.

DEFINITION 5.3. Let K = ⌈C2 log logn⌉ for a constant C2 to be determined as in Def-
inition 4.4, and suppose we work conditional on the event that x0 is a K-root and that
B∗

K(x0) = T0, where T0 is a realisation of the first K levels of a quasi-tree. Let {z1, . . . , zL} ⊆
∂B∗

K/2(x0) be the collection of centres of T -R-balls at long range distance K/2 from x0,
where L ≤ |∂B∗

K/2(x0)|. For each z ∈ ∂B∗
K/2(x0) we denote by Vz the set of offspring of z on

∂B∗
K(x0). Let z ∈ ∂B∗

K/2(x0). We now describe the exploration process of G∗
n corresponding

to the set Vz by constructing a coupling of a subset of G∗
n with a subset of a quasi-tree T

conditioned on the first K levels of T being equal to T0. We first reveal all long range edges
of T with one endpoint in ∂T0, that is, with one endpoint at long range distance K from x0.
For the long range edges originating in Vz we couple them with the long range edges of G∗

n

by using the optimal coupling between the two uniform distributions at every step. (At every
step in G∗

n, we choose an endpoint at random among all those that have not been selected
yet.) If at some point one of these couplings fails, then we truncate the edge where this hap-
pened and stop the exploration for this edge in G∗

n but we continue it in T . We also truncate
an edge and stop the exploration in G∗

n if the G∗
n-R-ball around the newly revealed endpoint

of the edge intersects an already revealed G∗
n-R-ball (whenever we reveal the other endpoint

of a long range edge, we reveal the ball of radius R around it in the graph metric of Gn;
coupling this endpoint between T and G∗

n is the same as coupling the two R-balls). In the
case where the G∗

n-R-ball centred at the endpoint intersects an already revealed G∗
n-R-ball,

then we also truncate the edge leading to its centre and stop the exploration there too even
though we may have already revealed some of its offspring. We always continue the explo-
ration for T . Once all long range edges joining levels K and K + 1 of T have been revealed,
we examine which of those satisfy the truncation criterion Tr(e,A) (which is defined w.r.t.
T , not G∗

n). We then stop the exploration at these edges for the graph G∗
n, but we do continue

the exploration of their offspring for the quasi-tree T . Suppose we have explored all k level
edges of the quasi-tree T and also the corresponding ones in G∗

n that have not been truncated.
Then for the edges of level k +1 we explore all of them in T and we use the optimal coupling
to match the ones that come from nontruncated edges in G∗

n with the corresponding ones of
T . We truncate an edge and stop the exploration process at this edge if the optimal coupling
between the two uniform distributions fails at the endpoint of the edge or if the G∗

n-R-ball
centred at the endpoint intersects an already revealed G∗

n-R-ball. In the case where the G∗
n-

R-ball centred at the endpoint intersects an already revealed G∗
n-R-ball, then we also truncate

the edge leading to its centre and stop the exploration there too even though we may have al-
ready revealed some of its offspring. We always continue the exploration for T . We continue
the exploration process for t levels.

We now describe a coupling of the walk X on G∗
n starting from x ∈ Vz with a walk X̃ on

T starting from x as follows: we move X and X̃ together for t steps as long as none of the
following happen:

(i) X̃ crosses a truncated edge;
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(ii) There exists a vertex v such that X̃ visits v and then reaches the internal vertex bound-
ary of the T -R-ball centred at v (i.e., it reaches a vertex in the T -R-ball centred at v which is
at distance R (in the graph metric of Gn) from v) and does so by time t , or

(iii) X̃ visits a vertex w ∈ ∂B∗
K/2(x0) for some w 
= z.

If none of these occurs by time t , we say the coupling is successful.
We write Fi for the σ -algebra generated by T0 and the exploration processes starting from

all the vertices of Vz1, . . . , Vzi
. We call zi ∈ ∂B∗

K/2(x0) good if none of its descendants in
∂T0 (i.e., those vertices y ∈ ∂T0 such that d(x0, y) = d(x0, zi) + d(zi, y)) has been explored
during the exploration processes corresponding to the sets Vz1, . . . , Vzi−1 . Otherwise, zi is
called bad. Note that the event {zi is bad} is Fi−1 measurable. Finally, we denote by Di the
collection of vertices of G∗

n explored in the exploration process of the set Vzi
.

REMARK 5.4. We note that if the coupling between X and X̃ starting from x ∈ Vzi
,

where zi ∈ ∂B∗
K/2(x0), succeeds for t steps, then X̃s ∈ Di for all s ≤ t .

LEMMA 5.5. In the setup of Definition 5.3, deterministically, |Di | ≤ N = n exp(−A ×√
logn/3) for all i ∈ L (for all sufficiently large n). Moreover, there exists a positive constant

C (independent of T0) so that the number Bad of bad vertices z satisfies

P
(
Bad ≥ C

√
logn | B∗

K(x0) = T0
)
≤ 1

n2 .

PROOF. Let x ∈ Vz and let T be the quasi-tree rooted at x obtained during the exploration
process of G∗

n. Let k ≥ 0 and Sk be the set of long range edges with one endpoint at level
k − 1 and the other one at level k of T . Consider now

S̃k =
{
e ∈ Sk : Tr(e,A)c holds

}
.

Recalling the definition of W̃T and of τℓ(e) from Definition 4.1, we have
∑

e∈S̃k

exp
(
−W̃T (e)

)
=
∑

e∈S̃k

P
(
(Xτ ℓ(e)−1,Xτ ℓ(e)) = e | T

)
≤ 1.

Therefore, using the bound on W̃T from the truncation event, we obtain

|S̃k| ≤ n exp(−A
√

logn),

where A is as in Lemma 4.5. Since every long range edge we explore has a neighbourhood of
radius R around it, this means that when we reach distance k from the root, we have revealed
at most �R|S̃k| vertices, which is at most n exp(−A

√
logn/2) for n sufficiently large (recall

that R ≍ log logn). Since the exploration process continues for t ≍ logn levels, the number
of explored vertices is at most

N = n exp(−A
√

logn/3).

