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Abstract

For first passage percolation on ❩✷ with i.i.d. bounded edge weights, we con-

sider the upper tail large deviation event, i.e., the rare situation where the first

passage time between two points at distance ♥ is macroscopically larger than

typical. It was shown by Kesten [24] that the probability of this event decays

as exp✳�❶✳♥✷✴✴. However, the question of existence of the rate function, i.e.,

whether the log-probability normalized by ♥✷ tends to a limit, remains open. We

show that under some additional mild regularity assumption on the passage time

distribution, the rate function for upper tail large deviation indeed exists. The

key intuition behind the proof is that a limiting metric structure that is atypical

causes the upper tail large deviation event. The formal argument then relies on

an approximate version of the above which allows us to use independent copies

of the large deviation environment at a given scale to form an environment at

a larger scale satisfying the large deviation event. Using this, we compare the

upper tail probabilities for various values of ♥. © 2021 Wiley Periodicals LLC.
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1 Introduction and Main Result

First passage percolation is a popular model of fluid flow through inhomoge-

neous random media, where one puts random weights on the edges of a graph and

considers the first passage time between two vertices, which is obtained by min-

imizing the total weight among all paths between the two vertices. First passage

percolation on Euclidean lattices was introduced by Hammersley and Welsh [19]

in 1965 and has been studied extensively both in statistical physics and probability

literature ever since. This model served as one of the motivations of developing the

theory of subadditive stochastic processes, and the early progress using subadditiv-

ity was made by Hammersley-Richardson-Kingman [19, 27, 32] and culminated in

the proof of the celebrated Cox-Durrett shape theorem [12] establishing the first-

order law of large numbers behaviour for passage times between faraway points.

Further progress was made in the 80s and 90s through efforts of Kesten [24–26] and

Talagrand [36] establishing concentration inequalities for passage times, and New-

man and others [30] on more geometric aspects of the model. Much progress has

been made since [8,20] including a flurry of results in the last five years [1,9,15,16].

Despite this impressive progress, most of the fundamental questions still remain

major mathematical challenges; see the survey [2] for a comprehensive history as

well as an extensive list of the major open problems in this field.

One other reason planar first passage percolation came into prominence is that

this model is believed to be in the KPZ universality class that was introduced

by Kardar, Parisi, and Zhang [23] in 1986. Using nonrigorous renormalization

group techniques, KPZ predicted universal scaling exponents for many (1+1)-

dimensional growth models including first and last passage percolation under very

general conditions on the passage time distribution (precise definitions later). An

explosion of rigorous results in the last two decades starting with the seminal work

of Baik, Deift, and Johansson [3] has now verified the KPZ prediction for a hand-

ful of models including last passage percolation with exponential, geometric, or

Bernoulli passage times. However, this progress has been mostly restricted to the

so-called exactly solvable (or, integrable) models where exact formulae are avail-

able using deep connections to algebraic combinatorics, representation theory, and

random matrix theory; extremely detailed information has been obtained about

such models by analyzing those formulae. Although the same results are qualita-

tively expected to hold for a much larger class of models, these methods rely very

crucially on the exact formulae, and moving beyond the exactly solvable models

remains a major challenge.

Our focus in this paper is such a problem in the nonintegrable setting of first

passage percolation in the large deviation regime. The question first arose in the

work of Kesten [24], who considered the probability of large deviation events in

first passage percolation. Postponing the precise definitions momentarily, let us

first describe informally the setup. Consider the passage time T♥ from ✳✵❀ ✵✴ to

✳♥❀ ✵✴. The already mentioned shape theorem dictates that under some regularity
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LARGE DEVIATIONS IN FPP 1579

conditions T♥

♥
✦ ✖ almost surely for some ✖ ✷ ✳✵❀✶✴. The study of large de-

viations is concerned with the unlikely events ❢T♥ ✕ ✳✖ ❈ ✧✴♥❣ (upper tail) and

❢T♥ ✔ ✳✖ � ✧✴♥❣ (lower tail). In the classical theory of large deviations, the log of

such probabilities suitably scaled (by the so-called speed of large deviations) con-

verges to a function of ✧, known as the rate function. For first passage percolation,

Kesten [24] showed the large deviation speed of ♥ and existence of the rate function

for the lower tail using a subadditive argument. For the upper tail, Kesten showed

a large deviation speed of ♥✷ for bounded edge weight distribution; however, the

existence of the rate function remained open (see Open Question 18 in [2]). Our

main result in this paper (see Theorem 1 below) answers this question establishing

the existence of the rate function for the upper tail, which to our knowledge is the

first such result beyond the exactly solvable models.

1.1 Model definitions and statement of result

We start with formal definitions of standard first passage percolation on ❩❞ ,

❞ ✕ ✷. Let ❊✳❩❞ ✴ denote the set of all nearest-neighbour edges in ❩❞ . Let ✗

be a probability measure supported on the nonnegative real line. Let ❹ ❉ ❢❳❡ ❲
❡ ✷ ❊✳❩❞ ✴❣ denote a field of i.i.d. random variables where each ❳❡ (called the

passage time of the edge ❡) has distribution ✗. For a sequence ✌ ❉ ❡✶❡✷ ✁ ✁ ✁ ❡❦ of

neighbouring edges (called a path), the passage time of the path, denoted by ❵✳✌✴,

is defined as

❵✳✌✴ ❉
❦❳

✐❉✶
❳❡✐ ✿

For any two vertices ✉ and ✈, the first passage time between ✉ and ✈, denoted

PT✳✉❀ ✈✴, is defined as the infimum of ❵✳✌✴ where ✌ varies over all paths starting

at ✉ and ending at ✈. Let 0 denote the origin. Under very mild conditions on ✗, it

is a fundamental fact that for all ✈ ✷ ❩❞ , there exists ✖✳❞❀ ✗❀ ✈✴ ✕ ✵ such that

lim
♥✦✶

PT✳0❀ ♥✈✴

♥
❉ ✖✳❞❀ ✗❀ ✈✴

almost surely. For the special case when ✈ ❉ ✳✶❀ ✵❀ ✿ ✿ ✿ ❀ ✵✴ is the unit vector along

the first coordinate, we denote the limiting constant by just ✖, also known as the

time constant in the literature. For the rest of this paper we shall focus on the planar

case (❞ ❉ ✷) of the above model, and hence shall be in the setting of standard first

passage percolation on ❩✷ unless otherwise mentioned. Let n ❲❉ ✳♥❀ ✵✴ and let us

denote the passage time PT✳0❀n✴ by T♥. As mentioned above we are concerned

with the probability of the upper tail large deviation event

(1.1) U✏ ✳♥✴ ❲❉ ❢T♥ ✕ ✳✖❈ ✏✴♥❣
for some ✏ ❃ ✵. Throughout the paper we will work with the assumption that the

passage time distribution has a continuous density with support ➀✵❀ ❜➁. Although

we expect our method to extend beyond this condition, throughout the paper this
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1580 R. BASU, S. GANGULY, AND A. SLY

will be our standing assumption, which is general enough, and yet, makes some of

the proofs cleaner. For future reference we record this assumption below.

DEFINITION 1.1. For ❜ ❃ ✵, let P✳❜✴ denote the set of all probability measures

with support ➀✵❀ ❜➁ and a continuous density.

It is well-known that if ✗ ✷ P✳❜✴ for any ❜ ❃ ✵, then we have ✵ ❁ ✖ ❁ ❜ (e.g.,

see [19]). Also observe that for ✗ ✷ P✳❜✴, we have deterministically that T♥ ✔ ❜♥.

So while considering the large deviation event U✏ in the above scenario, it suffices

to consider ✏ ✷ ✳✵❀ ❜ � ✖✴. Our main theorem shows that the large deviation rate

function exists in the above setting.

THEOREM 1. Consider standard first passage percolation on ❩✷ with passage
time distribution ✗ ✷ P✳❜✴ for some ❜ ❃ ✵. Then for ✏ ✷ ✳✵❀ ❜ � ✖✴ there exists
r ❉ r✳✗❀ ✏✴ ✷ ✳✵❀✶✴ such that

lim
♥✦✶�

logP ✳U✏ ✳♥✴✴

♥✷
❉ r✿

A couple of remarks are in order. First, there is nothing special about the direc-

tion ✳✶❀ ✵✴; the same result holds for any unit vector ✈ with different rate function

r , with minor adjustments in the proof. Also, a variant of this result is expected

to hold in higher dimensions as well where the speed of the large deviation is ♥❞

rather than ♥✷ (see, e.g., (1.4)), and we expect that the same argument proving The-

orem 1 may be used to prove the higher-dimensional analogue. However, in this

paper we shall only focus on proving Theorem 1. We would also like to point out

that our proof implies that r✳✗❀ ✁ ✴ is continuous on ✳✵❀ ❜ � ✏✴. Indeed, the proof

crucially uses as an ingredient a result, Proposition 1.4, which implies that r✳✗❀ ✁ ✴
must be continuous on ✳✵❀ ❜ � ✏✴ if it exists. We are unable to establish convexity

at this point and further smoothness properties seem out of reach of our current

methods.

Observe that the condition in Theorem 1 is not optimal, and we have not made

an attempt to make it the weakest possible. Together with the standard assump-

tions that the mass at ✵ is less than the critical bond percolation probability on ❩✷

and that the edge distribution is not degenerate at a single point, Kesten assumed

boundedness.1 It is important to observe that one cannot completely remove this

additional hypothesis; some condition is needed to ensure even the ♥✷ speed of the

large deviation. For example, if the passage times are exponentially distributed,

just increasing all the passage times around the origin by ✳✖ ❈ ✏✴♥ would force

the large deviation event, while its probability being only exponentially small in ♥

(see the recent work [29], where indeed a sharp large deviations rate function has

been established in this particular case). One can however prove Kesten’s result for

passage times with sufficiently fast decaying tails (see [13]), and one believes that

1 Our additional assumption, of continuous density and full support in Definition 1.1 will only be

used in the proof of Proposition 1.4, and we believe can be relaxed.
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LARGE DEVIATIONS IN FPP 1581

the rate function will exist in such a case too, possibly under some additional hy-

potheses. However, in this paper we have not pursued those directions, and instead

focused on proving the result in the simplest possible case that is still sufficiently

general to be of interest.

1.2 Background and related works

First passage percolation can be thought of as putting a random metric on ❩❞ ,

where the distance between two vertices is given by the first passage time between

them. As alluded to above, the most fundamental result about first passage per-

colation says that under suitable rescaling these metrics converge almost surely to

a deterministic metric on ❘❞ in a pointed Gromov-Hausdorff sense. More pre-

cisely, we have the following. Suppose ✗ ✷ P✳❜✴ for some ❜ ✷ ✳✵❀✶✴ (actually

one only needs some moment condition and that the aforementioned standard as-

sumption that mass of any atom at ✵ is sufficiently small), and let ③❇✳t✴ denote

the set of all vertices that are within distance t of 0 in the FPP metric, and let

❇✳t✴ ❉ ③❇✳t✴ ❈ ➀�✶
✷
❀ ✶
✷
➁❞ . Then there exists a nonrandom compact convex set

B ❉ B✗ with obvious symmetries such that for each ✧ ❃ ✵

(1.2) P

✒
✳✶ � ✧✴B✗ ✚ ❇✳t✴

t
✚ ✳✶❈ ✧✴B✗ for all large t

✓
❉ ✶✿

The set B is called the limit shape for this model. See, e.g., [12] for a proof of

this. Recall the limiting constant ✖✳❞❀ ✗❀ ✈✴ in direction ✈. It is not hard to see that

✖✳❞❀ ✗❀ ✁ ✴ can be extended to a norm in ❘❞ and B is the unit ball corresponding to

this norm. The shape theorem implies that at large scales, the distance function in

the FPP metric in a fixed direction grows approximately linearly with the Euclidean

distance, and the convexity of the limit shape is then just a consequence of the

triangle inequality.

The shape theorem is a law of large number result, and the natural next question

of obtaining fluctuations has been extensively investigated. The moderate deviation

estimates are interesting, particularly in ❞ ❉ ✷, where KPZ scaling predicts a

fluctuation exponent of ✶
✸

. However, the best-known fluctuation and concentration

bounds (for T♥) have so far been proved at ♥✶❂✷❈♦✳✶✴ scale [8, 26, 36]. In this

paper, we are looking at the large deviation regime, i.e., where we consider a linear

deviation of T♥ from its long term value. Although we recall standard results only

for T♥, qualitatively the same results hold in all directions. Also, we are assuming

throughout that the passage time distribution is in P✳❜✴ for some ❜, although many

of these results hold under weaker assumptions.

Kesten [24] considered both upper and lower tail large deviations for first pas-

sage percolation. Let L✏ ✳♥✴ ❲❉ ❢T♥ ✔ ✳✖ � ✏✴♥❣ (throughout this section

for brevity we will use T♥ to denote the passage time between ✳✵❀ ✵❀ ✿ ✿ ✿ ❀ ✵✴ and

✳♥❀ ✵❀ ✿ ✿ ✿ ❀ ✵✴ in ❩❞ although it was initially defined only for ❩✷) denote the lower

tail large deviation event. Using a subadditive argument, Kesten showed that for
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1582 R. BASU, S. GANGULY, AND A. SLY

✏ ✷ ✳✵❀ ✖✴,

(1.3) lim
♥✦✶�

logP ✳L✏ ✳♥✴✴

♥
❉ r❵✳✏✴ ✷ ✳✵❀✶✴✿

While the existence of r❵✳✏✴ follows from subadditivity, showing positivity of the

same requires more work and relies on percolation arguments.

For the upper tail large deviations, Kesten showed that

(1.4) ✵ ❁ lim inf
♥✦✶ � logP ✳U✏ ✳♥✴✴

♥❞
✔ lim sup

♥✦✶
� logP ✳U✏ ✳♥✴✴

♥❞
❁✶✿

The existence of the limit was left open, and this open question was reiterated in [2]

(see Question 18 there), which we answer in our Theorem 1.

Observe that the speed of large deviations is different in the upper and lower

tails. This is not unexpected and can be intuitively explained as follows: For T♥ to

be much smaller than ✖♥, one needs only one path that is atypically small; however

it is much more unlikely for T♥ to be atypically large, since typically one can find

♥❞�✶ many ‘parallel’ short paths between the origin and ✳♥❀ ✵❀ ✵❀ ✿ ✿ ✿ ❀ ✵✴ that are

disjoint except at the beginning and the end. Thus to attain the upper tail event, all

such paths need to be large, each of which costs ❡�❶✳♥✴ and hence the total cost is at

least ✳❡�❶✳♥✴✴♥❞�✶ . Indeed, this feature is quite common in many growth models,

e.g., last passage percolation, the parabolic Anderson model, and deviation of the

spectrum of GUE (see [14] and the references therein).

As a matter of fact, among the only cases of growth models where the existence

of rate function is known for both tails are the so-called exactly solvable models of

last passage percolation. As an illustration, we only describe the result for the case

of exponential directed last passage percolation in❩✷ [22]; however, the same qual-

itative result is known in the case of Poissonian directed last passage percolation

in ❘✷ [17] and last passage percolation on ❩✷ with geometric edge weights [22].

Consider the following last passage percolation model on ❩✷ where each vertex is

equipped with an i.i.d. sample of Exp✳✶✴ random variable. As before, the weight of

any path is the sum of weights on it. The difference from the first passage perco-

lation model is that we only consider up/right directed paths, and the last passage

time between two vertices is calculated by maximizing the weight over all such

paths between the two vertices. This is one of the first exactly solvable models

rigorously shown to be in the KPZ universality class by Johansson [22] using exact

determinantal formulae. Let ▲♥ denote the last passage time from ✳✵❀ ✵✴ and ✳♥❀ ♥✴.

It is well-known [33] that ▲♥
♥
✦ ✹ almost surely as ♥ ✦ ✶. Johansson proved

large and moderate deviation estimates for ▲♥. In particular, he proved that

lim
♥✦✶

logP ✳▲♥ ✕ ✳✹❈ ✏✴♥✴

♥
❉ �■✉✳✏✴❀ ✏ ❃ ✵❀

and

lim
♥✦✶

logP ✳▲♥ ✔ ✳✹ � ✏✴♥✴

♥✷
❉ �■❵✳✏✴❀ ✏ ✷ ✳✵❀ ✹✴✿
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The functions ■❵ and ■✉ could in principle be explicitly evaluated there. Observe

that for last passage percolation, as expected, the roles of the upper tail and the

lower tail are reversed, but qualitatively there is no other difference from the FPP

case. Johansson [22] also proved a similar result for last passage percolation with

geometric passage times. Even prior to [22], the ♥-speed upper tail rate function

for exponential LPP was obtained by Seppäläinen in [34]. The analogous result in

the context of Poissonian LPP was proved by Deuschel and Zeitouni in [17] and

Seppäläinen in [35].

However, the above results concerning LDP at speed ♥✷ use some form of inte-

grability, and the proofs rely heavily on the specific passage time distributions that

are intimately connected to the integrable features in these models.

Although as far as we are aware, our result is the first one proving the existence

of a large deviation rate function for the ♥✷-speed tail for point-to-point passage

times in a nonintegrable setting. One variant of such a result was proved by Chow

and Zhang [10] in the case of line-to-line first passage time in standard first passage

percolation. Formally Chow and Zhang considered the minimum passage time

over all paths with one endpoint in ❆ ❉ ❢✳✵❀ ✐✴ ❲ ✐ ✷ ❢✵❀ ✶❀ ✿ ✿ ✿ ❀ ♥❣❣ and the other

endpoint in ❇ ❉ ❢✳♥❀ ✐✴ ❲ ✐ ✷ ❢✵❀ ✶❀ ✿ ✿ ✿ ❀ ♥❣❣; moreover, they consider the geodesic

restricted to lie in the square ➀✵❀ ♥➁✷✿ Let us denote the passage time by T✄♥. It is

a standard result [24] that
T✄♥
♥
✦ ✖ almost surely as ♥ ✦ ✶. In [10], Chow and

Zhang showed that for ✏ ❃ ✵

lim
♥✦✶�

logP ✳U✏ ✳♥✴✴

♥✷

exists and is nontrivial. The appropriate variant of their result holds in all dimen-

sions. Even though the specific geometric setting considered in [10] causes sig-

nificant simplification, and in particular rules out backtracks of the geodesic, it is

worth mentioning that the argument in [10] is an approximate subadditive argu-

ment, which bears resemblance to our approach at least at a high level (see Section

1.3 for more details). The open question addressed by Theorem 1 was also men-

tioned in [10].

We end this section with a brief discussion about a related line of work con-

cerning geometric consequences of large deviation events in first/last passage per-

colation. Formally one considers the measure obtained by conditioning on the

large deviation events, and investigates how the geometry of the random field of

weights changes. These questions were considered in the setting of exactly solv-

able Poissonian last passage percolation for the upper tail (i.e., the tail with large

deviation speed ♥) by Deuschel and Zeitouni who, in [17], showed that under the

upper tail large deviation event, the maximizing paths between two faraway points

is with high probability localized around the straight line segment joining the two

endpoints. This was refined recently in the case of exponential LPP in [5], which

established the precise exponent governing the localization. For the harder lower

tail case, in a recent paper [6] we showed that forcing the large deviation event
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1584 R. BASU, S. GANGULY, AND A. SLY

makes the path delocalized with high probability. Although the basic framework

of the latter was last passage percolation, the argument does not rely on integrable

probability (see remarks in [6] for more details).

1.3 An approximate monotonicity and the proof of Theorem 1

The argument proving Theorem 1 is quite involved and has many pieces going

into the proof. The purpose of this section is to provide a broad overview of the

key steps. At a very high level, our argument intuitively is predicated on the exis-

tence of a limiting metric structure as in (1.2) even in the upper tail large deviation

regime, which roughly implies that conditional on the large deviation event, the

distances in a fixed direction grow linearly at large scales, and as the direction is

varied, the gradient changes in a reasonably regular way. The reason to expect this

is intimately tied to the reason behind the ♥✷ speed of large deviation, which causes

the edge distributions of ❶✳♥✷✴ many edges to change.

Although we believe the above statement to be true, for the purposes of the proof

it suffices to have subsequential limits. In fact, the exact statement that we prove is

much less refined (see Proposition 2.4).

For the remainder of the paper, let ❜ ❃ ✵ and ✗ ✷ P✳❜✴ be fixed. Recall

that ✖ denotes the time constant in the ①-direction for the standard first passage

percolation on ❩✷ with ✗-distributed edge weights. Let ✏ ✷ ✳✵❀ ❜ � ✖✴ be fixed.

For ♥ ✷ ◆, let ❛♥ ❉ ❛♥✳✏✴ be defined by

❛♥ ❉ logP ✳U✏ ✳♥✴✴✿

Theorem 1 will follow easily from the following approximate monotonicity result.

PROPOSITION 1.2. For each ✧ ❃ ✵, there exists ◆✵ ❃ ✵ such that the following
holds. For all ♥ ✷ ◆ with ♥ ❃ ◆✵ there exists ▼✵ ❉ ▼✵✳♥✴ such that for all
♠ ❃ ▼✵ we have

❛♠

♠✷
✕ ❛♥

♥✷
� ✧✿

Most of this paper is devoted to proving Proposition 1.2, but before we outline

its proof let us quickly finish the proof of Theorem 1 assuming the above.

PROOF OF THEOREM 1. Let

a ❉ lim sup
♥✦✶

❛♥

♥✷
❀ a

✵ ❉ lim inf
♥✦✶

❛♥

♥✷
✿

By Kesten’s result (1.4) we know that �✶ ❁ a✵ ✔ a ❁ ✵, and hence it suffices to

prove that for all ✧ ❃ ✵❀ we have a✵ ✕ a�✷✧. Fix ✧ ❃ ✵❀ and let ◆✵ be such that the

conclusion of Proposition 1.2 holds. Pick◆✶ ❃ ◆✵ such that ❛◆✶
❂◆ ✷

✶ ✕ a� ✧
✷

, and

pick ◆✷ ❃ ▼✵✳◆✶✴ as in Proposition 1.2 such that ❛◆✷
❂◆ ✷

✷ ✔ a✵❈ ✧
✷

. Proposition

1.2 now implies that a✵ ✕ a � ✷✧, as required. This completes the proof of the

theorem. �
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1.4 Auxiliary propositions, key ideas, and the proof of Proposition 1.2

The rest of this paper proves Proposition 1.2. In this section we will state Propo-

sitions 1.3 and 1.4. The former is the key result that lower-bounds the probability of

the large deviation at a larger scale ♠ (with a slightly decreased excess) in terms of

the large deviation probability at a smaller scale ♥. The second proposition proves

continuity of the normalized log-probability of the large deviation event. We will

complete the proof of Proposition 1.2 modulo the two just-mentioned propositions

and discuss the key ideas behind the proofs of the latter. For the sake of exposition,

we will not be very precise in our outline of the ideas. In particular, the discussion

will involve terms such as ♦✳♥✷✴ or ♦✳✶✴❀ which should be interpreted as terms that

are an arbitrarily small constant times ♥✷ or ✶, where the arbitrarily small constant

depends on other parameters without necessarily being a sequence of constants that

go to ✵ with ♥.

