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Abstract

For first passage percolation on Z? with i.i.d. bounded edge weights, we con-
sider the upper tail large deviation event, i.e., the rare situation where the first
passage time between two points at distance n is macroscopically larger than
typical. It was shown by Kesten [24] that the probability of this event decays
as exp(—O(n?)). However, the question of existence of the rate function, i.e.,
whether the log-probability normalized by 72 tends to a limit, remains open. We
show that under some additional mild regularity assumption on the passage time
distribution, the rate function for upper tail large deviation indeed exists. The
key intuition behind the proof is that a limiting metric structure that is atypical
causes the upper tail large deviation event. The formal argument then relies on
an approximate version of the above which allows us to use independent copies
of the large deviation environment at a given scale to form an environment at
a larger scale satisfying the large deviation event. Using this, we compare the
upper tail probabilities for various values of n. © 2021 Wiley Periodicals LLC.
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1 Introduction and Main Result

First passage percolation is a popular model of fluid flow through inhomoge-
neous random media, where one puts random weights on the edges of a graph and
considers the first passage time between two vertices, which is obtained by min-
imizing the total weight among all paths between the two vertices. First passage
percolation on Euclidean lattices was introduced by Hammersley and Welsh [19]
in 1965 and has been studied extensively both in statistical physics and probability
literature ever since. This model served as one of the motivations of developing the
theory of subadditive stochastic processes, and the early progress using subadditiv-
ity was made by Hammersley-Richardson-Kingman [19,27,32] and culminated in
the proof of the celebrated Cox-Durrett shape theorem [12] establishing the first-
order law of large numbers behaviour for passage times between faraway points.
Further progress was made in the 80s and 90s through efforts of Kesten [24-26] and
Talagrand [36] establishing concentration inequalities for passage times, and New-
man and others [30] on more geometric aspects of the model. Much progress has
been made since [8,20] including a flurry of results in the last five years [1,9,15,16].
Despite this impressive progress, most of the fundamental questions still remain
major mathematical challenges; see the survey [2] for a comprehensive history as
well as an extensive list of the major open problems in this field.

One other reason planar first passage percolation came into prominence is that
this model is believed to be in the KPZ universality class that was introduced
by Kardar, Parisi, and Zhang [23] in 1986. Using nonrigorous renormalization
group techniques, KPZ predicted universal scaling exponents for many (1+1)-
dimensional growth models including first and last passage percolation under very
general conditions on the passage time distribution (precise definitions later). An
explosion of rigorous results in the last two decades starting with the seminal work
of Baik, Deift, and Johansson [3] has now verified the KPZ prediction for a hand-
ful of models including last passage percolation with exponential, geometric, or
Bernoulli passage times. However, this progress has been mostly restricted to the
so-called exactly solvable (or, integrable) models where exact formulae are avail-
able using deep connections to algebraic combinatorics, representation theory, and
random matrix theory; extremely detailed information has been obtained about
such models by analyzing those formulae. Although the same results are qualita-
tively expected to hold for a much larger class of models, these methods rely very
crucially on the exact formulae, and moving beyond the exactly solvable models
remains a major challenge.

Our focus in this paper is such a problem in the nonintegrable setting of first
passage percolation in the large deviation regime. The question first arose in the
work of Kesten [24], who considered the probability of large deviation events in
first passage percolation. Postponing the precise definitions momentarily, let us
first describe informally the setup. Consider the passage time T, from (0, 0) to
(n,0). The already mentioned shape theorem dictates that under some regularity
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conditions % —  almost surely for some p € (0, 00). The study of large de-
viations is concerned with the unlikely events {T, > (i + €)n} (upper tail) and
{T, < (u — &)n} (lower tail). In the classical theory of large deviations, the log of
such probabilities suitably scaled (by the so-called speed of large deviations) con-
verges to a function of &, known as the rate function. For first passage percolation,
Kesten [24] showed the large deviation speed of n and existence of the rate function
for the lower tail using a subadditive argument. For the upper tail, Kesten showed
a large deviation speed of n2 for bounded edge weight distribution; however, the
existence of the rate function remained open (see Open Question 18 in [2]). Our
main result in this paper (see Theorem 1 below) answers this question establishing
the existence of the rate function for the upper tail, which to our knowledge is the
first such result beyond the exactly solvable models.

1.1 Model definitions and statement of result

We start with formal definitions of standard first passage percolation on 74,
d > 2. Let E(Z%) denote the set of all nearest-neighbour edges in Z<. Let v
be a probability measure supported on the nonnegative real line. Let [T = {X, :
e € E(Z9)} denote a field of i.i.d. random variables where each X, (called the
passage time of the edge ¢) has distribution v. For a sequence y = ejep - - ey of
neighbouring edges (called a path), the passage time of the path, denoted by £(y),
is defined as

k
(W)= X
i=1
For any two vertices u and v, the first passage time between u and v, denoted
PT(u, v), is defined as the infimum of £(y) where y varies over all paths starting
at ¥ and ending at v. Let 0 denote the origin. Under very mild conditions on v, it
is a fundamental fact that for all v € Z4, there exists i(d, v, v) > 0 such that

PT(0,
lim M = u(d,v,v)
n—00 n
almost surely. For the special case when v = (1,0, ..., 0) is the unit vector along

the first coordinate, we denote the limiting constant by just u, also known as the
time constant in the literature. For the rest of this paper we shall focus on the planar
case (d = 2) of the above model, and hence shall be in the setting of standard first
passage percolation on Z? unless otherwise mentioned. Let n := (n, 0) and let us
denote the passage time PT(0,n) by T,. As mentioned above we are concerned
with the probability of the upper tail large deviation event

(1.1) U (n) = {Ty = (n+ EIn}

for some ¢ > 0. Throughout the paper we will work with the assumption that the
passage time distribution has a continuous density with support [0, b]. Although
we expect our method to extend beyond this condition, throughout the paper this
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will be our standing assumption, which is general enough, and yet, makes some of
the proofs cleaner. For future reference we record this assumption below.

DEFINITION 1.1. For b > 0, let P(b) denote the set of all probability measures
with support [0, b] and a continuous density.

It is well-known that if v € P(b) for any b > 0, then we have 0 < p < b (e.g.,
see [19]). Also observe that for v € P(b), we have deterministically that T, < bn.
So while considering the large deviation event % in the above scenario, it suffices
to consider ¢ € (0, b — ). Our main theorem shows that the large deviation rate
function exists in the above setting.

THEOREM 1. Consider standard first passage percolation on 7.> with passage
time distribution v € P(b) for some b > 0. Then for { € (0,b — ) there exists
r =r(v,{) € (0, 00) such that

log P(%(n)) _
m -—————=r

n—00 n2

A couple of remarks are in order. First, there is nothing special about the direc-
tion (1, 0); the same result holds for any unit vector v with different rate function
r, with minor adjustments in the proof. Also, a variant of this result is expected
to hold in higher dimensions as well where the speed of the large deviation is n¢
rather than n2 (see, e.g., (1.4)), and we expect that the same argument proving The-
orem 1 may be used to prove the higher-dimensional analogue. However, in this
paper we shall only focus on proving Theorem 1. We would also like to point out
that our proof implies that (v, ) is continuous on (0, b — ¢). Indeed, the proof
crucially uses as an ingredient a result, Proposition 1.4, which implies that (v, -)
must be continuous on (0, b — £) if it exists. We are unable to establish convexity
at this point and further smoothness properties seem out of reach of our current
methods.

Observe that the condition in Theorem 1 is not optimal, and we have not made
an attempt to make it the weakest possible. Together with the standard assump-
tions that the mass at 0 is less than the critical bond percolation probability on 72
and that the edge distribution is not degenerate at a single point, Kesten assumed
boundedness.! Tt is important to observe that one cannot completely remove this
additional hypothesis; some condition is needed to ensure even the n? speed of the
large deviation. For example, if the passage times are exponentially distributed,
just increasing all the passage times around the origin by (¢ + ¢)n would force
the large deviation event, while its probability being only exponentially small in »
(see the recent work [29], where indeed a sharp large deviations rate function has
been established in this particular case). One can however prove Kesten’s result for
passage times with sufficiently fast decaying tails (see [13]), and one believes that

1 Our additional assumption, of continuous density and full support in Definition 1.1 will only be
used in the proof of Proposition 1.4, and we believe can be relaxed.
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the rate function will exist in such a case too, possibly under some additional hy-
potheses. However, in this paper we have not pursued those directions, and instead
focused on proving the result in the simplest possible case that is still sufficiently
general to be of interest.

1.2 Background and related works

First passage percolation can be thought of as putting a random metric on 74,
where the distance between two vertices is given by the first passage time between
them. As alluded to above, the most fundamental result about first passage per-
colation says that under suitable rescaling these metrics converge almost surely to
a deterministic metric on R? in a pointed Gromov-Hausdorff sense. More pre-
cisely, we have the following. Suppose v € P(b) for some b € (0, 00) (actually
one only needs some moment condition and that the aforementioned standard as-
sumption that mass of any atom at 0 is sufficiently small), and let B (t) denote
the set of all vertices that are within distance ¢ of 0 in the FPP metric, and let

B(t) = B(t) + [—%, %]d. Then there exists a nonrandom compact convex set
B = B, with obvious symmetries such that for each ¢ > 0

B(1)
(1.2) Pl(1—-¢)B, C - C (1 +¢)B, foralllarge ¢ | = 1.

The set B is called the limit shape for this model. See, e.g., [12] for a proof of
this. Recall the limiting constant zt(d, v, v) in direction v. It is not hard to see that
w(d, v,-) can be extended to a norm in R? and B is the unit ball corresponding to
this norm. The shape theorem implies that at large scales, the distance function in
the FPP metric in a fixed direction grows approximately linearly with the Euclidean
distance, and the convexity of the limit shape is then just a consequence of the
triangle inequality.

The shape theorem is a law of large number result, and the natural next question
of obtaining fluctuations has been extensively investigated. The moderate deviation
estimates are interesting, particularly in d = 2, where KPZ scaling predicts a
fluctuation exponent of % However, the best-known fluctuation and concentration
bounds (for T,) have so far been proved at nl/2+0() geale [8,26,36]. In this
paper, we are looking at the large deviation regime, i.e., where we consider a linear
deviation of T, from its long term value. Although we recall standard results only
for T}, qualitatively the same results hold in all directions. Also, we are assuming
throughout that the passage time distribution is in P (b) for some b, although many
of these results hold under weaker assumptions.

Kesten [24] considered both upper and lower tail large deviations for first pas-
sage percolation. Let Zz(n) := {Tn, < (u — {)n} (throughout this section
for brevity we will use T, to denote the passage time between (0,0, ...,0) and
(n,0,...,0)in 74 although it was initially defined only for 72) denote the lower
tail large deviation event. Using a subadditive argument, Kesten showed that for
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¢ € (0, ),

(13) m g Zm)

= r¢(¢) € (0, 00).
While the existence of r¢(¢) follows from subadditivity, showing positivity of the
same requires more work and relies on percolation arguments.
For the upper tail large deviations, Kesten showed that
log P (% (n log P (% (n
(1.4) 0< liminf—M < lim sup—M < 00

n—>oo nd n—00 nd

n—00

The existence of the limit was left open, and this open question was reiterated in [2]
(see Question 18 there), which we answer in our Theorem 1.

Observe that the speed of large deviations is different in the upper and lower
tails. This is not unexpected and can be intuitively explained as follows: For T, to
be much smaller than @, one needs only one path that is atypically small; however
it is much more unlikely for T}, to be atypically large, since typically one can find
nd-1 many ‘parallel’ short paths between the origin and (#,0,0,...,0) that are
disjoint except at the beginning and the end. Thus to attain the upper tail event, all
such paths need to be large, each of which costs ¢~®™) and hence the total cost is at
least ((3_8(”))”’6171 . Indeed, this feature is quite common in many growth models,
e.g., last passage percolation, the parabolic Anderson model, and deviation of the
spectrum of GUE (see [14] and the references therein).

As a matter of fact, among the only cases of growth models where the existence
of rate function is known for both tails are the so-called exactly solvable models of
last passage percolation. As an illustration, we only describe the result for the case
of exponential directed last passage percolation in Z? [22]; however, the same qual-
itative result is known in the case of Poissonian directed last passage percolation
in R? [17] and last passage percolation on Z? with geometric edge weights [22].
Consider the following last passage percolation model on Z? where each vertex is
equipped with an i.i.d. sample of Exp(1) random variable. As before, the weight of
any path is the sum of weights on it. The difference from the first passage perco-
lation model is that we only consider up/right directed paths, and the last passage
time between two vertices is calculated by maximizing the weight over all such
paths between the two vertices. This is one of the first exactly solvable models
rigorously shown to be in the KPZ universality class by Johansson [22] using exact
determinantal formulae. Let L, denote the last passage time from (0, 0) and (1, n).
It is well-known [33] that % — 4 almost surely as n — oo. Johansson proved
large and moderate deviation estimates for L. In particular, he proved that

lim loglP(L, > (4 + O)n) L), £>0.

n—00 n

and

o JogP(Ln = (4=0)n) _ —1,0), te(0,4).

n—00 n2
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The functions /; and [, could in principle be explicitly evaluated there. Observe
that for last passage percolation, as expected, the roles of the upper tail and the
lower tail are reversed, but qualitatively there is no other difference from the FPP
case. Johansson [22] also proved a similar result for last passage percolation with
geometric passage times. Even prior to [22], the n-speed upper tail rate function
for exponential LPP was obtained by Seppilédinen in [34]. The analogous result in
the context of Poissonian LPP was proved by Deuschel and Zeitouni in [17] and
Seppildinen in [35].

However, the above results concerning LDP at speed 72 use some form of inte-
grability, and the proofs rely heavily on the specific passage time distributions that
are intimately connected to the integrable features in these models.

Although as far as we are aware, our result is the first one proving the existence
of a large deviation rate function for the n2-speed tail for point-to-point passage
times in a nonintegrable setting. One variant of such a result was proved by Chow
and Zhang [10] in the case of line-to-line first passage time in standard first passage
percolation. Formally Chow and Zhang considered the minimum passage time
over all paths with one endpoint in A = {(0,7) : i € {0,1,...,n}} and the other
endpointin B = {(n,i) : i € {0, 1,...,n}}; moreover, they consider the geodesic
restricted to lie in the square [0, 7]%. Let us denote the passage time by T,. Itis
a standard result [24] that TT; — 1 almost surely as n — oo. In [10], Chow and
Zhang showed that for { > 0

log P (% (n))
m ——2 " Te

n—00 n2

exists and is nontrivial. The appropriate variant of their result holds in all dimen-
sions. Even though the specific geometric setting considered in [10] causes sig-
nificant simplification, and in particular rules out backtracks of the geodesic, it is
worth mentioning that the argument in [10] is an approximate subadditive argu-
ment, which bears resemblance to our approach at least at a high level (see Section
1.3 for more details). The open question addressed by Theorem 1 was also men-
tioned in [10].

We end this section with a brief discussion about a related line of work con-
cerning geometric consequences of large deviation events in first/last passage per-
colation. Formally one considers the measure obtained by conditioning on the
large deviation events, and investigates how the geometry of the random field of
weights changes. These questions were considered in the setting of exactly solv-
able Poissonian last passage percolation for the upper tail (i.e., the tail with large
deviation speed n) by Deuschel and Zeitouni who, in [17], showed that under the
upper tail large deviation event, the maximizing paths between two faraway points
is with high probability localized around the straight line segment joining the two
endpoints. This was refined recently in the case of exponential LPP in [5], which
established the precise exponent governing the localization. For the harder lower
tail case, in a recent paper [6] we showed that forcing the large deviation event
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makes the path delocalized with high probability. Although the basic framework
of the latter was last passage percolation, the argument does not rely on integrable
probability (see remarks in [6] for more details).