At every step of the exploration process the probability of intersecting a vertex of ∂T0 is upper
bounded by

c1(�)R(K+1)/n ��2C1C2(log logn)2
/n,

where c1 is a positive constant. We therefore obtain

P(Bad > C
√

logn) ≤
(

N

C
√

logn

)(
�2C1C2(log logn)2

n

)C
√

logn

≤ NC
√

logn

(
�2C1C2(log logn)2

n

)C
√

logn

≤ 1

n2

by taking C sufficiently large and using the definition of N . �
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LEMMA 5.6. In the same setup as in Definition 5.3, for all ε > 0, there exist B (in the

definition of t) and A (in the definition of the truncation criterion, depending on ε and B)
sufficiently large so that for all n large enough, on the event {B∗

K(x0) = T0}, for all i and all

descendants x ∈ ∂B∗
K(x0) of zi , the coupling of Definition 5.3 satisfies

Px(the coupling of X and X̃ succeeds | Fi−1) ≥ 1(zi is good) · (1 − ε).

PROOF. We say that an overlap occurs at a vertex y during the exploration process, when
the ball BGn(y,R) (the ball of radius R centred at y w.r.t. Gn) revealed when exploring y (i.e.,
when exploring some long range edge leading to y) intersects an already revealed G∗

n-R-ball.
We say that the optimal coupling at a vertex has failed, if when revealing the endpoint of the
long range edge coming out of it, the optimal coupling between the uniform distributions on
the graph and the quasi-tree fails.

We define F to be the event that the walk X̃ crosses an edge of T whose corresponding
edge in G∗

n was truncated due to an overlap or because the optimal coupling failed. We first
bound the probability of F . As in [6], Section 3.2, we note that the event F does not happen
if the following occur: for each i if the first time that X̃ reaches level K + i there is no
overlap and the optimal couplings succeed both at the current vertex and at all other vertices
of T at distance 2K from the walk at this time and in addition, if the walk never (by time t)
revisits any vertex after visiting its depth K descendants. (Indeed, if the walk never revisits
any vertex after visiting its depth K descendants, then each ball visited by the walk by time t ,
say at level ℓ, must be at distance at most 2K from the first ball to be visited at level ℓ.) This
last event has failure probability at most te−cK by Lemma 3.3 and a union bound. Therefore,
by choosing the constant C2 in the definition of K sufficiently large, this probability can be
made o(1). Since by Lemma 5.5 the total number of explored vertices in G∗

n is upper bounded
by N (from Lemma 5.5), the probability that the optimal coupling fails when the walk first
visits level K + i is at most4 N/n and the probability that there is an overlap either there or
at some vertex of the same level within distance 2K from it, is upper bounded by

�R(2K+1) · �RN

n − N
.

By the union bound over all t levels, we get that the probability that the event F occurs is at
most

t · �R(2K+1) · �RN

n − N
+ t · �R(2K+1) · N

n
+ t · e−cK = o(1),

by choosing the constant C in the definition of K sufficiently large.
The coupling fails if the walk X̃ visits a truncated edge before time t or if it visits a vertex

w ∈ ∂B∗
K/2(x0) with w 
= zi . But from Lemma 4.5 (used to control the probability that the

walk crosses an edge that got truncated due to the truncation criterion Tr(e,A); edges that
were truncated for other reasons were treated above), by choosing A in the definition of the
truncation criterion in terms of ε and B , we see that the first event has probability at most
ε/2. The probability that X̃ visits a vertex w ∈ ∂B∗

K/2(x0) with w 
= zi is at most e−cK for

a positive constant c by Lemma 3.3, which is again o(1) (recall that X̃ starts from x ∈ ∂T0
where x is a descendant of zi).

Finally, another way for the coupling to fail is if the walk X̃ visits the boundary of a T -R-
ball before time t . Let a be a centre of a T -R-ball in T and let H1 be the event that X̃ ever

4We are using the fact that the total variation distance between the uniform distributions on a set of size n and
on a subset of it of size n − m is m/n.
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visits the boundary of this T -R-ball after having first visited its centre a. Writing H2 for the
event that X̃ visits this boundary after time R − 1, we have

Pa(H1) ≤ Pa

(
d(a, X̃R−1) ≥ c1R,H2

)
+ Pa

(
d(a, X̃R−1) < c1R

)
� e−c2R,

where the last inequality follows from Lemma 3.3 and Remark 3.4. Since by time t ≍ logn,
the walk will visit at most t different centres of balls, by taking a union bound and choosing
the constant in the definition of R sufficiently large, we get that the probability of this event
happening is at most te−c2R = o(1). �

We denote by trel(G) the absolute relaxation time of simple random walk on a finite graph
G, defined as the inverse of the absolute spectral gap (it equals +∞ if G is bipartite or not
connected).

PROPOSITION 5.7. In the same setup as in Definition 5.3, for all ε > 0, there exist B

(in the definition of t), A (in the definition of the truncation criterion) depending on ε and B

and a positive constant Ŵ sufficiently large such that for all n sufficiently large, on the event

{B∗
K(x0) = T0}, for all i and all x ∈ ∂B∗

K(x0) descendants of zi ∈ ∂B∗
K/2(x0), on the event

{zi is good} we have for all s ≥ 0 that

P

(
dx(t + s) < e

− s
trel(G

∗
n) ·

√
�

1 − ε
exp(Ŵ

√
logn) + ε

∣∣∣Fi−1

)
≥ 1 − 2ε,

where dx(r) = ‖Px(Xr ∈ · | G∗
n) − π‖TV for every r ∈ N.