Observe that to prove Proposition 1.2, we need to obtain a lower bound to

P ✳U✏ ✳♠✴✴ in terms of P ✳U✏ ✳♥✴✴ for ♠ ✢ ♥ ✢ ✶. The first (and the most im-

portant) step is to construct an event with probability at least P ✳U✏ ✳♥✴✴
♠✷❂♥✷ (up

to an error of ❡�♦✳♠✷✴) on which we shall have ❢T♠ ✕ ✳✖❈ ✏✵✴♠❣ for ✏✵ smaller

but arbitrarily close to ✏.

Formally, via this construction, we will prove the following proposition.

PROPOSITION 1.3. For each ✧✵ ✷ ✳✵❀ ✏✴ and ✧ ❃ ✵, there exist ◆✵ and ❍✵ such
that for all ♥ ❃ ◆✵ and ♠ ❃ ♥❍✵ we have

logP ✳U✏�✧✵✳♠✴✴ ✕ ♠✷

♥✷
logP ✳U✏ ✳♥✴✴ � ✧♠✷✿

In fact, it would be convenient to note that proving Proposition 1.3 for the case

when ♠ is divisible by ♥ implies the same for all ♠. To see this, write ♠ ❉ ♥❦❈ r

where r ❁ ♥ and note that applying Proposition 1.3 to ♥❦ and ♥, with ✧✵

✷
and ✧

✷
in

place of ✧✵ and ✧❀ we get

(1.5)

logP ✳U✏�✧✵✳♠✴✴ ✕ logP ✳U
✏� ✧✵

✷

✳♥❦✴✴ ✕ ❦✷ logP ✳U✏ ✳♥✴✴ �
✧

✷
♥✷❦✷

✕ ♠✷

♥✷
logP ✳U✏ ✳♥✴✴ � ✧♠✷❀

where the first inequality follows by observing that

T♥❦ ✕
✒
✖❈ ✏ � ✧✵

✷

✓
♥❦ ❍✮ T♠ ✕ ✳✖❈ ✏ � ✧✵

✷
✴♥❦ � r❜

✕ ✳✖❈ ✏ � ✧✵✴♠

for all large enough ❦✿ The second inequality in (1.5) is an application of the above

proposition and the final inequality follows since ♠ ✕ ♥❦ and log✳P ✳U✏ ✳♥✴✴ ✔ ✵✿

Once we have Proposition 1.3 at our disposal, all we need to prove Proposition

1.2 is a way to compare P ✳U✏ ✳♥✴✴ and P ✳U✏ ✵✳♥✴✴ when ✏ and ✏✵ are close. To
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1586 R. BASU, S. GANGULY, AND A. SLY

this end we have the following proposition, which essentially says that if the rate

function exists it must be continuous in ✏.

PROPOSITION 1.4. For each ✧ ❃ ✵, there exists ✧✵ ❃ ✵ such that for all ♥ suffi-
ciently large we have

logP ✳U✏�✧✵✳♥✴✴

♥✷
✔ logP ✳U✏ ✳♥✴✴

♥✷
❈ ✧✿

Our assumption of the edge distribution possessing a continuous density (see

Definition 1.1) is essentially only used in the proof of the above. Although we

expect that this result might be proven more generally, we have not made such

an attempt in this paper. It is easy to complete the proof of Proposition 1.2 using

Propositions 1.3 and 1.4.

PROOF OF PROPOSITION 1.2. The proof follows immediately by noticing that

❛♠

♠✷
✕ logP ✳U✏�✧✵✳♠✴✴

♠✷
� ✧ ✕ ❛♥

♥✷
� ✷✧❀

where the first inequality is the content of Proposition 1.4 and the second inequality

is the content of Proposition 1.3. �

The rest of this paper deals with proving Propositions 1.3 and 1.4. Proof of

Proposition 1.4 is easier. Essentially one shows that to increase the passage time

T♥ by ✧✵♥, it suffices to increase the passage times of all the edges inside a box of

size ❖✳♥✴ by ❖✳✧✵✴. The cost of such a change can be made as small as possible

in the exponential scale by choosing ✧✵ small enough and using the continuity of

the density of ✗. The only subtle point is that since the variables are supported on

➀✵❀ ❜➁, one cannot increase the values of the edges that already have values close

to ❜✿ However, by choosing the parameters carefully we ensure that there are not

too many edges of the latter kind and that the geodesic necessarily passes through

many edges whose values are away from ❜, in which case the perturbation strategy

works. The formal proof appears in Section 5. The remainder of this section

presents an outline of the proof of Proposition 1.3, which is really the heart of this

paper.

For the purpose of illustration, we shall only outline the proof in the special case

♠ ❉ ✷♥. Also, we shall pretend, for the time being, that the event ❢T♥ ✕ ✳✖❈✏✴♥❣
only depends on the edge weights in the box ❇ ❉ J✵❀ ♥K✂J�♥

✷
❀ ♥
✷
K, where J❛❀ ❜K ❲❉

➀❛❀ ❜➁❭❩. Observe that while this is not deterministically true because the paths are

allowed to backtrack, a version of this holds with high probability if one replaces ❇

by a box of side length being a large (✗ dependent) constant times ♥ and centered

at the origin. This is what we will do throughout the rest of the paper (see, e.g., the

discussion around (2.2)).

Let ✧ be an arbitrary small positive number, and suppose P ✳T♥ ✕ ✳✖❈ ✏✴♥✴ ❉
♣. So our task is to create an environment on ❇✶ ❉ J✵❀ ✷♥K ✂ J�♥❀ ♥K with prob-

ability at least ♣✹❡�♦✳♥✷✴, on which we shall have ❢T✷♥ ✕ ✳✖ ❈ ✏ � ✧✴✷♥❣. The
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LARGE DEVIATIONS IN FPP 1587

basic idea of such a construction is as follows. Consider the large deviation event

❢T♥ ✕ ✳✖ ❈ ✏✴♥❣✿ We shall show that ❇ can be tiled by subboxes of size ❦ ✂ ❦

(which we will call ‘tiles’; see Figure 1.1) such that there exists a subevent of

❢T♥ ✕ ✳✖❈ ✏✴♥❣ with probability at least ♣❡�♦✳♥✷✴ such that, for any environment

❹ in this subevent, most of the tiles in ❇ are stable. We shall choose ❦ ❉ ♥
✷❏

for

some large ❏ that remains bounded independent of ♥.

The notion of stability of a tile is defined precisely later (see Definition 2.8),

but here we give a simplified (and somewhat vague) description for the purpose of

exposition. Roughly, a ❦ ✂ ❦ tile being stable means that for all points z in the

tile, the passage time starting from z in each fixed direction grows approximately

linearly with the Euclidean distance at scale ❦; i.e., the passage time from z to the

point in direction ✒ at distance ✷❦ is approximately twice the passage time from z

in the direction ✒ at distance ❦ and so on). For example, for z in the tile and any

✒ ✷ ❙✶, let z✶ and z✷ be points such that z❀ z✶❀ z✷ lie in a straight line making angle

✒ with the ①-axis and ❦z� z✶❦ ❉ ❦z✶ � z✷❦ ❉ ❦ where ❦✁❦ denotes the Euclidean

norm.2 The box is then said to stable if

(1.6) PT✳z❀ z✶✴ ❉ ✳✶❈ ♦✳✶✴✴PT✳z✶❀ z✷✴ ❉ ✳✶❈ ♦✳✶✴✴
PT✳z❀ z✷✴

✷

for each such z and each direction ✒ . The actual definition of stability will ask for

something stronger (e.g., a similar condition for a sequence of larger number of

equally separated points z❀ z✶❀ z✷❀ ✿ ✿ ✿ ❀ z❵ on a line and a larger number of different

scales of separations instead of the separation being only ❦; see Section 2.1 for

precise definitions).

Before proceeding further, we discuss our choice of scales. As indicated above,

we shall show that for some ❏ ✷ ◆ (depending in a somewhat complicated fashion

on parameters governing stability, but remaining bounded as ♥✦✶), there exists

an event with probability at least ♣❡�♦✳♥✷✴ (called the Base-event) contained in

the large deviation event ❢T♥ ✕ ✳✖ ❈ ✏✴♥❣ with the following property. On this

subevent, we can tile the environment with tiles of size ♥
✷❏

such that except at most

❖✳✧✴ fraction of the tiles, all other tiles are stable. Note that, in the definition of

stability, the gradient of the linear function at a given point and in a given direction

can a priori depend on the environment ❹. However, by a picking a fine enough

mesh and rounding to the nearest mesh point, we shall restrict ourselves to a further

subevent, still of probability at least ♣❡�♦✳♥✷✴, such that each environment in the

subevent yields the same mesh point after rounding (in particular, this implies that

the ratios of PT✳z❀ z✶✴ computed on any two different environments in this subevent

agree up to ✶❈ ♦✳✶✴ multiplicative factors). See Proposition 2.4 and Lemma 3.11

for precise statements of the above results.

2 Throughout the paper we shall use ❦✁❦ to denote the Euclidean norm for points in ❘✷. Occa-

sionally we shall also need to use the ❵✶ norm for points and vectors in ❘✷, which will be denoted

by ❦✁❦✶.
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nicer class of paths, with well-behaved excursions; see Section 4.1 for details.)

Thus ❵✳✌ ✵✴ ❉P✐ ❵✳✌
✵
✐ ✴✿ Now the key is to observe that for such a ✌ ✵ one can create

a path ✌ between 0 and n such that ✌ is a concatenation of paths ✌✶❀ ✌✷❀ ✿ ✿ ✿ . This is

done by just taking ✌✐ to be the shortest path between points that are the endpoints

of ✌ ✵✐ scaled down by a factor ✷ (see Figure 1.1). However, note that ✌✐ need not be

excursions even though ✌ ✵✐ s are by definition. The former are just taken to be the

shortest path in the environment ❹✶ (say) between the points obtained by dividing

the endpoints of ✌ ✵✐ by ✷.

The stability of the tiles now imply that ❵✳✌ ✵✐ ✴ ✕ ✳✶❈♦✳✶✴✴✷❵✳✌✐ ✴, where the left-

hand side is computed on ❹✵ and the right-hand side on ❹✶ say. Thus it follows

that

❵✳✌ ✵✴ ❉
❳
✐

❵✳✌ ✵✐ ✴ ✕ ✷✳✶❈ ♦✳✶✴✴
❳
✐

❵✳✌✐ ✴

❉ ✷✳✶❈ ♦✳✶✴✴❵✳✌✴ ✕ ✷✳✶❈ ♦✳✶✴✴✳✖❈ ✏✴♥❀

(1.7)

where the last inequality follows by definition, as ✌ is a path formed by concate-

nating ✳✌✐ ✴✐ between 0 and n in the environment ❹✶, which is in U✏ ✳♥✴✿

As indicated before, we have only attempted to present the high level ideas

involved in the arguments without much discussion on the quantifiers involved in

the precise statements. We end with a brief discussion on some of the technical

aspects.

(1) The most important step is to prove that ❇ can be divided into such stable

tiles. In fact, we prove that there exists a tiling of ❇ where most tiles are stable,

i.e., the total number of points in unstable tiles is ♦✳♥✷✴. This essentially only uses

the fact that with high probability, the FPP metric is bi-Lipschitz with respect to the

Euclidean metric at all large enough scales, which in turn is a consequence of the

shape theorem in (1.2). Under the conditioned large deviation event, this continues

to persist due to the FKG inequality (we record this observation in Lemma 2.2).

The formal stability result is Proposition 2.4 in this paper, and the proof is provided

in Section 7, where a detailed outline of the proof and an elaborate explanation of

the key ideas can be found.

Intuitively the result says that any subsequential limiting metric structure due

to its bi-Lipschitz nature should have a reasonably smooth gradient function (see

(2.10) and Definition 2.11). Thus the size of the tiles capture the scale at which an

approximate smoothness is witnessed. However, formally we show (see Proposi-

tion 2.4) that all but at most a small fraction of tiles are stable, and the unstable tiles

can be handled by replacing all the edge values in those by values close to ❜ (recall

that ✗ has support ➀✵❀ ❜➁). This operation only can increase the passage time and

hence makes the upper tail event more likely and on the other hand it only costs

❡�♦✳♥✷✴ in probability and hence does not change any of the conclusions.

(2) Finally, we describe briefly another point among many which we have

swept under the carpet so far. All the discussion above describes how to construct
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1590 R. BASU, S. GANGULY, AND A. SLY

a ✷♥✂ ✷♥ environment out of an ♥✂ ♥ environment preserving (up to an error) the

upper tail large deviation event. However, observe that in order to prove Proposi-

tion 1.3, we need to be able to dilate the original environment by factor ❤ ❉ ♠
♥

,

which could be arbitrarily large. To ensure that the error term ✳✶❈ ♦✳✶✴✴ in (1.7)

does not blow up, we will in fact modify the notion of stable tiles which allows

dilation by an arbitrary factor ❤. (As mentioned earlier, we shall choose the tile

size ❦ ❉ ♥
✷❏

for some large scale ❏ that depends on certain parameters including

♥ and ♠, but remains uniformly bounded by an absolute constant ❏✷. Now such

a ❏ would a priori be random and dependent on the environment. However, on

account of the uniform boundedness, a simple application of the pigeonhole prin-

ciple implies there exists a ❏ such that certain desired properties such as stability

hold at the scale determined by ❏ with probability at least ✶
❏✷
✿ This is the scale

we will choose. We will in fact show the existence of such a ❏ by an application

of the probabilistic method by introducing a certain additional artificial random-

ness which will be explicitly discussed in Section 7). To ensure this, we prove that

stable tiles have a couple of additional properties:

✎ First of all, we need to ensure stability at most locations at many consecutive

length scales (this was already alluded to before) rather than just two as in

(1.6).

✎ More importantly, we show that as the direction vector is varied at a given

location, the gradient field has approximate convexity properties. This result

should be thought of as a weak analogue of the convexity of the limiting shape

in (1.2) in the upper tail large deviation regime, and this will enable us to

compare the distance function between the ❦ ✂ ❦ box and the ❦❤ ✂ ❦❤ box.

The formal convexity statement is stated as Proposition 3.4 and the proof is

presented in Section 6.

1.5 Related future directions

We end this section by briefly pointing out that the general technique developed

in this paper is expected to be applicable to a wide array of problems, a few of

which are discussed below. We expect our methods to be adaptable to the case of

lower tail (♥✷-speed) large deviations in directed last passage percolation in ❩✷.

Another related object of study is the entire space-time evolution profile of the

last passage time or polymer energy, i.e.,

❢▲✈ ❲ ✈ ❉ ✳✈✶❀ ✈✷✴❀ ♥t✶ ✔ ✈✶ ❈ ✈✷ ✔ ♥t✷❀ ♥✉✶ ✔ ❥✈✶ � ✈✷❥ ✔ ♥✉✷❣❀

where ▲✈ denotes the last passage time from ✳✵❀ ✵✴ to ✈. For the case of exponential

LPP, using the correspondence to TASEP, this question is equivalent to understand-

ing the height function of the so-called corner growth process; large deviations for

the ♥-speed tail in this case was obtained in [21,38] while for the ♥✷-speed tail, only

upper and lower bounds have recently been obtained in [31] starting from general

initial data. We believe that our methods could possibly be sufficiently robust to
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LARGE DEVIATIONS IN FPP 1591

handle the lower tail large deviation for the space-time evolution for a large class

of passage time distributions going beyond the integrable case of exponential LPP.

Another promising direction of possible applications lie in the realm of positive

temperature polymer models in ✳✶❈ ✶✴-dimension. These are variants of last pas-

sage percolation models where instead of choosing the maximal weight path, one

puts a probability measure on the space of all directed paths (from ✳✵❀ ✵✴ to ✳♥❀ ♥✴,

say) which assigns a probability proportional exp✳☞❍✳✌✴✴ to a path ✌ where ☞

is the inverse temperature and ❍✳✌✴ is the sum of weights along ✌ . The quan-

tity of interest here is the log of the partition function ❩♥❀☞ ❲❉ P✌ exp✳☞❍✳✌✴✴.

In [7], results of [13] were generalized to establish the ♥✷ speed of the lower tail

large deviations for log❩ under certain tail conditions on the weight distribution.

A precise upper tail large deviation rate function was established for the ♥-speed

upper tail for the exactly solvable log-gamma polymer [18]. We believe that our

methods could be useful to prove the existence of rate functions for lower tail large

deviations of log❩ under certain conditions that guarantee ♥✷ speed of the large

deviations. In this context, it is worth mentioning the recent progress [11, 37] on

the related problem of the lower tail large deviation for the KPZ equation, using

techniques depending crucially on the exactly solvable nature of the problem. In

a forthcoming project, with Manan Bhatia [4], the first two authors address the

lower tail large deviations of a Poissonized positive temperature model, which is

not known to exhibit any integrable properties.

Finally, to deduce interesting geometric consequences of large deviations, sev-

eral key steps often have to be established beyond proving the existence of a rate

function. In many natural cases the rate function turns out to have nice analytic

properties like convexity, which we also expect in our case. Moreover, as the pre-

vious discussion on the key idea of the proof in Section 1.3 suggests, we expect

a shape theorem (a limiting metric space) even in the large deviation regime anal-

ogous to the typical behaviour mentioned in (1.2). The above and other related

directions form a general program of systematically studying large deviations in

nonintegrable settings to be pursued in future research.

1.6 Organization

We finish this introduction by describing the organization of this paper. In Sec-

tion 2 we set up the notation and make a precise statement of the stability result

Proposition 2.4. We also state precisely the regularity results of the gradient field.

The proofs of these results are postponed until later. In Section 3, we state Proposi-

tion 3.4, a key approximate convexity result for the distance function. This section

also contains the definition of the key event (see Lemma 3.5) that acts as our build-

ing block in going from a lower to a higher scale. In Section 4 we use these results

to prove Proposition 1.3. In Sections 5 and 6 we provide the proofs of the continuity

of rate function (Proposition 1.4) and the approximate convexity result Proposition

3.4, respectively. Finally, in Section 7 we prove the stability result Proposition 2.4

to complete the argument.
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1592 R. BASU, S. GANGULY, AND A. SLY

2 Formal Definitions and Notations

Throughout the remainder of this paper we shall fix a passage time distribution ✗

that satisfies the hypothesis of Theorem 1; i.e., it is supported on ➀✵❀ ❜➁ with a

continuous density function. This in particular implies that passage times are not

concentrated on one point and there is no mass at ✵, which in turn implies that the

shape theorem (1.2) holds. For this passage time distribution and a direction vector

v ✷ ❙✶, we shall denote by ✖v the time constant in direction v (as in the previous

section, for v ❉ ✳✶❀ ✵✴ we shall drop the subscript). Under these conditions one can

prove the following basic concentration estimate (see, e.g., [24]): for each ✧ ❃ ✵,

v ✷ ❙✶, some ❝ ❃ ✵, and all ♥ sufficiently large we have (❜♥v❝ is the vertex in ❩✷

obtained by taking coordinatewise integer parts of ♥v):

(2.1) P ✳❥PT✳0❀ ❜♥v❝✴ � ✖v♥❥ ✕ ✧♥✴ ✔ ❡�❝♥✿

We shall rely on the above often, sometimes implicitly without referring to it. No-

tice that we are concerned with the large deviation regime, whereas (2.1) is for

typical environments. To use it in the large deviation regime, we need a tool to

compare the environment in the large deviation regime with the typical environ-

ment. This is provided by the FKG inequality. For a fixed ✏ ✷ ✳✵❀ ❜ � ✖✴, let

❹ ❉ ✳❳❡ ❲ ❡ ✷ ❊✳❩✷✴✴ and ❹U ❉ ✳❳U
❡ ❲ ❡ ✷ ❊✳❩✷✴✴ be the typical and

conditional (on U✏ ✳♥✴) edge weight environments, respectively.

The following lemma is a well-known consequence of the FKG inequality and

Strassen’s theorem (see [28]).

LEMMA 2.1. There exists a coupling ✳❹❀❹U ✴ such that almost surely, for each
edge ❡ we have ❳❡ ✔ ❳U

❡ ✿

There are two main consequences of Lemma 2.1 that will be useful for us. First,

this will provide lower bounds on the FPP metric conditional on U✏ ✳♥✴; second,

it will enable us to restrict our attention to finite boxes. Before we proceed with

the relevant statements, we extend the function PT from ❩
✷ ✂❩✷ to ❘✷ ✂❘✷; this

will reduce notational complexities significantly. There is not one canonical way to

do this; we choose the following extension for concreteness. For every ①❀ ② ✷ ❘✷

define PT✳①❀ ②✴ ❲❉ PT✳②①❀ ②②✴ where ②① and ②② are the nearest lattice points to ①❀ ②,

respectively (in case of a tie, we choose the one that is smallest in the usual lexico-

graphic order on ❩✷✿). We introduce some more useful notations. Throughout we

will use Box✳r✴ to denote the (continuous) r ✂ r box ➀� r
✷
❀ r
✷
➁✷ ✒ ❘

✷.

We now proceed to show that geodesics do not wander too much even in the

large deviation regime. Let ✖min ❉ minv✷❙✶ ✖v. As a consequence of (1.2),

✖min ❃ ✵. Let us fix

(2.2) C ❉ ✶✻❜

✖min

✿

This C will be important for us and will be fixed throughout the paper.
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LARGE DEVIATIONS IN FPP 1593

The next lemma shows that in the environment ❹U , with high probability the

FPP metric within Box✳✷C ♥✴ is lower-bounded by a constant multiple of the Eu-

clidean metric. To this end let us define the following events. Let

(2.3)

E♥❀✶ ❲❉
✟✽z❀✽w ✷ Box✳✷C ♥✴ such that ❦z � w❦ ✕ ♣

♥❀

PT✳z❀w✴ ✕ ③✖❦z � w❦✠❀
E♥❀✷ ❲❉

✟✽z ✷ Box✳✷C ♥✴❀PT✳z❀❩✷ ♥ Box✳✹C ✷♥✴✴ ✕ ✷③✖C
✷♥

✠
❀

where ③✖ ❉ ✖min

✷
and PT✳z❀❩✷ ♥ Box✳✹C ✷♥✴✴ denotes the minimum passage time

from z to a point in ❩✷ ♥ Box✳✹C ✷♥✴ (clearly this is attained at some point on the

boundary of Box✳✹C ✷♥✴).