1.3 An approximate monotonicity and the proof of Theorem 1

The argument proving Theorem 1 is quite involved and has many pieces going
into the proof. The purpose of this section is to provide a broad overview of the
key steps. At a very high level, our argument intuitively is predicated on the exis-
tence of a limiting metric structure as in (1.2) even in the upper tail large deviation
regime, which roughly implies that conditional on the large deviation event, the
distances in a fixed direction grow linearly at large scales, and as the direction is
varied, the gradient changes in a reasonably regular way. The reason to expect this
is intimately tied to the reason behind the 12 speed of large deviation, which causes
the edge distributions of ®(n?) many edges to change.

Although we believe the above statement to be true, for the purposes of the proof
it suffices to have subsequential limits. In fact, the exact statement that we prove is
much less refined (see Proposition 2.4).

For the remainder of the paper, let » > 0 and v € P(b) be fixed. Recall
that u denotes the time constant in the x-direction for the standard first passage
percolation on Z? with v-distributed edge weights. Let & € (0,h — i) be fixed.
Forn € N, let a,, = a,(¢) be defined by

an = log P (% (n)).
Theorem 1 will follow easily from the following approximate monotonicity result.

PROPOSITION 1.2. For each & > 0, there exists No > 0 such that the following
holds. For alln € N withn > Ny there exists Mo = Mo(n) such that for all
m > Mo we have
am an
m?2
Most of this paper is devoted to proving Proposition 1.2, but before we outline
its proof let us quickly finish the proof of Theorem 1 assuming the above.

PROOF OF THEOREM 1. Let

_ . a_n / _ . . a_n

a= h,fiso%p 2 a = lkrggcl’fnf
By Kesten’s result (1.4) we know that —oo < a’ < a < 0, and hence it suffices to
prove that for all ¢ > 0, we have @’ > a—2¢. Fix & > 0, and let Ny be such that the
conclusion of Proposition 1.2 holds. Pick N1 > N such thatay, /N 12 > a—£, and
pick N3 > My(Ny) as in Proposition 1.2 such thatay, /N7 < o’ + 5. Proposition
1.2 now implies that a’ > a — 2¢, as required. This completes the proof of the
theorem. Il
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1.4 Auxiliary propositions, key ideas, and the proof of Proposition 1.2

The rest of this paper proves Proposition 1.2. In this section we will state Propo-
sitions 1.3 and 1.4. The former is the key result that lower-bounds the probability of
the large deviation at a larger scale m (with a slightly decreased excess) in terms of
the large deviation probability at a smaller scale n. The second proposition proves
continuity of the normalized log-probability of the large deviation event. We will
complete the proof of Proposition 1.2 modulo the two just-mentioned propositions
and discuss the key ideas behind the proofs of the latter. For the sake of exposition,
we will not be very precise in our outline of the ideas. In particular, the discussion
will involve terms such as o(n?) or o(1), which should be interpreted as terms that
are an arbitrarily small constant times 72 or 1, where the arbitrarily small constant
depends on other parameters without necessarily being a sequence of constants that
go to 0 with n.

Observe that to prove Proposition 1.2, we need to obtain a lower bound to
P(%; (m)) in terms of P(%;(n)) for m > n > 1. The first (and the most im-
portant) step is to construct an event with probability at least IP (% (n))mz/ n? (up
to an error of ¢~ on which we shall have {Tm > (u + )m} for ¢’ smaller
but arbitrarily close to ¢.

Formally, via this construction, we will prove the following proposition.

PROPOSITION 1.3. For each &' € (0,{) and ¢ > 0, there exist Ny and Hy such
that for alln > Ny and m > nHgy we have

2
m
log P(%;—er(m)) > P log P(% (n)) — em?.

In fact, it would be convenient to note that proving Proposition 1.3 for the case
when m is divisible by n implies the same for all m. To see this, write m = nk +r
/
where r < n and note that applying Proposition 1.3 to nk and n, with & and 5 in
place of ¢’ and &, we get

log P (% s (m)) = log P(%,_ (nk)) = k* log P (% (n)) — gnzkz
(1.5) . 2
> — log P(%(n)) — em?,
n

where the first inequality follows by observing that

/ /
T (= 5 )k = Tz oot 6= Sonk vt

> (n+¢—¢)m

for all large enough k. The second inequality in (1.5) is an application of the above
proposition and the final inequality follows since m > nk and log(IP(%; (n)) < 0.

Once we have Proposition 1.3 at our disposal, all we need to prove Proposition
1.2 is a way to compare P(%;(n)) and P (%, (n)) when ¢ and {’ are close. To
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1586 R. BASU, S. GANGULY, AND A. SLY

this end we have the following proposition, which essentially says that if the rate
function exists it must be continuous in .

PROPOSITION 1.4. For each ¢ > 0, there exists & > 0 such that for all n suffi-
ciently large we have

logP(%g_sf(n)) < 10gp(?2/§(n)) + e
» n

Our assumption of the edge distribution possessing a continuous density (see
Definition 1.1) is essentially only used in the proof of the above. Although we
expect that this result might be proven more generally, we have not made such
an attempt in this paper. It is easy to complete the proof of Proposition 1.2 using
Propositions 1.3 and 1.4.

PROOF OF PROPOSITION 1.2. The proof follows immediately by noticing that
am log P(%;—¢r (m)) B

an
82—2—28,
n

m? ~ m?
where the first inequality is the content of Proposition 1.4 and the second inequality
is the content of Proposition 1.3. U

The rest of this paper deals with proving Propositions 1.3 and 1.4. Proof of
Proposition 1.4 is easier. Essentially one shows that to increase the passage time
T, by &'n, it suffices to increase the passage times of all the edges inside a box of
size O(n) by O(¢’). The cost of such a change can be made as small as possible
in the exponential scale by choosing & small enough and using the continuity of
the density of v. The only subtle point is that since the variables are supported on
[0, b], one cannot increase the values of the edges that already have values close
to b. However, by choosing the parameters carefully we ensure that there are not
too many edges of the latter kind and that the geodesic necessarily passes through
many edges whose values are away from b, in which case the perturbation strategy
works. The formal proof appears in Section 5. The remainder of this section
presents an outline of the proof of Proposition 1.3, which is really the heart of this
paper.

For the purpose of illustration, we shall only outline the proof in the special case
m = 2n. Also, we shall pretend, for the time being, that the event {T,, > (u+¢)n}
only depends on the edge weights in the box B = [0, n]x[—5, 5], where [a, b] :=
[a, b]NZ. Observe that while this is not deterministically true because the paths are
allowed to backtrack, a version of this holds with high probability if one replaces B
by a box of side length being a large (v dependent) constant times n and centered
at the origin. This is what we will do throughout the rest of the paper (see, e.g., the
discussion around (2.2)).

Let & be an arbitrary small positive number, and suppose P(T,, > (u + )n) =
p. So our task is to create an environment on By = [0, 2n] x [—n, n] with prob-

ability at least p4e_0(”2), on which we shall have {T»,, > (1 + ¢ — €)2n}. The
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LARGE DEVIATIONS IN FPP 1587

basic idea of such a construction is as follows. Consider the large deviation event
{T, > (it + ¢)n}. We shall show that B can be tiled by subboxes of size k x k
(which we will call ‘tiles’; see Figure 1.1) such that there exists a subevent of
{T, = (1 + &)n} with probability at least pe_"(”z) such that, for any environment
IT in this subevent, most of the tiles in B are stable. We shall choose k = Zij for
some large J that remains bounded independent of 7.

The notion of stability of a tile is defined precisely later (see Definition 2.8),
but here we give a simplified (and somewhat vague) description for the purpose of
exposition. Roughly, a & x k tile being stable means that for all points z in the
tile, the passage time starting from z in each fixed direction grows approximately
linearly with the Euclidean distance at scale k; i.e., the passage time from z to the
point in direction 8 at distance 2k is approximately twice the passage time from z
in the direction 6 at distance k and so on). For example, for z in the tile and any
6 e S!, let z; and z, be points such that z, z;, z, lie in a straight line making angle
8 with the x-axis and ||z — z1 || = ||z1 — z2|| = k where || || denotes the Euclidean
norm.? The box is then said to stable if

PT(z, z;)
2

for each such z and each direction 6. The actual definition of stability will ask for
something stronger (e.g., a similar condition for a sequence of larger number of
equally separated points z,z;,Zy, . .., Zg on a line and a larger number of different
scales of separations instead of the separation being only k; see Section 2.1 for
precise definitions).

Before proceeding further, we discuss our choice of scales. As indicated above,
we shall show that for some J € N (depending in a somewhat complicated fashion
on parameters governing stability, but remaining bounded as n — 00), there exists

(1.6) PT(z,z1) = (1 + 0o(1)PT(z1,22) = (1 + 0(1))

an event with probability at least pe_"(”z) (called the Base-event) contained in
the large deviation event {T,, > (u + ¢)n} with the following property. On this
subevent, we can tile the environment with tiles of size 2% such that except at most
O(¢) fraction of the tiles, all other tiles are stable. Note that, in the definition of
stability, the gradient of the linear function at a given point and in a given direction
can a priori depend on the environment I1. However, by a picking a fine enough
mesh and rounding to the nearest mesh point, we shall restrict ourselves to a further
subevent, still of probability at least pe_"(”z), such that each environment in the
subevent yields the same mesh point after rounding (in particular, this implies that
the ratios of PT(z, z;) computed on any two different environments in this subevent
agree up to 1 4+ o(1) multiplicative factors). See Proposition 2.4 and Lemma 3.11
for precise statements of the above results.

2Throughout the paper we shall use |- || to denote the Euclidean norm for points in R%. Occa-
sionally we shall also need to use the £1 norm for points and vectors in RZ, which will be denoted

by [-[1.
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73

V2

2n

FIGURE 1.1. Figure illustrating the proof sketch below where for every
path y’ in the dilated environment IT there exists a path y obtained by
scaling down the endpoints of the excursions. However, note that a priori
¥i need not be excursions even though y/ are by definition. The former
are just taken to be the shortest path in the environment IT between the
endpoints of y; divided by 2. Here k = 7.

For convenience of exposition, let us ignore the unstable tiles, and explain how
to use the Base-event (a tiling of B into stable k xk tiles) with probability pe_"(”z)
to construct a subset of configurations on the larger box B; with the desired prop-
erties. We construct an environment on B; by independently sampling environ-
ments I1;, I1,, IT3, IT4 on B with the same law as I1 (conditioned on Base-event).
Equipped with this, we now tile By using tiles of size 2k x 2k where each such tile
is formed from four tiles of size k x k (one from each I1;) as illustrated in Figure
1.1. Let us call the constructed environment IT". This procedure will be referred to
as dilating the environment in what follows. Given such a construction, we will be
done once we establish the following two properties:

(1) The constructed event has probability at least p*e ™ (n?)

(2) Any path y’ in IT’ between 0 and 2n has passage time at least (i +¢—eg)2n.
(In the formal treatment, we will actually choose our boxes to be bigger so
that any path that exits the box before reaching 2n can automatically be
guaranteed to have passage time at least (u + ¢ — €)2n).

The lower bound on the probability of Base-event easily implies the first item,
and our construction of four independent environments conditioned on Base-event.
The second item is more involved, and this argument (in full generality) takes up
Section 4. The basic idea is the following: We decompose y’ into excursions
¥1- Y2, - - -» Where each y; resides in a tile of size 2k x 2k and y; and y; ; reside
in separate tiles. (Observe that such a decomposition into excursions can a priori
be quite wild involving a lot of backtracks, but we shall add some thin corridors
between the tiles with high passage times so that it would suffice to consider a
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LARGE DEVIATIONS IN FPP 1589

nicer class of paths, with well-behaved excursions; see Section 4.1 for details.)
Thus £(y") =~ £(y]). Now the key is to observe that for such a y’ one can create
a path y between 0 and n such that y is a concatenation of paths y1, y2,.... This s
done by just taking y; to be the shortest path between points that are the endpoints
of yi’ scaled down by a factor 2 (see Figure 1.1). However, note that y; need not be
excursions even though y/s are by definition. The former are just taken to be the
shortest path in the environment I1; (say) between the points obtained by dividing
the endpoints of y/ by 2.

The stability of the tiles now imply that £(y) > (1+0(1))2£(y;), where the left-
hand side is computed on I1" and the right-hand side on Iy say. Thus it follows
that

Ly =D L) =201+ 0(1) Y ()

=2(1 +o(1))L(y) = 2(1 + o(1))(u + O)n,

where the last inequality follows by definition, as y is a path formed by concate-
nating (y; ); between 0 and n in the environment Ty, which is in % (n).

As indicated before, we have only attempted to present the high level ideas
involved in the arguments without much discussion on the quantifiers involved in
the precise statements. We end with a brief discussion on some of the technical
aspects.

1.7)

(1) The most important step is to prove that B can be divided into such stable
tiles. In fact, we prove that there exists a tiling of B where most tiles are stable,
i.e., the total number of points in unstable tiles is o(n?). This essentially only uses
the fact that with high probability, the FPP metric is bi-Lipschitz with respect to the
Euclidean metric at all large enough scales, which in turn is a consequence of the
shape theorem in (1.2). Under the conditioned large deviation event, this continues
to persist due to the FKG inequality (we record this observation in Lemma 2.2).
The formal stability result is Proposition 2.4 in this paper, and the proof is provided
in Section 7, where a detailed outline of the proof and an elaborate explanation of
the key ideas can be found.

Intuitively the result says that any subsequential limiting metric structure due
to its bi-Lipschitz nature should have a reasonably smooth gradient function (see
(2.10) and Definition 2.11). Thus the size of the tiles capture the scale at which an
approximate smoothness is witnessed. However, formally we show (see Proposi-
tion 2.4) that all but at most a small fraction of tiles are stable, and the unstable tiles
can be handled by replacing all the edge values in those by values close to b (recall
that v has support [0, b]). This operation only can increase the passage time and
hence makes the upper tail event more likely and on the other hand it only costs
e=0™) jn probability and hence does not change any of the conclusions.

(2) Finally, we describe briefly another point among many which we have
swept under the carpet so far. All the discussion above describes how to construct
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1590 R. BASU, S. GANGULY, AND A. SLY

a 2n x 2n environment out of an n X n environment preserving (up to an error) the
upper tail large deviation event. However, observe that in order to prove Proposi-
tion 1.3, we need to be able to dilate the original environment by factor 4 = 7%,
which could be arbitrarily large. To ensure that the error term (1 + o(1)) in (1.7)
does not blow up, we will in fact modify the notion of stable tiles which allows
dilation by an arbitrary factor 4. (As mentioned earlier, we shall choose the tile
size k = 2% for some large scale J that depends on certain parameters including
n and m, but remains uniformly bounded by an absolute constant J>. Now such
a J would a priori be random and dependent on the environment. However, on
account of the uniform boundedness, a simple application of the pigeonhole prin-
ciple implies there exists a J such that certain desired properties such as stability
hold at the scale determined by J with probability at least JLz This is the scale
we will choose. We will in fact show the existence of such a J by an application
of the probabilistic method by introducing a certain additional artificial random-
ness which will be explicitly discussed in Section 7). To ensure this, we prove that
stable tiles have a couple of additional properties:

e First of all, we need to ensure stability at most locations at many consecutive
length scales (this was already alluded to before) rather than just two as in
(1.6).

e More importantly, we show that as the direction vector is varied at a given
location, the gradient field has approximate convexity properties. This result
should be thought of as a weak analogue of the convexity of the limiting shape
in (1.2) in the upper tail large deviation regime, and this will enable us to
compare the distance function between the k x k box and the kh x kh box.
The formal convexity statement is stated as Proposition 3.4 and the proof is
presented in Section 6.

1.5 Related future directions

We end this section by briefly pointing out that the general technique developed
in this paper is expected to be applicable to a wide array of problems, a few of
which are discussed below. We expect our methods to be adaptable to the case of
lower tail (n2-speed) large deviations in directed last passage percolation in Z2,

Another related object of study is the entire space-time evolution profile of the
last passage time or polymer energy, i.e.,

{Ly:v=(v1,v2),nt1 <vi + vy <nta,nuy < |vy —va| <nuzl,

where L, denotes the last passage time from (0, 0) to v. For the case of exponential
LPP, using the correspondence to TASEP, this question is equivalent to understand-
ing the height function of the so-called corner growth process; large deviations for
the n-speed tail in this case was obtained in [21,38] while for the nz—speed tail, only
upper and lower bounds have recently been obtained in [31] starting from general
initial data. We believe that our methods could possibly be sufficiently robust to
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LARGE DEVIATIONS IN FPP 1591

handle the lower tail large deviation for the space-time evolution for a large class
of passage time distributions going beyond the integrable case of exponential LPP.