PROOF. We set ℓ = logn/h− 2νB
√

logn and recall that t = logn/(νh) − B
√

logn.
Let T be the quasi-tree with root x0 that we reveal during the exploration process of G∗

n

starting from x and which satisfies that B∗
K(x0) = T0. Let ξ be a loop-erased random walk

on T started from zi as in Definition 3.12, that is, it is considered only when it crosses long
range edges. As in the proof of Lemma 5.5, we let S̃k be the set of long range edges of T

at distance k from the root that do not satisfy the truncation criterion. For a constant Ŵ to be
determined, we define

B̂ =
{
e ∈ S̃ℓ : P(ξℓ = e | T ) ≤ 1

n
exp(Ŵ

√
logn)

}
.

Let X be a simple random walk on G∗
n started from x and let X̃ be a simple random walk on

T started from x coupled with X as in Definition 5.3. Let ξ̃ be the loop-erased random walk
on T obtained by erasing loops from X̃. Using Proposition 3.15 and Lemma 4.5 (for the event
that ξ̃ℓ /∈ S̃ℓ) we get that there exist B in the definition of t depending on ε, A in the definition
of the truncation criterion (depending on ε and B) and Ŵ (depending on ε) sufficiently large
such that

P(̃ξℓ ∈ B̂ | Fi−1) ≥ 1 − ε2/3.(5.2)

We define the following events:

A1 =
{
d(x0, X̃t) ≥ ℓ + νB

2

√
logn

}
,

A2 =
{̃
ξℓ =
(
loop-erased trace of (X̃r)r≤t viewed on long range edges

)
ℓ

}
,

A3 = {the coupling of X and X̃ succeeds for t steps} ∩ {̃ξℓ ∈ B̂}.
Lemma 3.11 shows that for B sufficiently large we have P(A1 | Fi−1) ≥ 1 − ε2/3. Using
Lemma 3.3, we get that for a positive constant c we have

P
(
Ac

2 | Fi−1
)
≤ exp(−cB

√
logn) = o(1).
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Using Lemma 5.6 and (5.2) for the probability of the event Ac
3, we deduce that if S =⋂3

i=1 Ai , then on the event {zi is good} we have P(S | Fi−1) ≥ 1 − ε2. Therefore, setting

G =
{
G : P
(
S | G∗

n = G
)
≥ 1 − ε

}

and using Markov’s inequality and the tower property we obtain that on the event {zi is good}

P
(
G∗

n ∈ G | Fi−1
)
≥ 1 − ε.

Let s > 0 to be determined later. The above inequality now gives on the event {zi is good}

P
(∥∥Px

(
Xt+s ∈ · | G∗

n

)
− π
∥∥

TV

= 1
(
G∗

n ∈ G
)∥∥Px

(
Xt+s ∈ · | G∗

n

)
− π
∥∥

TV | Fi−1
)
≥ 1 − ε.

(5.3)

We now have

1
(
G∗

n ∈ G
)∥∥Px

(
Xt+s ∈ · | G∗

n

)
− π
∥∥

TV(5.4)

=
∑

G∈G
1
(
G∗

n = G
)∥∥Px

(
Xt+s ∈ · | G∗

n = G
)
− π
∥∥

TV,(5.5)

and hence for each G ∈ G, by conditioning on the event S and using the definition of G, we
obtain

∥∥Px

(
Xt+s ∈ · | G∗

n = G
)
− π
∥∥

TV ≤
∥∥Px

(
Xt+s ∈ · | S,G∗

n = G
)
− π
∥∥

TV + ε.(5.6)

We next bound the first term appearing on the right-hand side above. By the Poincaré in-
equality and the fact that conditional on Xt , the event S is independent of (Xu)u≥t we have

∥∥Px

(
Xt+s ∈ · | S,G∗

n = G
)
− π
∥∥

TV ≤
∥∥Px

(
Xt+s ∈ · | S,G∗

n = G
)
− π
∥∥

2

≤ e
− s

trel(G)
∥∥Px

(
Xt ∈ · | S,G∗

n = G
)
− π
∥∥

2,
(5.7)

For every vertex v ∈ T with d(x0, v) > ℓ, there is a unique “ancestor edge” ϕ(v) =
(ϕ(v)−, ϕ(v)+) with d(x0, ϕ(v)−) = ℓ. On the event S, the walk X is coupled successfully
with X̃ for t steps, and hence we get

max
v∈Vn

Px

(
Xt = v | G∗

n = G,S
)

= max
v∈Vn

E[1(G∗
n = G)Px(Xt = v,S | T ,G∗

n)]
Px(G∗

n = G,S)

= max
v∈T

E[1(G∗
n = G)Px(X̃t = v,S | T ,G∗

n)]
Px(G∗

n = G,S)

≤ max
v∈T

E[1(G∗
n = G)Px (̃ξℓ = ϕ(v), S | T ,G∗

n)]
Px(G∗

n = G,S)
,

where in the last inequality we used that on the event S ⊆ A2 we have ξ̃ℓ = ϕ(v). Using the
definition of the set B̂ and of S, we have for all v ∈ T ,

E
[
1
(
G∗

n = G
)
Px

(̃
ξℓ = ϕ(v), S | T ,G∗

n

)]

= Ex

[
1
(
G∗

n = G
)
1
(
ϕ(v) ∈ B̂

)
Px

(̃
ξℓ = ϕ(v), S | T ,G∗

n

)]

≤ 1

n
exp(Ŵ

√
logn)Px

(
G∗

n = G
)
.
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Therefore, for G ∈ G this gives

max
v

Px

(
Xt = v | G∗

n = G,S
)
≤ 1

Px(S | G∗
n = G)

1

n
exp(Ŵ

√
logn)

≤ 1

(1 − ε)n
exp(Ŵ

√
logn),

where for the last inequality we used the definition of G. Using that π is the degree biased
distribution and that Gn is a graph with maximum degree �, we obtain that π(v) ≥ 1/(�n)

for all v. Therefore, we obtain

∥∥Px

(
Xt ∈ · | G∗

n = G,S
)
− π
∥∥

2 ≤
√

�

1 − ε
exp(Ŵ

√
logn).