Let us define E♥ ❲❉ E♥❀✶ ❭ E♥❀✷. Observe that since any path attaining

PT✳z❀❩✷ ♥ Box✳✹C ✷♥✴✴

must necessarily be contained in Box✳✹C ✷♥✴, the event E♥❀✷ is measurable with

respect to the passage times in Box✳✹C ✷♥✴. Also since PT✳z❀w✴ ✔ ✷❜❦z � w❦
for ❦z � w❦ ✕ ♣

♥, by our choice of C , on E♥❀✷ whether or not E♥❀✶ holds is

also a function of the edge weights on Box✳✹C ✷♥✴. A similar reasoning implies

that on E♥❀✶ ❭ E♥❀✷, PT✳0❀n✴ is a deterministic function of the edge weights on

Box✳C ♥✴. Summarising, E♥ is an event measurable with respect to the passage

times in Box✳✹C ✷♥✴ on which the following hold:

PT✳0❀❩✷ ♥ Box✳C ♥✴✴ ✕ ✹❜♥❀Geo✳0❀n✴ ✚ Box✳C ♥✴

Geo✳z❀w✴ ✚ Box✳✹C ✷♥✴ ✽z❀✽w ✷ ❩✷ ❭ Box✳C ♥✴✿

where Geo✳z❀w✴ denotes the almost surely unique geodesic between the points z

and w.

We now show that E♥ holds with high probability conditional on U✏ ✳♥✴.

LEMMA 2.2. There exists ❝ ❃ ✵ such that for all sufficiently large ♥❀ for all ✏ ✷
✳✵❀ ❜ � ✖✴, with conditional (on U✏ ✳♥✴) probability at least ✶ � ❡�❝

♣
♥, E♥ holds.

PROOF. By taking a union bound over all pairs of lattice points in Box✳✷C ♥✴

with mutual distance at least
♣
♥ � ✸ and using (2.1), it follows that P ✳E ❝

♥❀✶✴ ✔
❡�❝

♣
♥. By taking a union bound over all pairs of lattice points, one of which

is in Box✳✷C♥✴ and the other is on the boundary of Box✳✹C ✷♥✴, it follows that

P ✳E ❝
♥❀✷✴ ✔ ❡�❝♥. These together imply P ✳E♥✴ ✕ ✶ � ❡�❝

♣
♥ for all ♥ sufficiently

large, and the proof is completed by invoking Lemma 2.1. �

From now on we will restrict ourselves to Box✳✹C ✷♥✴ by defining the event

U
✄
✏ ✳♥✴ ❉ U✏ ✳♥✴ ❭ E♥❀

which by the above discussion satisfies

(2.4) ✳✶ � ❡�❝
♣
♥✴P ✳U✏ ✳♥✴✴ ✔ P ✳U ✄

✏ ✳♥✴✴✿
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The main arguments in this paper rely on a notion of stability of the passage

times from a point z✿ Fix a tolerance parameter ✍ ❃ ✵✿ For ❦ ✷ ◆, ❵ ❃ ✵, and

✒ ✷ ❙✶, we say that z ✷ ❘✷ is ✳✍❀ ✒❀ ❵❀ ❦✴-Stable (with respect to any edge weight

configuration ❹) if for ✶ ✔ ❦✵ ✔ ❦❀

❦✵PT✳z❀ ✒❀ ❵❀ ✶✴

✳✶❈ ✍✴
✔ PT✳z❀ ✒❀ ❵❦✵❀ ✶✴ ✔ ✳✶❈ ✍✴❦✵PT✳z❀ ✒❀ ❵❀ ✶✴✿(2.7)

In words, z ✷ ❘✷ is ✳✍❀ ✒❀ ❵❀ ❦✴-Stable if the passage time from ➫ to ➫❈ ✳✒❀ ❵❦✵✴
can be approximated up to a ✳✶ ❈ ✍✴ multiplicative error by ❦✵ times the passage

time from ➫ to ➫❈✳✒❀ ❵✴ for all ✶ ✔ ❦✵ ✔ ❦. This captures the approximately linear

growth of the distance function.

In the following, for convenience, we would work with a discretized version of

❙
✶. For any ✑ ❃ ✵❀ let

(2.8) ❙
✶✳✑✴ ❉ ❢✵❀ ✑❀ ✷✑❀ ✿ ✿ ✿ ✷✙ � ✑❣

(✷✙❂✑ is assumed to be an integer to avoid rounding issues). We will say that z is

✳✍❀❙✶✳✑✴❀ ❵❀ ❦✴-Stable if z is ✳✍❀ ✒❀ ❵❀ ❦✴-Stable for each ✒ ✷ ❙✶✳✑✴ and similarly

we will say that z is ✳✍❀ ❵❀ ❦✴-Stable if z is ✳✍❀ ✒❀ ❵❀ ❦✴-Stable for each ✒ ✷ ❙✶.

With this preparation, we can now state an initial version of our stabilization

result.

PROPOSITION 2.4. Fix ✍❀ ✧❀ ✑ ❃ ✵❀ and ❦ ✷ ◆ and ❏✶ ✷ ◆. There exists ❏✷ ✷ ◆
such that for all large enough ♥, conditioned on U ✄

✏
✳♥✴ the following holds: there

exists ❏✶ ✔ ❥ ✔ ❏✷ (random depending on ❹ ✷ U ✄
✏
✳♥✴) such that

#❢z ✷ ❩✷ ❭ Box✳C ♥✴ ❲ z is not

✒
✍❀❙✶✳✑✴❀

C ♥

✷❥
❀ ❦

✓
-Stable❣ ✔ ✧♥✷✿

The proof of Proposition 2.4 is rather technical and is postponed until Section 7.

This is one of the three main ingredients of our proofs. Although we have stated

the result in terms of the lattice points in Box✳C ♥✴, to avoid having to address

rounding issues, it will be convenient to work with a version of stability for all
points in Box✳C ♥✴. This follows from the fact that stability of a point implies

stability of nearby points with possibly slightly worse parameters. The next lemma

makes this precise.

LEMMA 2.5. For ❦ ❃ ❈ ❃ ♠ ❃ ✵ and a fixed ❥ , the following holds on E♥ for
all ♥ sufficiently large and ❵ ❃ ♥

✷❥
: for any z ✷ Box✳C ♥✴ that is ✳✍❀ ✒❀ ❵❀ ❦✴-Stable

and any z✵ such that ❦z � z✵❦ ✔ ❵♠❀ we have z✵ is ✳✍✵❀ ✒❀ ❈❵❀ ❦
❈
✴-Stable❀ where

✍✵ ❉ ✍ ❈❖✳♠
❈
✴✿

PROOF. The proof follows by an application of the triangle inequality where we

observe the following: for any ❵✵❀
PT✳z❀ z ❈ ✳✒❀ ❵✵✴✴ ✔ PT✳z✵❀ z✵ ❈ ✳✒❀ ❵✵✴✴❈❖✳❵♠✴❀(2.9)

PT✳z✵❀ z✵ ❈ ✳✒❀ ❵✵✴✴ ✔ PT✳z❀ z ❈ ✳✒❀ ❵✵✴✴❈❖✳❵♠✴✿
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In what follows, while dealing with tiling of Box✳♥✴, we will choose ❵ ❉ ♥
✷❥❈♠

and ❦ ❉ ✷✷♠, where the choice of ❥ and ♠ will vary through the paper and will

depend on some other parameters relevant for specific applications. Nonetheless,

importantly, they will not depend on ♥❀ and the reader should think of them as fixed

constants and ♥ as a much larger number.

Using Lemma 2.5, we now prove that if at least ✳✶ � ✧✴ fraction of the lattice

points in a Tile♥✳❥❀ ✈✴ are stable for some values of the parameters, then all the
points are stable for a slightly different range of parameters.

LEMMA 2.9. Let ❥❀♠ ✷ ◆, and ❵ ❉ ♥
✷❥❈♠

❀ ❦ ❉ ✷✷♠. Fix ✍❀ ✑ ❃ ✵. There exists
❈ ❃ ✵ sufficiently large such that for all sufficiently small ✧ ❃ ✵ on E♥❀ the fol-
lowing holds for all sufficiently large ♥: If Tile♥✳❥❀ ✈✴ is ✳✍❀❙✶✳✑✴❀ ❵❀ ❦❀ ✧✴-Stable,
then Tile♥✳❥❀ ✈✴ is ✳✷✍❀❙✶✳✑✴❀ ❵✵❀ ❦✵❀ ✵✴-Stable where ❵✵ ❉ max✳ ♥

✷❥
❈
♣
✧❀ ❵✴ and

❦✵ ❉ ❦❵❂❵✵.

PROOF. Observe that for every Tile♥✳❥❀ ✈✴ that is ✳✍❀❙✶✳✑✴❀ ❵❀ ❦❀ ✧✴-Stable❀ and

any z ✷ Tile♥✳❥❀ ✈✴❀ there exists w ✷ Tile♥✳❥❀ ✈✴ with ❦z � w❦ ✔ ✽
♣
✧ ♥
✷❥

and w

is ✳✍❀❙✶✳✑✴❀ ❵❀ ❦✴-Stable✿ This is because the existence of a z for which there is

no such w contradicts the hypothesis that Tile♥✳❥❀ ✈✴ is ✳✍❀❙✶✳✑✴❀ ❵❀ ❦❀ ✧✴-Stable.

The proof now follows from Lemma 2.5 for ❈ sufficiently large (and ✧ sufficiently

small). �

Observe that even though Lemma 2.9 refers only to the stability of all lattice

points in Tile♥✳❥❀ ✈✴, the proof actually shows that all points in Tile♥✳❥❀ ✈✴ are

✳✍❀❙✶✳✑✴❀ ❵❀ ❦✴-Stable. From now on we will call such a tile a ✳✍❀❙✶✳✑✴❀ ❵❀ ❦✴-

Stable tile. We now show that the above in fact implies stability for all angles

✒ ✷ ❙✶✿
LEMMA 2.10. Let ❥❀♠ be as in the previous lemma. Then on E♥ the following
holds for all sufficiently large ♥: for a ✳✍❀❙✶✳✑✴❀ ❵❀ ❦✴-Stable Tile♥✳❥❀ ✈✴ for z❀ z✵ ✷
Tile♥✳❥❀ ✈✴❀ we have for all ✒ ✷ ❙✶❀

✶

✶❈ ✍✵ ✔
r✳z❀ ✒❀ ❦✶❵✴
r✳z✵❀ ✒❀ ❦✷❵✴

❁ ✶❈ ✍✵❀(2.12)

with ✍✵ ❉ ❖✳✍ ❈ ✑❈ ✶
✷♠

✴ and ✶ ✔ ❦✶❀ ❦✷ ✔ ❦✿

PROOF. The proof is quite similar to that of Lemma 2.9. Recalling (2.11), if for

any ✒ ✷ ❙✶, ②✒ is the closest point in ❙✶✳✑✴❀ then for any ❦✶ ✔ ❦❀

❥PT✳z❀ z❈ ✳✒❀ ❦✶❵✴✴ � PT✳z❀ z❈ ✳②✒❀ ❦✶❵✴✴❥ ✔ ❖✳✑❦✶❵✴❀

which along with the hypothesis that z is ✳✍❀❙✶✳✑✴❀ ❵❀ ❦✴-Stable implies that

✶

✶❈❖✳✍ ❈ ✑✴
✔ r✳z❀ ✒❀ ❦✶❵✴
r✳z❀ ✒❀ ❦✷❵✴

❁ ✶❈❖✳✍ ❈ ✑✴✴✿
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Now another application of the triangle inequality as in (2.9) shows that for any

z❀ z✵ as in the statement of the lemma,

PT✳z❀ z ❈ ✳✒❀ ❦❵✴✴ ✔ PT✳z✵❀ z✵ ❈ ✳✒❀ ❦❵✴✴❈❖

✒
♥

✷❥

✓
✿

Hence using the fact that ❦❵ ❉ ✷♠♥
✷❥

❀ it follows that

✶

✶❈❖✳✍ ❈ ✑❈ ✶
✷♠

✴
✔ r✳z❀ ✒❀ ❦❵✴
r✳z✵❀ ✒❀ ❦❵✴ ❁ ✶❈❖

✒
✍ ❈ ✑❈ ✶

✷♠

✓
✿ �

Thus from now on we shall refer to a tile as ✳✍❀ ❵❀ ❦✴-Stable if (2.12) is satisfied

with ✍ in place of ✍✵. Now for a ✳✍❀ ❵❀ ❦✴-Stable Tile♥✳❥❀ ✈✴ as above, (2.12) allows

us to define a gradient function not for every individual point z but for the whole

tile itself.

DEFINITION 2.11. For a ✳✍❀ ❵❀ ❦✴-Stable Tile♥✳❥❀ ✈✴❀ define for any ✒ ✷ ❙✶❀
r♥✳✳❥❀ ✈✴❀ ✒✴ ❉ r♥✳✳❥❀ ✈✴❀ ✒❀ ❵✴ ❲❉ r✳z❀ ✒❀ ❵✴

for the center point z of Tile♥✳❥❀ ✈✴✿

Observe that even though this definition implicitly depends on ❵, we shall drop

it from our notation as the length scale ❵ will always be clear from the context. The

reason for calling r♥✳✳❥❀ ✈✴❀ ✁ ✴ the gradient function for Tile♥✳❥❀ ✈✴ is the follow-

ing: even if we replace the centre of Tile♥✳❥❀ ✈✴ by any arbitrary z ✷ Tile♥✳❥❀ ✈✴,

the value of the gradient changes only by a multiplicative factor of ✳✶❈ ✍✴, and in

all our applications, by a proper choice of parameters, ✍ will be made arbitrarily

close to ✵.

Note that on the event in Lemma 2.2, the following straightforward bounds hold:✒
✶ �❖

✒
✶

❵

✓✓
③✖ ✔ r♥✳✳❥❀ ✈✴❀ ✒✴ ✔

✒
✶❈❖

✒
✶

❵

✓✓
❜❦✳✒❀ ✶✴❦✶❀(2.13)

where, as earlier, ✳✒❀ ✶✴ is the unit vector in direction ✒ . While the lower bound is

essentially the content of Lemma 2.2, the upper bound follows from the fact that

the edge weights are bounded by ❜✿ The errors arise from rounding, since passage

times between real points are defined to be passage times between nearest lattice

points.

With the above preparation we shall now go back to the setting of Proposition

2.4 and show that there exists a scale ❥ such that, conditional on U ✄
✏
✳♥✴, with

probability bounded below, most of the scale ❥ tiles in Box✳C ♥✴ are stable. Recall

that U ✄
✏
✳♥✴ was an event on Box✳✹C ✷♥✴.

LEMMA 2.12. Condition on U ✄
✏
✳♥✴. Then given ✑❀♠❀ ✍❀ ✧✶❀ ❏✶ such that ✶

✷♠
✕♣

✧✶❀ there exists a constant ❏✷ such that for all large enough ♥❀ there exists a
scale ❏✶ ✔ ❥ ✔ ❏✷ (depending on ♥) such that with probability at least ✶

❏✷
, for

all but ✧✶ fraction of ✈ ✷ J✶❀ ✷❥ K✷❀ TileC♥✳❥❀ ✈✴ is ✳✍❀❙✶✳✑✴❀ ❵❀ ❦❀ ✧✶✴-Stable (see
Definition 2.8) where ❵ ❉ C♥

✷❥❈♠
and ❦ ❉ ✷✷♠✿

 1
0

9
7

0
3

1
2

, 2
0

2
1

, 8
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/cp

a.2
2

0
1

0
 b

y
 P

rin
ceto

n
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

3
/0

2
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



1600 R. BASU, S. GANGULY, AND A. SLY

PROOF. Note that from the statement of Proposition 2.4, choosing ❦ ❉ ✷✹♠ and

✧❂C ✷ ❉ ✧✷✶, it follows that there exists a scale ❥ such that with probability at least
✶
❏✷

(❏✷ appearing in the statement of Proposition 2.4) the fraction of lattice points

z in Box✳C ♥✴ that are not ✳✍❀❙✶✳✑✴❀ ❵❀ ❦✴-Stable is at most ✧♥✷ where ❵ ❉ C♥
✷❥❈♠

and ❦ ❉ ✷✷♠✿ Thus the total fraction of ✈ ✷ J✶❀ ✷❥ K✷ such that TileC♥✳❥❀ ✈✴ is

not ✳✍❀❙✶✳✑✴❀ ❵❀ ❦❀ ✧✶✴-Stable is at most ✧✶ since otherwise the total fraction of

lattice points z ✷ Box✳C ♥✴ that are not ✳✍❀❙✶✳✑✴❀ ❵❀ ❦✴-Stable will be more than

✧✷✶ ❉ ✧❂C ✷, contradicting the conclusion of Proposition 2.4. �

The above result now implies that most of the tiles are stable (in the sense of

Lemma 2.9) for an appropriate choice of parameters.

LEMMA 2.13. Given small enough ✍✶❀ ✧✶ ❃ ✵ and a positive integer ♠✶ such

that ✶
✷♠✶

✕ ✧
✶❂✹
✶ and ❏✶ ✷ ◆, there exists ❏✷ such that for all large enough ♥,

conditioned on U ✄
✏
✳♥✴, there exists ❏✶ ✔ ❥✶ ❁ ❏✷ (depending on ♥) such that with

probability at least ✶
❏✷

, the fraction of ✈ ✷ J✶❀ ✷❥✶K✷ such that TileC♥✳❥✶❀ ✈✴ is not

✳✍✶❀ ❵✶❀ ❦✶✴-Stable is at most ✧✶ where ❵✶ ❉ C♥

✷❥✶❈♠✶
and ❦✶ ❉ ✷✷♠✶ .

PROOF. For ✑❀ ✍ sufficiently small and ♠❀ ❏✶ (to be chosen appropriately later

depending on ✍✶❀ ✧✶❀ ♠✶ as in the statement of the lemma), Lemma 2.12 implies

the existence of ❏✷ ✷ ◆ and ❏✶ ✔ ❥✶ ✔ ❏✷ such that with probability at least
✶
❏✷

and with ❵ ❉ C♥

✷❥✶❈♠
and ❦ ❉ ✷✷♠ for all but an ✧✶ fraction of ✈ ✷ J✶❀ ✷❥✶K✷,

TileC♥✳❥✶❀ ✈✴ are ✳✍❀❙✶✳✑✴❀ ❵❀ ❦❀ ✧✶✴-Stable (see Definition 2.8). We shall show

that all of these stable tiles are also ✳✍✶❀ ❵✶❀ ❦✶✴-Stable. We now fix ♠ such that

❵✶ ❉ C ♥

✷❥✶❈♠✶
❉ max

✒
C ♥

✷❥✶
❈
♣
✧❀ ❵

✓
(where ❈ is as in Lemma 2.9) and ❦✶ ❉ ✷✷♠✶ ❉ ❦❵

❵✶
(notice that such a choice

is possible because we have assumed ✶
✷♠✶

✕ ✧
✶❂✹
✶ ✴. Notice first that Lemma 2.9

implies that all the stable tiles above are also ✳✷✍❀❙✶✳✑✴❀ ❵✵❀ ❦✵❀ ✵✴-Stable. Now

applying Lemma 2.10 we conclude that each such tile is in fact ✳✍✶❀ ❵✶❀ ❦
✵✴-Stable

by choosing ✍❀ ✑ sufficiently small so that ✍✶ ❉ ❖✳✍ ❈ ✑ ❈ ✶
✷♠✶

✴ as in Lemma

2.10. �

Throughout this article Lemma 2.13 will govern our choices of parameters.

3 Technical Preliminaries

As mentioned in our proof strategy, we shall take a configuration from the large

deviation regime at some length scale ♥ and replicate/dilate the same configuration

to obtain a configuration at a larger length scale. The obvious problem one notices

is that for continuous passage time distributions, each configuration has probability

✵. Hence to carry out our proof strategy, we will not be able to work with the edge

weight configurations directly. We will project it to a discrete set of ❡♦✳♥
✷✴ many
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Now given ✑✶❀ ♠✶❀ ❥✶, let the projection map

✑✶❀❥✶❈♠✶

Proj ❲ GridC♥✳❥✶ ❈♠✶✴ ✂ GridC♥✳❥✶ ❈♠✶✴✦ ❘❈
be defined as follows: for any z❀w ✷ GridC♥✳❥✶ ❈♠✶✴, with

(3.2)
✑✶❀❥✶❈♠✶

Proj ✳z❀w✴ ❉ ✑✶

✖
PT✳z❀w✴

✑✶❦z � w❦
✗
❦z � w❦✿

when z ↕ w; otherwise we define it to be ✵✿

Observe that the function
✑✶❀❥✶❈♠✶

Proj is random, but we choose to suppress the

dependence on the underlying noise for brevity. Since these will be the only pa-

rameters we will use, we will also drop the dependence on ✑✶, ❥✶, and ♠✶ in the no-

tation. Note that Proj induces a weighted graph with vertex set GridC♥✳❥✶❈♠✶✴,

with the weight on any edge ✳z❀w✴ being Proj✳z❀w✴. Let PV✑✶❀❥✶❈♠✶
denote

the set of all possible such graphs induced by Proj (as the weight configuration

varies). Observe that a very basic counting argument yields that the cardinality of

PV✑✶❀❥✶❈♠✶
satisfies

(3.3) ❥PV✑✶❀❥✶❈♠✶
❥ ✔ ❡

❖✳✷✷✳❥✶❈♠✶✴✴ log ✶
✑✶

and in particular is independent of ♥. It will also be useful to extend the definition of

Proj to a larger set of pairs. For all pairs of points z❀w ✷ Box✳C ♥✴ we will extend

the definition by letting Proj✳z❀w✴ ❉ Proj✳③z❀ ③w✴, where ③z❀ ③w are the nearest points

to z❀w, respectively, in GridC♥✳❥✶ ❈♠✶✴ (as before, breaking ties by picking the

smallest in the lexicographic order). Note that if z and w get rounded to the same

point, then Proj✳z❀w✴ is ✵, which is not a realistic definition. However, we will

only be interested in pairs z and w that are reasonably far apart, so the above issue

will not arise and hence we will not bother with this aspect of the definition.