Another promising direction of possible applications lie in the realm of positive
temperature polymer models in (1 + 1)-dimension. These are variants of last pas-
sage percolation models where instead of choosing the maximal weight path, one
puts a probability measure on the space of all directed paths (from (0, 0) to (n, n),
say) which assigns a probability proportional exp(8H (y)) to a path y where j
is the inverse temperature and H(y) is the sum of weights along y. The quan-
tity of interest here is the log of the partition function Z,, g := Zy exp(BH(y)).
In [7], results of [13] were generalized to establish the n? speed of the lower tail
large deviations for log Z under certain tail conditions on the weight distribution.
A precise upper tail large deviation rate function was established for the n-speed
upper tail for the exactly solvable log-gamma polymer [18]. We believe that our
methods could be useful to prove the existence of rate functions for lower tail large
deviations of log Z under certain conditions that guarantee n? speed of the large
deviations. In this context, it is worth mentioning the recent progress [11,37] on
the related problem of the lower tail large deviation for the KPZ equation, using
techniques depending crucially on the exactly solvable nature of the problem. In
a forthcoming project, with Manan Bhatia [4], the first two authors address the
lower tail large deviations of a Poissonized positive temperature model, which is
not known to exhibit any integrable properties.

Finally, to deduce interesting geometric consequences of large deviations, sev-
eral key steps often have to be established beyond proving the existence of a rate
function. In many natural cases the rate function turns out to have nice analytic
properties like convexity, which we also expect in our case. Moreover, as the pre-
vious discussion on the key idea of the proof in Section 1.3 suggests, we expect
a shape theorem (a limiting metric space) even in the large deviation regime anal-
ogous to the typical behaviour mentioned in (1.2). The above and other related
directions form a general program of systematically studying large deviations in
nonintegrable settings to be pursued in future research.

1.6 Organization

We finish this introduction by describing the organization of this paper. In Sec-
tion 2 we set up the notation and make a precise statement of the stability result
Proposition 2.4. We also state precisely the regularity results of the gradient field.
The proofs of these results are postponed until later. In Section 3, we state Proposi-
tion 3.4, a key approximate convexity result for the distance function. This section
also contains the definition of the key event (see Lemma 3.5) that acts as our build-
ing block in going from a lower to a higher scale. In Section 4 we use these results
to prove Proposition 1.3. In Sections 5 and 6 we provide the proofs of the continuity
of rate function (Proposition 1.4) and the approximate convexity result Proposition
3.4, respectively. Finally, in Section 7 we prove the stability result Proposition 2.4
to complete the argument.
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2 Formal Definitions and Notations

Throughout the remainder of this paper we shall fix a passage time distribution v
that satisfies the hypothesis of Theorem 1; i.e., it is supported on [0, b] with a
continuous density function. This in particular implies that passage times are not
concentrated on one point and there is no mass at 0, which in turn implies that the
shape theorem (1.2) holds. For this passage time distribution and a direction vector
v € S!, we shall denote by uy the time constant in direction v (as in the previous
section, for v = (1, 0) we shall drop the subscript). Under these conditions one can
prove the following basic concentration estimate (see, e.g., [24]): for each ¢ > 0,
v € S!, some ¢ > 0, and all n sufficiently large we have (|nv] is the vertex in Z?
obtained by taking coordinatewise integer parts of nv):

2.1) P(IPT(0, [nv]) — pyn| = en) < e™".

We shall rely on the above often, sometimes implicitly without referring to it. No-
tice that we are concerned with the large deviation regime, whereas (2.1) is for
typical environments. To use it in the large deviation regime, we need a tool to
compare the environment in the large deviation regime with the typical environ-
ment. This is provided by the FKG inequality. For a fixed ¢ € (0,5 — ), let
I =(X,:e e E(Z?)and 1% = (XY : e € E(Z?)) be the typical and
conditional (on % (n)) edge weight environments, respectively.

The following lemma is a well-known consequence of the FKG inequality and
Strassen’s theorem (see [28]).

LEMMA 2.1. There exists a coupling (T1, T1%) such that almost surely, for each
edge e we have X, < XZ/.

There are two main consequences of Lemma 2.1 that will be useful for us. First,
this will provide lower bounds on the FPP metric conditional on % (n); second,
it will enable us to restrict our attention to finite boxes. Before we proceed with
the relevant statements, we extend the function PT from Z2 x Z2 to R? x R2: this
will reduce notational complexities significantly. There is not one canonical way to
do this; we choose the following extension for concreteness. For every x, y € R?
define PT(x, y) := PT(X, y) where X and ¥ are the nearest lattice points to x, y,
respectively (in case of a tie, we choose the one that is smallest in the usual lexico-
graphic order on Z2.). We introduce some more useful notations. Throughout we
will use Box(r) to denote the (continuous) r x r box [—-%, L]> € R2.

202
We now proceed to show that geodesics do not wander too much even in the
large deviation regime. Let jipmin = mingcg1 (y. As a consequence of (1.2),
Umin > 0. Let us fix
16b
2.2) € = .
Mmin

This ¢ will be important for us and will be fixed throughout the paper.
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The next lemma shows that in the environment 1%, with high probability the
FPP metric within Box(2%'n) is lower-bounded by a constant multiple of the Eu-
clidean metric. To this end let us define the following events. Let

én,1 = {Vz, VYw € Box(2%'n) such that ||z — w| > +/n,
2.3) PT(z. w) > [illz—w|},
Enp i= {Vz € Box(2%n), PT(z, Z* \ Box(4¢*n)) > 2[i¢*n},

where I = @ and PT(z, Z? \ Box(4%%n)) denotes the minimum passage time

from z to a point in Z?2 \ Box(4%?n) (clearly this is attained at some point on the
boundary of Box(4%72n)).
Let us define &, := &;,1 N &y,2. Observe that since any path attaining
PT(z, Z? \ Box(4%€n))

must necessarily be contained in Box(4%2n), the event &, » is measurable with
respect to the passage times in Box(4%2n). Also since PT(z,w) < 2b|jz — w||
for |z — w|| > /n, by our choice of €, on &, » whether or not &, 1 holds is
also a function of the edge weights on Box(4%62n). A similar reasoning implies
that on &,,1 N &4,2, PT(0,n) is a deterministic function of the edge weights on
Box(%'n). Summarising, &, is an event measurable with respect to the passage
times in Box(4%?n) on which the following hold:

PT(0, Z? \ Box(%'n)) > 4bn, Geo(0,n) C Box(%n)
Geo(z, w) C Box(4%2n) Vz,Yw € Z% N Box(%n).

where Geo(z, w) denotes the almost surely unique geodesic between the points z
and w.
We now show that &, holds with high probability conditional on % (n).

LEMMA 2.2. There exists ¢ > O such that for all sufficiently large n, for all ¢ €
(0, b — ), with conditional (on % (n)) probability at least 1 — e~V & holds.

PROOF. By taking a union bound over all pairs of lattice points in Box(2%'n)
with mutual distance at least /7 — 3 and using (2.1), it follows that P& ) <
e eV, By taking a union bound over all pairs of lattice points, one of which
is in Box(2%,) and the other is on the boundary of Box(4¢2n), it follows that
P(&y ) < e™“". These together imply P(&,) > 1 — eV for all n sufficiently
large, and the proof is completed by invoking Lemma 2.1. O

From now on we will restrict ourselves to Box(4%"?n) by defining the event

U (n) = U (n) N &,
which by the above discussion satisfies

(2.4) (1= VP2 (n) < P2 ().
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This allows us to work with %g* (n) instead of % (n), which we will often do
throughout this article.

2.1 Gradients and stability

To precisely state the stabilization that we have alluded to, we need to develop
some more notation. For our purposes, we shall be comparing distance functions
for fixed directions, so we introduce the following notation. Forz € R? and § € S!
(the unit circle), let Ly , = {z + A0 : A > 0}; i.e., in the standard parametrization
of S1, Lg,, denotes the ray starting from z in the direction 6. Throughout this
article, we will use 8 interchangeably to denote an angle or a unit vector making
the corresponding angle with the x-axis. The usage will be clear from context and
we expect it to not create confusion.Also as will be clear from context, we shall
make use of polar coordinates and denote by (6, £) the point on LLg ¢ at distance £
from 0. We shall consider a sequence of equally spaced points along LLg , defined
as follows. Forz € R%2, 0 € S!, k € N, and £ > 0, let us define the discrete
segment

2.5) U(z,0,0,k) = [20,21,...,2;]

where zg = z and z; 41 = z; + £0; see Figure 2.1.

FIGURE 2.1. k points spaced at distance £ along a line making angle 6
with the x-axis forming % (z, 6, £, k).

We define the passage time for the segment % by

k—1
(2.6) PT(z.0.L.k) := ) PT(z.%1).
i=0
Note that the starting point and ending points of % (z, 8, %, 2k) and % (z,0,£,k)

are the same, and the former is obtained from the latter by subdividing subintervals
of the latter intp two equal halves.

As a consequence of the triangle inequality, we have the following straightfor-
ward lemma.

LEMMA 2.3. PT(z, 0, £,2k) > PT(z, 6, ¢, k).
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LARGE DEVIATIONS IN FPP 1595

The main arguments in this paper rely on a notion of stability of the passage
times from a point z. Fix a tolerance parameter § > 0. For k € N, £ > 0, and
6 € S', we say that z € R? is (8, 8, £, k)-Stable (with respect to any edge weight
configuration IT) if for 1 < k/ < k,

/
a7 FPT@OLD o 0k 1) < (1 + §)KPT(z.0.0.1).
(1+9)

In words, z € R? is (8, 6, £, k)-Stable if the passage time from z to z + (6, £k’)
can be approximated up to a (1 + §) multiplicative error by £’ times the passage
time from z to z + (6, £) forall 1 < k’ < k. This captures the approximately linear
growth of the distance function.

In the following, for convenience, we would work with a discretized version of
S!. For any n > 0, let

(2.8) s'(n) = {0.n,2n,...2% — )

(27 /7 is assumed to be an integer to avoid rounding issues). We will say that z is

(8,SY(n). £, k)-Stable if z is (8, 0, £, k)-Stable for each # € S'(5) and similarly

we will say that z is (8, £, k)-Stable if z is (8, 8, £, k)-Stable for each § € S!.
With this preparation, we can now state an initial version of our stabilization

result.

PROPOSITION 2.4. Fix §,e,1 > 0,and k € N and J, € N. There exists Jo, € N
such that for all large enough n, conditioned on %g* (n) the following holds: there

exists J1 < j < J (random depending on 11 € %t* (n)) such that
2 . 1 (gl’l 2
#{z e Z " NBox(€n):zisnot | 5,S (n), F’k -Stable} < en”.

The proof of Proposition 2.4 is rather technical and is postponed until Section 7.

This is one of the three main ingredients of our proofs. Although we have stated
the result in terms of the lattice points in Box(%'n), to avoid having to address
rounding issues, it will be convenient to work with a version of stability for all
points in Box(%'n). This follows from the fact that stability of a point implies
stability of nearby points with possibly slightly worse parameters. The next lemma
makes this precise.

LEMMA 2.5. Fork > C > m > 0 and a fixed j, the following holds on &, for
all n sufficiently large and £ > 211 for any z € Box(€'n) that is (8, 0, £, k)-Stable
and any 7’ such that |z — 7’| < €m, we have 7' is (§',6,C, %)-Stable, where

§' =84 0(F).
PROOF. The proof follows by an application of the triangle inequality where we
observe the following: for any £/,
(2.9) PT(z.z+ (0,0)) <PT(Z.Z + (6,0)) + O(tm),
PT(Z,7 + (6,)) < PT(z.z + (6.0)) + O(Um).
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1596 R. BASU, S. GANGULY, AND A. SLY

Hence for any £ > C{ as in the proof of the previous lemma, using the event &,,
it follows that PT(z,z + (0.£')) = (1 + O(Z))PT(z'.z' + (0.{')) by using the
lower bounds on PT(-, ) on &, (see Figure 2.2 for an illustration). O

FIGURE 2.2. Stability for the discrete segment formed by the red points
implies the stability for the nearby segment formed by the blue points.

From this point onwards, whenever we talk about the stability of a point, it will
refer to a point in R? unless explicitly mentioned otherwise.

We next define the gradient function for Stable points naturally in the following
way: For§ € St and £ € R, let

PT(z,z + (6.4))
; .

An easy consequence of the notion of stability is that the gradient function stays
almost constant over a range of values of £.

(2.10) V(z,0,0) =

LEMMA 2.6. Fix j € N and n > 0. On the event &, from Lemma 2.2 for all
sufficiently large n, for any £ > 2, and for any (8,S(n), £, k)-Stable point z €

277

Box(¢'n), for any %E < ', 0" <kl and for any 0 € S!

1
V(z,0,l) = (1 + O(n +6+ E))V(Z’ 6,£").

PROOF. The above lemma without the O(n) term in the multiplicative factor
follows immediately from the definition of stability for all # in S'(5). However,
we need to extend this to all & € S, and a further approximation is necessary. For
any 6 € S1, let 6 be the closest point in S!(n). Then by the triangle inequality for
any £, it follows that

PT(z,z + (0,£)) < PT(z,z + (§,£)) + O(nL),

@2.11) -
PT(z,z + (0, 0)) < PT(z,z + (8, L)) + O(n¢),
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LARGE DEVIATIONS IN FPP 1597

since the passage times on the edges are bounded (by b). Now, since we are on the

event &,, the lower bounds on the terms PT(z,z + (5 ,£)) and PT(z,z + (6,%))
complete the proof of the lemma with the addition of the O(n) term in the multi-
plicative error. 0

An immediate but important corollary of Lemma 2.5 is the following smooth-
ness of the gradient field, which we state without proof.

COROLLARY 2.7. Given § and §', for all large k and C as in Lemma 2.5, and for

all large n and any z, 7’ satisfying the hypothesis of that lemma, and for all € S,
1 - V(z,0,¢)

14+8 =~ V(Z,0,CH)

<1474.

2.2 Stability of Tiles

In this subsection we introduce the notion of stability of tiles parallel to the
notion of stability for points, which will be convenient for the proofs. The section
contains a few lemmas which, even though quite similar to the ones already stated,
have various associated quantifiers that could make it a little hard to read and the
reader can choose to skip the straightforward proofs in this section. This will not
affect the readability of the future sections.

Given the square Box(n) (€ R?), we will often think of it as being made up of
boxes of a particular scale j; i.e., think of the box as being naturally tiled using
boxes of size n/2/. Using the natural bijection between the set of tiles and the set
[1,2772, we will denote the tile corresponding to v € [1,2/]? by Tile,(;, v) (see
Figure 2.3).

(1,2)

(1,1) (2,1)

FIGURE 2.3. The figure illustrates the tiling of an # x n box into tiles of
size Z. Thus the set of tiles has a natural bijection with [1, 4]2.

DEFINITION 2.8. Forany v € [1,2/]2, we call atile Tile, (j, v) (8, S'(n), £, k, &)-
Stable if at least 1—e¢ fraction of the lattice points in Tile, (j, v) are (§, S'(n), £, k)-
Stable.
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1598 R. BASU, S. GANGULY, AND A. SLY

n
27 +m

and k = 22™, where the choice of j and m will vary through the paper and will

In what follows, while dealing with tiling of Box(rn), we will choose £ =

depend on some other parameters relevant for specific applications. Nonetheless,
importantly, they will not depend on 7, and the reader should think of them as fixed
constants and » as a much larger number.