Plugging this into (5.7) and using (5.6), (5.4) and (5.3), we obtain on the event {zi is good}

P

(
dx(t + s) ≤ e

− s
trel(G

∗
n) ·

√
�

1 − ε
exp(Ŵ

√
logn) + ε |Fi−1

)
≥ 1 − 2ε

and this concludes the proof. �

LEMMA 5.8. There exists a positive constant c so that for all quasi trees T rooted at ρ,
all ℓ ∈ N and all x with d(ρ, x) = ℓ, if X is a simple random walk started from ρ and τℓ is

the first hitting time of level ℓ, then

P(Xτℓ
= x) ≤ e−cℓ.

PROOF. Let ξ be the loop erasure of the path {X0, . . . ,Xτℓ
}. Let e be the long range edge

whose endpoint further from the root is x. Then

P(Xτℓ
= x) = P(ξℓ = e).

We let e1, . . . , eℓ = e be the sequence of long range edges leading from ρ to e. We write
ei = (xi, yi) with d(ρ, xi) < d(ρ, yi). Using Lemma 3.13, we obtain

P(e ∈ ξ) =
ℓ∏

i=1

Pyi

(
Xi

Li
= xi+1

)
,(5.8)

where Xi is a simple random walk on T (yi) and Li is the last time before reaching level ℓ of
T that Xi is in the T -R-ball centred at yi as in Lemma 3.13. Writing Ei for the first time Xi

leaves the T -R-ball centred at yi , we get

Pyi

(
Xi

Li
= xi+1

)
= 1 −

∑

z 
=xi+1

Pyi

(
Xi

Li
= z
)

≤ 1 −
∑

z 
=xi+1

Pyi

(
Xi

Ei
= z, τ i

z = ∞
)

≤ 1 − cPyi

(
Xi

Ei

= xi+1

)
,

where τ i
z stands for the first return time to z after Ei and in the last inequality we used

Lemma 3.3. Using the bounded degree assumption and that every connected component of
Gn contains at least 3 vertices, we deduce

Pyi

(
Xi

Ei

= xi+1

)
≥ c′,

where c′ is a positive constant. Therefore, this now implies that

Pyi

(
Xi

Li
= xi+1

)
≤ 1 − cc′,

and hence plugging this into (5.8) completes the proof. �
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LEMMA 5.9. There exists a positive constant α, so that starting from any vertex the

random walk will hit a K-root by time αK with probability 1 − o(1) as n → ∞.

PROOF. Let β ≥ 3 and suppose the random walk starts from x. We say that an overlap
appears in B∗

βK(x), if there exist distinct vertices y, z ∈ B∗
βK(x) and a pair of long range edges

(y, y′) and (z, z′) such that BGn(y
′,R) ∩ BGn(z

′,R) 
= ∅. Let M ≤ �βRK+1 be the number
of points in B∗

βK(x). The probability that an overlap appears when exploring the long range

edge attached to a vertex y is upper bounded by �RM/n. Therefore, the number of overlaps
I in B∗

βK(x) is stochastically dominated by a binomial random variable Bin(M,�RM/n),
and we have

P(I ≥ 2) ≤
(
M

2

)(
�RM

n

)2
≤ �2RM3

n2 = n−2+o(1),

using that R + K = O(log logn). Taking a union bound over all vertices of G we get that
with probability 1 − o(1) the number of overlaps in the βK ball around every vertex is at
most 1. Therefore, if there is no overlap in B∗

βK(x), then the vertex x is a K-root and we are
done. If there is one overlap, then we consider the downward distance from the overlap at
times that are multiples of 3 exactly in the same way as in the proof of Lemma 3.3. The rest
of the proof of Lemma 3.3 follows verbatim, since having two centres in the overlap does not
affect the proof that the drift is strictly positive. �

PROOF OF THEOREM 1.1. Recall the definition of t from (5.1)

t = logn

νh
− B
√

logn,

where B is a positive constant to be chosen later. We first prove the upper bound on the

mixing time. Let s = trel(G
∗
n)[Ŵ

√
logn + log

√
�

ε(1−ε)
], where Ŵ is as in Proposition 5.7 so that

e
− s

trel(G
∗
n) ·

√
�

1 − ε
exp(Ŵ

√
logn) = ε.

We claim that it suffices to prove that w.h.p.

tmix
(
G∗

n,7ε
)
≤ t + s + (α + c)K,(5.9)

where α is as in Lemma 5.9 and c is a positive constant to be determined later. Indeed, one can
then easily complete the proof, since by Proposition 1.2 (whose proof is deferred to Section 6)
there exists some constant α̂ > 0 such that w.h.p. its absolute relaxation time trel(G

∗
n) is at

most 1/α̂. Hence this together with (5.9) gives the desired upper bound on tmix(G
∗
n, ε).

We now prove (5.9). By Lemma 5.9, the strong Markov property (applied to the first hitting
time of a K-root) and the fact that the total variation distance from stationarity is nonincreas-
ing, we have w.h.p.

max
x

∥∥Px

(
Xt+s+(α+c)K ∈ · | G∗

n

)
− π
∥∥

TV

≤ max
x0:K-root

∥∥Px0

(
Xt+s+cK ∈ · | G∗

n

)
− π
∥∥

TV + o(1).

From now on, we fix x0 a K-root of G∗
n and set

V =
{
x ∈ ∂B∗

K(x0) : dx(s + t) ≥ 2ε
}
.

(Note that this is a random set which depends on G∗
n.) Letting τK be the first hitting time of

∂B∗
K(x0), we claim that it suffices to prove that

P
(
Px0

(
XτK

∈ V | G∗
n

)
> 4ε, x0 is a K-root

)
≤ 1

n2 .(5.10)



232 J. HERMON, A. SLY AND P. SOUSI

Indeed, this will imply that

P
(
∃a K-rootx0 : Px0

(
XτK

∈ V | G∗
n

)
> 4ε
)
≤ 1

n

and then the proof will follow easily, since using the strong Markov property and the nonde-
creasing property of the total variation distance from stationarity we get for any K-root x0
and any T0, on the event {B∗

K(x0) = T0},
∥∥Px0

(
Xt+s+cK = · | G∗

n

)
− π
∥∥

TV

≤ Px0

(
τ∂T0 > cK | G∗

n

)

+
∑

z∈∂T0

Px0

(
Xτ∂T0

= z | G∗
n

)
·
∥∥Pz

(
Xt+s = · | G∗

n

)
− π
∥∥

TV

≤ o(1) + Px0

(
XτK

∈ V | G∗
n

)
+ 2ε,

where the second inequality follows from taking c sufficiently large and using Lemma 3.3 for
the first term and the definition of the set V for the bound on the sum.