The first thing we show now is that the error introduced by using Proj✳ ✁ ❀ ✁ ✴ in-

stead of PT✳ ✁ ❀ ✁ ✴ can be neglected at sufficiently large length scales. For reasons

that will become clear, we shall work with Stable tiles, although the approximation

is valid independent of that. Fix ✍✶❀ ✧✶❀ ♠✶❀ ❏✶ as in Lemma 2.13, which then guar-

antees that there exists ❥✶ with probability bounded away from ✵ such that for all

but ✧✶ fraction of ✈ ✷ J✶❀ ✷❥✶K✷, TileC♥✳❥✶❀ ✈✴ is ✳✍✶❀ ❵✶❀ ❦✶✴-Stable where ❵✶ and

❦✶ are C♥

✷❥✶❈♠✶
and ✷✷♠✶ , respectively. Let ♠✶ also be even. For later reference, let

us call ✈ ✷ J✶❀ ✷❥✶K✷ to be ✳✍✶❀ ❵✶❀ ❦✶✴-Stable or ✳✍✶❀ ❵✶❀ ❦✶✴-Unstable depending

on whether TileC♥✳❥✶❀ ✈✴ is ✳✍✶❀ ❵✶❀ ❦✶✴-Stable or not, respectively.

LEMMA 3.1. Fix ✍✶❀ ✑✶❀ ❥✶❀ ♠✶ and accordingly ❵✶ and ❦✶ as above. Then con-
ditioned on U ✄

✏
✳♥✴, consider ✈ ✷ J✶❀ ✷❥✶K✷ such that TileC♥✳❥✶❀ ✈✴ is ✳✍✶❀ ❵✶❀ ❦✶✴-

Stable✿ Then for any z ↕ w ✷ GridC♥✳❥✶❈♠✶❂✷✴ such that z❀w ✷ TileC♥✳❥✶❀ ✈✴,
we have the following:

✶ ✔ PT✳z❀w✴

Proj✳z❀w✴
✔ ✶❈❖✳✑✶✴✿
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Note that GridC♥✳❥✶ ❈♠✶❂✷✴ ✚ GridC♥✳❥✶ ❈♠✶✴ when ♠✶ is even (in fact,

to avoid dealing with such divisibility issues further, we will henceforth assume

without loss of generality that ♠✶ is divisible by ✶✻).

PROOF. Observe that by definition for all z❀w,

(3.4) Proj✳z❀w✴ ✔ PT✳z❀w✴ ✔ Proj✳z❀w✴❈❖✳✑✶✴❦z � w❦✿
The proof now follows immediately by noticing that since z and w are at distance

apart of at least C♥

✷❥✶❈♠✶❂✷
and, on U ✄

✏
✳♥✴, by definition

�(3.5) PT✳z❀w✴ ✕ ③✖❦z � w❦✿
We now define a gradient function corresponding to the projected distances anal-

ogous to (2.10). As in the above setting, let z❀w ✷ GridC♥✳❥✶ ❈♠✶❂✷✴, and let ✒

and ❞ ❃ ✵ be such that w ❉ z❈ ✳✒❀ ❞✴. Then let

(3.6) rProj✳z❀ ✒❀ ❞✴ ❉ Proj✳z❀w✴

❦z � w❦ ✿

Defining the projected gradients only for pairs of points in GridC♥✳❥✶❈♠✶❂✷✴, we

then define projected gradients in all directions at a slightly coarser scale, i.e., for

all points in GridC♥✳❥✶❈♠✶❂✹✴. For any z ✷ TileC♥✳❥✶❀ ✈✴❭GridC♥✳❥✶❈♠✶❂✹✴

and for any ✒ ✷ ❙✶ and

(3.7)
C ♥

✷❥✶❈♠✶❂✹
❁ ❞ ❁

C ♥

✷❥✶
✷♠✶❂✹❀

let

(3.8) rProj✳z❀ ✒❀ ❞✴ ❉ Proj✳z❀w✴

❞
❀

where w is the closest point to z ❈ ✳✒❀ ❞✴ in GridC♥✳❥✶ ❈ ♠✶❂✷✴. Note that

GridC♥✳❥✶ ❈♠✶❂✹✴ ✚ GridC♥✳❥✶ ❈♠✶❂✷✴.

Thus, with ✍✶❀ ❵✶❀ ❦✶ as above, if TileC♥✳❥✶❀ ✈✴ is ✳✍✶❀ ❵✶❀ ❦✶✴-Stable, then the

following result about smoothness of the projected gradient field follows as in

(2.12) and (2.11); we omit the proof.

LEMMA 3.2. Fix ✑✶ ❃ ✵ as in Lemma 3.1. For a ✳✍✶❀ ❵✶❀ ❦✶✴-Stable TileC♥✳❥✶❀ ✈✴

and for any z❀ z✵ ✷ TileC♥✳❥✶❀ ✈✴ and ✒✶❀ ✒✷ ✷ ❙
✶ such that ❦✒✶ � ✒✷❦ ✔ ✑✶ and

❞✶❀ ❞✷ satisfy (3.7), with rProj✳z❀ ✒✶❀ ❞✶✴ and rProj✳z
✵❀ ✒✷❀ ❞✷✴ defined via (3.8), we

have
✶

✶❈❖✳✍✶ ❈ ✑✶ ❈ ✷�♠✶❂✹✴
✔ rProj✳z❀ ✒✶❀ ❞✶✴

rProj✳z✵❀ ✒✷❀ ❞✷✴
❁ ✶❈❖✳✍✶ ❈ ✑✶ ❈ ✷�♠✶❂✹✴✿

Note that above we choose ❦✒✶ � ✒✷❦ ✔ ✑✶ where the latter appeared in the

definition of Proj✿ This is done deliberately to avoid introducing new notation since

for us any small enough value of ✑✶ serves both the purposes.

This allows us to define a projected gradient for the entire tile as we did in

Definition 2.11.
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DEFINITION 3.3. If TileC♥✳❥✶❀ ✈✴ is ✳✍✶❀ ❵✶❀ ❦✶✴-Stable, then let

rProj✳✳❥✶❀ ✈✴❀ ✒✴ ❲❉ rProj✳z❀ ✒❀ ❞✴

where z is the center point of Tile♥✳❥❀ ✈✴ and ❞ ❉ ♥

✷❥✶❈♠✶❂✽
.

Observe that if in the above definition we had chosen some arbitrary z contained

in Tile♥✳❥✶❀ ✈✴❭GridC♥✳❥✶❈♠✶❂✷✴ and ❞ such that the RHS is defined via (3.8),

then the definition would change only by a multiplicative factor of ✳✶ ❈ ❖✳✍✶ ❈
✶

✷♠✶❂✹
✴✴. In our applications, the multiplicative error will be made suitably close

to ✶ by choosing the parameters appropriately.

We now move towards our second main technical ingredient. Note that the con-

vexity of the limit shape B in (1.2) is essentially due to PT satisfying the triangle

inequality (by definition). We shall establish an analogous approximate convexity

statement corresponding to Proj. To formally state things, it would be convenient

to consider the following function on all of ❘✷: for any w ❉ ✳✒❀ r✴,

❦w❦✳❥❀✈✴ ✑ ❦✳✒❀ r✴❦✳❥❀✈✴ ❲❉ rrProj✳✳❥❀ ✈✴❀ ✒✴✿

Note that as in Definition 3.3, this definition implicitly depends on the choice

of z and ❞✿ We record the following consequence of the above definitions. If

TileC♥✳❥✶❀ ✈✴ is ✳✍✶❀ ❵✶❀ ❦✶✴-Stable, then for any w✶❀w✷ ✷ TileC♥✳❥✶❀ ✈✴, with

❦w✶ � w✷❦ ✕ C♥

✷❥✶❈♠✶❂✹
,�

✶ �❖✳✍✶ ❈ ✷�
♠✶
✹ ✴
✁ ✔ PT✳w✶❀w✷✴

❦w✶ � w✷❦❥❀✈
✔ �✶❈❖✳✍✶ ❈ ✷�

♠✶
✹ ✴
✁
✿(3.9)

The following fact analogous to (2.13) will be useful as well.

(3.10)

✒
✶ �❖

✒
✍✶ ❈ ✶

✷♠✶❂✹

✓✓
③✖ ✔ rProj✳✳❥❀ ✈✴❀ ✒✴

✔
✒
✶❈❖

✒
✍✶ ❈ ✶

✷♠✶❂✹

✓
❜

✓
❦✳✒❀ ✶✴❦✶✿

The next lemma shows the approximate convexity of the above-defined function

that allows us to think of the above as roughly a norm.

PROPOSITION 3.4. If TileC♥✳❥✶❀ ✈✴ is ✳✍✶❀ ❵✶❀ ❦✶✴-Stable, then for any set of vec-
tors w✶❀w✷❀ ✿ ✿ ✿ ❀wt , if w ❉Pt

✐❉✶ w✐ , then

❦w❦✳❥✶❀✈✴ ✔
�
✶❈❖

�
✍✶ ❈ ✷�

♠✶
✶✻

✁✁✒ t❳
✐❉✶

❦w✐❦✳❥✶❀✈✴
✦
✿

The proof relying on an approximate triangle inequality is technical and is post-

poned to Section 6.

The next and final result in this section will show the existence of an event that

approximates the large deviation event in the log scale and will be used as the

building block of our dilation construction in the next section. Given ✍✶, ✧✶, ♠✶,

and ❏✶ satisfying the hypothesis of Lemma 2.13, let ❥✶ be the scale obtained from
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that lemma and recall the definitions of ❵✶ and ❦✶ from the statement of the same.

Recall

✑✶ and Proj ❉
✑✶❀❥✶❈♠✶

Proj

from Lemma 3.1. Recalling PV✑✶❀❥✶❈♠✶
, the set of weighted graphs induced

on GridC♥✳❥✶ ❈ ♠✶✴, let PV✑✶❀❥✶❈♠✶❂✷ be the induced graphs on the vertex set

GridC♥✳❥✶ ❈ ♠✶❂✷✴ ✚ GridC♥✳❥✶ ❈ ♠✶✴. By an abuse of notation, we shall

denote by Proj�✶✳❂✴, for ❂ ✷ PV✑✶❀❥✶❈♠✶❂✷, the set of all weight configurations

for which ❂ is the weighted graph induced by Proj. Now for ❂ ✷ PV✑✶❀❥✶❈♠✶❂✷

and ❆ ✚ J✶❀ ✷❥✶K✷, let us define the key event

(3.11) Base-event✳✑✶❀ ✍✶❀ ❥✶❀ ♠✶❀ ✧✶❀ ❆❀❂✴ ❲❉
U
✄
✏ ✳♥✴ ❭ Proj�✶✳❂✴ ❭ ✟❢✈ ✷ J✶❀ ✷❥✶K✷ ❲ ✈ is ✳✍✶❀ ❵✶❀ ❦✶✴ � Unstable❣ ✚ ❆

✠
✿

The following simple lemma based on the pigeonhole principle lower-bounds

the probability of the above event.

LEMMA 3.5. Given ✧✹ ❃ ✵ and the parameters as above, i.e., ✍✶, ✧✶, ♠✶, and ❥✶,
there exists ❂ ✷ PV✑✶❀❥✶❈♠✶❂✷, and ❆ ✚ J✶❀ ✷❥✶K✷ with ❥❆❥ ❉ ✧✶✷

✷❥✶ such that

log
�
P ✳Base-event✳✑✶❀ ✍✶❀ ❥✶❀ ♠✶❀ ✧✶❀ ❆❀❂✴✴

✁
♥✷

✕ ✔ � ✧✹

for all large enough ♥, where ✔ ❉ ✔♥ ❲❉ logP✳U ✄
✏
✳♥✴✴

♥✷
✿

Note that ✧✹ is independent of the remaining parameters.

PROOF. By our choice of parameters, it follows from Lemma 2.13 that for any

✧✹ ❃ ✵, for all ♥ sufficiently large,

log
�
P ✳U ✄

✏
✳♥✴ ❭ #

✟❢✈ ✷ J✶❀ ✷❥✶K✷ ❲ ✈ is ✳✍✶❀ ❵✶❀ ❦✶✴ � Unstable❣ ✔ ✧✶✷
✷❥✶

✠
✴
✁

♥✷

✕ ✔ � ✧✹

✷
✿

Recall now the trivial bound mentioned in (3.3),

❥PV✑✶❀❥✶❈♠✶❂✷❥ ❉ ❡
❖✳✷✷✳❥✶❈♠✶✴ log ✶

✑✶
✴ ❉ ❡❖✳✶✴✿

Moreover, the number of possible subsets ❆ of J✶❀ ✷❥✶K✷ of size at most ✧✶✷
✷❥✶ is at

most ❡❖✳❍✳✧✶✴✴✷
✷❥✶

, where ❍✳ ✁ ✴ is the entropy functional. Thus by the pigeonhole

principle the result follows. �

Observe that Base-event is measurable with respect to the edges in Box✳✹C ✷♥✴

and, as already mentioned, this will be the building block in our constructions in

the next section. We end this section by pointing out that although the definition

of Base-event depends on the set ❆ as well as the element ❂ ✷ PV✑✶❀❥✶❈♠✶❂✷, in

what follows we shall often refer to Base-event given the parameters ✑✶, ✍✶, ❥✶,

♠✶, ✧✶, and ❆ and ❂ would then be understood as given by Lemma 3.5.
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4 Constructing a Large Deviation Event at a Higher Scale

In this section we prove Proposition 1.3. With the definitions and results from

the previous section at our disposal, we now follow the strategy outlined in Section

1.3. Given arbitrary small positive constants ✧❀ ✧✵, and ♥, for any ♥✶ large enough,

we will create the favourable event Fav ❲❉ Fav✳♥✶✴, which will imply U✏ ✵✳♥✶✴

where ✏✵ ✕ ✏ � ✧✵, and

logP ✳Fav✳♥✶✴✴

♥✷✶
✕ logP ✳U✏ ✳♥✴✴

♥✷
� ✧✿

Note that (1.5) allows us to assume that ♥✶ is divisible by ♥, which is what we

will assume throughout this section.

We start by defining certain key ingredients: Fixing ✧✻ ❃ ✵ (to be chosen ap-

propriately later) and recalling the constant C from (2.2), for brevity we adopt the

following abbreviations

(4.1)
n✵ ❲❉ C ♥✶✳✶❈ ✷✧✻✴❀ n✶ ❲❉ C ♥✶✳✶❈ ✧✻✴❀ n✷ ❲❉ C ♥✶❀

n✸ ❲❉ C ♥✳✶❈ ✧✻✴❀ n✹ ❲❉ C ♥✿

Moreover, in what follows we will denote Box✳n✐ ✴ as B✐ ✿ We will often identify

each such box with the set of all the lattice edges contained in its closure, i.e., in-

cluding the edges along the boundary thought of as a subset of ❘✷✿ Consequently,

throughout the discussion we will say a path is contained in a box (or more gener-

ally in a subset of edges) if all of its constituent edges are.

4.1 Construction of Fav

Fav will be measurable with respect to the edge weights in B✵, with the property

that on the event Fav,

(4.2) PTB✵
✳0❀B❝

✵✴ ✕ ✷❜♥✶ and PTB✵
✳0❀n1✴ ✕ ✳✖❈ ✏ � ✧✵✴♥✶

for some small ✧✵ where PTB✵
✳ ✁ ❀ ✁ ✴ denotes the passage time between points re-

stricted to B✵; i.e., one only considers paths that do not exit B✵. Clearly this

implies that Fav ✚ U✏ ✵✳♥✶✴ for ✏✵ ❉ ✏ � ✧✵.
Throughout this section we will work with parameters as in Lemma 3.5, i.e.,

✍✶, ✧✶, ✧✹, ❥✶, ♠✶, and ❵✶ ❉ ♥

✷❥✶❈♠✶
and ❦✶ ❉ ✷✷♠✶ ✿ Further, we have already

introduced a parameter ✧✻ in (4.1). We will introduce another parameter ✧✼ in the

definition of Fav✿

The basic objects we will be working with are the following. Tile the box B✵

by Tilen✵✳❥✶❀ ✈✴ for ✈ ✷ J✶❀ ✷❥✶K✷. Now each such tile is a square of size n✵

✷❥✶
. For

✈ ✷ J✶❀ ✷❥✶K✷, consider the square with the same centre as Tilen✵✳❥✶❀ ✈✴ and side

length n✶

✷❥✶
. Call this square (closed) Tile✄

n✶
✳❥✶❀ ✈✴; see Figure 4.1. It follows that

neighbouring Tile✄
n✶
✳❥✶❀ ✈✴’s are separated by vertical and horizontal strips of width

✧✻
n✶

✷❥✶
. We will call the set of all edges in B✵ that do not belong to any Tile✄

n✶
✳❥✶❀ ✈✴
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As the total number of edges in Corridorext✳❥✶❀ n✵✴ is ❖✳✧✻n
✷
✵✴, it follows that

(4.3) � logP ✳Barrierext✳n✵❀ ❥✶✴✴ ❉ ❖✧✼✳✧✻♥
✷
✶✴

(the constant in the ❖✧✼✳ ✁✴ notation depends on ✧✼, and ✧✻ will be chosen to be

much smaller than ✧✼ depending on the edge weight distribution ✗).

Having constructed Barrierext✳n✵❀ ❥✶✴, we are left to do two more things:

(1) specifying the environments inside Tile✄
n✶
✳❥✶❀ ✈✴ using the Base-event de-

fined in Lemma 3.5, and

(2) verifying the two properties listed in (4.2): recall that it involves showing

that any path ✌ between 0 and n1 contained in B✵ and any path from 0 to

B
❝
✵ has lengths at least ✳✖❈ ✏ � ✧✵✴♥✶ and ✷❜♥✶, respectively.

For ✈ ✷ J✶❀ ✷❥✶K✷, to specify the environments inside Tile✄
n✶
✳❥✶❀ ✈✴, it will be

convenient to think of each Tile✄
n✶
✳❥✶❀ ✈✴ as naturally made up of ✳♥✶

♥
✴✷ copies of

Tilen✸✳❥✶❀ ✈✴, which we will denote as An✸✳❥✶❀ ✈❀ ✇✴ for ✇ ✷ J✶❀ ♥✶
♥

K✷. As be-

fore, each An✸✳❥✶❀ ✈❀ ✇✴ can be thought of as a copy of Tilen✹✳❥✶❀ ✈✴ (to be called

Bn✹✳❥✶❀ ✈❀ ✇✴) surrounded by an annulus Cn✹✳❥✶❀ ✈❀ ✇✴ of width ✧✻
✷

n✹

✷❥✶
(see Figure

4.1). We denote the union of edges in Cn✹✳❥✶❀ ✈❀ ✇✴ (union over ✈ ✷ J✶❀ ✷❥✶K✷ and

✇ ✷ J✶❀ ♥✶
♥

K✷) as Corridorint✳❥✶❀ n✵✴. As before, only the edges that are not con-

tained in the closure of any Bn✹✳❥✶❀ ✈❀ ✇✴ will be counted in Corridorint✳❥✶❀ n✵✴.

Similarly to Barrierext✳n✵❀ ❥✶✴, let Barrierint✳n✵❀ ❥✶✴ denote the event that the pas-

sage time on each edge in Corridorint✳❥✶❀ n✵✴ is in ➀❜ � ✧✼❀ ❜➁, and as in (4.3), we

have

(4.4) � logP ✳Barrierint✳n✵❀ ❥✶✴✴ ❉ ❖✧✼✳✧✻♥
✷
✶✴✿

We will use Barrier to denote the intersection of the events Barrierext✳n✵❀ ❥✶✴ and

Barrierint✳n✵❀ ❥✶✴.

We are now left with the task of prescribing the environment inside Bn✹✳❥✶❀ ✈❀ ✇✴.

However, before formally doing that, we address a rounding issue. Note that there

is a natural identification between the continuous boxes Bn✵✳❥✶❀ ✈✴ and Tilen✵✳❥✶❀ ✈✴

and similarly between Bn✹✳❥✶❀ ✈❀ ✇✴ and Tilen✹✳❥✶❀ ✈✴, since each member of the

pair is a translate of the other. However, there might be microscopic discrepan-

cies in their intersections with ❩✷. For example, ❩✷ ❭ Bn✹✳❥✶❀ ✈❀ ✇✴ might not

be identifiable with ❩✷ ❭ Tilen✹✳❥✶❀ ✈✴. This discrepancy is very minor and can

be handled in a number of ways. One would be to translate Bn✹✳❥✶❀ ✈❀ ✇✴’s by a

distance ✔ ✷ (this will lead to local changes in the width of the corridors by ❖✳✶✴

and will not affect any of our arguments) to allow an exact identification to hold

even at the lattice level. For the sake of exposition and to avoid introducing new

notation to handle this trivial issue completely precisely, we will be ignoring this

and similar rounding issues throughout our discussion, and assume that for each

✈, Tilen✹✳❥✶❀ ✈✴, and additionally for each ✇, Bn✹✳❥✶❀ ✈❀ ✇✴, is a closed lattice box,

i.e., of the form J❛❀ ❜K ✂ J❝❀ ❞K for some integers ❛❀ ❜❀ ❝❀ ❞ .
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(4.5) ❹✶❀❹✷ ✿ ✿ ✿ ❀❹✳♥✶❂♥✴
✷

be their restrictions on Box✳C ♥✴✿ For each ✈ ✷ J✶❀ ✷❥✶K✷ ♥❆ and ✇ ✷ J✶❀ ♥✶
♥

K✷, let

the edge weights on the edges in Bn✹✳❥✶❀ ✈❀ ✇✴ be the same as the edge weights of

❹✇ in Tilen✹✳❥✶❀ ✈✴, where we use the natural identification between Bn✹✳❥✶❀ ✈❀ ✇✴

and Tilen✹✳❥✶❀ ✈✴ and the lexicographic bijection between ✇ ✷ J✶❀ ♥✶
♥

K✷ and ❢✶❀ ✷❀
✿ ✿ ✿ ❀ ✳♥✶

♥
✴✷❣.