Using Lemma 2.5, we now prove that if at least (1 — ¢) fraction of the lattice
points in a Tile, (j, v) are stable for some values of the parameters, then all the
points are stable for a slightly different range of parameters.

LEMMA 2.9. Let j,m € N, and { = #,k = 22" Fix §,n > 0. There exists
C > 0 sufficiently large such that for all sufficiently small ¢ > 0 on &, the fol-
lowing holds for all sufficiently large n: If Tile, (j, v) is (8, S'(n), £, k, &)-Stable,
then Tile, (j,v) is (28,S'(n), ', k’,0)-Stable where {! = max (55 C Ve, b) and

K =ke)t.

PROOF. Observe that for every Tile, (j, v) thatis (8, S' (1), £, k, £)-Stable, and
any z € Tile,(j,v), there exists w € Tile,(j, v) with ||z — w| < 8\/5211 and w
is (8,S%(n), £, k)-Stable. This is because the existence of a z for which there is
no such w contradicts the hypothesis that Tile, (j, v) is (8, S'(n), £, k, £)-Stable.
The proof now follows from Lemma 2.5 for C sufficiently large (and ¢ sufficiently
small). Il

Observe that even though Lemma 2.9 refers only to the stability of all lattice
points in Tile, (j, v), the proof actually shows that all points in Tile,(j, v) are
(8,SY(n). £, k)-Stable. From now on we will call such a tile a (§,S'(n), £, k)-
Stable tile. We now show that the above in fact implies stability for all angles
6 €St

LEMMA 2.10. Let j,m be as in the previous lemma. Then on &, the following
holds for all sufficiently large n: for a (§,S'(n), £, k)-Stable Tile, (j,v) forz,z’ €
Tile,(j, v), we have for all 6 € S!,

1 - V(z, 0. k0)
1+8 =~ V(Z,0,kx0)

with8 = O(8 + 0+ 5=) and | < ky,ka <k.

(2.12) <1+,

PROOF. The proof is quite similar to that of Lemma 2.9. Recalling (2.11), if for
any f € St 6 is the closest point in S!(n), then for any k1 <k,

IPT(z.z + (6. k1£)) — PT(z.z + (8. k1£))| < O(nk1 L),

which along with the hypothesis that z is (§, S' (), £, k)-Stable implies that

1 _ V@ 0.k0)
1+ 06 +1n) ~ V(z 0, kab)

<1406 +n).
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Now another application of the triangle inequality as in (2.9) shows that for any
z, 7’ as in the statement of the lemma,

PT(z,z + (6,k0)) < PT(Z,Z + (6,k0)) + 0(%).

Hence using the fact that k£ = 2;” , it follows that
1 V(z,0,kt) ( 1 )
< <14+ 0(6+n+ =) O
I+ 0G40+ 50 V. 0.k0 o

Thus from now on we shall refer to a tile as (8, £, k)-Stable if (2.12) is satisfied
with § in place of §’. Now for a (8, £, k)-Stable Tile, (/, v) as above, (2.12) allows
us to define a gradient function not for every individual point z but for the whole
tile itself.

DEFINITION 2.11. For a (8, £, k)-Stable Tile, (j, v), define for any 6 € S!,
Vl’l ((]’ U), 0) = Vn ((.]v U), 97 g) = V(Z, 0, g)
for the center point z of Tile, (J, v).

Observe that even though this definition implicitly depends on £, we shall drop
it from our notation as the length scale £ will always be clear from the context. The
reason for calling V,,((j, v), -) the gradient function for Tile, (/, v) is the follow-
ing: even if we replace the centre of Tile, (j, v) by any arbitrary z € Tile,(j, v),
the value of the gradient changes only by a multiplicative factor of (1 + §), and in
all our applications, by a proper choice of parameters, § will be made arbitrarily
close to 0.

Note that on the event in Lemma 2.2, the following straightforward bounds hold:

2.13) (1 - 0(%));7 < Va((jv).0) < (1 + 0(%))bu<9, Dl

where, as earlier, (4, 1) is the unit vector in direction #. While the lower bound is
essentially the content of Lemma 2.2, the upper bound follows from the fact that
the edge weights are bounded by b. The errors arise from rounding, since passage
times between real points are defined to be passage times between nearest lattice
points.

With the above preparation we shall now go back to the setting of Proposition
2.4 and show that there exists a scale j such that, conditional on %g* (n), with
probability bounded below, most of the scale j tiles in Box(%'n) are stable. Recall
that %C* (n) was an event on Box(4%%n).

LEMMA 2.12. Condition on %;‘* (n). Then given n,m, 8, ¢e1, J1 such that 2% >
/€1, there exists a constant Jo such that for all large enough n, there exists a
scale J1 < j < Jy (depending on n) such that with probability at least le, for
all but &1 fraction of v € [1,27]?, Tileg,(j.v) is (§,S1(n). £, k. e1)-Stable (see

Definition 2.8) where { = 2;@7" and k = 2°™,
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1600 R. BASU, S. GANGULY, AND A. SLY

PROOF. Note that from the statement of Proposition 2.4, choosing k = 24 and
e/€? = 8%, it follows that there exists a scale j such that with probability at least
JLz (J> appearing in the statement of Proposition 2.4) the fraction of lattice points

z in Box(%'n) that are not (8, S'(n), £, k)-Stable is at most en? where £ = 2.(/@'”
and k = 2%™. Thus the total fraction of v € [1,2/]? such that Tileg,(j,v) is
not (8,S'(n), £, k,e1)-Stable is at most g since otherwise the total fraction of
lattice points z € Box(%'n) that are not (8, S'(n), £, k)-Stable will be more than

8% = ¢/%?2, contradicting the conclusion of Proposition 2.4. 0

The above result now implies that most of the tiles are stable (in the sense of

Lemma 2.9) for an appropriate choice of parameters.

LEMMA 2.13. Given small enough 81,¢1 > 0 and a positive integer my such
1/4
that 2,,,1 > &
conditioned on 02/; (n), there exists J1 < j1 < J» (depending on n) such that with

and J1 € N, there exists Jo such that for all large enough n,

probability at least le the fraction of v € [1,271]? such that Tileg,, (j1,v) is not

(61,41, k1)-Stable is at most 1 where £ = 2/100?771 and kq = 22m1,

PROOF. For 7, § sufficiently small and m, J; (to be chosen appropriately later
depending on &1, 1, m1 as in the statement of the lemma), Lemma 2.12 implies
the existence of J, € N and J; < j; < J3 such that with probability at least

JLz and with { = zj?f_’im and k = 22™ for all but an &1 fraction of v € [1,2/1]?,

Tilex,, (j1,v) are (8,S'(n), £, k, £1)-Stable (see Definition 2.8). We shall show
that all of these stable tiles are also (81, £1., k1)-Stable. We now fix m such that

€ €
o max(T’fC«/E, lf)

2J1+mi
(where C is as in Lemma 2.9) and k| = 22" = lgz (notice that such a choice
is possible because we have assumed m T > 8}/ ). Notice first that Lemma 2.9
implies that all the stable tiles above are also (28,S'(n), £, k’, 0)-Stable. Now
applying Lemma 2.10 we conclude that each such tile is in fact (1, £, k")-Stable
by choosing §, 1 sufficiently small so that 61 = O(§ + n + 2,%1) as in Lemma
2.10. O

{1 =

Throughout this article Lemma 2.13 will govern our choices of parameters.

3 Technical Preliminaries

As mentioned in our proof strategy, we shall take a configuration from the large
deviation regime at some length scale n and replicate/dilate the same configuration
to obtain a configuration at a larger length scale. The obvious problem one notices
is that for continuous passage time distributions, each configuration has probability
0. Hence to carry out our proof strategy, we will not be able to work with the edge

weight configurations directly. We will project it to a discrete set of e0?) many
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LARGE DEVIATIONS IN FPP 1601

elements and pick the most likely one among them (still in the large deviation
regime). We describe below the discretization we shall employ.
Since by the upper bound on passage times on edges, deterministically,

(3.1) PT(x,y) < b|x—yll1 + 3b

for any x,y € R? (the additive constant is needed to take care of rounding errors
as X,y € R? and are not points in Z?). For a discretization parameter 7;, we will
round the normalized distances (passage time divided by Euclidean distance) to be
in the set {0, n1,2n1,...,3b} (without loss of generality assuming 3b/n, € N),
and project the distance functions PT(-,-) onto a discrete space accordingly. We
shall use this only for x, y sufficiently far apart so that the normalized passage times
will always be upper-bounded by 3b using (3.1).

To define things formally, first let the set of all points in Box(n) N %Zz be called
Grid, (7). We will also need the following variant: Let £ = # for some some
m € N. By Grid, (¢; j), we shall denote the set of all points in Grid, (j + m) that
lie on the line segments joining the nearest neighbours in Grid, () as elements of
%22 (see Figure 3.1). Observe that the number of vertices in Grid,(j) depends
only on j, whereas the number of vertices in Grid, (£; j) depends on j and m; in
particular, as the parameters j and m will never depend on n, these numbers will
not depend on n either.

_n_
27+m
s i RS i PYEE
R s o S
27+m /2 feduenderitoncferaienden s
n
— — 5]

FIGURE 3.1. Figure illustrating the various grid points, with spacing
between the grid lines indicated as well.
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Now given 11, my, j1, let the projection map

n1,j1+mi . ) . )
Proj : Gridg,(j1 +m1) x Gridg, (j1 +my) — Ry

be defined as follows: for any z, w € Gridy, (j1 + m1), with

m,j1+mi PT(z, w
(3.2) Proj (z,w) =m LQJ |z — wi|.
nllz—wl

when z # w; otherwise we define it to be 0.
. Mjitmy
Observe that the function Proj is random, but we choose to suppress the

dependence on the underlying noise for brevity. Since these will be the only pa-
rameters we will use, we will also drop the dependence on 71, j1, and 2 in the no-
tation. Note that Proj induces a weighted graph with vertex set Gride, (j1 + m1),
with the weight on any edge (z, w) being Proj(z, w). Let &%, j +m, denote
the set of all possible such graphs induced by Proj (as the weight configuration
varies). Observe that a very basic counting argument yields that the cardinality of
P Va1, jr+m, satisfies

3.3) | PV mai| < 60(22(“+’n1))10gﬁ

and in particular is independent of . It will also be useful to extend the definition of
Proj to a larger set of pairs. For all pairs of points z, w € Box(é'n) we will extend
the definition by letting Proj(z, w) = Proj(z, w), where z, W are the nearest points
to z, w, respectively, in Gridy, (1 + m1) (as before, breaking ties by picking the
smallest in the lexicographic order). Note that if z and w get rounded to the same
point, then Proj(z, w) is 0, which is not a realistic definition. However, we will
only be interested in pairs z and w that are reasonably far apart, so the above issue
will not arise and hence we will not bother with this aspect of the definition.

The first thing we show now is that the error introduced by using Proj( -, -) in-
stead of PT(-,-) can be neglected at sufficiently large length scales. For reasons
that will become clear, we shall work with Stable tiles, although the approximation
is valid independent of that. Fix §;, e1,m1, J1 as in Lemma 2.13, which then guar-
antees that there exists j; with probability bounded away from 0 such that for all
but & fraction of v € [I, 2j1ﬂ2, Tilex, (j1,v) is (81,41, k1)-Stable where £; and
k1 are ylng’”l and 221 respectively. Let m also be even. For later reference, let

us call v € [1, 21'1]]2 to be (81,£1, k1)-Stable or (81, £1.k1)-Unstable depending
on whether Tilex, (j1,v) is (61, £1, k1)-Stable or not, respectively.

LEMMA 3.1. Fix 81,01, j1,m1 and accordingly £1 and k1 as above. Then con-
ditioned on 9/; (n), consider v € [1,271]? such that Tilegy (j1,v) is (81.4£1.k1)-
Stable. Then for any z # w € Gridy, (j1 +m1/2) such thatz, w € Tileg,(j1,v),
we have the following:

PT(z, w)
<—— <140 .
~ Proj(z,w) — +00m)
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Note that Gridg, (j1 + m1/2) C Gridg,(j1 + m1) when mq is even (in fact,
to avoid dealing with such divisibility issues further, we will henceforth assume
without loss of generality that m2; is divisible by 16).

PROOF. Observe that by definition for all z, w,
(3.4 Proj(z, w) < PT(z,w) < Proj(z,w) + O(n1)|z —w]|.

The proof now follows immediately by noticing that since z and w are at distance
apart of at least 211({% and, on %g* (n), by definition

3.5) PT(z,w) > jillz — w]. O

We now define a gradient function corresponding to the projected distances anal-
ogous to (2.10). As in the above setting, let z, w € Gridy, (j1 + m1/2), and let 8
and d > 0 be such that w = z + (6, d). Then let
(3.6) mej (Z, 9, d) = M

Iz —w
Defining the projected gradients only for pairs of points in Gridg, (j1 +m1/2), we
then define projected gradients in all directions at a slightly coarser scale, i.e., for
all points in Gridg, (j1 +m1/4). Forany z € Tileg,(j1, v) NGridg, (j1 +m1/4)
and for any 6 € S! and

©n CN oy /4
let
Proj(z, w
(3.8) mej(z, 9, d) = %,

where w is the closest point to z + (6,d) in Gridg,(j1 + m1/2). Note that
Gridgy (j1 +m1/4) C Gridgn(j1 +m1/2).

Thus, with 81,41, k1 as above, if Tileg,(j1,v) is (61, £1, k1)-Stable, then the
following result about smoothness of the projected gradient field follows as in
(2.12) and (2.11); we omit the proof.

LEMMA 3.2. Fixny > O as in Lemma 3.1. For a (61,41, k1)-Stable Tiles, (j1,v)

and for any 7,7’ € Tileg,(j1,v) and 61,0, € S! such that 161 — 62| < n1 and

dy, d> satisfy (3.7), with Vpyej(z, 01, d1) and Vpygj (z', 02, d») defined via (3.8), we
have

1 < VProj(zv 01, dl)

1+ Oy + n1 +27M1/4) = Vppj(Z', 62, d2)

Note that above we choose ||#; — 62| < n1 where the latter appeared in the
definition of Proj. This is done deliberately to avoid introducing new notation since
for us any small enough value of 1 serves both the purposes.

This allows us to define a projected gradient for the entire tile as we did in
Definition 2.11.

<14 Oy + 1 + 274,

ASUADIT suowwo)) aAanear) a[qesrjdde ayy Aq pauraaos are sa[onIe YO 2SN JO SA[NI 10§ ATRIqIT AUIUQ AJ[IAL UO (SUOHIPUOI-PUB-SULIA)/WO0D KA[1m " KIeIqI[aut[uo//:sdny) suonipuo) pue suLa ] ay 23S *[€707/20/€ 1] uo Areiqry aurjuQ A9[ip ‘Kisioatun) uojasurid £q 0107z edd/2001 0 1/10p/wod Ko[im: Kreiqraurjuo//:sdny woly papeorumo( ‘g ‘1202 ‘T1€0L601



1604 R. BASU, S. GANGULY, AND A. SLY

DEFINITION 3.3. If Tilex, (j1,v) is (81, £1, k1)-Stable, then let
VPl‘Oj((jla v)v 9) = vPl‘Oj (Zv 97 d)

n

where z is the center point of Tile,(j,v) and d = ST

Observe that if in the above definition we had chosen some arbitrary z contained
in Tile, (j1, v) N Gridyy, (j1 +m1/2) and d such that the RHS is defined via (3.8),
then the definition would change only by a multiplicative factor of (1 + O(5; +
2mﬁ)). In our applications, the multiplicative error will be made suitably close
to 1 by choosing the parameters appropriately.

We now move towards our second main technical ingredient. Note that the con-
vexity of the limit shape B in (1.2) is essentially due to PT satisfying the triangle
inequality (by definition). We shall establish an analogous approximate convexity
statement corresponding to Proj. To formally state things, it would be convenient
to consider the following function on all of R?: for any w = (6, r),

W0 = 100, 7))l (j,v) := 7 Veroj((/. v). 0).