We now prove (5.10). We write h(x) = Px0(XτK
= x | G∗

n) to simplify notation. As in Def-
inition 5.3 let Vzi

be the set of descendants of zi in ∂B∗
K(x0) and L = |∂B∗

K/2(x0)|. Recalling
from the same definition the notions of bad and good vertices on ∂B∗

K/2(x0), we get

h(V ) =
L∑

i=1

h(V ∩ Vzi
)

=
L∑

i=1

h(V ∩ Vzi
)1(zi is good)

+
N∑

i=1

h(V ∩ Vzi
)1(zi is bad).

(5.11)

Let ξ denote the loop erasure of (Xt )t≤τK
. Then by Lemma 3.3 on the event {B∗

K(x0) = T0},
we have

Px0

(
XτK

∈ Vzi
| G∗

n

)
= Px0

(
ξK−1 ∈ Vzi

| G∗
n

)
= Px0

(
ξK/2−1 = zi | G∗

n

)
≤ e−cK/2,

where the last inequality follows from Lemma 5.8 and c is a positive constant. Choosing the
constant C2 in the definition of K sufficiently large, we get that for all i,

h(Vzi
) ≤ 1

(logn)2 .(5.12)

Using also Lemma 5.5, we now obtain

P

(
L∑

i=1

h(V ∩ Vzi
)1(zi is bad) ≤ C

(logn)3/2 | B∗
K(x0) = T0

)
≥ 1 − 1

n2 ,(5.13)

where C is the constant from Lemma 5.5. We now turn to the first term on the right-hand side
of (5.11). We start by writing each term of the sum as

h(V ∩ Vzi
)1(zi is good) =

∑

x∈Vzi

h(x)1
(
dx(t + s) ≥ 2ε

)
1(zi is good).

So by Proposition 5.7 and our choice of s, we have

E
[
h(V ∩ Vzi

)1(zi is good) | Fi−1
]
1
(
B∗

K(x0) = T0
)
≤ 2εh(Vzi

).(5.14)
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Writing Ri for the random variable appearing in the conditional expectation above, we con-
sider the martingale defined conditionally on B∗

K(x0) = T0 via M0 = 0 and for 1 ≤ k ≤ L,

Mk =
k∑

i=1

(
Ri −E[Ri | Fi−1]

)
.

Applying then the Azuma–Hoeffding inequality to this martingale, we obtain that for a posi-
tive constant c,

P

(
L∑

i=1

h(V ∩ Vzi
)1(zi is good) > 3ε | B∗

K(x0) = T0

)

≤ P
(
ML > ε | B∗

K(x0) = T0
)
≤ exp

(
− cε2

∑L
i=1(h(Vzi

))2

)
≤ exp

(
−cε2(logn)2),

where for the first inequality we used (5.14) and for the last inequality we used that

L∑

i=1

(
h(Vzi

)
)2 ≤ 1

(logn)2

L∑

i=1

h(Vzi
) = 1

(logn)2 ,

which follows from (5.12) (we also used that |Mi − Mi−1| ≤ h(Vzi
) for all i ≤ L and con-

ditioned on B∗
K(x0) = T0, we have that h(Vzi

) is deterministic). This shows that h(V ) ≤
3ε + o(1) with probability at least 1 − 2/n2, thus concluding the proof of the upper bound on
the mixing time.

We now prove the lower bound. We employ the same notation as in the proof of the upper
bound. Suppose the walk starts from a vertex x0, which is a K-root. Recall that Di is collec-
tion of vertices of G∗

n explored in the exploration process of the set Vzi
. On the event that x0

is a K-root, set

V ′ =
{
zi ∈ ∂B∗

K/2(x0) : Pzi

(
T(Di∪B∗

K (x0))
c ≤ t,XτK

∈ Vzi
| G∗

n

)
≥ 2ε
}

(recall that τK is the first hitting time of ∂B∗
K(x0)). Let D(x0) = (

⋃L
i=1 Di) ∪ B∗

K(x0) and
V̂ =⋃z∈V ′ Vz. By the strong Markov property, as well as the fact that if x0 is a K-root and
zi ∈ ∂B∗

K/2(x0), then starting from x0 a walk must visit zi prior to time τK in order to have
that XτK

∈ Vzi
, on the event that x0 is a K-root, we get that

Px0

(
TD(x0)

c ≤ t,XτK
∈ Vzi

| G∗
n

)
≤ Pzi

(
T(Di∪B∗

K (x0))
c ≤ t,XτK

∈ Vzi
| G∗

n

)
.

Recalling that h(x) = h
G∗

n
x0 (x) = Px0(XτK

= x | G∗
n), and summing over i ∈ [L] we see that

Px0

(
TD(x0)

c ≤ t | G∗
n

)
≤ 2ε + Px0

(
XτK

∈ V̂ | G∗
n

)
= 2ε + h

G∗
n

x0 (V̂ )

(on the event that x0 is a K-root). We claim that it suffices to prove that

P
(
h

G∗
n

x0 (V̂ ) > 4ε, x0 is a K-root
)
≤ 1

n2 .(5.15)

Indeed, by a union bound, this will imply that

P
(
∃a K-rootx0 : Px0

(
Xt /∈ D(x0) | G∗

n

)
> 6ε
)
≤ 1

n
.