This bijection is used above to interchangeably use the notations ❹✐ and ❹✇ ✿

Note that the choice of the term Dilation is natural, as by using ✳♥✶
♥
✴✷ copies

of Base-event, we ensure that for any ✈ ✷ J✶❀ ✷❥✶K✷ ♥ ❆, the environments in

Bn✹✳❥✶❀ ✈❀ ✇✴ for different values of ✇ are the same in some coarse sense. Ulti-

mately, we define

Fav ❲❉ Dilation ❭ Barrier ❭ Boosting✿

Note that the event Barrier along with Dilation describe the projection of the

event Fav on all the edges except the edges in
❙

✈✷❆❀✇✷J✶❀
♥✶
♥

K✷ Bn✹✳❥✶❀ ✈❀ ✇✴,

whereas Boosting defines the projections on the latter, and the three events are

independent. Hence

(4.6)
P ✳Fav✴ ❉ ➀P ✳Base-event❥❆❝ ✴➁

♥✷
✶

♥✷ ✗✳➀❜ � ✧✼❀ ❜➁✴
❖✳✳✧✶❈✧✻✴♥

✷
✶
✴

✕ ➀P ✳Base-event✴➁
♥✷
✶

♥✷ ✗✳➀❜ � ✧✼❀ ❜➁✴
❖✳✳✧✶❈✧✻✴♥

✷
✶
✴

where ✗ is the passage time distribution satisfying the hypothesis in Theorem 1.

As mentioned before, by our assumption on the edge weight distribution ✗ from

Definition 1.1, ✗✳➀❜ � ✧✼❀ ❜➁✴ ❃ ✵ for all ✧✼ ❃ ✵✿

The proof of Proposition 1.3 will now be complete from the following lemma.

LEMMA 4.1. Given ✧✽ ❃ ✵ and ✧✾ ❃ ✵, there exists ✧✹ ❃ ✵ and the choice of pa-
rameters in the definition of Base-event in Lemma 3.5, and ✧✻❀ ✧✼ in the definition
of Fav, such that

log✳P ✳Fav✴✴

♥✷✶
✕ ✔ � ✧✽ and Fav ✚ U✏ ✵✳♥✶✴❀

where ✏✵ ❉ ✏ � ✧✾✿

Note that, given any ✧✼ ❃ ✵, the lower bound on the probability of Fav is a

straightforward consequence of (4.6) and the lower bound on P ✳Base-event✴ from

Lemma 3.5, by choosing ✧✶❀ ✧✹❀ ✧✻ small enough. The rest of this section is devoted

to the proof of the inclusion Fav ✚ U✏ ✵✳♥✶✴, which will follow from a series of

lemmas. Before stating the lemmas we roughly describe our strategy. The proof

involves showing that on the event Fav two things occur:

PTB✵
✳0❀n1✴ ✕ ✳✖❈ ✏✵✴♥✶❀(4.7)

PTB✵
✳0❀B❝

✵✴ ✕ ✷❜♥✶✿(4.8)
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The proof of both of the above bounds is obtained by the same strategy. Consider

the two random fields given by Fav and Base-event on B✵ and B✹, respectively.

Recall that the former is a ‘dilation’ of the latter by a factor of ♥✶
♥

, with some

additional changes involving the setting up of the barriers and the boosting on the

unstable tiles.

As outlined in Section 1.3, given the above, the strategy for showing (4.7) is

to show that for any path ✌ (joining 0 and n1), which we can assume to be self-

avoiding, in B✵ there exists a path ✌S (joining, approximately, 0 and n) in B✹ such

that

(4.9) ❵✳✌✴ ✕ ♥✶

♥
✳✶ � ♦✳✶✴✴❵✳✌S✴❀

where the above inequality holds pointwise for any sample point in Fav on the LHS

and any sample point from Base-event on the RHS. Informally, ✌ can be thought of

as a path obtained by dilating the path ✌S by a factor ♥✶
♥

(a similar strategy will be

employed for a path joining 0 and B
❝
✵ to prove (4.8)). By definition, on Base-event

we have ❵✳✌S✴ ✕ ✳✖ ❈ ✏✴♥, and this yields the sought lower bound of ❵✳✌✴. To

make (4.9) rigorous, we need some regularity properties of the path ✌ , which will

be obtained by a preprocessing. This is done in the following subsection.

4.2 Preprocessing of Paths

We shall see later that it suffices to consider only self-avoiding paths contained

in B✵ that start and end on the boundary of some Tile✄
n✶
✳❥✶❀ ✈✴ and Tile✄

n✶
✳❥✶❀ ✈

✵✴,
respectively. Observe that any such path (thought of as a sequence of edges) ad-

mits a unique decomposition as a concatenation of a number of paths, i.e., ✌ ❉
☛✵✤✵☛✶✤✶☛✷✤✷ ✿ ✿ ✿ ☛▲✤▲☛▲❈✶ with the following properties:

(i) Each ☛✐ is contained in some Tile✄
n✶
✳❥✶❀ ✈✐ ✴ for some ✈✐ ✷ J✶❀ ✷❥✶K✷ (recall

that we identify any box with all the lattice edges contained in its closure);

☛✵ and ☛▲❈✶ could be empty.

(ii) Each ✤✐ is contained in Corridorext✳❥✶❀ n✵✴ (again thought of as a union

of edges).

Given ✧✻ as in (4.1), let us call the paths ☛✐ for ✐ ✷ ❢✶❀ ✷❀ ✿ ✿ ✿ ❀ ▲❣ as excursions of

✌ , and let us call the above decomposition of ✌ its decomposition into excursions.

Let x✐ (resp., y✐ ) denote the starting (resp., ending) vertex of ☛✐ . Let us call the

excursion ☛✐ large if there exists a vertex z✐ on ☛✐ such that

min❢❦x✐ � z✐❦❀ ❦y✐ � z✐❦❣ ✕ ✧✷✻
n✵

✷❥✶
✿

Observe that ☛✐ is large if ❦x✐ � y✐❦ ✕ ✷✧✷✻
n✵

✷❥✶
.

We shall need to define one more property of a path. Consider a path ✌ with

the decomposition into excursions as above. Observe that each ✤✐ must start at a

boundary vertex of Tile✄
n✶
✳❥✶❀ ✈✴ and end at a boundary vertex of Tile✄

n✶
✳❥✶❀ ✈

✵✴ for

some ✈ ❉ ✈✳✤✐ ✴❀ ✈
✵ ❉ ✈✵✳✤✐ ✴ ✷ J✶❀ ✷❥✶K✷. Note that ✈ can in fact be equal to ✈✵✿

We call the path ✌ regular if for each ✤✐ we have ❦✈✳✤✐ ✴� ✈✵✳✤✐ ✴❦✶ ❉ ✶ (i.e., they
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consider the piecewise ▲ shaped path obtained by concatenating the straight line

segment obtained by joining x to ✳②✶❀ ①✷✴ followed by the straight line segment

obtained by joining ✳②✶❀ ①✷✴ to y. Call this path ▲ and consider ▲ as a path on the

nearest neighbour graph of ❩✷.

Observe that there exists points ✉✵ ❉ x❀ ✉✶❀ ✿ ✿ ✿ ❀ ✉❵ ❉ y on ▲, all on boundaries

of Tile✄
n✶
✳❥✶❀ ✉✴’s such that ▲ restricted between ✉✐ and ✉✐❈✶ (called ▲✐ ) is either

(a) contained in Tile✄
n✶
✳❥✶❀ ✉✴ for some ✉ (type ❆, say) or (b) is entirely contained

in Corridorext✳❥✶❀ n✵✴, and further ✉✐ ✷ Tile✄
n✶
✳❥✶❀ ✉✴❀ ✉✐❈✶ ✷ Tile✄

n✶
✳❥✶❀ ✉

✵✴ for

some ✉❀ ✉✵ that have ❵✶ distance ✶ (type ❇). Observe again that such a decomposi-

tion is unique.

If ▲✐ is type ❆, let us set P✐ to be the shortest path between ✉✐ and ✉✐❈✶ con-

tained in Tile✄
n✶
✳❥✶❀ ✉✴, and if ▲✐ is type ❇ we set P✐ ❉ ▲✐ . Consider the path

P✤ ❉ P✵P✶ ✁ ✁ ✁P❵�✶ obtained by concatenating the P✐ . It is clear that the path P✤

obtained as above is regular (see Figure 4.3 for an illustration), and hence it only

remains to show that on Barrierext✳n✵❀ ❥✶✴, we have ❵✳✤✴ ✕ ✳✶ � ❖✳✧✼✴✴❵✳P✤✴.

Observe that on Barrierext✳n✵❀ ❥✶✴ we have ❵✳✤✴ ✕ ✳❜ � ✧✼✴❦x � y❦✶. It also fol-

lows from the definitions that ❵✳P✐ ✴ ✔ ❜❦✉✐ � ✉✐❈✶❦✶. The proof is completed by

observing
P❵�✶

✐❉✵ ❦✉✐ � ✉✐❈✶❦✶ ❉ ❦x � y❦✶. �

Lemma 4.3 tells us that for any ✌ as in the statement of Lemma 4.2, one can

replace the paths ✤✐ in its decomposition by the paths P✤✐
as constructed in Lemma

4.3 to end up with a regular path P✄ with the same endpoints such that ❵✳✌✴ ✕
✳✶ � ❖✳✧✼✴✴❵✳P✄✴. The following lemma ensures the largeness of the excursions

and therefore suffices to complete the proof of Lemma 4.2.

LEMMA 4.4. For any regular path ✌ contained in B✵ whose endpoints are at a dis-
tance larger than ♥✶❂✷ and are located on boundaries of some tiles Tile✄

n✶
✳❥✶❀ ✈✴

and Tile✄
n✶
✳❥✶❀ ✈

✵✴, respectively, there exists a regular path P with the same end-
points such that

(i) Each excursion of P is large.
(ii) On Barrierext✳n✵❀ ❥✶✴, we have ❵✳✌✴ ✕ ✳✶ �❖✳✧✻✴✴❵✳P✴.

PROOF. Let ✌ be as in the statement of the lemma. Consider its decomposition

into excursions ✌ ❉ ☛✵✤✵☛✶✤✶☛✷✤✷ ✁ ✁ ✁☛▲✤▲☛▲❈✶. The proof again will be a

step-by-step procedure. We shall inspect the short excursions one by one, and re-

move them by modifying the path locally without increasing the lengths too much.

Let ☛✐ be contained in Tile✄
n✶
✳❥✶❀ ✈✐ ✴. For each nonempty ☛✐ , we shall replace it, if

necessary, by a path ☛✵✐ contained in Tile✄
n✶
✳❥✶❀ ✈✐ ✴ with the same starting and end-

ing point as ☛✐ . If ☛✐ is a large excursion or is empty (recall that ☛✵ and ☛▲❈✶ can

be empty), we set ☛✵✐ ❉ ☛✐ . Consider any excursion ☛✐ that is not large. Let x✐ and

y✐ be its starting and ending points, respectively. Fix a vertex z✐ in Tile✄
n✶
✳❥✶❀ ✈✐ ✴

such that

❦x✐ � z✐❦❀ ❦y✐ � z✐❦ ✷
✒
✧✷✻

n✵

✷❥✶
❀ ✷✧✷✻

n✵

✷❥✶

✓
■
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clearly such a vertex exists. Now consider the path ☛✵✐ ❉ ☛
✳✶✴
✐ ☛

✳✷✴
✐ where ☛

✳✶✴
✐

(resp., ☛
✳✷✴
✐ ) is the shortest path between x✐ and z✐ (resp., z✐ and y✐ ) contained in

Tile✄
n✶
✳❥✶❀ ✈✐ ✴. Clearly ☛✵✐ is a large excursion. Consider the path

P ❉ ☛✵✵✤✵☛
✵
✶✤✶ ✁ ✁ ✁☛✵▲✤▲☛✵▲❈✶✿

Notice that P satisfies the first conclusion of the lemma by definition. We shall

show that it also satisfies the required upper bound on ❵✳P✴.

We shall show that, on Barrierext✳n✵❀ ❥✶✴, for each ✐ ❉ ✵❀ ✶❀ ✿ ✿ ✿ ❀ ▲� ✶ we have

❵✳☛✐✤✐ ✴ ✕ ✳✶ �❖✳✧✻✴✴❵✳☛
✵
✐✤✐ ✴, and further we have

❵✳☛▲✤▲☛▲❈✶✴ ✕ ✳✶ �❖✳✧✻✴✴❵✳☛
✵
▲✤✐☛

✵
▲❈✶✴✿

Clearly this suffices. Consider any ✐ ✔ ▲ � ✶ such that ☛✐ ↕ ☛✵✐ (there is nothing

to prove otherwise). To get an upper bound on ❵✳☛✵✐✤✐ ✴, observe that ❵✳☛✵✐ ✴ ✔
✽❜✧✷✻

n✵

✷❥✶
and on Barrierext✳n✵❀ ❥✶✴, by taking ✧✻❀ ✧✼ sufficiently small, we have

❵✳✤✐ ✴ ✕ ✳❜ � ✧✼✴✧✻
n✵

✷❥✶
and ❵✳☛✐✤✐ ✴ ✕ ✳✶ � ❖✳✧✻✴✴❵✳☛

✵
✐✤✐ ✴. The same argument

gives ❵✳☛▲✤▲☛▲❈✶✴ ✕ ✳✶ � ❖✳✧✻✴✴❵✳☛
✵
▲✤✐☛

✵
▲❈✶✴ and completes the proof of the

lemma. �

Given the regular path P ❉ ☛✵✤✵☛✶✤✶☛✷✤✷ ✁ ✁ ✁☛▲✤▲☛▲❈✶ from Lemma 4.2,

we use essentially the same arguments on each of the nonempty excursions ☛✐ as in

the proof of Lemma 4.2 to obtain a further decomposition. For a path ☛ contained in

some Tile✄
n✶
✳❥✶❀ ✈✴ with endpoints on the boundary of Tile✄

n✶
✳❥✶❀ ✈✴, consider the

unique decomposition ☛ ❉ ✤✵✵☞✶✤
✵
✶ ✁ ✁ ✁☞▲✵✤✵▲✵ such that each ☞✐ is contained in

B✳n✹❀ ✈✐ ❀ ✇✴ for some ✇ ✷ J✶❀ ♥✶
♥

K✷ and each ✤✵✐ contained in Corridorint✳❥✶❀ n✵✴

(observe that since the endpoints of ☛ are on the boundary of Tile✄
n✶
✳❥✶❀ ✈✴, ✤

✵
✵ and

✤✵▲✵ are both nonempty but it is possible that ▲✵ ❉ ✵ and ☛ is completely contained

in Corridorint✳❥✶❀ n✵✴).

We call such a path ☛ strongly regular if each ✤✵✐ is an ▲-shaped path joining

its endpoints and if the nonempty excursions ☞✐ are large where the definition of

excursion is large is as before except n✵ is replaced by n✹. Note that in the above

definition all the ✤✵✐ s must in fact be straight lines except possibly ✤✵✵ and ✤✵▲✵ .

The same arguments as in the proof of the two previous lemmas yield the fol-

lowing result whose proof we omit.

LEMMA 4.5. For a path ☛ contained in some Tile✄
n✶
✳❥✶❀ ✈✴ with endpoints on the

boundary of Tile✄
n✶
✳❥✶❀ ✈✴, there exists a strongly regular path P☛ with the same

endpoints such that, on Barrierint✳n✵❀ ❥✶✴, we have ❵✳☛✴ ✕ ✳✶�❖✳✧✼❈✧✻✴✴❵✳P☛✴.

4.3 Rescaling Paths

Equipped with the above results, we are now ready to prove (4.7) (a very similar

argument will take care of (4.8)). Following the strategy indicated in (4.9), for a

given path joining 0 and n1 contained in B✵, we want to create its scaled version.

As we want to apply Lemma 4.2, we shall work with paths joining with endpoints
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Tile✄
n✷✶

✳❥✶❀ ✈
✵✴ for some ✈❀ ✈✵, we will collapse the external corridors to width 1

corridors. Formally, we will use the natural identification

(4.12) B✵ ♥ Corridorext✳❥✶❀ n✵✴ ✦ Box✳n✶ ❈ ✷❥✶✴❀

which is easily seen by replacing Corridorext✳❥✶❀ n✵✴ by corridors of width ✶. For

brevity, we will denote Box✳n✶ ❈ ✷❥✶✴ by❡Box. This allows us to identify the path

✌s-reg with a path ③✌ in ❡Box formed by replacing the bridges ✤✐ by a length ✶ path

(notice that it is possible because ✌s-reg is regular).

Under the above operation, ③✌ admits a decomposition ③✌ ❉ ③✌✵③✌✶ ✁ ✁ ✁ ③✌▲, where

the ending point of ③✌✐ is adjacent to the beginning point of ③✌✐❈✶ (the connecting

edge being obtained by collapsing the external corridors to width 1 corridors) and

③✌✐ belongs to ❡Tile✳❥✶❀ ✈✐ ✴, the box that Tile✄
n✶
✳❥✶❀ ✈✐ ✴ maps to under the above

operation.

Let the starting and ending points of ③✌✐ be ③①✐ and ③②✐ . We will now scale all these

points by a factor ♥
♥✶
✳✶❈❖✳✧✻✴✴ to obtain the sequence of points

(4.13) ②①✐ ❉ n✹

n✶
③①✐ ❀ ②②✐ ❉ n✹

n✶
③②✐ ❀

for ✐ ❉ ✵❀ ✶❀ ✿ ✿ ✿ ❀ ▲. (Note that the notations ②① and ③① have been used before to

denote various approximations of a point ①; see the paragraph after Lemma 2.1 and

the paragraph following (3.3). However, the usage of the above notations in this

section is rather minimal and local, and we allow ourselves this abuse of notation

to avoid introducing new symbols.) Of course, one cannot expect these to be lattice

points. Further, the fact that ③✌ was in ③❇ whose size is slightly bigger than n✶ means

scaling by n✹

n✶
does not quite map ❡Box to B✹ ❉ Box✳C ♥✴, nor does ❡Tile✳❥✶❀ ✈✐ ✴

map to TileC♥✳❥✶❀ ✈✐ ✴. Nonetheless, as one would expect, the discrepancies are

minor and only introduce the need for some bookkeeping to maintain precision

and do not affect our arguments.

We round off the points to the nearest points on a grid. To this end, recall ♠✶❀ ❥✶,

from the definition of Base-event and the notation Gridn✹✳❵✷■ ❥✶✴ where

❵✷ ❲❉ C ♥

✷❥✶❈
♠✶
✷

✿

We want to define ①S
✐ to be the closest point in Tilen✹✳❥✶❀ ✈✐ ✴ ❭ Gridn✹✳❵✷■ ❥✶✴ to

②①✐ ✿ However, these might not be points in ❩✷, and hence we define them to be the

closest point in ❩✷ to the closest point in Tilen✹✳❥✶❀ ✈✐ ✴ ❭ Gridn✹✳❵✷■ ❥✶✴ instead.

Similarly, define ②S
✐ . However since ②S

✐ and ①S
✐❈✶ are rather close, we will ignore

the former and consider the path ✌S to be the shortest path between the sequence

of points

(4.14) ①S
✵❀ ①

S
✶❀ ✿ ✿ ✿ ①

S
▲❀ ①

S
▲❈✶

where ①S
▲❈✶ ❉ ②S

▲. Let ✌S
✐ be the segment of ✌S between ①S

✐ and ①S
✐❈✶. Observe

that by our choice of the starting and ending points of ✌ and by an appropriate
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LARGE DEVIATIONS IN FPP 1617

choice of parameters (i.e., making ❥✶ large) we get that

❦③①✵❦ ❉ ❖✳✧✻♥✶✴❀ ❦n1 � ③②▲❦ ❉ ❖✳✧✻♥✶✴❀

and so

(4.15)
✌✌①S

✵

✌✌ ❉ ❖✳✧✻♥✴❀
✌✌n � ①S

▲❈✶
✌✌ ❉ ❖✳✧✻♥✴■

hence ✌S can thought of as a path between 0 and n.

As a consequence of the approximate convexity statement in Proposition 3.4,

we have the following key result.

LEMMA 4.6. Given any ✧✶✶ ❃ ✵, there exists a choice of the parameters in the
definition of Base-event and Fav, namely ✧✻ and ✧✼ small enough, and then ✍✶
small enough followed by ❥✶ and ♠✶ large enough, such that, deterministically for
any ✐ ,

(4.16) max

✒
❵✳③✌✐ ✴❀ ✳❜ � ✧✼✴

✧✻C ♥✶

✷❥✶

✓
✕ ✳✶ � ✧✶✶✴

♥✶

♥
❵
�
✌S
✐

✁
❀

where, as mentioned in (4.9), the LHS is computed on any sample point on the
event Fav and the RHS is computed on any sample point in Base-event✿

The scaling in (4.13) in fact implies a slightly stronger bound where the factor
♥✶
♥

is replaced by n✶

n✹
❉ ✳✶❈ ✧✻✴

♥✶
♥

. However, for our purposes the above weaker

bound suffices.

Before proving the above lemma we finish the proof of Lemma 4.1 using the

above results.

PROOF OF LEMMA 4.1. The proof will clearly follow by showing (4.7) and

(4.8). We will show only the former; the latter has a similar proof. Recall the

definition of ③0 and ❡n1 and fix any path ✌ from 0 to n1 in B✵✿ Now applying Lem-

mas 4.2 and 4.5, we obtain the path ✌s-reg as described above and the collapsing

operation above leads to the path ③✌ . Finally, consider the scaled path ✌S. We now

have the following string of inequalities where the first two inequalities are im-

mediate consequences of our above constructions and the third inequality is the

lemma above:

(4.17)

❵✳✌✴
(4.11)✕ ✳✶ �❖✳✧✼ ❈ ✧✻✴✴❵✳✌s-reg✴

✕ ✳✶ �❖✳✧✼ ❈ ✧✻✴✴

▲�✶❳
✐❉✵

✔
❵✳③✌✐ ✴❈ ✳❜ � ✧✼✴

✧✻C ♥✶

✷❥✶

✕
❈ ❵✳③✌▲✴

✕ ✳✶ �❖✳✧✼ ❈ ✧✻✴✴✳✶ � ✧✶✶✴
♥✶

♥

▲❳
✐❉✵

❵✳✌S
✐ ✴

❉ ✳✶ �❖✳✧✼ ❈ ✧✻✴✴✳✶ � ✧✶✶✴
♥✶

♥
❵✳✌S✴❀
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where ❵✳✌✴❀ ❵✳✌s-reg✴, and ❵✳③✌✐ ✴ are computed on any sample point on the event

Fav, and ❵✳✌S
✐ ✴❀ ❵✳✌

S✴ are computed on any sample point in Base-event.