Note that as in Definition 3.3, this definition implicitly depends on the choice

of z and d. We record the following consequence of the above definitions. If

Tilex, (j1,v) is (61,41, k1)-Stable, then for any wi,w, € Tiley,(j1,v), with

w1 —wa| > %,

< PT(wy, w2)
Iwy — w20

The following fact analogous to (2.13) will be useful as well.

(1 — 0(51 + zmlﬁ))ﬁ =< VProj((]" v), 9)

|
< (1 + 0(51 + 2m1/4)b) 10, 1.

The next lemma shows the approximate convexity of the above-defined function
that allows us to think of the above as roughly a norm.

(9 (1-061+27%)) < (140G +279)).

(3.10)

PROPOSITION 3.4. If Tileg, (j1,v) is (01, £1, k1)-Stable, then for any set of vec-
tors Wi, Wa, ..., W, if W = Z§=1 w;, then

t
Wil = (1+ 081 + 2_15))(2 ||Wi||(j1,v))-
i=1

The proof relying on an approximate triangle inequality is technical and is post-
poned to Section 6.

The next and final result in this section will show the existence of an event that
approximates the large deviation event in the log scale and will be used as the
building block of our dilation construction in the next section. Given &1, &1, m1,
and J; satisfying the hypothesis of Lemma 2.13, let j; be the scale obtained from

ASUADIT suowwo)) aAanear) a[qesrjdde ayy Aq pauraaos are sa[onIe YO 2SN JO SA[NI 10§ ATRIqIT AUIUQ AJ[IAL UO (SUOHIPUOI-PUB-SULIA)/WO0D KA[1m " KIeIqI[aut[uo//:sdny) suonipuo) pue suLa ] ay 23S *[€707/20/€ 1] uo Areiqry aurjuQ A9[ip ‘Kisioatun) uojasurid £q 0107z edd/2001 0 1/10p/wod Ko[im: Kreiqraurjuo//:sdny woly papeorumo( ‘g ‘1202 ‘T1€0L601



LARGE DEVIATIONS IN FPP 1605

that lemma and recall the definitions of £; and k1 from the statement of the same.
Recall _
n1,j1+my
m and Proj= Proj
from Lemma 3.1. Recalling &?7;, i, +m,. the set of weighted graphs induced
on Gridgy (j1 + m), let £y, i\ +m, /2 be the induced graphs on the vertex set
Gridy, (j1 + m1/2) C Gridg,(j1 + m1). By an abuse of notation, we shall
denote by Proj ! (%), for I € & Vi1, j1+m j2» the set of all weight configurations
for which 3 is the weighted graph induced by Proj. Now for I € 2%}, ;i 1m, /2

and A C [[1,2/1]?, let us define the key event
(3.11) Base-event(n1,061, j1.m1,61,A4,3) :=
% () NProj " (3) N {{v € [1,27']* : vis (81, €1, k1) — Unstable} C A}.

The following simple lemma based on the pigeonhole principle lower-bounds
the probability of the above event.

LEMMA 3.5. Given ¢4 > 0 and the parameters as above, i.e., 81, €1, my, and j,
there exists S € PVy, i\ 4+my 2 and A C [1,271]% with |A| = &12%1 such that

log(PP (Base-event(n,81. j1,m1,e1. A, 3)))

> K — &4
n2
logIP’(@/z*(n))

for all large enough n, where k = i, 1= s
Note that g4 is independent of the remaining parameters.

PROOF. By our choice of parameters, it follows from Lemma 2.13 that for any
eq > 0, for all n sufficiently large,

1og(1P>(%§*(n) N#{{v € [1,2/1]? : vis (81, {1, k1) — Unstable} < £,2%/1}))

n2

&
> - =2

2
Recall now the trivial bound mentioned in (3.3),

0(22(j1+rn1)10gL) o(1
|‘@7/771,j1+m1/2| =e =00,

Moreover, the number of possible subsets A of [1, 27172 of size at most £12%/1 is at
most e QHED21 yhere H () is the entropy functional. Thus by the pigeonhole

principle the result follows. O

Observe that Base-event is measurable with respect to the edges in Box(4%2n)
and, as already mentioned, this will be the building block in our constructions in
the next section. We end this section by pointing out that although the definition
of Base-event depends on the set A as well as the element I € 7, i/ 1m, /2,10
what follows we shall often refer to Base-event given the parameters 71, 1, ji,
mi, €1, and A and I would then be understood as given by Lemma 3.5.
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1606 R. BASU, S. GANGULY, AND A. SLY

4 Constructing a Large Deviation Event at a Higher Scale

In this section we prove Proposition 1.3. With the definitions and results from
the previous section at our disposal, we now follow the strategy outlined in Section
1.3. Given arbitrary small positive constants ¢, ¢/, and n, for any n; large enough,
we will create the favourable event Fav := Fav(ny), which will imply %;/(n1)
where ' > ¢ — ¢/, and

log P (Fav(n)) - log P(%; (n)) .

2 - 2
ni n

Note that (1.5) allows us to assume that 7, is divisible by #, which is what we
will assume throughout this section.

We start by defining certain key ingredients: Fixing ¢ > 0 (to be chosen ap-
propriately later) and recalling the constant %" from (2.2), for brevity we adopt the
following abbreviations

ng :=n1(1 4+ 2g6), ny:=%n1(1 +¢g6), np:=%ny,

@D n3 = én(l+¢eg), ng4:=%n.

Moreover, in what follows we will denote Box(n;) as ‘B;. We will often identify
each such box with the set of all the lattice edges contained in its closure, i.e., in-
cluding the edges along the boundary thought of as a subset of R%. Consequently,
throughout the discussion we will say a path is contained in a box (or more gener-
ally in a subset of edges) if all of its constituent edges are.

4.1 Construction of Fav

Fav will be measurable with respect to the edge weights in B¢, with the property
that on the event Fav,

(42)  PTp,(0,B5) = 2bn; and PTyp,(0.ny) = (1 + ¢ — &)y

for some small ¢ where PTs,, (-, -) denotes the passage time between points re-
stricted to By; i.e., one only considers paths that do not exit By. Clearly this
implies that Fav C %;/(ny) for {' = ¢ —¢'.

Throughout this section we will work with parameters as in Lemma 3.5, i.e.,
81, €1, €4, j1, my, and £ = 2“%”1 and k; = 22™1. Further, we have already
introduced a parameter ¢¢ in (4.1). We will introduce another parameter ¢ in the
definition of Fav.

The basic objects we will be working with are the following. Tile the box By
by Tiley, (j1,v) for v € [1,271]2. Now each such tile is a square of size 2“701 For
v € [[1,2/1]?, consider the square with the same centre as Tile,,(j1,v) and side
length 2“7‘1 Call this square (closed) Tile;':1 (j1,v); see Figure 4.1. It follows that
neighbouring Tile}; , (J1, v)’s are separated by vertical and horizontal strips of width
€657, We will call the set of all edges in By that do not belong to any Tile}, (j1. v)
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LARGE DEVIATIONS IN FPP 1607

as a Corridor®™'(j, ng) (“ext” stands for exterior; we will also consider corridors
inside Tile:] (j1,v), which will be defined shortly).

%0 Corridor®"(j;,ng)

Corridor™ (ji,ng)

’:l:‘il(%jfll (]1 5 U)

FIGURE 4.1. The figure illustrates the basic structural definitions inside
Bo. On the LHS the figure shows the Corridor®™'(ji, ng) (red region)
and the tiling of the remaining area by Tiley, (j,v) for v € [1,271]2,
(the associated v to a tile has been indicated). The RHS zooms into
one particular Tile:1 (j1,v), namely v = (4,1). B,,(j1, v, w) and the
surrounding Cy, (j1, v, w), which form a part of Corridor'™ (1, ng), are
shown with the corresponding w’s indicated.

Our construction of Fav will have two steps:

(i) specifying the environment inside Tile;, (j1,v) for v € [1, 27112, and
(i) specifying the environment in Corridor®'(jy, ng).

Part (i) involves a large deviation environment in the smaller scale n, whereas for
the second part we make all the edge weights close to b. We shall formalize part
(i) later, but for now let us make part (ii) precise as follows. Let Barrier™'(ng, ji)
denote the event that the passage time on each edge in Corridor™'(jy,ng) is in
[b — &7, b] for some small but fixed 7. Observe that by our assumption on the edge
weight distribution v from Definition 1.1, v([b — &7, b]) > 0 for all &7 > 0.
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1608 R. BASU, S. GANGULY, AND A. SLY

As the total number of edges in Corridor®™'(j, ng) is 0(8611(2)), it follows that
4.3) — log P (Barrier™'(ng, j1)) = O, (g6n7)

(the constant in the O, (-) notation depends on &7, and e will be chosen to be
much smaller than e7 depending on the edge weight distribution v).
Having constructed Barrier®™'(ng, j1), we are left to do two more things:

(1) specifying the environments inside Tile} ,(J1,v) using the Base-event de-
fined in Lemma 3.5, and

(2) verifying the two properties listed in (4.2): recall that it involves showing
that any path y between 0 and n; contained in B¢ and any path from 0 to
B¢ has lengths at least (11 + ¢ — &’)ny and 2bhn, respectively.

For v € [1,271]2, to specify the environments inside Tile;, (j1.v), it will be
convenient to think of each Tile,’f1 (j1,v) as naturally made up of ('%)2 copies of
Tile,,(j1.v), which we will denote as Ay, (j1,v,w) for w € [I, ';—1]]2 As be-
fore, each Ay, (j1, v, w) can be thought of as a copy of Tile,, (1. v) (to be called
B,,(j1,v,w)) surrounded by an annulus C,, (j1, v, w) of width %62“]—41 (see Figure
4.1). We denote the union of edges in Cy,(j1, v, w) (union over v € [I, 2/1 J? and
w e [l, ’;—‘]]2) as Corridor™(j1,ng). As before, only the edges that are not con-
tained in the closure of any By, (ji. v, w) will be counted in Corridor™( i, ng).
Similarly to Barrier™(ng. /1), let Barrier™(ng, j;) denote the event that the pas-
sage time on each edge in Corridor™(j,,ng) is in [b — &7, b], and as in (4.3), we
have

4.4 —log P(Barrier™(ng, j1)) = Og,(g6n?).

We will use Barrier to denote the intersection of the events Barrier™(ng, j1) and
Barrier™ (ng, j1).

We are now left with the task of prescribing the environment inside By, (j1, v, w).
However, before formally doing that, we address a rounding issue. Note that there
is a natural identification between the continuous boxes By, (1, v) and Tile,, (/1. v)
and similarly between By, (j1, v, w) and Tile,,(j1, v), since each member of the
pair is a translate of the other. However, there might be microscopic discrepan-
cies in their intersections with Z2. For example, Z? N By, (j1.v,w) might not
be identifiable with Z2 N Tile,, (j1.v). This discrepancy is very minor and can
be handled in a number of ways. One would be to translate By, (j1,v,w)’s by a
distance < 2 (this will lead to local changes in the width of the corridors by O(1)
and will not affect any of our arguments) to allow an exact identification to hold
even at the lattice level. For the sake of exposition and to avoid introducing new
notation to handle this trivial issue completely precisely, we will be ignoring this
and similar rounding issues throughout our discussion, and assume that for each
v, Tile,, (j1. v), and additionally for each w, By, (j1, v, w), is a closed lattice box,
i.e., of the form [a, b]] x [c, d] for some integers a, b, ¢, d.
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LARGE DEVIATIONS IN FPP 1609

Towards prescribing the environment inside By, (j1, v, w), recall the set A of
size £122/1 in the statement of Lemma 3.5. Forv € A and v € [[1,2j1]]2 \ A4,
we shall use two different events Boosting and Dilation, respectively, to define
the environments in By, (j1, v, w) where w € [I, ':l—l]]2 First we set Boosting as
the event that the passage time on all the edges in | J,c4 Uy, Bns (j1, v, w) is in
[b — &7, b]. Clearly, by the bound on |A| we have

—log P (Boosting) = O, (aln%).

Finally, we define the event Dilation. Recall Base-event from Lemma 3.5. Let
Base-event|4c denote the projection of Base-event to the edges in

) Tilen, (1. v).
vefl1,2/1]2\4

Up to a simple relabeling of the edges, Dilation is the intersection of ("7])2 iid.
copies of Base-event|4c. The relabeling will be clear from the following con-
structive description of how to generate a configuration of edge weights belonging
to Dilation (see Figure 4.2): Sample (n1/ n)2 many independent realizations of
Base-event, which yield environments on Box(4%2n) and let

Iy I

m L, L L L I I
= =1 51 51 51 5 EE 5

FIGURE 4.2. The figure illustrates the event Dilation. In the figure
';—1 =3, j1 = 2, and A = @. Corresponding tiles in the environments
I14,...I1g are denoted by the same color, all of which are clubbed to-
gether to form the corresponding tile in the enlarged environment which
has nine times the volume.
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1610 R. BASU, S. GANGULY, AND A. SLY

(4.5) IS FT s EE s PRPGS

be their restrictions on Box(¢'n). For each v € [1,2/1]?\ Aand w € [1, 2L]?, let
the edge weights on the edges in By, (1, v, w) be the same as the edge weights of
Iy, in Tile,, (1, v), where we use the natural identification between B, (j1, v, w)
and Tile,, (/1, v) and the lexicographic bijection between w € [1, "n—l]]2 and {1, 2,
cees (%)2}.

This bijection is used above to interchangeably use the notations I1; and IT,,.

Note that the choice of the term Dilation is natural, as by using (’:1—1)2 copies
of Base-event, we ensure that for any v € [I, 27 ‘]]2 \ A, the environments in
B.,(j1,v,w) for different values of w are the same in some coarse sense. Ulti-
mately, we define

Fav := Dilation N Barrier N Boosting.

Note that the event Barrier along with Dilation describe the projection of the
event Fav on all the edges except the edges in UueA we[l,"1]2 B.,(j1,v.w),

whereas Boosting defines the projections on the latter, and the three events are
independent. Hence
n
P(Fav) = [IP(Base-event|c)]~
2
n

> [P (Base-event)] »

I\)‘—N

v(lb —e7.b O((e1+e6)n?)
6) (16 —€7.b])

v([b — &7, b]) Cer1+e0)n?)

where v is the passage time distribution satisfying the hypothesis in Theorem 1.
As mentioned before, by our assumption on the edge weight distribution v from
Definition 1.1, v([b — &7, b]) > O for all 7 > 0.

The proof of Proposition 1.3 will now be complete from the following lemma.

LEMMA 4.1. Given eg > 0 and €9 > 0, there exists €4 > 0 and the choice of pa-
rameters in the definition of Base-event in Lemma 3.5, and ¢, €7 in the definition
of Fav, such that

log(P(Fav))

2

>k —eg and Fav C U (ny),
m

where {' = ¢ — g9.

Note that, given any ¢7 > 0, the lower bound on the probability of Fav is a
straightforward consequence of (4.6) and the lower bound on P (Base-event) from
Lemma 3.5, by choosing €1, €4, €¢ small enough. The rest of this section is devoted
to the proof of the inclusion Fav C %/ (ny), which will follow from a series of
lemmas. Before stating the lemmas we roughly describe our strategy. The proof
involves showing that on the event Fav two things occur:

4.7 PTs,(0,11) > (1 + )ny,
(4.8) PTg,(0.B8) > 2bn,.
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LARGE DEVIATIONS IN FPP 1611

The proof of both of the above bounds is obtained by the same strategy. Consider
the two random fields given by Fav and Base-event on B¢ and B4, respectively.
Recall that the former is a ‘dilation’ of the latter by a factor of ’%, with some
additional changes involving the setting up of the barriers and the boosting on the
unstable tiles.

As outlined in Section 1.3, given the above, the strategy for showing (4.7) is
to show that for any path y (joining 0 and ny), which we can assume to be self-
avoiding, in By there exists a path yg (joining, approximately, 0 and n) in B4 such
that

(49) Uy) = SH(1 = 0()().

where the above inequality holds pointwise for any sample point in Fav on the LHS
and any sample point from Base-event on the RHS. Informally, y can be thought of
as a path obtained by dilating the path yg by a factor 'Z—‘ (a similar strategy will be
employed for a path joining 0 and B to prove (4.8)). By definition, on Base-event
we have £(ys) > (u + &)n, and this yields the sought lower bound of £(y). To
make (4.9) rigorous, we need some regularity properties of the path y, which will
be obtained by a preprocessing. This is done in the following subsection.