The proof of the lower bound could then be concluded by noting that (i) by Lemma 5.9 K-
roots exist w.h.p., and (ii) by Lemma 5.5 |D(x0)| = o(n), and hence by the bounded degree
assumption π(D(x0)) = o(1). Indeed, we would get that with probability 1−o(1) there exists
a K-root x0 so that

∥∥Px0

(
Xt ∈ · | G∗

n

)
− π
∥∥

TV ≥ Px0

(
Xt ∈ D(x0) | G∗

n

)
− π
(
D(x0)

)
≥ 1 − 6ε − o(1).
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So it remains to prove (5.15). Using Remark 5.4 together with Lemma 5.6, we obtain

E
[
h(Vzi

)1
(
zi ∈ V ′ and is good

)
| Fi−1

]
1
(
B∗

K(x0) = T0
)
≤ 2εh(Vzi

).

Writing R′
i for the random variable appearing in the conditional expectation above, we con-

sider the martingale defined conditional on B∗
K(x0) = T0 as M ′

0 = 0 and M ′
k =∑k

i=1(R
′
i −

E[R′
i | Fi−1]) for 1 ≤ k ≤ L. Applying the Azuma–Hoeffding inequality to this martingale,

we obtain exactly as in the proof of the upper bound that for some positive constant c we
have that

P

(
L∑

i=1

h(Vzi
)1
(
zi ∈ V ′ and is good

)
> 3ε | B∗

K(x0) = T0

)

≤ P
(
M ′

L > ε | B∗
K(x0) = T0

)
≤ exp

(
− cε2

∑L
i=1(h(Vzi

))2

)
≤ exp

(
−cε2(logn)2).

Using h(V̂ ) ≤∑L
i=1 h(Vzi

)1(zi ∈ V ′ and is good) +∑L
i=1 h(Vzi

)1(zi is bad) (analogously
to (5.11)) together with (5.13) concludes the proof of (5.15) and thus of the lower bound. �

REMARK 5.10. It is not hard to show that w.h.p. G∗
n satisfies for some constant β ≥ 3

that for all x we have that if Wx is the collection of K-roots at distance at most βK from x

then

Px

(
Xt ∈

⋃

w∈Wx

D(w) | G∗
n

)
≥ 1 − 7ε.

This means that w.h.p. minx dx(t) ≥ 1 − 8ε (as deterministically maxx |⋃w∈Wx
D(w)| =

o(n)).

5.1. A family of examples demonstrating the necessity of the degree assumption. Con-
sider a random dn-regular graph G′

n of size n, where logn
log logn

� dn = no(1). Now obtain a
new graph Gn by adding a clique of size dn and connecting a single vertex of the clique to
one vertex of Gn by an edge. One can verify that the mixing time of G∗

n is of order dn and
that there is no cutoff since starting from the clique, the time it takes the walk to first exit
the clique stochastically dominates the Geometric distribution with mean dn/2. To see this,
observe that the walk on G∗

n exits the clique in O(dn) steps, and is unlikely to return to it in
the following 2 logdn

n = O(dn) steps. Hence for the following 2 logdn
n steps, the walk can

be coupled with that on the induced graph (w.r.t. G∗
n) on the vertices of G′

n. This graph is
similar to a random graph with a given degree sequence in which n− dn vertices have degree
dn + 1 while the rest have degree dn (we write “similar” as it need not be a simple graph).
In fact, the walk is unlikely to visit any degree dn vertices during these 2 logdn

n steps (other
than when just leaving the clique) or vertices belonging to cycles of size 2 by this time, and
thus the argument from [25], Corollary 4, (asserting the mixing time of a random dn + 1 ≫ 1
regular graph on M vertices is (1 + o(1)) logdn

M) applies here.

6. Expander. In this section, we prove Theorem 6.1, which is a more quantified version
of Proposition 1.2.

We denote the second largest eigenvalue of a matrix P by λ2(P ) and its smallest eigen-
value by λmin(P ). When P is the transition matrix of simple random walk on a graph G, we
write λ2(G) and λmin(G) for λ2(P ) and λmin(P ), respectively.
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THEOREM 6.1. Let G = (V ,E) be an n-vertex graph of maximal degree �. Assume that

all connected components of G are of size at least 3. Let G∗ be the graph obtained from G

by picking a random perfect matching of V (if n is odd, one vertex remains unmatched) and

adding edges between matched vertices. Then there exists some α = α(�) ∈ (0,1) such that

P
(
1 − λ2

(
G∗)≤ α

)
� n−α and P

(
1 + λmin

(
G∗)≤ α

)
� n−α.

In the proof of the first inequality above, we are going to use the following result from
[28]. For a similar result, see also [22].

THEOREM 6.2 ([28], Theorem 1.1). Let X be a reversible Markov chain with transition

matrix P , invariant distribution π and spectral gap γ . Let V1, . . . , VM be a partition of V

and let Pi be the transition matrix on Vi with off-diagonal transitions Pi(x, y) = P(x, y) for

all x 
= y ∈ Vi and Pi(x, x) = 1 −∑z∈Vi\{x} P(x, z). Denote its spectral gap by γ (Pi) and

let γ∗ := mini∈[M] γ (Pi). Let P̂ be a Markov chain on [M] with transition probabilities given

by

P̂ (i, j) = Pπ (X1 ∈ Vj | X0 ∈ Vi) =
∑

x∈Vi

π(x)

π(Vi)
P (x,Vj )(6.1)

and spectral gap given by γ̂ . Then

(6.2) γ ≥ γ̂ γ∗.

We now recall an extremal characterization of λmin(P ), which will be used in the proof of
the inequality for λmin in the proof of Theorem 6.1.

THEOREM 6.3 ([33], Theorems 3.1 and 3.2). Let P be a reversible transition matrix on

a finite state space V with invariant distribution π and Q(D,F) =∑d∈D,f ∈F π(d)P (d,f )

for D,F ⊆ V . For a set S ⊆ V , let

ζ(S) = min
A,B:A∪B=S,A∩B=∅

ζ(S,A,B), where

ζ(S,A,B) = Q(A,A) + Q(B,B) + Q(S,Sc)

π(S)

and define ζ∗ = min∅ 
=S⊆V ζ(S). Then we have

(6.3) 1 −
√

1 − ζ 2∗ ≤ 1 + λmin(P ) ≤ 4ζ∗.