Now, by definition, ✌S is a path joining ①S
✵ and ①S

▲❈✶ in B✹ and hence on

Base-event, using (4.15) we have ❵✳✌S✴ ✕ ✳✖ ❈ ✏✴♥✳✶ � ❖✳✧✻✴✴. It therefore

follows that

PTB✵
✳③0❀ ③n1✴ ✕ ✳✶ �❖✳✧✼ ❈ ✧✻✴✴✳✶ � ✧✶✶✴✳✖❈ ✏✴♥✶✿

Choosing ✧✻, ✧✼, and ✧✶✶ small enough depending on ✧✾, and using (4.10) and

choosing ❥✶ sufficiently large, we establish (4.7). An identical argument involving

paths starting from 0 to B
❝
✵ now implies (4.8) and completes the proof. �

We now prove Lemma 4.6 using Lemmas 4.2 and 4.5 and Proposition 3.4.

PROOF OF LEMMA 4.6. Recall the set of unstable tiles ❆ in the definition of

Base-event✿ For the proof let us consider an environment ❹✶ ✷ Base-event✿ Recall

that the latter is measurable with respect to the edges in Box✳✹C ✷♥✴, with the

property that the weight of any path from 0 to ❩✷ ♥ Box✳C ♥✴ exceeds ✹❜♥✿

Fix any ✐ , and let ③✌✐ ❉ ✤✵✐❀✵☞✐❀✶✤
✵
✐❀✶☞✐❀✷ ✁ ✁ ✁☞✐❀▲✵✤✵✐❀▲✵ such that each ☞✐❀❥ is large

and contained in B✳n✹❀ ✈✐ ❀ ✇✴ for some ✇ ✷ J✶❀ ♥✶
♥

K✷ and each ✤✵✐ is contained in

Corridorint✳❥✶❀ n✵✴✿ (This follows from the discussion preceding Lemma 4.5).

Since all the ☞✐❀❥ are large, for each ❥ there is a point (say ❛✷✐❀❥ ) that is at least

✧✷✻
C♥

✷❥✶
distance away from the endpoints ❛✵✐❀❥ and ❛✶✐❀❥ . Let

✦
✇

✶

✐❀❥ and
✦
✇

✷

✐❀❥

be the vectors obtained by taking the difference of ❛✷✐❀❥ � ❛✵✐❀❥ and ❛✶✐❀❥ � ❛✷✐❀❥ ,

respectively. Also, let ☞✶
✐❀❥ and ☞✷

✐❀❥ be the two subpaths of ☞✐❀❥ split at ❛✷✿ Further,

by construction, the segments ✤✵✐❀❥ are also large, in the sense that their endpoints

are also at least ✧✷✻
C♥

✷❥✶
away. Let the vector joining their endpoints be

✦
✇

✸

✐❀❥ ✿

Thus for all ✐❀ ❥ ,

(4.18) min
✏✌✌✦✇✶

✐❀❥

✌✌❀ ✌✌✦✇✷

✐❀❥

✌✌❀ ✌✌✦✇✸

✐❀❥

✌✌✑ ✕ ✧✷✻
C ♥

✷❥✶
✿

Now recall that for any ❹ ✷ Base-event, and for all ✈ ✷ J✶❀ ✷❥✶K✷♥❆, Tilen✹✳❥✶❀ ✈✴

is ✳✍✶❀ ❵✶❀ ❦✶✴-Stable, and moreover recall the approximate norm ❦ ✁ ❦✳❥✶❀✈✐ ✴ from

the statement in Proposition 3.4.

Now the following argument is split into two cases depending on whether ✈✐ ✷ ❆

or not in ❆ where ✈✐ is the index of the tile such that ③✌✐ ✷ ❡Tile✳❥✶❀ ✈✐ ✴. In the

subsequent arguments the parameter ✧✵✵ will be used to denote a small number

whose value will change from line to line. We will make explicit the dependence ✧

on the various other parameters at the end to finally achieve the desired smallness.
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Case 1. ✈✐ ❹ ❆✿ In this case, the following string of inequalities holds (we

provide an explanation for the inequalities following the statement):

❵✳③✌✐ ✴ ✕
✷✹▲✵�✶❳

❥❉✵

✂
❵✳✤✵✐❀❥ ✴❈ ❵✳☞✐❀❥❈✶✴

✄❈ ❵✳✤✵✐❀▲✵✴

✸✺
✕ ✳✶ � ✧✵✵✴

✷✹▲✵�✶❳
❥❉✵

✏✌✌✦✇✸

✐❀❥

✌✌
✳❥✶❀✈✐ ✴

❈ ✌✌✦✇✶

✐❀❥

✌✌
✳❥✶❀✈✐ ✴

❈ ✌✌✦✇✷

✐❀❥

✌✌
✳❥✶❀✈✐ ✴

✑
❈ ✌✌✦✇✸

✐❀▲✵

✌✌
✳❥✶❀✈✐ ✴

✕

✕ ✳✶ � ✧✵✵✴

✌✌✌✌✌✌
▲✵�✶❳
❥❉✵

✏✦
✇
✶

✐❀❥ ❈
✦
✇
✷

✐❀❥ ❈
✦
✇
✸

✐❀❥

✑
❈✦

✇
✸

✐❀▲✵

✌✌✌✌✌✌
✳❥✶❀✈✐ ✴

✕ ✳✶ � ✧✵✵✴
✌✌✦③✌ ✐

✌✌
✳❥✶❀✈✐ ✴

✕ ✳✶ � ✧✵✵✴
♥✶

♥

✌✌✌✌✦✌ S

✐ ❈
✦
❖✳❵✷✴

✌✌✌✌
✳❥✶❀✈✐ ✴

(4.19)

where
✦
③✌ ✐ (resp.,

✦
✌S
✐ ) is the vector obtained by taking the difference of the end

points of the path ③✌✐ (resp., ✌S
✐ ) (where

✦
❖✳①✴ denotes a vector with Euclidean

norm bounded by ❖✳①✴).

The first equality is straightforward since ✤✵✐❀❥ and ☞✐❀❥ are disjoint subpaths

of ③✌✐ ✿ For the inequality in the second line, we use that ☞✐❀❥ ✚ B✳n✹❀ ✈✐ ❀ ✇✴ for

some ✇ ✷ J✶❀ ♥✶
♥

K✷✿ Recall that we are on the event Fav, and given ✈✐ ❹ ❆,

for each ✇, the environment in B✳n✹❀ ✈✐ ❀ ✇✴ is a restriction of ❹✇ (see (4.5)) to

Tilen✹✳❥✶❀ ✈✐ ✴. Thus on the event Fav, the passage times on B✳n✹❀ ✈✐ ❀ ✇✴ between

points whose Euclidean separation is at least what is prescribed by (3.7), induce

the same approximate norm ❦✁❦✳❥✶❀✈✐ ✴, which satisfies the conclusion of Proposi-

tion 3.4. The second inequality now follows from the definition of the approximate

norm ❦✁❦✳❥✶❀✈✐ ✴, using the fact that Tilen✹✳❥✶❀ ✈✐ ✴ is stable, together with the lower

bound on the Euclidean norms of the vectors in (4.18), which implies

❵✳☞✐❀❥ ✴ ❉ ❵
�
☞✶
✐❀❥

✁❈ ❵
�
☞✷
✐❀❥

✁ ✕ ✳✶ � ✧✵✵✴
❤✌✌✦✇✶

✐❀❥

✌✌
✳❥✶❀✈✐ ✴

❈ ✌✌✦✇✷

✐❀❥

✌✌
✳❥✶❀✈✐ ✴

✐
✿

Note that by (3.9), one can make ✧✵✵ above arbitrarily small by choosing ✍✶ small

and ♠✶ large. Note that (4.18) is needed crucially since (3.9) holds for pairs of

points which are at distance at least C♥

✷❥✶❈♠✶❂✹
.
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However, the segments ✤✵✐❀❥ are subsets of Corridorint✳❥✶❀ n✵✴ and not B✳n✹❀

✈✐ ❀ ✇✴, and hence one cannot, in general, relate ❵✳✤✵✐❀❥ ✴ to ❦✦✇
✸

✐❀❥ ❦✳❥✶❀✈✐ ✴✿ Nonethe-

less, since the edge weights are bounded by ❜, it follows that for any vector
✦
✇,

❦✦✇❦✳❥✶❀✈✐ ✴ ✔ ✳✶❈ ✧✵✵✴❜❦✦✇❦✶❀
where similarly as above, by (3.10), ✧✵✵ can be made small enough by choosing ✍✶
small and ♠✶ large. Now, since on Barrier we deterministically have the bound

❵✳✤✵✐❀❥ ✴ ✕ ✳✶ �❖✳✧✼✴✴❜❦✦✇
✸

✐❀❥ ❦✶, it follows that

❵✳✤✵✐❀❥ ✴ ✕ ✳✶ � ✧✵✵✴❦✦✇
✸

✐❀❥ ❦✳❥✶❀✈✐ ✴
The third inequality is the approximate triangle inequality, which is the content of

Proposition 3.4, where again ✧✵✵ can be made small enough by choosing ✍✶ small

and ♠✶ large. The fourth inequality is straightforward since by definition,

▲✵�✶❳
❥❉✵

✒
✦
✇

✶

✐❀❥ ❈
✦
✇

✷

✐❀❥ ❈
✦
✇

✸

✐❀❥

✓
❈✦

✇
✸

✐❀▲✵ ❉
✦
③✌ ✐ ✿

For the final inequality, note that due to rounding to points in Gridn✹✳❵✷■ ❥✶✴ to

obtain the points ①S
✵❀ ①

S
✶❀ ✿ ✿ ✿ ①

S
▲❀ ①

S
▲❈✶, it follows that

✦
③✌ ✐ ❉

n✶

n✹
✳
✦
✌S
✐ ❈

✦
❖✳❵✷✴✴✿(4.20)

We have thus verified the string of inequalities ending with (4.19).

To finish the proof of (4.16), note that at this point one of two cases can occur.

✎ ❦
✦
✌S
✐ ❦✶ ✔ ✧✻C♥

✷❥✶
, which implies ❵✳✌S

✐ ✴ ✔ ❜ ✧✻C♥

✷❥✶
and hence (4.16) is trivially

true.

Note that, by construction all the excursions ③✌✐ are large, even though their

endpoints might be close. Thus instead of working with the latter, if instead we split

up the excursions into subpaths with guaranteed separation between the endpoints,

only the second case analysis would have sufficed.

✎ ❦
✦
✌S
✐ ❦✶ ✕ ✧✻C♥

✷❥✶
, which in particular implies ❦

✦
✌S
✐ ❦ ✕ ✶♣

✷

✧✻C♥

✷❥✶
✿ This along with

(3.9) implies that ✌✌✦✌ S

✐

✌✌
✳❥✶❀✈✐ ✴

✕ ✳✶ � ✧✵✵✴❵✳✌S
✐ ✴✿

Moreover, since ❦
✦
✌S
✐ ❦ ✕ ✶♣

✷

✧✻C♥

✷❥✶
, for ♠✶ large enough in the definition of ❵✷, the

✦
❖✳❵✷✴ term can be made relatively arbitrarily small. Formally, one can again use

the triangle inequality property of the norm (Proposition 3.4) to argue✌✌✌✦✌S
✐ ❈

✦
❖✳❵✷✴

✌✌✌
✳❥✶❀✈✐ ✴

✕ ✳✶ � ✧✵✵✴
✌✌✌✦✌S

✐

✌✌✌
✳❥✶❀✈✐ ✴

✿
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The above two displays along with (4.19) imply

❵✳③✌✐ ✴ ✕ ✳✶ � ✧✵✵✴
♥✶

♥
❵
�
✌S
✐

✁
❀

which completes the proof of (4.16) when ✈✐ ❹ ❆, by choosing ✧✻❀ ✧✼ small enough

compared to ✧✶✶ and further choosing ✍✶ small enough and ♠✶ large enough.

Case 2. ✈✐ ✷ ❆✿ In case ❦
✦
✌S
✐ ❦✶ ✔ ✧✻C♥

✷❥✶
, the proof can be completed as above,

so we assume otherwise. In this case, since we are on Fav and hence on Boosting,

the conclusion follows from the following inequalities.

❵✳③✌✐ ✴ ✕ ✳❜ � ✧✼✴❦
✦
③✌✐❦✶❀ ❜❦

✦
✌S
✐ ❦✶ ✕ ✳✶ �❖✳✧✼✴✴❵

�
✌S
✐

✁
and (4.20), by choosing ♠✶ large enough. �

The next three sections prove the three key technical results, Propositions 2.4,

3.4, and 1.4 regarding stability, approximate convexity of the distance function as

well as continuity of the rate function. We start with the continuity result.

5 Continuity of the Rate Function

In this section we prove Proposition 1.4. Recall that the statement says that for

each ✧ ❃ ✵, there exists ✧✵ ❃ ✵ such that for all ♥ sufficiently large we have

logP ✳U✏�✧✵✳♥✴✴

♥✷
✔ logP ✳U✏ ✳♥✴✴

♥✷
❈ ✧✿

This is where the assumption of continuous density of the edge distribution will

simplify the proof significantly. Moreover, to avoid introducing new notation, we

will use several letters in this section that were used earlier to denote different

quantities. However, this section will be completely self-contained and hence we

expect that this should not create any confusion or conflict.

The basic approach is simply to start with an environment ❹ ✷ U ✄
✏�✧✵✳♥✴ and

then increase the weight of ‘all’ the edges slightly to construct an environment

❹✵ ✷ U✏ ✳♥✴✿ However, a technical issue arises since we have assumed that the

variables are bounded by a constant ❜ ❃ ✵. Hence the variables in ❹ that are very

close to ❜ cannot be increased. Thus the first step is to localize the set of such really

high-valued edges. In fact, we will also localize the set of edges that takes values

where the density ❢✗ is close to ✵.

Let us now formally carry out this strategy. Let ✧ ❃ ✵ be fixed. We shall define

a series of parameters ✧✶ through ✧✼ depending on ✧ and ✗, and ✧✵ ❃ ✵ satisfying

the conclusion of Proposition 1.4 will be chosen sufficiently small based on these

parameters. Let us first describe how the parameters are chosen; the reason behind

these choices will become clear shortly during the course of the proof.

For ✧✹ ❃ ✵ sufficiently small, let us define

✧✺ ❉ �➀✧✹ log✳✧✹✴❈ ✳✶ � ✧✹✴ log✳✶ � ✧✹✴➁❀
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1622 R. BASU, S. GANGULY, AND A. SLY

and we shall choose ✧✹ sufficiently small so that ✧✺ sufficiently close to ✵ (depend-

ing on ✧). This is possible since ✧✺ ✦ ✵ as ✧✹ ✦ ✵. We shall then choose ✧✶
sufficiently small depending on ✧✹ and choose ✵ ❁ ✧✸ ❁ ✧✷ sufficiently small de-

pending on ✧✶ and ✏ such that the following conditions are satisfied. First, we ask

P ✳❳❡ ✷ ➀❜ � ✧✷❀ ❜➁✴ ✔ ✧✶ and ❝ ❲❉ ✖❈✏
❜�✧✷ ❁ ✶. We also require

(5.1) inf❢❢✗✳①✴ ❲ ① ✷ ➀❜ � ✧✷❀ ❜ � ✧✷ ❈ ✧✸➁❣ ✕ ✧✸

and that ✧✸ be sufficiently small compared to ✧✹. Observe that existence of such ✧✷
and ✧✸ are guaranteed by our assumptions on ✗. Let

(5.2) B ❉
✚
① ✷ ➀✵❀ ❜ � ✧✷➁ ❲ ❢✗✳①✴ ✔

✧✸✸
❜

✛
✿

Thus by definition ✗✳B✴ ✔ ✧✸✸. Next, set D ❉ ➀✵❀ ❜➁ ♥ ❢B❬ ➀❜ � ✧✷❀ ❜➁❣ and observe

that as a consequence of continuity of ❢✗ on ➀✵❀ ❜➁, ❢✗ is uniformly away from ✵ (at

least ✧✸✸❂❜) on ❙D.

We shall also choose ✧✻ sufficiently small depending on ✧ and set ✧✼ ❃ ✵ such

that for any ① ✷ D

(5.3)
✶

✶❈ ✧✻
✔ ❢✗✳① ❈ ✧✼✴

❢✗✳①✴
✿

The existence of such an ✧✼ is guaranteed by the fact that ❙D is compact and hence

❢✗ is uniformly continuous on the same. Finally, we set

✧✵ ❉ min✳ ✧✸
✷
❀ ✧✼✴✳✶ � ❝✴

✷
✿

We shall now show that ✧✵ as above satisfies the conclusion of Proposition 1.4, if

✧✹ and ✧✻ are chosen sufficiently small depending on ✧ and other parameters are

chosen as above.

For any ♥, recall the notation B✹ ❉ Box✳C ♥✴ from (4.1). We will work with the

event U ✄
✏�✧✵✳♥✴ (recall the definition from (2.4)), which is measurable with respect

to the edges in Box✳✹C ✷♥✴. However, recall that on U ✄
✏�✧✵✳♥✴, any path from 0 that

exited B✹ has length bigger than ❜♥; thus it would suffice to increase the value of

the edges only inside B✹.

Let H✶ ❉ ❢❡ ✷ B✹ ❲ ❳❡ ✷ ➀❜ � ✧✷❀ ❜➁❣✿ Now by a straightforward union bound

over all possible choices of H✶ (at most ✷❖✳♥✷✴), for any fixed ✧✹ ❃ ✵ we have

(5.4)

P ✳❥H✶❥ ✕ ✧✹♥
✷✴ ✔ ✷❖✳♥✷✴✧

✧✹♥
✷

✶ ❉ ❡
❖✳♥✷✴�✧✹ log✳ ✶

✧✶
✴♥✷

and hence

❉ ♦
�
P ✳U ✄

✏ ✳♥✴✴
✁

for all small enough ✧✶

❉ ♦
�
P ✳U ✄

✏�✧✵✳♥✴✴
✁

for all ✧✵ ❃ ✵✿
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LARGE DEVIATIONS IN FPP 1623

Similarly, letting H✷ ❉ ❢❡ ✷ B✹ ❲ ❳❡ ✷ B❣, we get

(5.5)

P ✳❥H✷❥ ✕ ✧✹♥
✷✴ ✔ ✷❖✳♥✷✴✧

✸✧✹♥
✷

✸ ❉ ❡
❖✳♥✷✴�✸✧✹ log✳ ✶

✧✸
✴♥✷

and hence

❉ ♦
�
P ✳U ✄

✏ ✳♥✴✴
✁

for all small enough ✧✸

❉ ♦
�
P ✳U ✄

✏�✧✵✳♥✴✴
✁

for all ✧✵ ❃ ✵✿

The above allows us to localize H✶ and H✷ without paying too much in the

probability. As we have chosen ✧✶❀ ✧✸ sufficiently small depending on ✧✹, it follows

that

P ✳❢❥H✶❥ ✔ ✧✹♥
✷❣ ❭ ❢❥H✷❥ ✔ ✧✹♥

✷❣ ❭U
✄
✏�✧✵✳♥✴✴ ✕ P ✳U✏�✧✵✳♥✴✴✳✶ � ♦✳✶✴✴✿

Since the total number of subsets of B✹ of size at most ✧✹♥
✷ is at most ✷❖✳✧✺✴♥

✷

,

by the pigeonhole principle it follows that there exists subsets ❆✶❀ ❆✷ of B✹, each

of size at most ✧✹♥
✷, such that

(5.6) P ✳❢H✶ ❉ ❆✶❣ ❭ ❢H✷ ❉ ❆✷❣ ❭U
✄
✏�✧✵✳♥✴✴ ✕ P ✳U✏�✧✵✳♥✴✴❡�❖✳✧✺♥

✷✴✿

For easy referencing, let us call the event ❢H✶ ❉ ❆✶❣❭❢H✷ ❉ ❆✷❣❭U ✄
✏�✧✵✳♥✴ as

C✿ Now let us modify the event C to get an event C✶ that will possess the property

that

log✳P ✳C✴✴ � log✳P ✳C✶✴✴✜ ✧♥✷ (we will quantify ✜ shortly)❀

and most importantly, C✶ ✚ U✏ ✿ Note that by definition ❆✶ and ❆✷ are disjoint.

For any weight configuration ❹ ✷ C, let us set

C✶✳❹✴ ❉ ❢❹✵ ❲ ❹✵✳❡✴ ❉ ❹✳❡✴ ✽❡ ✷ ❆✶❀

❹✵✳❡✴ ✷
✔
❜ � ✧✷ ❈ ✧✸

✷
❀ ❜ � ✧✷ ❈ ✧✸

✕
✽❡ ✷ ❆✷❀

❹✵✳❡✴ ❉ ❹✳❡✴❈ ✧✼ ✽❡ ✷ B✹ ♥ ❆✶ ❬ ❆✷❣✿
Let C✶ ❉

❙
❹✷C C✶✳❹✴✿ We now compute P ✳C✶✴✿ For any ❹, and a subset ❇ of

edges in B✹, it would be convenient to let ❹❥❇ be the restriction of ❹ on the edges

in ❇; for any event E, let

E✳❇✴ ❉ ❢❹❥❇ ❲ ❹ ✷ E❣ and ❢✗✳❹❥❇✴ ❲❉
❨
❡✷❇

❢✗✳❹✳❡✴✴✿

Thus

(5.7) P ✳C✴ ❉
❩

C

❢✗✳❹✴d❹ ✔ ✧
✸❥❆✷❥
✸

❩
C✳B✹♥❆✷✴

❢✗✳❹❥B✹♥❆✷
✴d❹❥B✹♥❆✷

❀

where the second inequality follows from the definition of ❆✷ and from the fact that

our choice of ✧✸ guarantees ✗✳B✴ ✔ ✧✸✸. Note that by definition for any ⑩❹❥B✹♥❆✷
✷

C✶✳B✹ ♥ ❆✷✴ there exists a ❹❥B✹♥❆✷
✷ C✳B✹ ♥ ❆✷✴ such that⑩❹❥B✹♥❆✷
✕ ❹❥B✹♥❆✷

❈ v

 1
0

9
7

0
3

1
2

, 2
0

2
1

, 8
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/cp

a.2
2

0
1

0
 b

y
 P

rin
ceto

n
 U

n
iv

ersity
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

3
/0

2
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n

s L
icen

se



1624 R. BASU, S. GANGULY, AND A. SLY

where

v✳❡✴ ❉
✭
✵ if ❡ ✷ ❆✶❀

✧✼ if ❡ ✷ B✹ ♥ ❢❆✶ ❬ ❆✷❣✿
Using the above it follows that

(5.8)

P ✳C✶✴ ✕
✏✧✸
✷

✑✷❥❆✷❥ ❩
C✶✳B✹♥❆✷✴

❢✗✳❹❥B✹♥❆✷✴❀

✕
✏✧✸
✷

✑✷❥❆✷❥✒ ✶

✶❈ ✧✻

✓❥B✹❥ ❩
C✳B✹♥❆✷✴

❢✗✳❹❥B✹♥❆✷✴

✕ ❡�❖✳✧✻❈✧✹✴♥
✷

P ✳C✴❀

where the first inequality follows from the definition of C✶ and (5.1), the second

inequality is by (5.3), and the final equality is by (5.7) and our choice of parameters.