4.2 Preprocessing of Paths

We shall see later that it suffices to consider only self-avoiding paths contained
in B that start and end on the boundary of some Tile;;, (j1,v) and Tile; (j1.v"),
respectively. Observe that any such path (thought of as a sequence of edges) ad-
mits a unique decomposition as a concatenation of a number of paths, i.e., y =
Qo X011 X102 X2 . .. &L Lo +1 with the following properties:

(1) Each ¢; is contained in some Tile:l (J1,v;) for some v; € [l, 27 1]]2 (recall
that we identify any box with all the lattice edges contained in its closure);
op and 7,41 could be empty.

(ii) Each y; is contained in Corridor®™'(;j1,ng) (again thought of as a union
of edges).

Given g¢ as in (4.1), let us call the paths o; fori € {1,2,..., L} as excursions of
y, and let us call the above decomposition of y its decomposition into excursions.
Let x; (resp., y;) denote the starting (resp., ending) vertex of «;. Let us call the
excursion ¢; large if there exists a vertex z; on «; such that

min{lxi 2 1. Iyi =21} = &2 20
Observe that o; is large if ||x; —y;i || > 28%;701.

We shall need to define one more property of a path. Consider a path y with
the decomposition into excursions as above. Observe that each y; must start at a
boundary vertex of Tile; (j1,v) and end at a boundary vertex of Tile; (j1,v") for
some v = v(y;), v’ = v/(yi) € [1,271]2. Note that v can in fact be equal to v’.
We call the path y regular if for each y; we have ||[v(x;) —v'(xi)|l1 = 1 (i.e., they
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1612 R. BASU, S. GANGULY, AND A. SLY

I 2 &t

FIGURE 4.3. A schematic diagram describing the preprocessing. (i) il-
lustrates the decomposition of the path y into «; (blue segments) and
xi (red segments). (ii) describes the content of Lemma 4.3, where each
red segment is replaced by a regular path. (iii) describes the content of
Lemma 4.4, where if an excursion is small (the part in the northeast tile),
then we replace it by a larger excursion without changing the length too
much. Note that the path starts and ends on the boundary of tiles, which
we show can be assumed and would be convenient.

are neighbouring vertices) and y; is a vertical or horizontal segment depending on
the relative positions of v and v’.

The next lemma allows us to consider regular paths only. Recall the parameters
ge and &7 in the definition of the event Fav.

LEMMA 4.2. For any path y and contained in B9 whose endpoints are at a dis-
tance larger than "71 and are located on boundaries of some tiles Tile,’f1 (j1,v) and
Tile:l (j1, V"), respectively, there exists a regular path P with the same endpoints
as y such that

(i) All the excursions of P are large.
(ii) On Barrier™'(ng, j1), we have £(y) > (1 — O(e7 + 6))L(P).

The proof of the above lemma is done in two steps (see Figure 4.3 for an illustra-
tion). Let y be fixed as in the lemma. Consider its decomposition into excursions:
Y = qgxod1 X1z )2 ---. Observe that if we can replace each y; by an L-shaped
path with the same endpoints, the resulting path will be regular. The following
lemma shows that this can be done without increasing the length of the path by
more than a factor of (1 — O(e7))~ L.

LEMMA 4.3. Consider a path x completely contained in Corridor™'(ji, ng) whose
starting and ending vertices are located on the boundaries of Tile:‘1 (j1,v) and
Tile:f1 (j1, V"), respectively. Then there exists a regular path Py with the same
starting and ending points such that on Barrier*'(ng, j1), we have £(x) > (1 —
O(e7))t(Py).

PROOF. Let x and y be the starting and ending point of y respectively. Consider
the 1 —norm minimizing path from x to y that consists of a horizontal path followed
by a vertical path (this choice is arbitrary): i.e., for x = (x1,x2) andy = (y1, ¥2)
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LARGE DEVIATIONS IN FPP 1613

consider the piecewise IL shaped path obtained by concatenating the straight line
segment obtained by joining x to (y1, x2) followed by the straight line segment
obtained by joining (y1, x2) to y. Call this path I and consider IL as a path on the
nearest neighbour graph of Z2.

Observe that there exists points ug = X, 41, ...,y = y on I, all on boundaries
of Tile:1 (j1,u)’s such that IL restricted between u; and u; 41 (called I;) is either
(a) contained in Tile . (J1,u) for some u (type A, say) or (b) is entirely contained
in Corridor™(jy, no), and further u; € Tile; (j1,u),u;+1 € Tile; (ji,u’) for
some u, u’ that have £ distance 1 (type B). Observe again that such a decomposi-
tion is unique.

If IL; is type A, let us set P; to be the shortest path between u; and u; 41 con-
tained in Tile:f1 (ji,u), and if IL; is type B we set P; = IL;. Consider the path
Py = Po’P1 -+ P¢_1 obtained by concatenating the P;. It is clear that the path P,
obtained as above is regular (see Figure 4.3 for an illustration), and hence it only
remains to show that on Barrier™'(ng, j1), we have £(y) > (1 — O(g7)){(Py).
Observe that on Barrier™'(ng, j1) we have £(y) > (b — &7)|Ix — y||1. It also fol-
lows from the definitions that £(P;) < b||u; — u;+1]1. The proof is completed by

. {—1
observing > ;o lu;i — ui+1ll1 = [x —yl1. u

Lemma 4.3 tells us that for any y as in the statement of Lemma 4.2, one can
replace the paths y; in its decomposition by the paths Py, as constructed in Lemma
4.3 to end up with a regular path P, with the same endpoints such that £(y) >
(1 — O(€7))£(Px«). The following lemma ensures the largeness of the excursions
and therefore suffices to complete the proof of Lemma 4.2.

LEMMA 4.4. For any regular path y contained in Bg whose endpoints are at a dis-
tance larger than ny /2 and are located on boundaries of some tiles Tile} L (U1,v)
and Tile;':1 (j1.,v"), respectively, there exists a regular path P with the same end-
points such that

(i) Each excursion of P is large.

(i) On Barrier®™'(ng, j1), we have £(y) > (1 — O(g¢))L(P).

PROOF. Let y be as in the statement of the lemma. Consider its decomposition
into excursions y = qoyoX1 X102 X2 &L XL +1. The proof again will be a
step-by-step procedure. We shall inspect the short excursions one by one, and re-
move them by modifying the path locally without increasing the lengths too much.
Let «; be contained in Tile;"l (j1,v;). For each nonempty «;, we shall replace it, if
necessary, by a path o] contained in Tile:‘,:l (j1,v;) with the same starting and end-
ing point as ¢;. If «; is a large excursion or is empty (recall that a9 and o7 1 ; can
be empty), we set ] = «;. Consider any excursion e; that is not large. Let x; and
y; be its starting and ending points, respectively. Fix a vertex z; in Tile:1 (j1,vi)
such that

2 o 210 ).
6_., 86_ s
271 271

- (e
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1 @)

clearly such a vertex exists. Now consider the path o] = o; 'o;”" where oV

i
(resp., ai(z)) is the shortest path between x; and z; (resp., Z; and y;) contained in
Tile:1 (j1.vi). Clearly o] is a large excursion. Consider the path

P = a0 10 XLOL 4 1-
Notice that P satisfies the first conclusion of the lemma by definition. We shall
show that it also satisfies the required upper bound on £(P).
We shall show that, on Barrier®'(ng, j1), foreachi =0, 1,..., L — 1 we have
€(aixi) = (1 — O(es))(ex; xi), and further we have

Clapxrap+1) = (1 — O(ee)) (o xiag o)
Clearly this suffices. Consider any i < L — 1 such that o;; 7# « (there is nothing
to prove otherwise). To get an upper bound on £(e; y;), observe that £(a) <
8b8§2“7"1 and on Barrier™'(ng, j1), by taking eg, &7 sufficiently small, we have
Lyi) = (b— 87)862“70I and £(a; xi) = (1 — O(ee))l(ex] xi). The same argument
gives L{ap xpop+1) = (1 — 0(86))K(aiXia£+l) and completes the proof of the
lemma. O

Given the regular path P = g yoo1 y102x2 - -¢r xr.¢r+1 from Lemma 4.2,
we use essentially the same arguments on each of the nonempty excursions ¢; as in
the proof of Lemma 4.2 to obtain a further decomposition. For a path ¢ contained in
some Tile,"j1 (j1,v) with endpoints on the boundary of Tilel’."‘1 (j1,v), consider the
unique decomposition & = y,B1x} -+~ Br X7, such that each B; is contained in
B(ng, v;, w) for some w € [1,21]? and each x} contained in Corridor™ (i, ng)
(observe that since the endpoints of « are on the boundary of Tile:I (j1.v), xp and
X, are both nonempty but it is possible that L’ = 0 and « is completely contained
in Corridor™ (1, ng)).

We call such a path « strongly regular if each y; is an L-shaped path joining
its endpoints and if the nonempty excursions §; are large where the definition of
excursion is large is as before except ng is replaced by ny4. Note that in the above
definition all the y}s must in fact be straight lines except possibly yg and y/ ,.

The same arguments as in the proof of the two previous lemmas yield the fol-
lowing result whose proof we omit.

LEMMA 4.5. For a path o contained in some Tile:1 (j1, v) with endpoints on the
boundary of Tile:1 (J1,v), there exists a strongly regular path P, with the same

endpoints such that, on Barrier™ (ng, j1), we have £(ct) > (1—O0(g7 +£6))£(Pq).

4.3 Rescaling Paths

Equipped with the above results, we are now ready to prove (4.7) (a very similar
argument will take care of (4.8)). Following the strategy indicated in (4.9), for a
given path joining 0 and n; contained in By, we want to create its scaled version.
As we want to apply Lemma 4.2, we shall work with paths joining with endpoints
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FIGURE 4.4. The left-to-right arrow in the top illustrates a natural iden-
tification By \ Corridor™(j;,ng) — Box(n; + 2/1) by collapsing
the corridors Corridor™ (i, ng). The bottom figure zooms in on the
southeast-most tile and describes a strongly regular path.

close to 0 and ny instead. Let 0 (resp., n1) denote the closest lattice point to 0
(resp., np) in any Tile:] (j1,v). Clearly,

21

and by choosing j; sufficiently large depending on &9 (which appears in the state-
ment of Lemma 4.1), obtaining a suitable lower bound for PTs,, (6, n;) would be
sufficient. y

Let us now fix a self-avoiding path y contained in B¢ between 0 and ny. Lemma
4.2 yields a regular path yre; = @ xo®1 X1®2 X2 - @, in which ¢; is contained in
Tile:] (j1,vi), which, on applying Lemma 4.5 to the «;s, subsequently yields the
path Yseg = BoxoB1x1B2)x2 - .. BL with each B; strongly regular. Observe that

(4.11) K(V) = (1 - 0(86 + 37))E(Vs—reg)’

and hence it suffices to get a lower bound for £(ysreg). In the next few lemmas

(4.10) [PTis, (0, ) — PTos, (0. 107)| = 0(”1 )

we create a scaled version yS of this path Ys-reg- What we do is rather simple and
natural.

Using the definition of a regular path, ys.res corresponds to a natural path one
can form in ‘B3, by collapsing all the external corridors. For the technical conve-
nience of not having to identify the boundaries of neighbouring tiles Tile}, (j1,v),
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1616 R. BASU, S. GANGULY, AND A. SLY

Tiley,, (j1,v') for some v, v’, we will collapse the external corridors to width 1
corridors. Formally, we will use the natural identification

(4.12) B \ Corridor™(ji,ng) — Box(n; + 2/1),

which is easily seen by replacing Corridor™'(j, ng) by corridors of width 1. For
brevity, we will denote Box(n; + 2/1) by Box. This allows us to identify the path
Ys-reg With a path ¥ in Box formed by replacing the bridges y; by a length 1 path
(notice that it is possible because y;.reg is regular).

Under the above operation, ¥ admits a decomposition ¥ = Yoy1 - y1,, Where
the ending point of y; is adjacent to the beginning point of ¥;4+1 (the connecting
edge being obtained by collapsing the external corridors to width 1 corridors) and
7 belongs to Tile(j1.v;), the box that Tile; (j1.v;) maps to under the above
operation.

Let the starting and ending points of ¥; be X; and y;. We will now scale all these

points by a factor ”l (1 4+ O(e¢)) to obtain the sequence of points

n_

~ ng . ~ ng
(4.13) Xi = —Xi, Yi=—DVi,
n ny
fori = 0,1,...,L. (Note that the notations X and X have been used before to

denote various approximations of a point x; see the paragraph after Lemma 2.1 and
the paragraph following (3.3). However, the usage of the above notations in this
section is rather minimal and local, and we allow ourselves this abuse of notation
to avoid introducing new symbols.) Of course, one cannot expect these to be lattice
points. Further, the fact that ¥ was in B whose size is slightly bigger than ny means
scaling by 2—‘1‘ does not quite map Box to By = Box(%'n), nor does 'f‘i\l?:(jl, Vi)
map to Tiley,(j1,v;). Nonetheless, as one would expect, the discrepancies are
minor and only introduce the need for some bookkeeping to maintain precision
and do not affect our arguments.

We round off the points to the nearest points on a grid. To this end, recall m1, j,
from the definition of Base-event and the notation Grid,, ({2; j1) where

Cn

EQ = T

2J1 +=
We want to define xl-s to be the closest point in Tile,, (j1, v;) N Gridy, (€2; j1) to
X;. However, these might not be points in Z2, and hence we define them to be the
closest point in Z? to the closest point in Tile,, (j1.v;) N Grid,, (£2; j1) instead.
Similarly, define yl.s. However since yis and xis 1 are rather close, we will ignore
the former and consider the path ¥S to be the shortest path between the sequence
of points
(4.14) X0 X7 X2 XD 44
where xi = yE. Let yis be the segment of yS between xl-s and xis 1~ Observe
that by our choice of the starting and ending points of y and by an appropriate
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LARGE DEVIATIONS IN FPP 1617

choice of parameters (i.e., making j; large) we get that

X0l = O(een1), lm —yLll = O(geni),
and so
(4.15) Hx(S,H = O(sgn), Hn—xISJH” = Of(ggn);
hence ¥S can thought of as a path between 0 and n.

As a consequence of the approximate convexity statement in Proposition 3.4,
we have the following key result.

LEMMA 4.6. Given any €11 > 0, there exists a choice of the parameters in the
definition of Base-event and Fav, namely e¢ and ¢7 small enough, and then §;
small enough followed by j1 and m large enough, such that, deterministically for
any i,

4.16) max(wi), (b —e) ) > (-0,

where, as mentioned in (4.9), the LHS is computed on any sample point on the
event Fav and the RHS is computed on any sample point in Base-event.

86(51’11
27

The scaling in (4.13) in fact implies a slightly stronger bound where the factor
’;—1 is replaced by 2_411 =(1+ 86)’;—1. However, for our purposes the above weaker
bound suffices.

Before proving the above lemma we finish the proof of Lemma 4.1 using the
above results.

PROOF OF LEMMA 4.1. The proof will clearly follow by showing (4.7) and
(4.8). We will show only the former; the latter has a similar proof. Recall the
definition of 0 and A and fix any path y from 0 to n; in *B¢. Now applying Lem-
mas 4.2 and 4.5, we obtain the path y;e, as described above and the collapsing
operation above leads to the path 7. Finally, consider the scaled path yS. We now
have the following string of inequalities where the first two inequalities are im-
mediate consequences of our above constructions and the third inequality is the
lemma above:

@.11)
Ly) = (1—0(e7 + €6))(Vsreg)

L—-1

> (1-0(e7+26) Y [z@;) + (b —e7)
i=0

8665111
21

] -G
4.17)

L
= (1= 0e7 + ee)(1 = e1) - 3 0f)
i=0

= (1— 0(e7 +£6)) (1 — m)’;—lz(ys),
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1618 R. BASU, S. GANGULY, AND A. SLY

where £(y), £(Vsreg), and £(y;) are computed on any sample point on the event
Fav, and E(yis), £(y®) are computed on any sample point in Base-event.