We also recall Cheeger’s inequality (see, for instance, [23], Chapter 13)

(6.4) 1 −
√

1 − �2∗ ≤ 1 − λ2(P ) ≤ 2�∗, where �∗ = min
S:0<π(S)≤1/2

�(S),

and �(S) = Q(S,Sc)
π(S)

.
The next two lemmas will be used in the proof of Theorem 6.1. We defer their proofs to

the end of this section.

LEMMA 6.4. Assume that the minimal size of a connected component of G = (V ,E) is

at least L. Then there exists a partition V1, . . . , VM of V such that for all i ∈ [M] the induced

graph on Vi is connected and L ≤ |Vi | < L2�, where � is the maximal degree in G.
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LEMMA 6.5. Let 	 be a set on n vertices and let A ⊆ 	 be a set satisfying |A| = αn

with α ∈ (1/2 − δ,1/2 + δ) and δ < 1/4. Pick a perfect matching on 	 uniformly at random.
We then have

P(∃ less than δn edges of perfect matching joining pairs of vertices of A)

≤ 2−n·( 1
2 −C(δ)),

where C(δ) is a constant depending on δ satisfying limδ→0 C(δ) = 0.

PROOF OF THEOREM 6.1. Taking L = 3, we can apply Lemma 6.4 to get a partition
V1, . . . , VM of connected components of V (with respect to the graph structure of G) such
that 3 ≤ |Vi | ≤ 9� for all i ∈ [M]. We start by proving that there exists α > 0 such that

P
(
1 − λ2

(
G∗)≤ α

)
� n−α.(6.5)

Let X be a simple random walk on G∗ and let P̂ be the transition matrix as in (6.1). Let also
Pi be the transition matrix on Vi and γ̂ and γ∗ be as in the statement of Theorem 6.2.

Consider the multi-graph H = ([M], Ẽ), in which the number of edges joining vertices i

and j is equal to the number of edges of the perfect matching between Vi and Vj (and the
number of loops of vertex i is equal to the number of pairs of vertices of Vi that are matched
to each other). Then this multi-graph is distributed as the configuration model on [M] where
vertex i has degree |Vi |. Let K be the transition matrix of simple random walk on H . We
are going to compare P̂ to K as well as their invariant distributions, and then using standard
comparison techniques, we will be able to compare their spectral gaps. Let E∗(Vi,Vj ) be the
number of edges of G∗ that join vertices of Vi and Vj and let E(Vi,Vj ) be the number of
edges of G joining vertices of Vi to vertices of Vj . Using the definition of P̂ and K , we get
for i 
= j ,

P̂ (i, j) = E∗(Vi,Vj )∑
v∈Vi

(deg(v) + 1)
and K(i, j) = E∗(Vi,Vj ) − E(Vi,Vj )

|Vi |
,

and hence writing πP̂ and πK for the corresponding invariant distributions we get for all
i ∈ [M],

πP̂ (i) =
∑

v∈Vi
(deg(v) + 1)

2|E| + n
and πK(i) = |Vi |

n
.

Therefore, we obtain for all i, j ∈ [M],

P̂ (i, j) ≥ 1

� + 1
K(i, j) and πP̂ (i) ≥ 1

� + 1
πK(i),

and hence using the extremal characterisation of the spectral gap in terms of the Dirichlet
form (see, for instance, [23], Chapter 13), we obtain

γ̂ ≥ 1 − λ2(K)

(� + 1)2 .(6.6)

For the random walk on the configuration model, it is known (see, for instance, [16], pp.
149–150) that for some α > 0,

P
(
1 − λ2(K) < α

)
� n−α.

Using this, the inequality γ∗ � (maxi |Vi |)−3 (see, for instance, [2], Chapter 6), Theorem 6.2
and (6.6) completes the proof of (6.5).

We now prove that there exists α > 0 so that

(6.7) P
(
1 + λmin

(
G∗)≤ α

)
� n−α.
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We first argue that it suffices to consider only sets S of size at least (1−δ)n, for some constant
δ > 0, by showing that otherwise ζ(S) is bounded away from 0.

By (6.5) and (6.4), there exists β = β(�) > 0 such that

P(�∗ ≤ β) ≤ n−β .(6.8)

Let δ > 0 to be determined later. On the event {�∗ > β}, using Q(S,Sc) = Q(Sc, S) and
(6.3) we see that every S 
= ∅ with |S| ≤ (1 − δ)n satisfies ζ(S) ≥ �(S) � δβ . Defining

S =
{
S ⊆ V : |S| ≥ (1 − δ)n

}
and ξ = min

S∈S
ζ(S)

we see that it suffices to show that for some constant c = c(�) > 0 we have

P(ξ ≤ cδ) � n−δ.

Let S ∈ S and A, B be a partition of S. If there are at least δn edges (either of the base graph
G, or of the random perfect matching) connecting pairs of vertices of A or pairs of vertices
of B , then for some c(δ,�) > 0 we have that

(6.9) ζ(S,A,B) ≥ Q(A,A) + Q(B,B) ≥ c(δ,�).

In particular, (6.9) holds if |A| ≥ n(1 + δ)/2 or |B| ≥ n(1 + δ)/2, since then by simple
counting, there must exist at least δn/2 edges between pairs of vertices of A or B .

So from now on we restrict to partitions (A,B) of S, which satisfy |A|, |B| ∈ ((1/2 −
δ)n, (1/2 + δ)n). Recall the definition of the partition V1, . . . , VM of V . For each i, let Ui(1)

and Ui(2) be the partition of Vi such that

Q
(
Ui(1),Ui(1)

)
+ Q
(
Ui(2),Ui(2)

)
= min

(U,W) partition of Vi

(
Q(U,U) + Q(W,W)

)
.