Now, by (5.6) and (5.8) we can choose ✧✹ and ✧✻ sufficiently small depending on ✧

such that logP ✳U ✄
✏�✧✵✳♥✴✴ ✔ logP ✳C✶✴❈ ✧

✷
♥✷. Using the fact that

❥logP ✳U✏�✧✵✳♥✴✴ � logP ✳U ✄
✏�✧✵✳♥✴✴❥ ❉ ♦✳♥✷✴❀

the proof will now be complete once we show that C✶ ✚ U✏ ✳♥✴. To do this note

that for any ❹✵ ✷ C✶ there exists ❹ ✷ C such that ❹✵✳❡✴ ✕ ❹✳❡✴ ❈ min✳ ✧✸
✷
❀ ✧✼✴

for all ✧ ✷ B✹ ♥ ❆✶ and ❹✵✳❡✴ ❉ ❹✳❡✴ for ❡ ✷ ❆✶.

Note that since ❹ ✷ U ✄
✏�✧✵✳♥✴, any path P starting from the origin, which

exits B✹ has weight at least ❜♥ in ❹ and hence by the above discussion also in

❹✵. Thus to prove the lemma we only consider the path P , which is the shortest

path between 0 and n lying inside B✹, in the environment ❹✵✿ We want to show

❵❹✵✳P✴ ✕ ✳✖ ❈ ✏✴♥, where ❵❹✳P✴❀ ❵❹✵✳P✴ denote the weights of P in the

environments ❹ and ❹✵, respectively.

Now since by construction, ❵❹✵✳P✴ ✕ ❵❹✳P✴, there is nothing to show if

❵❹✳P✴ ❃ ✳✖❈ ✏✴♥. Assuming otherwise, it follows that ❥P ❭ ❆✶❥ ✔ ❝♥ where

❝ ❉ ✳✖❈✏✴♥
❜�✧✷ ❁ ✶ was defined above (by P ❭ ❆✶ we denote the set of edges in

❆✶ that P passes through). Indeed, this is true since each edge in ❆✶ has weight

at least ❜ � ✧✷✿ However, note that since P connects 0 and n, trivially P passes

through at least ♥ edges. Thus ❥P❭❆❝
✶❥ ✕ ✳✶�❝✴♥ and hence ❵❹✵✳P✴�❵❹✳P✴ ✕

✳✶ � ❝✴♥min✳ ✧✸
✷
❀ ✧✼✴. By definition ❵❹✳P✴ ✕ ✳✖❈ ✏� ✧✵✴♥, and hence our choice

of ✧✵ implies the sought bound ❵❹✵✳P✴ ✕ ✳✖❈ ✏✴♥✿

6 Approximate Convexity Properties

In this section we will prove Proposition 3.4, i.e., given ✍✶, ♠✶, and ❥✶, for any

TileC♥✳❥✶❀ ✈✴ that is ✳✍✶❀ ❵✶❀ ❦✶✴-Stable where ❵✶ ❉ C♥

✷❥✶❈♠✶
and ❦ ❉ ✷✷♠✶ , and
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LARGE DEVIATIONS IN FPP 1625

any set of vectors w✶❀w✷❀ ✿ ✿ ✿ ❀wt , if w ❉Pt
✐❉✶ w✐ , then

(6.1) ❦w❦✳❥✶❀✈✴ ✔ ✳✶❈ ✍✴

t❳
✐❉✶

❦w✐❦✳❥✶❀✈✴

where ✍ ❉ ❖✳✍✶❈ ✷�♠✶❂✶✻✴✿ Note that it suffices to only consider ♠✶ sufficiently

large, since for smaller values, the above inequality following using (3.9), the stan-

dard triangle inequality for the Euclidean norm, and the lower bound and upper

bound on the passage times as in (2.3) and the discussion following it. The proof

essentially follows by noticing that any set of vectors as above can be scaled down

to get a sum of vectors inside TileC♥✳❥✶❀ ✈✴ followed by an application of stability

and the triangle inequality. To formalize this, we need some notation: For every

✣ ✷ ❙✶✳✑✶✴ (value of ✑✶ will be specified later and be sufficiently small), let

C✳✣✴ ❉ ❢b ✷ ❢w✶❀w✷❀ ✿ ✿ ✿ ❀wt❣ ❲ arg✳b✴ ✷ ➀✣❀ ✣ ❈ ✑✶✴❣
where w✶❀w✷❀ ✿ ✿ ✿ ❀wt are as in the statement of the proposition; i.e., C✳✣✴ denotes

the collection of vectors among ❢w✶❀w✷❀ ✿ ✿ ✿ ❀wt❣ whose angle with the ①-axis falls

in the interval ➀✣❀ ✣ ❈ ✑✶✴✿ Let

w✣ ❉
t❳

✐❉✶

w✐1✳w✐ ✷ C✳✣✴✴

be the sum of the vectors in C✳✣✴✿ Thus by definition❳
✣✷❙✶✳✑✶✴

w✣ ❉ w✿

Also, for every w✐ ✷ C✳✣✴, by Lemma 3.2 (and the definitions of ❦w✐❦✳❥✶❀✈✴ and

rProj✳✳❥✶❀ ✈✴❀ ✣✴, we have

❦w✐❦✳❥✶❀✈✴ ❉ ❦w✐❦
�
✶❈❖✳✍✶ ❈ ✑✶ ❈ ✷�♠✶❂✹✴

✁rProj✳✳❥✶❀ ✈✴❀ ✣✴❀(6.2) ❳
w✐✷C✳✣✴

❦w✐❦✳❥✶❀✈✴ ❉ ❆✣

�
✶❈❖✳✍✶ ❈ ✑✶ ❈ ✷�♠✶❂✹✴

✁rProj✳✳❥✶❀ ✈✴❀ ✣✴(6.3)

where ❆✣ ❉
Pt

✐❉✶ ❦w✐❦1✳w✐ ✷ C✳✣✴✴.

In what follows, for brevity, we shall use the notation ⑩rProj✳✳❥✶❀ ✈✴❀ ✣✴ to denote

terms of the form

(6.4)
�
✶❈❖✳✍✶ ❈ ✑✶ ❈ ✷�♠✶❂✹✴

✁rProj✳✳❥✶❀ ✈✴❀ ✣✴

in (6.3) by ③rProj✳✳❥✶❀ ✈✴❀ ✣✴✿ Thus different instances of such usages might denote

different quantities, all within a ✳✶❈❖✳✍✶ ❈ ✑✶ ❈ ✷�♠✶❂✹✴✴ multiplicative factor

of each other.

Notice now that it follows from the definition of ❆✣ that

(6.5) ✳✶ � ✑✷✶✴❆✣ ❁ ❦w✣❦ ✔ ❆✣ ✿
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Indeed, the upper bound is just the triangle inequality. For the lower bound, no-

tice that if ✒✐ is the angle between w✐ and w✣ , then the projection❢w✐ of w✐ in the

direction of w✣ satisfies ❦ ③w✐❦ ❉ cos ✒✐❦w✐❦. The lower bound follows by observ-

ing that ❥✒✐ ❥ ✔ ✑✶, choosing ✑✶ sufficiently small to ensure cos ✑✶ ✕ ✶ � ✑✷, and

summing over w✐ ✷ C✳✣✴.

Now, (6.5), together with the definition of ❦w✣❦✳❥✶❀✈✴, implies

(6.6) ✳✶ � ✑✷✶✴❆✣
⑩rProj✳✳❥✶❀ ✈✴❀ ✣✴ ✔ ❦w✣❦✳❥✶❀✈✴ ✔ ❆✣

③rProj✳✳❥✶❀ ✈✴❀ ✣✴

where the term ⑩rProj✳✳❥✶❀ ✈✴❀ ✣✴ is as indicated above.

For each ✣, let us consider the value ❜✣ ❉ ❆✣

❦w❦ . We first claim that without loss

of generality we can assume that there exists a universal constant ❈ sufficiently

large such that

(6.7) ❜✣ ✔ ❈

for all ✣. Otherwise, the fact that rProj✳✳❥✶❀ ✈✴❀ ✣✴ is bounded away from ✵ and

infinity for any ✣ (see (3.10)), together with (6.3) and the definition of ❦w❦✳❥✶❀✈✴,
will imply (6.1).

Since our proof strategy relies on using the connection to passage times that

breaks down for vectors having very small Euclidean norms, we will ignore the

vectors in C✳✣✴ with small ❜✣ . Towards formalizing this, we now define the set

B ❉ ❢✣ ✷ ❙✶✳✑✶✴ ❲ ❜✣ ✔ ✷�♠✶❂✺❣ and hence by setting ✑✶ ❉ ✷�♠✶❂✽ we get

(6.8)

✌✌✌❳
✣✷B

w✣

✌✌✌ ✔ ✷✙

✑✶
✂ ✷�♠✶❂✺❦w❦ ❉ ❖✳✷�♠✶❂✶✻✴❦w❦✿

Now let

(6.9) c✣ ❉ w✣

❦w❦
C ♥

❈ ✂ ✶✵✵ ✂ ✷❥✶

③✖
❜

and c ❉ w

❦w❦
C ♥

❈ ✂ ✶✵✵ ✂ ✷❥✶

③✖
❜
✿

Thus we have rescaled w to get a vector c of length C♥

❈✂✶✵✵✂✷❥✶
③✖
❜

and scaled all

the w✣’s by the same factor to obtain the c✣’s. The constant ③✖ here is the one

appearing in (3.5), ❈ appears in (6.7), and ❜ is the upper bound on the individual

vertex weights.

For convenience, let us denote ❙✶✳✑✶✴ ♥ B ❉ ❢✣✶❀ ✣✷❀ ✿ ✿ ✿ ❀ ❣. We now consider

the sequence of points v✵❀ v✶❀ ✿ ✿ ✿ such that v✐ � v✐�✶ ❉ c✣✐ and let, for concrete-

ness, v✵ be the center point of TileC♥✳❥✶❀ ✈✴. Notice that for ♠✶ sufficiently large,

we have ❦c✣✐❦ ✕ C♥

✷❥✶❈♠❂✹ . Now consider the path ✌ obtained by concatenation of

paths ✌✶❀ ✌✷❀ ✿ ✿ ✿ where ✌✐ is the shortest path between v✐�✶ and v✐ . There are two

cases to be considered.

Case 1. Each v✐ is a point in TileC♥✳❥✶❀ ✈✴. In this case, since TileC♥✳❥✶❀ ✈✴

is ✳✍✶❀ ❵✶❀ ❦✶✴-Stable as in the hypothesis of the proposition, it follows, using the

lower bound on ❦c✣✐❦, (3.4), (3.7), and Lemma 3.2 that

❵✳✌✐ ✴ ✔ ❦c✣✐❦⑩rProj✳✳❥✶❀ ✈✴❀ ✣✐ ✴✿
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Hence it follows that

(6.10) ❵✳✌✴ ❉
❳
✐

❵✳✌✐ ✴ ✔
�
✶❈❖✳✍✶ ❈ ✑✶ ❈ ✷�

♠✶
✹ ✴
✁❳

✐

❦c✣✐❦✳❥✶❀✈✴✿

Observe now that ✌ is a path (not necessarily the shortest) joining v✵ and v✵ ❈ c✄,

where c✄ ❉
P

✐ c✣✐ . Observe also that from (6.9) and (6.8) we have ❦c � c✄❦ ✔
❖✳✷�♠✶❂✶✻✴❦c❦, and hence we also have ❦c✄❦ ✕ C♥

✷❥✶❈♠❂✹ . Using the stability of

TileC♥✳❥✶❀ ✈✴, this implies

(6.11) ❵✳✌✴ ✕ �✶ �❖✳✍✶ ❈ ✑✶ ❈ ✷�
♠✶
✹ ✴
✁❦c✄❦✳❥✶❀✈✴✿

Now on account of the closeness between c✄ and c, by Lemma 3.2 we also have

(6.12) ❦c✄❦✳❥✶❀✈✴ ✕
�
✶ �❖✳✍✶ ❈ ✷�♠✶❂✶✻ ❈ ✷�

♠✶
✹ ✴
✁❦c❦✳❥✶❀✈✴✿

Putting the above together (letting ✶❈❇ ❉ ✶❈❖✳✍✶❈✑✶❈✷�♠✶❂✹✴ appearing

in (6.4)) it follows that

t❳
✐❉✶

❦w✐❦✳❥✶❀✈✴
(6.2)(6.3)(6.6)✕ �

✶ � ✑✷✶
✁
✳✶ � ❇✴

❳
✣✷❙✶✳✑✶✴

❦w✣❦✳❥✶❀✈✴

✕ ✳✶ � ✑✷✶✴✳✶ � ❇✴
❳

✣✷❙✶✳✑✶✴♥B
❦w✣❦✳❥✶❀✈✴❀

❉ ✳✶ � ✑✷✶✴✳✶ � ❇✴
❳

✣✷❙✶✳✑✶✴♥B
❦c✣❦✳❥✶❀✈✴

❈ ✂ ✶✵✵ ✂ ✷❥✶❜❦w❦
③✖C ♥

❀

(6.10)❀(6.11)❀(6.12)✕ ✳✶ � ✑✷✶✴✳✶ � ❇✴✷
�
✶ � ❇ �❖

�
✷�

♠✶
✶✻

✁✁
✁ ❦c❦✳❥✶❀✈✴

❈ ✂ ✶✵✵ ✂ ✷❥✶❜❦w❦
③✖C ♥

✕ ✳✶ �❖✳✍✶ ❈ ✷�
♠✶
✶✻ ✴✴❦w❦✳❥✶❀✈✴

where the final inequality follows by recalling that ✑✶ ❉ ✷�♠✶❂✽.

Case 2. Let ❥ be the first index such that v❥ ❹ TileC♥✳❥✶❀ ✈✴. In this case, using

the same reasoning as in (6.10) for the path ③✌ ❉ ✌✶✌✷ ✁ ✁ ✁ ✌❥�✶ yields

(6.13) ❵✳③✌✴ ❉
❥�✶❳
✐❉✶

❵✳✌✐ ✴ ✔
�
✶❈❖✳✍✶ ❈ ✑✶ ❈ ✷�

♠✶
✹ ✴
✁❳

✐

❦c✣✐❦✳❥✶❀✈✴✿

On the other hand, observe that v❥ ❹ TileC♥✳❥✶❀ ✈✴ and (6.7) implies ❦v❥�v❥�✶❦ ✔
❈❦c❦, and hence it follows that the Euclidean distance between the endpoints of ③✌ ,

v✵, and v❥�✶ is at least ✒
✶ � ③✖

✶✵✵ ✂ ❜

✓
C ♥

✷❥✶
✿
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We now get from (3.5) that

❵✳③✌✴ ✕ ③✖
✒
✶ � ③✖

✶✵✵ ✂ ❜

✓
C ♥

✷❥✶
✿

Finally, by (3.10) and the above, we get ❦c❦✳❥✶❀✈✴ ✔
♣
✷❜ C♥

❈✂✶✵✵✂✷❥✶
③✖
❜
✔ ❵✳③✌✴,

which, together with (6.13), completes the proof in this case. �

7 Stability of the Gradient

This section is devoted to proving Proposition 2.4. It turns out that this property

has little to do with the specific details of the first passage percolation metric; rather

it is a property of general distance functions on ❘✷ that are comparable to the

Euclidean metric; i.e., it satisfies the triangle inequality and that for all x❀ y ✷ ❘✷

such that ❦x � y❦ is large enough (possibly ♥ dependent when considering boxes

of size ❖✳♥✴)

(7.1) ③✖❦x � y❦ ✔ PT✳x❀ y✴ ✔ ✸❜❦x � y❦❀
which in our case is a consequence of (2.3) and (3.1). Although, as explained

in the introduction, we believe that results of similar flavour (and with essentially

similar proofs) would be useful for studying a larger class of models, e.g., last

passage percolation and positive temperature polymer models, we did not find a

model where this result would be directly quotable, and hence we have decided to

not introduce extra notations to write the result in its most general form.

For the ease of reading, we recall the statement of the proposition. Recall our

terminology that z ✷ ❘✷ is ✳✍❀❙✶✳✑✴❀ ❵❀ ❦✴-Stable if z is ✳✍❀ ✒❀ ❵❀ ❦✴-Stable for each

✒ ✷ ❙✶✳✑✴.
PROPOSITION 7.1. Fix ✍❀ ✧❀ ✑ ❃ ✵, ❦ ✷ ◆, and ❏✶ ✷ ◆ and suppose that (7.1)

holds for all x❀ y ✷ Box✳✶✵♥✴ such that ❦x � y❦ ✕ ♣
♥✿ Then there exists ❏✷ ✷ ◆

such that for all large enough ♥, there exists ❏✶ ✔ ❥ ✔ ❏✷ such that

#

✚
z ✷ ❩✷ ❭ Box✳♥✴ ❲ z is not

✒
✍❀❙✶✳✑✴❀

♥

✷❥
❀ ❦

✓
-Stable

✛
✔ ✧♥✷✿

Above we have replaced C ♥ in the statement of Proposition 2.4 by ♥, and sim-

ilarly the conditioning on U ✄
✏
✳♥✴ therein by simply assuming that (7.1) holds for

well separated points in Box✳✶✵♥✴ to reduce notational overhead; the reader will

notice the arguments imply Proposition 2.4 by simply changing certain constants.

7.1 A roadmap of the proof

Since we are not seeking optimal bounds, the proofs will often rely on several

crude averaging arguments and applications of the pigeonhole principle along with

the bi-Lipschitz nature of the FPP metric. However, there are many technical steps

involved, and for the sake of exposition we give a brief overview of the argument

at this point.
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The argument is divided into two parts with similar proofs. The first part shows

that for a fixed direction ✒ ✷ ❙✶ and a fixed point z ✷ Box✳♥✴, and for ❏✶ ✷ ◆
and for ❏✷ sufficiently large, there exists m ✷ ◆ and ❏✶ ✔ ❥ ✔ ❏✷, and such that

most points z✐ in the discrete segment U ✳z❀ ✒❀ ♥
✷❥m

❀ ✷❥m✴ are stable with parameters

depending on ❥ and m. This is carried out in Section 7.2. (See Lemma 7.3 for

a precise statement.) The second part of the argument strengthens this result to

Proposition 7.1 by showing that a common ❥ can be found for all directions and all

points. The two parts of the arguments are similar; we describe here a roadmap of

the proof of Lemma 7.3, and the second part of the argument is provided in Section

7.3; see the beginning of that subsection for a discussion of the extra ingredients

needed.

Our argument relies on the following observations.

(1) Fix z ✷ Box✳♥✴ and ✒ ✷ ❙✶✳✑✴. Observe that for all ❏✷ ❃ ❏✶,

(7.2)

PT
✏

z❀ ✒❀
♥

✷❏✷
❀ ✷❏✷

✑
� PT

✏
z❀ ✒❀

♥

✷❏✶
❀ ✷❏✶

✑
❉

❏✷�✶❳
❥❉❏✶

❤
PT✳z❀ ✒❀

♥

✷❥❈✶
❀ ✷❥❈✶✴ � PT

✏
z❀ ✒❀

♥

✷❥
❀ ✷❥

✑✐
✿

The LHS in (7.2) is trivially bounded by ✸❜♥, and all the terms in the RHS are

nonnegative by the triangle inequality (as in Lemma 2.3).

(2) Thus, if ❏✷ � ❏✶ ✕ ✶
✧

, by the pigeonhole principle there must exist one

❏✶ ✔ ❥ ✔ ❏✷ such that ➀PT✳z❀ ✒❀ ♥
✷❥❈✶

❀ ✷❥❈✶✴ � PT✳z❀ ✒❀ ♥
✷❥

❀ ✷❥ ✴➁ ✔ ❖✳✧✴♥. As a

matter of fact, if further ❏✷ � ❏✶ ✢ ✶
✧

, we should be able to find many consecutive

integers ❥ satisfying the above property.

(3) Now for ❥ as in (2), consider the discrete segments

U

✒
z❀ ✒❀

♥

✷❥
❀ ✷❥

✓
❉ ➀z✵❀ z✶❀ ✿ ✿ ✿ ❀ z✷❥ ➁

U

✒
z❀ ✒❀

♥

✷❥❈✶
❀ ✷❥❈✶

✓
❉ ➀z✵❀ z✵❀✶❀ z✶❀ z✶❀✷❀ z✷❀ ✿ ✿ ✿ ❀ z✷❥ ➁❀

where z✐❀✐❈✶ is the midpoint of the line segment joining z✐ and z✐❈✶✿ Thus the

above observation together with the lower bound in (7.1) suggests that for most ✐ ,

PT✳z✐ ❀ z✐❀✐❈✶✴❈ PT✳z✐❀✐❈✶❀ z✐❈✶✴ ✔ ✳✶❈❖✳✧✴✴PT✳z✐ ❀ z✐❈✶✴✿

However, this is not quite enough to establish stability, and in fact we need some-

thing along the lines of the following stronger fact (see Lemma 7.2): for most ✐ ,

PT✳z✐ ❀ z✐❀✐❈✶✴ ✙ PT✳z✐❀✐❈✶❀ z✐❈✶✴ ✙ ✶

✷
PT✳z✐ ❀ z✐❈✶✴✿
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(4) Suppose the contrary to the expression directly above. Without loss of

generality assume that

PT✳z✐ ❀ z✐❀✐❈✶✴ ✕
✒
✶

✷
❈ ✍

✓
PT✳z✐ ❀ z✐❈✶✴✿

The contradiction will come from the fact that the above cannot be true for many

consecutive scales. Indeed, if it were true for ❥ ✵ many consecutive scales, then re-

cursively picking one half of an interval at each scale in which the above inequality

holds leads to an interval ➀w✶❀w✷➁ such that ❦w✶ � w✷❦ ❉ ❦z✐�z✐❈✶❦
✷❥

✵ but

PT✳w✶❀w✷✴ ✕ ✳✶❈ ✷✍✴❥
✵ PT✳z✐ ❀ z✐❈✶✴

✷❥
✵ ✿

Clearly, using the lower bound in (7.1), for ❥ ✵ large enough (depending on ✍, ③✖,

and ❜), this contradicts the upper bound in (7.1). We now make the argument above

formal.