Now, by definition, S is a path joining xg and xz 41 in By and hence on
Base-event, using (4.15) we have £(y5) > (u + O)n(l — O(gg)). It therefore
follows that

PTy,(0.17) > (1 — O(e7 + g6))(1 —e11) (0 + O)ny.

Choosing €¢, €7, and ¢11 small enough depending on &9, and using (4.10) and
choosing j; sufficiently large, we establish (4.7). An identical argument involving
paths starting from 0 to B now implies (4.8) and completes the proof. g

We now prove Lemma 4.6 using Lemmas 4.2 and 4.5 and Proposition 3.4.

PROOF OF LEMMA 4.6. Recall the set of unstable tiles 4 in the definition of
Base-event. For the proof let us consider an environment 1, € Base-event. Recall
that the latter is measurable with respect to the edges in Box(4%?n), with the
property that the weight of any path from 0 to Z?2 \ Box(%'n) exceeds 4bn.

Fix any i, and let % = x; oBi.1x; 1 Bi,2 - Bi,. X} 1, such thateach B; ; is large
and contained in B(ng4, v;, w) for some w € [I, ’:1—1]]2 and each )(; is contained in
Corridor™(j, ng). (This follows from the discussion preceding Lemma 4.5).

Since all the B; ; are large, for each j there is a point (say ai j) that is at least

2%n

€ distance away from the endpoints a? j and ail j - Let

69271
1 2
w; ; and  w;
be the vectors obtained by taking the difference of al.2 i a? j and al.l i al.2 It

respectively. Also, let ,Bl-l j and ,81-2]. be the two subpaths of 8; ; split at a». Further,

by construction, the segments x; ; are also large, in the sense that their endpoints

are also at least 8%% away. Let the vector joining their endpoints be

Thus for all i, j,

3
Wi, j

2
Wi, j

. 1 En
(4.18) mln(H@)i’j , , ‘) > 8%27.

Now recall that for any IT € Base-event, and for all v € [1,2/1]2\ 4, Tile,, (j1,v)
is (81,41, k1)-Stable, and moreover recall the approximate norm || - [|(j, ,,) from
the statement in Proposition 3.4.

Now the following argument is split into two cases depending on whether v; € A
or not in A where v; is the index of the tile such that y; € ’ﬁlde( j1,vi). In the
subsequent arguments the parameter ¢” will be used to denote a small number
whose value will change from line to line. We will make explicit the dependence ¢
on the various other parameters at the end to finally achieve the desired smallness.
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LARGE DEVIATIONS IN FPP 1619

Case 1. v; ¢ A. In this case, the following string of inequalities holds (we
provide an explanation for the inequalities following the statement):

L'—1
@) = | D0 [eGG ) + LBij0)] + € )
j=0
L’'—1
3 1 2
> =) 3 (105 + 1805 DG+ 1501 G
j=0
3
T Hwi,L’ (jlavi):|
-1 2 3 3
Z (1 — 8”) Z (@)l,] + H))Z,J + al,]) + @)i,y
J=0 (1.vi)
- S —
@19 = A =)|Fi] 0 = A —HHT] + Ot
n (J1,vi)

s —

where y; (resp., yis) is the vector obtained by taking the difference of the end
—
points of the path y; (resp., ]/l-S) (where O(x) denotes a vector with Euclidean

norm bounded by O(x)).

The first equality is straightforward since )(g, j and f; ; are disjoint subpaths
of ¥;. For the inequality in the second line, we use that 8; ; C B(ng, v;, w) for
some w € [1, ’;—‘]]2 Recall that we are on the event Fav, and given v; ¢ A,
for each w, the environment in B(ng, v;, w) is a restriction of I1,, (see (4.5)) to
Tile,, (j1, vi). Thus on the event Fav, the passage times on B(n4, v;, w) between
points whose Euclidean separation is at least what is prescribed by (3.7), induce
the same approximate norm ||-||(;,,»,)» Which satisfies the conclusion of Proposi-
tion 3.4. The second inequality now follows from the definition of the approximate
norm |||, »,), using the fact that Tile,, (1, v;) is stable, together with the lower
bound on the Euclidean norms of the vectors in (4.18), which implies

1

B = U(BLy) +e(B2)) = 1= [y

2
i’j

N
)—i-Hw

‘(jlyvi ‘(jlyvf)]'

Note that by (3.9), one can make &” above arbitrarily small by choosing §; small
and m large. Note that (4.18) is needed crucially since (3.9) holds for pairs of

points which are at distance at least —7 =777
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However, the segments )(;, ; are subsets of Corridor™(j;,ng) and not B(na,
v;, w), and hence one cannot, in general, relate £( )(;-,j) to ||@>,-3’ i ll¢jy v;)- Nonethe-
less, since the edge weights are bounded by b, it follows that for any vector ﬂ))

181y < (1+ MBI L,

where similarly as above, by (3.10), ¢” can be made small enough by choosing §;
small and m; large. Now, since on Barrier we deterministically have the bound

3
0(x} ;) = (1= O(e7)blw; ;1. it follows that

’ N
L) = A =D Nwy 1l Gy
The third inequality is the approximate triangle inequality, which is the content of

Proposition 3.4, where again ¢’ can be made small enough by choosing §; small
and m large. The fourth inequality is straightforward since by definition,

r_
=1, v 2 3 3 -
D o\ wiy twiytwi ) Fwi =7
j=0

For the final inequality, note that due to rounding to points in Grid,, ({2 j1) to

: : S .S S .S .
obtain the points xg, x7, ... X7, X7 .0t follows that

= nog 2
(4.20) Vi= u—4()/i + O(£2)).

We have thus verified the string of inequalities ending with (4.19).
To finish the proof of (4.16), note that at this point one of two cases can occur.

N
o Y3l < ngﬁ”, which implies £(yP) < be;T%In and hence (4.16) is trivially
true.
Note that, by construction all the excursions y; are large, even though their
endpoints might be close. Thus instead of working with the latter, if instead we split
up the excursions into subpaths with guaranteed separation between the endpoints,

only the second case analysis would have sufficed.
— —
° ||)/,-S 1> ng(-f”, which in particular implies ||)/l.s|| > L 64N Thjg along with

V2 271
(3.9) implies that
S
170l .y = (1= L0

—
Moreover, since [|yS| > \%8;;51”,

—
O(£,) term can be made relatively arbitrarily small. Formally, one can again use
the triangle inequality property of the norm (Proposition 3.4) to argue

for m; large enough in the definition of £5, the

—
S
Vi .

7+ Ot

)2(1—8”)

(jlavf (jlavf)
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LARGE DEVIATIONS IN FPP 1621

The above two displays along with (4.19) imply
~ n
LF) = (1= —L(r),

1
n
which completes the proof of (4.16) when v; ¢ A, by choosing g¢, £7 small enough
compared to €11 and further choosing §; small enough and m large enough.
—
Case 2. v; € A. In case ||yl.s||1 < S;%‘i”, the proof can be completed as above,
so we assume otherwise. In this case, since we are on Fav and hence on Boosting,
the conclusion follows from the following inequalities.

—

—
LF) = (b —enlFill, blydlh = (1— OEN)(y})
and (4.20), by choosing m large enough. g

The next three sections prove the three key technical results, Propositions 2.4,
3.4, and 1.4 regarding stability, approximate convexity of the distance function as
well as continuity of the rate function. We start with the continuity result.

5 Continuity of the Rate Function

In this section we prove Proposition 1.4. Recall that the statement says that for
each & > 0, there exists & > 0 such that for all n sufficiently large we have

logP(“Z/i—sf(n)) - IOgP(zl; (n)) .
n n
This is where the assumption of continuous density of the edge distribution will
simplify the proof significantly. Moreover, to avoid introducing new notation, we
will use several letters in this section that were used earlier to denote different
quantities. However, this section will be completely self-contained and hence we
expect that this should not create any confusion or conflict.

The basic approach is simply to start with an environment I1 € ﬁZ/é*_e, (n) and
then increase the weight of ‘all’ the edges slightly to construct an environment
I" € % (n). However, a technical issue arises since we have assumed that the
variables are bounded by a constant b > 0. Hence the variables in I that are very
close to b cannot be increased. Thus the first step is to localize the set of such really
high-valued edges. In fact, we will also localize the set of edges that takes values
where the density f, is close to 0.

Let us now formally carry out this strategy. Let ¢ > 0 be fixed. We shall define
a series of parameters ¢ through &7 depending on ¢ and v, and ¢’ > 0 satisfying
the conclusion of Proposition 1.4 will be chosen sufficiently small based on these
parameters. Let us first describe how the parameters are chosen; the reason behind
these choices will become clear shortly during the course of the proof.

For g4 > 0 sufficiently small, let us define

g5 = —[ealog(eq) + (1 — e4) log(1 — e4)],
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1622 R. BASU, S. GANGULY, AND A. SLY

and we shall choose ¢4 sufficiently small so that e5 sufficiently close to 0 (depend-
ing on ¢). This is possible since e5 — 0 as ¢4 — 0. We shall then choose &
sufficiently small depending on 4 and choose 0 < &3 < g5 sufficiently small de-
pending on &7 and ¢ such that the following conditions are satisfied. First, we ask
P(Xe €[b—¢2,b]) <erandc := % < 1. We also require

(5.1) inf{ fy(x) :x €[b—er,b—e3+63]} > 63

and that g3 be sufficiently small compared to £4. Observe that existence of such &;
and &3 are guaranteed by our assumptions on v. Let

3
(5.2) B = xe[O,b—sz]:fv(x)f% .
Thus by definition v(B) < 8%. Next, set D = [0, b] \ {B U [b — &2, b]} and observe
that as a consequence of continuity of £, on [0, b], £, is uniformly away from 0O (at
least 8%/1)) on D.
We shall also choose ¢4 sufficiently small depending on ¢ and set €7 > 0 such
that forany x € D

1 < Jo(x +e7)
1l +e6 S(x)

5.3)

The existence of such an &7 is guaranteed by the fact that D is compact and hence
fv is uniformly continuous on the same. Finally, we set

min(§, e7)(1 —¢)
5 )

¢ =

We shall now show that &’ as above satisfies the conclusion of Proposition 1.4, if
e4 and g¢ are chosen sufficiently small depending on ¢ and other parameters are
chosen as above.

For any 7, recall the notation B4 = Box(%'n) from (4.1). We will work with the
event 52/5"_ (1) (recall the definition from (2.4)), which is measurable with respect
to the edges in Box(4%2n). However, recall that on gZ/é*_e, (n), any path from 0 that
exited B4 has length bigger than bn; thus it would suffice to increase the value of
the edges only inside *B4.

Let Hy = {e € B4 : X¢ € [b — &3, b]}. Now by a straightforward union bound

over all possible choices of H; (at most 20(”2)), for any fixed 4 > 0 we have

1
P(IH| > e4n?) < 20(”2)8?"2 — O0)=ealoeGD 4 hence
5.4) = 0(]P’ (?/;* (n))) for all small enough &;
= o(P(%_,(n))) forall &' > 0.
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LARGE DEVIATIONS IN FPP 1623

Similarly, letting Hy = {e € B4 : X, € B}, we get

0(n?)—3e4 log(L)n?
O =3e4loe(GM7 1 hence

P(Hy| > £4n?) < 200730 =
(5.5 = o(P(%;" (n))) for all small enough &3
=o(P (% (n))) for all &' > 0.
The above allows us to localize H; and H, without paying too much in the
probability. As we have chosen €1, £3 sufficiently small depending on &4, it follows
that

P({Hy| < e4n®} N {Hy] < ean®} N %%, (1) = P(Z_o ())(1 — 0(1)).

Since the total number of subsets of B4 of size at most £4n2 is at most 20(85)”2,
by the pigeonhole principle it follows that there exists subsets A1, A, of By4, each
of size at most 412, such that

(5.6)  P{H; = A1} N{Hy = A2} N %", (n)) = P (g (n))e~ O

For easy referencing, let us call the event {H; = A1 }N{H> = A2}ﬂ%;*_e/ (n) as
C. Now let us modify the event C to get an event C; that will possess the property
that

log(P(C)) —log(P(C1)) < en? (we will quantify < shortly),

and most importantly, C; C %. Note that by definition Ay and A3 are disjoint.
For any weight configuration I1 € C, let us set

Ci(IT) = {IT" : IT'(e) = TI(e) Ve € Ay,
IT'(e) € [b—82+ %3,19—82 +83:| Ve € Ay,
H'(e) =1TIl(e) + &7 VeeBy\ A1 U Ay}
Let Ci = Upec C1(IT). We now compute P(C). For any IT, and a subset B of

edges in B4, it would be convenient to let I1| g be the restriction of IT on the edges
in B; for any event E, let

E(B)={lljp: T ek} and f,(I|p):= []A ().

ecB
Thus
A
61 P = [ fmam =4[ )d .
C C(Ba\A42)
where the second inequality follows from the definition of A, and from the fact that

our choice of 3 guarantees v(B) < 8%. Note that by definition for any ﬁ|% N\As €
C1(®B4 \ A2) there exists a I1|g,\ 4, € C(®B4 \ A2) such that

ﬁ|%4\A2 z 1_I|%4\1‘12 +v
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1624 R. BASU, S. GANGULY, AND A. SLY

where

0 ifee A,

Ve = {87 ife € By\ {41 U Ay}.

Using the above it follows that

83 2|AZ|
PCy = (2 / Fo(lsan).
( 2 ) C1(B4\42) b Badz

[B4]
= I
( 2 ) 1+ 6 (B4\A2) fv( |‘B4\A2)

> e—0(86+84)n2]P; (C),

where the first inequality follows from the definition of C; and (5.1), the second
inequality is by (5.3), and the final equality is by (5.7) and our choice of parameters.
Now, by (5.6) and (5.8) we can choose &4 and g¢ sufficiently small depending on ¢
such that log P (%é'*—e’ (n)) <logP(Cy) + %nz. Using the fact that

llog P (% —¢(n)) —log P(Z"_ ., (m)| = o(n?),

the proof will now be complete once we show that C; C %;(n). To do this note
that for any I1" € C; there exists IT € C such that IT'(e) > II(e) + min(%}, £7)
forall ¢ € By \ Ay and IT'(e) = Il(e) fore € A;.

Note that since I1 € 02/;‘_8,(11), any path & starting from the origin, which
exits B4 has weight at least bn in [1 and hence by the above discussion also in
IT’. Thus to prove the lemma we only consider the path &, which is the shortest
path between 0 and n lying inside By, in the environment IT". We want to show
L (P) = (u + On, where £(22), Ly (£2) denote the weights of &2 in the
environments IT and IT’, respectively.

Now since by construction, £/(&?) > £(£?), there is nothing to show if
(&) > (u + ¢)n. Assuming otherwise, it follows that | & N A1| < cn where
c = % < 1 was defined above (by & N A; we denote the set of edges in
A1 that & passes through). Indeed, this is true since each edge in A has weight
at least b — g,. However, note that since % connects 0 and n, trivially & passes
through at least n edges. Thus [N A{| > (1—c)n and hence {1/ (P) L (F) >
(1 — c)nmin(5}, £7). By definition £11(?) > (14 + { —¢&')n, and hence our choice
of & implies the sought bound {1/ (£?) > (u + O)n.