Since there can be at most one partition (up to relabeling of the two sets) for which the sum
above is equal to 0, which happens in the case of an induced bipartite graph, it follows that
for every other partition U , W of Vi we have

Q(U,U) + Q(W,W) ≥ 1

2|E| + n
.(6.10)

We call a partition (A,B) of S (satisfying |A|, |B| ∈ ((1/2 − δ)n, (1/2 + δ)n)) good if the
number of i ∈ [M] for which

(
Ui(1) ⊆ A ∪ Sc and Ui(2) ⊆ B

)
or
(
Ui(2) ⊆ A ∪ Sc and Ui(1) ⊆ B

)
(6.11)

is less than M − 8�δn.
Otherwise, (A,B) is called bad. Writing Ai = A ∩ Vi and Bi = B ∩ Vi and using that

Q(Ai,Ai) = Q
((

A ∪ Sc)∩ Vi,
(
A ∪ Sc)∩ Vi

)
− Q
(
Sc ∩ Vi, S

c ∩ Vi

)

− 2Q
(
Ai, S

c ∩ Vi

)
,

we get that if (A,B) is a good partition, then

ζ(S,A,B) ≥ Q(A,A) + Q(B,B)

≥
M∑

i=1

(
Q(Ai,Ai) + Q(Bi,Bi)

)

≥ 8�δn

2|E| + n
− 3π
(
Sc)� δ.



238 J. HERMON, A. SLY AND P. SOUSI

Note that for the third inequality we used that for the indices i for which (6.11) does not hold,
the pair ((A∪Sc)∩Vi,Bi) is a partition of Vi different to (Ui(1),Ui(2)), and hence for these
indices we can apply (6.10). For each partition (A,B), we define the event

L(A,B) = {number of edges of matching between pairs of

vertices of A or B is less than δn}.
We now deduce the following bound:

P(ξ ≤ cδ) ≤ P
(
∃S ∈ S,∃ bad partition (A,B) of S : L(A,B)

)

≤ |S| · max
S∈S

∣∣{(A,B) bad partition of S
}∣∣ · P
(
L(A,B)

)
.

We now claim that the number of bad partitions of S is upper bounded by 2n/3+C′(δ)n for
some constant C′(δ) > 0 with C′(δ) → 0 as δ → 0. Indeed, the sets A and B of the partition
are completely determined by the sets ((Ai,Bi))i≤M . Now for each i such that (6.11) holds,
the set Ai must belong to the set {Ui(1) ∩ S,Ui(2) ∩ S}. Since |Vi ∩ S| ≤ |Vi | ≤ 9�, for the
indices i such that (6.11) holds we can pick Ai in at most 29� different ways. Therefore, we
obtain for all S ∈ S

∣∣{(A,B) bad partition of S
}∣∣≤

∑

k≤8�δn

(
M

k

)
2M−k29�k ≤ 2n/3 · 2C′(δ)n,

where C′(δ) is a constant as claimed above and where we also used that M ≤ n/3, since
|Vi | ≥ 3 for all i. So we can now conclude using also Lemma 6.4,

P(ξ ≤ cδ) ≤
(

n

δn

)
· 2n/3 · 2C′(δ)n · 2−n·( 1

2 −C(δ)) ≤ n−α

for some α = α(�) > 0, where the last inequality follows from taking δ sufficiently small.
This now concludes the proof. �

PROOF OF LEMMA 6.4. We define the sets of the partition inductively, using a greedy
procedure. After defining V1, . . . , Vj such that:

• for all i ∈ [j ] the induced graph on Vi is connected and L ≤ |Vi | ≤ L2� and
• all connected components of the induced graph on B := V \⋃i∈[j ] Vi are of size at least L,

we proceed to define Vj+1 such that the same hold w.r.t. V1, . . . , Vj+1. We pick an arbitrary
connected set A ⊂ B of size L. If all connected components of the induced graph on B \ A

are of size at least L, then we set Vj+1 = A. Otherwise, we set Vj+1 to be the union of A

with all the connected components of the induced graph on B \ A of size less than L. By the
induction hypothesis, each such connected component must be adjacent to A, and so indeed
|Vj | < L2� as desired. This concludes the induction step. Note that the above description of
Vj+1 can also be used to define V1. �

PROOF OF LEMMA 6.5. Write m = αn. For the probability in question, we then have

P(∃ less than δn edges joining pairs of vertices of A)

=
∑

m− n
2 ≤i≤δn

(
m

2i

)
· (n − m)!
(n − 2m + 2i)! · (2i)!

2i i! · (n − 2m + 2i)!
2

n
2 −m+i(n

2 − m + i)!
·

2
n
2 (n

2 )!
n! ,

where we use the convention that 0! = 1. Using that for all n, we have

n! =
√

2πnn+ 1
2 e−n exp

( ∞∑

k=n

ak

)
, where ak = 1

2

∫ 1

0

x(1 − x)

(x + k)2
dx ≤ 1

12k2
,
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we obtain

(n − m)!
(n − 2m + 2i)! · (2i)!

2ii! · (n − 2m + 2i)!
2

n
2 −m+i(n

2 − m + i)!
·

2
n
2 (n

2 )!
n!

≤
√

n · 2δn · exp
(
n

(
(1 − α) log(1 − α) −

(
1

2
− α + i

n

)
log
(

1

2
− α + i

n

)))
.

Now as δ → 0 (which implies α → 1/2), we have that
(
(1 − α) log(1 − α) −

(
1

2
− α + i

n

)
log
(

1

2
− α + i

n

))
= −1

2
log 2 + o(1).

Using this together with the entropy bound

∑

i≤δn

(
m

2i

)
≤ 2mH(2δ),

since δ < 1/4, with H(p) being the entropy of a Bernoulli random variable with parameter
p and using the continuity of H in p, gives

P(∃ less than δn edges joining pairs of vertices of A) ≤ 2−n( 1
2 −C(δ)),

where C(δ) is a constant only depending on δ satisfying C(δ) → 0 as δ → 0. �
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