Recalling the notion of stability from (2.7), the following crude lemma shows

how the above observations are useful to show stability.

LEMMA 7.2. Let ✍ ❃ ✵, ✒ ✷ ❙✶, and ❵❀ ❦ ✷ ◆ be fixed. Recalling that

U ✳z❀ ✒❀ ❵❀ ❦✴ ❉ ➀z ❉ z✵❀ z✶❀ ✿ ✿ ✿ ❀ z❦➁❀

suppose

sup
✵✔✐❀❥✔❦�✶

PT✳z✐ ❀ z✐❈✶✴

PT✳z❥ ❀ z❥❈✶✴
✔ ✶❈ ✍ and

❦PT✳z✵❀ z✶✴

✶❈ ✍
✔ PT✳z✵❀ z❦✴ ✔ ❦PT✳z✵❀ z✶✴✳✶❈ ✍✴✿

Then, for each ✐ ✔ ❦ and ❦✵ ✔ ❦ � ✐ , z✐ is ✳✍✵❀ ✒❀ ❵❀ ❦✵✴-Stable where ✍✵ ❉ ❖✳✍❦✴.

PROOF. Using the hypotheses, for any ✐ ✔ ❦ and ❦✵ ✔ ❦ � ✐ , we have

PT✳z✵❀ z❦✴ ✔ PT✳z✐ ❀ z✐❈❦✵✴❈ ✳❦ � ❦✵✴✳✶❈ ✍✴PT✳z✵❀ z✶✴✿

Thus it follows that

PT✳z✐ ❀ z✐❈❦✵✴ ✕
✶

✳✶❈ ✍✴
❦PT✳z✵❀ z✶✴ � ✳❦ � ❦✵✴✳✶❈ ✍✴PT✳z✵❀ z✶✴

✕ ❦✵PT✳z✵❀ z✶✴✳✶ �❖✳✍❦✴✴❀

✕ ❦✵PT✳z✐ ❀ z✐❈✶✴✳✶ �❖✳✍❦✴✴✿

Moreover, note that by the triangle inequality and the hypothesis, PT✳z✐ ❀ z✐❈❦✵✴ ✔
✳✶❈ ✍✴❦✵PT✳z✐ ❀ z✐❈✶✴. This completes the proof. �

Thus, in what follows, to prove the stability of a point we will only prove that the

hypothesis of Lemma 7.2 is satisfied following the strategy outlined above. Going

back to the proof of Proposition 7.1, as explained in the roadmap, we shall first
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LARGE DEVIATIONS IN FPP 1631

deduce the existence of many stable points along a fixed line in a given direction.

We shall first state and prove this weaker version.

7.2 Stability on a fixed line

Let us consider the discrete segment U ✳z❀ ✒❀ ♥
✷❥

❀ ✷❥ ✴ for some z ✷ Box✳♥✴ and

✒ ✷ ❙✶✳✑✴. We shall show most points on this segment are stable for ❦ consecutive

intervals.

LEMMA 7.3. Let z ✷ Box✳♥✴, ✒ ✷ ❙✶✳✑✴, ❦ ✷ ◆, and ❏✶ ✷ ◆ be fixed. There
exists an absolute constant ❈✵ ❃ ✵ such that for each ✍✷ ❃ ✵, there exists m,
depending on ✍✷ and ❦ only, for which the following holds: for all small enough
✍✸ (depending on m and ✍✷) and for all ♥ large enough depending on all the other
parameters, there exists ❥ ✷ ◆ with ❏✶ ✔ ❥ ✔ ✳❏✶ ❈ ✶❂✍✷✸✴ for which all but
a ❈✵✍✷ fraction of the points z✐ in the discrete segment U ✳z❀ ✒❀ ♥❂✷❥m❀ ✷❥m✴ are
✳✍✷❀ ✒❀ ♥❂✷

❥m❀ ❦✴-Stable.

The quantification in the above statement might be a little hard to parse, but it

will create some simplification in the notational choices later. For the moment, let

us fix a value of m to be specified later. It will be convenient to associate trees to

the intervals in U ✳z❀ ✒❀ ♥❂✷m❏✶ ❀ ✷m❏✶✴ ❉ ➀z ❉ z✵❀ z✶❀ ✿ ✿ ✿ ❀ z✷m❏✶ ➁. Let

(7.3) ❚✶❀ ❚✷❀ ✿ ✿ ✿ ❀ ❚✷m❏✶

be complete ✷m-ary trees of depth ❏✷ � ❏✶, where the value of ❏✷ will be specified

to be a large enough number later (for convenience we shall index the levels of

these trees by ❥ ❉ ❏✶❀ ❏✶❈ ✶❀ ✿ ✿ ✿ ❀ ❏✷). Let ▲
✳✐✴
❥ denote the vertices at the ❥ th level

of ❚✐ , and let ▲❥ ❉
❙

✐ ▲
✳✐✴
❥ denote the union of the vertices at the ❥ th level. We

will identify ❚✐ with the interval ➀z✐�✶❀ z✐ ➁. Now for any ❏✶ ✔ ❥ ✔ ❏✷, consider

the discrete segment

U

✒
z❀ ✒❀

♥

✷❥m
❀ ✷❥m

✓
❉
❤
z
✄❀❥
✵ ❀ ✿ ✿ ✿ z

✄❀❥
✷✳❥�❏✶✴m

❀ z
✄❀❥
✷✳❥�❏✶✴m❈✶

❀ ✿ ✿ ✿ ❀ z
✄❀❥
✷✳❥❈✶�❏✶✴m

❀ ✿ ✿ ✿ ❀ z
✄❀❥
✷✳❥�✶✴m

✿ ✿ ✿ z
✄❀❥
✷❥m

✐
✿

Naturally, ✂
z
✄❀❥
✵ ❀ ✿ ✿ ✿ ❀ z

✄❀❥
✷✳❥�❏✶✴m

✄
is a discretization of the interval ➀z✵❀ z✶➁, and hence can be associated to ▲

✳✶✴
❥ ,

where each vertex in ▲
✳✶✴
❥ corresponds to ➀z

✄❀❥
❤

❀ z
✄❀❥
❤❈✶

➁ in the natural order (e.g.,

the root of ❚✶ corresponds to the interval ➀z
✄❀❏✶
✵ ❀ z

✄❀❏✶
✶ ➁, which is nothing but the

interval ➀z✵❀ z✶➁). The same correspondence holds for the other intervals and trees.

See Figure 7.1 for an illustration. In what follows, the level of the trees under
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LARGE DEVIATIONS IN FPP 1633

among all the leaf vertices across all the trees (note that it is naturally and uniquely

associated with a uniformly chosen simple path from the root to the leaf in a uni-

formly chosen tree) and label the edges on the path as ✳❡❏✶❈✶❀ ❡❏✶❈✷❀ ✿ ✿ ✿ ❀ ❡❏✷✴
where ❡✐ denotes the intersection of the path with the ✐ th level. It is clear that ❡❥ is

uniformly distributed among all edges connecting ▲❥�✶ and ▲❥ . Notice that

❏✷❨
❥❉❏✶❈✶

❳❡❥
❞❉ ✷✳❏✷�❏✶✴m❨✇

❨✈

where ❨✈ and ❨✇ are the variables attached to the root of a randomly chosen tree

❚✐ and a randomly chosen leaf of ▲
✳✐✴
❏✷

, respectively. We now bound the expectation

of ❳❡❥ for all ❏✶ ❁ ❥ ✔ ❏✷✿ To do this consider the ratio ❯❥❈✶❂❯❥ ✿ By definition,

we have the following:

❯❥❈✶
❯❥

❉
P

✇✷▲❥❈✶ ❨✇P
✈✷▲❥ ❨✈

❉
P

✈✷▲❥ ❨✈❊✳❳❡❥❈✶ ❥ ✈❀ ❨✈✴P
✈✷▲❥ ❨✈

✕ ✶(7.6)

where the second equality follows from (7.4) and the fact that the trees ❚✐ are ✷m-

ary, and the final inequality follows from (7.5). The following lemma completes

the proof of Lemma 7.3 under the further assumption that on a sufficiently large

interval contained in J❏✶❀ ❏✶ ❈ ✶❂✍✷✸K, ❯❥❈✶❂❯❥ is also upper-bounded by ✶❈ ✍✸
for some small enough ✍✸.

LEMMA 7.4. Fix ❝ ❃ ✵. In the setting of Lemma 7.3, suppose there exists an
interval ■ ✒ J❏✶❀ ❏✶ ❈ ✶❂✍✷✸K, with ❥■ ❥ ✕ ❝❂✍✸ such that for all ❥ ✷ ■ , for some
small enough ✍✸, depending on m and ✍✷,

✵ ✔ ❯❥❈✶
❯❥

� ✶ ✔ ✍✸✿(7.7)

Then the conclusion of Lemma 7.3 holds.

PROOF. Without loss of generality for this proof we shall write ■ ❉ J❏✶❀ ❏✷K,

where ■ is given by the hypothesis. It is a consequence of (7.1) that for ❥ ✔ ❦,

✈ ✷ ▲❥ and ✇ ✷ ▲❦ ,

(7.8)
✶

❈
✔ ❨✈

✷✳❦�❥ ✴m❨✇
✔ ❈

for some universal constant ❈ ❉ ❈✳❜❀ ③✖✴ ❃ ✶. Define now the probability measure

✖❥ on the ❥ th-level vertices given by ✖❥ ✳✈✴ ❉ ❨✈❂✳
P

✈✷▲❥ ❨✈✴. In particular,

for ❦ ❉ ❥ , (7.8) implies that the Radon-Nikodym derivative of ✖❥ with respect

to the uniform measure u❥ on ▲❥ is bounded above and below by ❈ ✷ and ❈�✷,

respectively. Now, (7.7), along with (7.6), implies ❊✖❥ ✳❊✳❳❡❥❈✶ ❥ ✈❀ ❨✈✴ � ✶✴ ✔
✍✸. This, together with the above observation and (7.5) (the fact that ❊✳❳❡❥❈✶ ❥
✈❀ ❨✈✴ � ✶✕✵) implies that

❊u❥
✳❊✳❳❡❥❈✶ ❥ ✈❀ ❨✈✴ � ✶✴ ✔ ❈ ✷✍✸✿(7.9)
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By (7.1), ❈ in (7.8) can be chosen such that deterministically ✶
❈
✔ ❳❡❥ ✔ ❈

and moreover,

✶

❈
✔

❏✷❨
❥❉❏✶❈✶

❳❡❥ ✔ ❈❀ which implies

☞☞☞☞☞
❏✷❳

❥❉❏✶❈✶

❊u✳log❳❡❥ ✴

☞☞☞☞☞ ✔ log❈✿(7.10)

Thus, it follows that there exists ❏✶ ❈ ✶ ✔ ❥ ✔ ❏✷ such that

❊u❥
✳log❳❡❥ ✴ ✕ �❝�✶✳log❈✴✍✸✿

Hence we have found a ❏✶ ❈ ✶ ✔ ❥ ✔ ❏✷ with the following two properties:

✶ ✔ ❊u❥
✳❳❡❥ ✴

(7.9)✔ ✶❈ ❈ ✷✍✸ and ❊u❥
✳log✳❳❡❥ ✴✴ ✕ �❝�✶✳log❈✴✍✸✿

Now for any edge ❡, denoting ❳❡ � ✶ ❉ ②❡, the above can be restated as

✵ ✔ ✶

✷❥m

❳
❡✷▲❥

②❡ ✔ ❈ ✷✍✸ and
✶

✷❥m

❳
❡✷▲❥

log✳✶❈ ②❡✴ ✕ �❝�✶✳log❈✴✍✸✿

Now note that by (7.8), �✶ ✔ ②❡ ✔ ❈ , and hence using Taylor expansion,

log✳✶ ❈ ②❡✴ ✔ ②❡ � ❈ ✵②✷❡ for some universal constant ❈ ✵. Using the above in-

equalities it follows that

❊u❥
✳❳❡❥ � ✶✴✷ ❉ ✶

✷❥m

❳
❡✷▲❥

②✷❡ ✔
✶

❈ ✵

✧
✶

✷❥m

❳
❡✷▲❥

�
②❡ � log✳✶❈ ②❡✴

✁★ ❉ ❖✳✍✸✴✿

Thus by Chebyshev’s inequality, for at least a ✶ �❖✳
♣
✍✸✴ fraction of ❡ ✷ ▲❥ , we

have ❥❳❡ �✶❥ ✔ ✍
✶❂✹
✸ . Let us call such an edge ❡, a good edge. Now let us consider

all ✈ ✷ ▲❥�✶ such that all the children of ✈ are good (let us call such ✈ good).

A naive bound shows that the fraction of good ✈ is at least ✶ � ❖✳✷m
♣
✍✸✴✿ Now

for any good ✈ corresponding to an interval ➀w✶❀w✷➁, say, if the discrete segment

➀w✶ ❉ w✄
✵❀w✄

✶❀ ✿ ✿ ✿ ❀w✄
✷m ❉ w✷➁ corresponds to the ✷m children, then Lemma 7.2

implies the following: each w✄
✐ for ✐ ✷ J✵❀ ✷m � ❦K is ✳✍✵❀ ✒❀ ♥❂✷❥m❀ ❦✴-Stable,

where ✍✵ ❉ ❖✳✷m✍
✶❂✹
✸ ✴ (note that ❦ here is the same as in Lemma 7.3, and not

that in the statement of Lemma 7.2; the latter is applied by setting ❦ ❉ ✷m). Thus

the total fraction of points on U ➀z❀ ✒❀ ♥❂✷❥m❀ ✷❥m➁ that are not ✳✍✵❀ ✒❀ ♥❂✷❥m❀ ❦✴-
Stable is at most ❖✳❦❂✷m ❈ ✷m

♣
✍✸✴✿ Now choose m large enough and then ✍✸

small enough such that max✳❦❂✷m ❈ ✷m
♣
✍✸❀ ✍

✵✴ ✔ ✍✷. �

It remains to prove that (7.7) holds for a large number of consecutive scales.

This is ensured by the following lemma using another pigeonhole argument.

LEMMA 7.5. In the setting of Lemma 7.4, there exists ❝ ❃ ✵ and ■ ✒ J❏✶❀ ❏✶ ❈
✶❂✍✷✸K with ❥■ ❥ ✕ ❝

✍✸
such that for all ❥ ✷ ■

✵ ✔ ❯❥❈✶

❯❥
� ✶ ✔ ✍✸✿
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LARGE DEVIATIONS IN FPP 1635

PROOF. For ❝ ❃ ✵ to be specified later, we divide the ✶❂✍✷✸ many scales into

consecutive blocks of ❝❂✍✸ many scales each. For ✐ ✷ J✶❀ ✶❂❝✍✸K, let ❛✐ ❉
❯❏✶❈✐❝❂✍✸ � ❯❏✶❈✳✐�✶✴❝❂✍✸ . By the triangle inequality, ❛✐ ✕ ✵ for all ✐ , and by

(7.8), there exists a universal constant ❈ such that ❯❏✶❈✶❂✍✷
✸
✔ ❈❯❏✶ ✿ As a conse-

quence,
P

✐✷J✶❀✶❂❝✍✸K ❛✐ ✔ ❈❯❏✶ , and by choosing ❝ sufficiently small, it follows

there exists some ✐ ✷ J✶❀ ✶❂❝✍✸K such that ❛✐ ✔ ❯❏✶✍✸✿ Now this implies that for

any ❏✶ ❈ ✳✐ � ✶✴❝❂✍✸ ✔ ❥ ✔ ❏✶ ❈ ✐❝❂✍✸ we have

❯❥❈✶ � ❯❥

❯❥
✔ ❛✐

❯❏✶

✔ ✍✸❀

where the final inequalities are consequences of ❯❥❈✶ � ❯❥ ✔ ❛✐ and ❯❥ ✕ ❯❏✶ ,

both of which, in turn, follow from (7.6). This completes the proof. �

7.3 Strengthening Lemma 7.3 to Proposition 7.1

We now provide the extra ingredients needed to extend the argument of the

previous subsection to establish the stronger statement of Proposition 7.1. To avoid

repetition, instead of providing the full formal proof, we shall describe the main

ideas and present an elaborate sketch. Observe that to establish Proposition 7.1,

one needs to extend Lemma 7.3 in the following two directions:

(a) At the same scale ❥ , get the stability simultaneously in all directions in

❙
✶✳✑✴ . We will do this by first ensuring that there is a single scale ❥ such

that for all ✒ ✷ ❙✶✳✑✴ there exists a ‘dense’ set of stable points, which we

don’t quantify yet.

(b) Deduce stability of most lattice points from the stability of a nearby point

in the above-mentioned dense set.

We describe below how to take care of these two items. To address the issue in

(a), note that one cannot naively apply the above argument separately for all ✒ ✷
❙
✶✳✑✴ since a priori one might not end up with the same scale ❥ for all ✒ ✷ ❙✶✳✑✴.
Instead we do the following: for each ✒ ✷ ❙

✶✳✑✴, consider the set of parallel

lines

L✒ ❲❉ ❢▲✒
�❑ ❀ ✿ ✿ ✿ ❀▲✒

�✶❀▲
✒
✵❀▲

✒
✶❀ ✿ ✿ ✿ ❀▲

✒
❑❣

where for any ✐ ✷ J�❑❀❑K, ▲✒
✐ is a line segment of length ✹♥, making angle ✒

with the ①-axis; ▲✒
✵ is centered at the origin; and ▲✒

✐ is obtained by translating ▲✒
✵

in the orthogonal direction by ✐♥

✷❏✸m
where ❏✸ ❉ ❏✶❈✶❂✍✹✸ and ❑ ❉ ✸✂✷❏✸m (see

Figure 7.2). For each

✒ ✷ ❙✶✳✑✴ and each ✐ ✷ J�❑❀❑K, let U✐❀✒ be the discrete line segment formed

by the points on ▲✒
✐ at spacing ♥

✷❏✶m
(without loss of generality we assume that the

starting and ending points of ▲✒
✐ and U✐❀✒ are the same to avoid rounding ). Thus

U✐❀✒ ❉ ➀z
✐❀✒
✵ ❀ z

✐❀✒
✶ ❀ ✿ ✿ ✿ ❀ z

✐❀✒
▼ ➁ where ▼ ❉ ✹ ✂ ✷❏✶m✿ We now create a tree ❚✐❀✒❀❵ for

each ✐ ✷ J�❑❀❑K, ✒ ✷ ❙✶✳✑✴, and ❵ ✷ J✵❀▼ � ✶K corresponding to the interval
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an ❖✳ ❦✶
✷m

❈ ✷m
♣
✍✸

✑
✴ fraction, all the remaining z

✐❀✒❀❵❀❥

❤
, are ✳✍✵❀ ✒❀ ♥

✷❥m
❀ ❦✶✴-Stable

where ✍✵ ❉ ❖✳✷m✍
✶❂✹
✸ ✴✿ Note that the ✶

✑
term appears in the fraction of unstable

points to ensure uniformity across ✒ ✷ ❙✶✳✑✴✿
Thus by choosing m large enough depending on ❦✶ and ✍✷, followed by choosing

✍✸ small enough, provides for any ✒ ✷ ❙✶✳✑✴ a dense set of points at spacing ♥
✷❥m

(of fraction ✶ � ❖✳ ❦✶
✷m

❈ ✷m
♣
✍✸

✑
✴), which are ✳✍✷❀ ✒❀

♥
✷❥m

❀ ❦✶✴-Stable and hence

addresses the issue in (a).

To address the issue in (b) we will use the above along with Lemma 2.5 to

imply stability for most points in ❩✷ ❭ Box✳♥✴ with slightly worse parameters.

Fixing ✒ ✷ ❙✶✳✑✴, for any ✳✍✷❀ ✒❀
♥

✷❥m
❀ ❦✶✴-Stable point z

✐❀✒❀❵❀❥

❤
, consider any lattice

point w in the associated rectangular box R as illustrated in Figure 7.2. Thus

❦w � z
✐❀✒❀❵❀❥

❤
❦ ✔ ✷ ♥

✷❥m
. Hence, applying Lemma 2.5 (by taking ❵ ❉ ♥

✷❥m
, ♠ ❉ ✷,

❦ ❉ ❦✶ and ❈ ❉ ♣
❦✶) implies that w is ✳✍✵❀ ✒❀ ♥

♣
❦✶

✷❥m
❀
♣
❦✶✴-Stable where ✍✵ ❉

✍✷ ❈❖✳ ✶♣
❦✶
✴✿ Thus it follows that

#❢z ✷ ❩✷ ❭ Box✳♥✴ ❲ z is not ✳✍✵❀ ✒❀
♥
♣
❦✶

✷❥m
❀
♣
❦✶✴-Stable❣

✔ ❖✳
❦✶

✷m
❈ ✷m

♣
✍✸

✑
✴♥✷❀

By a simple union bound over ✒ ✷ ❙✶✳✑✴, it follows that

(7.11)

#

✚
z ✷ ❩✷ ❭ Box✳♥✴ ❲ z is not

✒
✍✵❀❙✶✳✑✴❀

♥
♣
❦✶

✷❥m
❀
♣
❦✶

✓
-Stable

✛
✔ ❖

✥
✶

✑

✒
❦✶

✷m
❈ ✷m

♣
✍✸

✑

✓✦
♥✷✿

The statement of Proposition 7.1 now follows from choosing
♣
❦✶ ✫ max✳✶

✍
❀ ❦✴,

followed by ✍✷ small enough to ensure ✍✵ ✔ ✍, and then m large enough followed

by ✍✸ small enough to ensure that the

❖

✥
✶

✑

✒
❦✶

✷m
❈ ✷m

♣
✍✸

✑

✓✦
term

is less than ✧. Moreover, we take the value of ❏✷ to be m✳❏✶ ❈ ✶❂✍✷✸✴. Note that

the value of ❥ in Proposition 7.1 can be taken to be ❥m� log❦✶
✷

, where the latter ❥

appears in (7.11).
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