6 Approximate Convexity Properties

In this section we will prove Proposition 3.4, i.e., given 81, m1, and ji, for any

Tiley, (j1,v) thatis (61, %1, k1)-Stable where £1 = zfiézlml and k = 2%2™1 and
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LARGE DEVIATIONS IN FPP 1625

any set of vectors wi, wa, ..., W, if w = Z§=1 w;, then
¢
(6.1) Wl Gy < (1 +8) D Wil (10
i=1

where § = O(8;, + 271/16) Note that it suffices to only consider m sufficiently
large, since for smaller values, the above inequality following using (3.9), the stan-
dard triangle inequality for the Euclidean norm, and the lower bound and upper
bound on the passage times as in (2.3) and the discussion following it. The proof
essentially follows by noticing that any set of vectors as above can be scaled down
to get a sum of vectors inside Tilex, (j1, v) followed by an application of stability
and the triangle inequality. To formalize this, we need some notation: For every
¢ € S'(n1) (value of 1 will be specified later and be sufficiently small), let

C(¢p) =1{b c{wi,wa,....,ws}:arg(b) € [, ¢ + 1)}

where w1, wa, ..., W, are as in the statement of the proposition; i.e., C(¢) denotes
the collection of vectors among {wy, Wa2,. .., W} whose angle with the x-axis falls
in the interval [¢, ¢ + 11). Let

we = Y _wil(w; € C(¢))

i=1
be the sum of the vectors in C(¢). Thus by definition

Z Wp = W.

$eSt(m)
Also, for every w; € C(¢), by Lemma 3.2 (and the definitions of ||w; ||(;, ) and
Veroj((J1, ), ¢), we have
(6.2) IWill a0y = W 11+ Ot + 11+ 27"1/4)) Vergg (1., v). ).
63) > AWillgiw = Ap(1+ OG1 + 01 + 27™)) Vproj((j1. ). 4)
w; €C(¢)

where Ay = 3 [Wi[[1(w; € C(@)).

In what follows, for brevity, we shall use the notation ’ﬁpmj ((j1,v), ¢) to denote
terms of the form

(6.4) (1+ 01+ m +27"%) Vpri (1, ), )

in (6.3) by %pmj(( J1,v),¢). Thus different instances of such usages might denote
different quantities, all within a (1 + O(8; + 71 + 27™1/%)) multiplicative factor
of each other.

Notice now that it follows from the definition of A that

(6.5) (1—nD Ay < llwgll < Ag.

ASUADIT suowwo)) aAanear) a[qesrjdde ayy Aq pauraaos are sa[onIe YO 2SN JO SA[NI 10§ ATRIqIT AUIUQ AJ[IAL UO (SUOHIPUOI-PUB-SULIA)/WO0D KA[1m " KIeIqI[aut[uo//:sdny) suonipuo) pue suLa ] ay 23S *[€707/20/€ 1] uo Areiqry aurjuQ A9[ip ‘Kisioatun) uojasurid £q 0107z edd/2001 0 1/10p/wod Ko[im: Kreiqraurjuo//:sdny woly papeorumo( ‘g ‘1202 ‘T1€0L601



1626 R. BASU, S. GANGULY, AND A. SLY

Indeed, the upper bound is just the triangle inequality. For the lower bound, no-
tice that if 6; is the angle between w; and wg, then the projection W; of w; in the
direction of wy satisfies ||W; || = cos 6;||w; ||. The lower bound follows by observ-
ing that |6;| < ni, choosing 1 sufficiently small to ensure cosn; > 1 — n?, and
summing over w; € C(¢).

Now, (6.5), together with the definition of [|wg||(;,,»), implies

(6.6) (1= 13) A Veroj (1, v), &) < IWall(jy.0) < Ag Verej((1, 1), @)

where the term gproj(( J1.v), ¢) is as indicated above.
For each ¢, let us consider the value by = ﬁ. We first claim that without loss

of generality we can assume that there exists a universal constant C sufficiently
large such that

6.7) by <C

for all ¢. Otherwise, the fact that Vpej((j1,v),¢) is bounded away from 0 and
infinity for any ¢ (see (3.10)), together with (6.3) and the definition of [[w||(;, v)»
will imply (6.1).

Since our proof strategy relies on using the connection to passage times that
breaks down for vectors having very small Euclidean norms, we will ignore the
vectors in C(¢) with small by. Towards formalizing this, we now define the set

B={peS'(n): by < 27™1/5) and hence by setting 7, = 271/8 we get

2
(63) |2 wa| = S5 x2mmiowy = 0@ /19w,
beB m
Now let
¢ i ¢ i
(6.9) Ve A o c= ~ A

W[ C x100x 271 b

“n I
Thus we have rescaled w to get a vector ¢ of length Cx100x271 B and scaled all

the wg’s by the same factor to obtain the c¢4’s. The constant fi here is the one
appearing in (3.5), C appears in (6.7), and b is the upper bound on the individual
vertex weights.

For convenience, let us denote S'(n1) \ B = {¢1,¢2,...,}. We now consider
the sequence of points vg, vi,... such that v; —v;_1 = ¢y, and let, for concrete-
ness, Vo be the center point of Tilex, (j1, v). Notice that for m; sufficiently large,
we have |cg, || > 211%—",”/4 Now consider the path y obtained by concatenation of
paths y1, v2,... where y; is the shortest path between v;_; and v;. There are two
cases to be considered.

Cyp = ——
¢ = W[ C x 100 x 271 b

Case 1. Each v; is a point in Tileg,(j1, v). In this case, since Tileg,(j1, v)
is (81,41, k1)-Stable as in the hypothesis of the proposition, it follows, using the
lower bound on ||¢g, ||, (3.4), (3.7), and Lemma 3.2 that

L) < lleg; | Veroj (1, 1), ¢1)-
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LARGE DEVIATIONS IN FPP 1627

Hence it follows that

6.100 L0 =Y L0 < (1+ 06 +m +27 )Y lleg, iy ,0-

1

Observe now that y is a path (not necessarily the shortest) joining vo and vo + Cx,
where ¢ = ) ; ¢g;. Observe also that from (6.9) and (6.8) we have [c — c«|| <
0 (2~™1/16)||c||, and hence we also have |cx| > zjfﬁ—"mm. Using the stability of
Tilex), (j1, v), this implies

_my
(6.11) £y) = (1= 0@ + 11 +27 %) lexlljy v)-
Now on account of the closeness between ¢4 and ¢, by Lemma 3.2 we also have
_ _m
(6.12) lexllgm = (1= 0@ +27"/1¢ 12774 lell ¢y -

Putting the above together (letting 1+ B = 1+ O(81 + 11 4+ 271/4) appearing
in (6.4)) it follows that

t
(6.2)(6.3)(6.6)

dlwilliw = (1=n)A=8) > Iwellw
i=1 peSt(m)

>(1=-m)U=B) > Wl

¢eSt(n)\B
C x 100 x 271h||w|
2
=(1=m)A-=B) Y gl Fn :

peS! (n)\B

mj

(1—m)(1=B)*(1-B=-0(277))
C x 100 x 21b||w]|

’ ”c”(j],v) ﬁ%n

> (1— 01 + 2710 )Wy )

(6.10),(6.11),(6.12)
z

where the final inequality follows by recalling that n; = 27m/8,

Case 2. Let j be the first index such that v; ¢ Tiles, (j1, v). In this case, using
the same reasoning as in (6.10) for the path ¥ = y1y2---y;j—1 yields

j—1
613) P =D o) < (1+ 061 +m+27) > lleg -

i=1
On the other hand, observe that v; ¢ Tilex,(j1,v) and (6.7) implies ||v; —v;_1|| <
C|c|l, and hence it follows that the Euclidean distance between the endpoints of ¥,

Vo, and v;_1 is at least
! i Cn
100x b ) 271"
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We now get from (3.5) that

— o~ i En
Ly)>pll— —.
(V)—“( lOOxb)2Jl
. <, o ~
Finally, by (3.10) and the above, we get |c||j,,») < ﬁbngzh% < L(y),
which, together with (6.13), completes the proof in this case. O

7 Stability of the Gradient

This section is devoted to proving Proposition 2.4. It turns out that this property
has little to do with the specific details of the first passage percolation metric; rather
it is a property of general distance functions on R? that are comparable to the
Euclidean metric; i.e., it satisfies the triangle inequality and that for all x,y € R?
such that ||x — y|| is large enough (possibly n dependent when considering boxes
of size O(n))

(7.1) plx—yl = PT(x,y) < 3b[lx—y],

which in our case is a consequence of (2.3) and (3.1). Although, as explained
in the introduction, we believe that results of similar flavour (and with essentially
similar proofs) would be useful for studying a larger class of models, e.g., last
passage percolation and positive temperature polymer models, we did not find a
model where this result would be directly quotable, and hence we have decided to
not introduce extra notations to write the result in its most general form.

For the ease of reading, we recall the statement of the proposition. Recall our
terminology thatz € R? is (8, S' (1), £, k)-Stable if zis (8, 8, £, k)-Stable for each
6 € S'(n).

PROPOSITION 7.1. Fix §,e,n > 0, k € N, and J1 € N and suppose that (7.1)
holds for all x,y € Box(10n) such that ||x —y| > «/n. Then there exists J, € N
such that for all large enough n, there exists J1 < j < Jp such that

#lz € 72 N Box(n) : z is not (5, St(). %,k)-Stable} < en?.

Above we have replaced %'n in the statement of Proposition 2.4 by 7, and sim-
ilarly the conditioning on %g* (n) therein by simply assuming that (7.1) holds for
well separated points in Box(107) to reduce notational overhead; the reader will
notice the arguments imply Proposition 2.4 by simply changing certain constants.

7.1 A roadmap of the proof

Since we are not seeking optimal bounds, the proofs will often rely on several
crude averaging arguments and applications of the pigeonhole principle along with
the bi-Lipschitz nature of the FPP metric. However, there are many technical steps
involved, and for the sake of exposition we give a brief overview of the argument
at this point.
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LARGE DEVIATIONS IN FPP 1629

The argument is divided into two parts with similar proofs. The first part shows
that for a fixed direction € S! and a fixed point z € Box(n), and for J; € N
and for J; sufficiently large, there exists m & N and J; < j < Jp, and such that
most points z; in the discrete segment % (z, 6, 7+ ICE 2/™) are stable with parameters
depending on j and m. This is carried out in Section 7.2. (See Lemma 7.3 for
a precise statement.) The second part of the argument strengthens this result to
Proposition 7.1 by showing that a common j can be found for all directions and all
points. The two parts of the arguments are similar; we describe here a roadmap of
the proof of Lemma 7.3, and the second part of the argument is provided in Section
7.3; see the beginning of that subsection for a discussion of the extra ingredients
needed.

Our argument relies on the following observations.

(1) Fix z € Box(n) and 6 € S'(n). Observe that for all J, > J;,

PT(z 9. 2’2) _ PT(z, 6. . 2’1)
271

(7.2) Jzzl[PT(z 0. 2J+1’2i+1)_PT(z,e,%,zf)].

Jj=N

The LHS in (7.2) is trivially bounded by 3bn, and all the terms in the RHS are
nonnegative by the triangle inequality (as in Lemma 2.3).

(2) Thus, if Jo — J; > l by the pigeonhole principle there must exist one
Ji < j < Jy such that [PT(z 0, -1 2f+1 27T —PT(2.60. 2. 27)] < O(e)n. Asa
matter of fact, if further J, — J{ > E’ we should be able to find many consecutive
integers j satisfying the above property.

(3) Now for j asin (2), consider the discrete segments

n .
OZ/(Z,G,E,N) = [20,21,...,2,/]
i1
%(Z g, 2J+1,2’+ ) = [20.20,1.21.21,2. 22, . ... Z5/],

where z; ;11 is the midpoint of the line segment joining z; and z; 1. Thus the
above observation together with the lower bound in (7.1) suggests that for most i,

PT(z;.2;i11) + PT(zii11.2i+1) < (1 + O(e))PT(2;,2i 1).

However, this is not quite enough to establish stability, and in fact we need some-
thing along the lines of the following stronger fact (see Lemma 7.2): for most i,

1
PT(Zi,Zi’i_,_l) ~ PT(Zi,i—i—l,zi—i-l) ~ EPT(Zi,ZH_l).
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(4) Suppose the contrary to the expression directly above. Without loss of
generality assume that

1
PT(z;.2;;11) > (5 + 5)PT(Zi,Zi+1)-

The contradiction will come from the fact that the above cannot be true for many
consecutive scales. Indeed, if it were true for j’ many consecutive scales, then re-
cursively picking one half of an interval at each scale in which the above inequality

holds leads to an interval [wq, W3] such that |w; — w3 || = w but
o PT(z;,z;
PT(wi,w2) > (1 + 28)/ %

Clearly, using the lower bound in (7.1), for j’ large enough (depending on §, [,
and ), this contradicts the upper bound in (7.1). We now make the argument above
formal.

Recalling the notion of stability from (2.7), the following crude lemma shows
how the above observations are useful to show stability.

LEMMA 7.2. Let§ > 0,0 € SY, and £,k € N be fixed. Recalling that
Uz, 0,0,k)=|z=120,21,...,2],

suppose
PT(z;,z;
sup M <146 and
o<i,j<k—1 PT(zj,2j+1)
kPT(zo,21)

s < PT(zp,z;) < kPT(zp,21)(1 + §).

Then, foreachi <k and k' <k —1i, z; is (8,0, L, k’)-Stable where §' = O(8k).
PROOF. Using the hypotheses, for any i < k and k” < k — i, we have
PT(zo,zx) < PT(2;,2; 1) + (k —k")(1 + §)PT (29, 21).
Thus it follows that

( ) > 1
PT(z;, z; /
iy Li+k’) = (1 8)

> k'PT(zo.21)(1 — O(8k)),

kPT(Z(), Z1) - (k — k/)(l + 8)PT(Z0, Z1)

> k'PT(zi. zi+1)(1 — O(8k)).

Moreover, note that by the triangle inequality and the hypothesis, PT(z;, z; 1 x/) <
(1 + 8)k’PT(z;,z;+1). This completes the proof. O

Thus, in what follows, to prove the stability of a point we will only prove that the
hypothesis of Lemma 7.2 is satisfied following the strategy outlined above. Going
back to the proof of Proposition 7.1, as explained in the roadmap, we shall first
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LARGE DEVIATIONS IN FPP 1631

deduce the existence of many stable points along a fixed line in a given direction.
We shall first state and prove this weaker version.

7.2 Stability on a fixed line

Let us consider the discrete segment % (z. 6, 2

9 F b
6 € S'(n). We shall show most points on this segment are stable for k consecutive
intervals.

27 for some z € Box(n) and

LEMMA 7.3. Letz € Box(n), 8 € S'(n), k € N, and J; € N be fixed. There
exists an absolute constant Co > 0 such that for each §> > 0, there exists m,
depending on & and k only, for which the following holds: for all small enough
03 (depending on m and 8> ) and for all n large enough depending on all the other
parameters, there exists j € N with J1 < j < (J1 + 1/8%) for which all but

a Coby fraction of the points z; in the discrete segment % (z,0.n/ 27™ 2™ are
(62,0,n/2’™, k)-Stable.

The quantification in the above statement might be a little hard to parse, but it
will create some simplification in the notational choices later. For the moment, let
us fix a value of m to be specified later. It will be convenient to associate trees to
the intervals in % (z, Q,n/ZmJI,ZmJI) =[z=120,21,...,Zyms | Let

(7.3) T, 15, ..., Thmsy
be complete 2™-ary trees of depth J» — J1, where the value of J, will be specified

to be a large enough number later (for convenience we shall index the levels of
these treesby j = Jy,J1 +1,...,J2). Let Lj(.l) denote the vertices at the jth level

of T;,and let L; = |; L;i) denote the union of the vertices at the j level. We
will identify 7; with the interval [z;_1,Z;]. Now for any J; < j < .J,, consider
the discrete segment

%(z, 9. ”-.,2/'“‘)
2/m

— *aj *a] *aj *aj *’j *aj
= [Zo s By apms Byl —apm o Byl —dpme s Byl—m + - -szm]-
Naturally,

[z:;,j’ e Z;(’f*h)m]

1
J‘ B
] in the natural order (e.g.,

is a discretization of the interval [zg, Z;], and hence can be associated to L

*, ]
Ly

l,zT’J‘], which is nothing but the

where each vertex in LJ(.I) corresponds to [ZZ"]
the root of 77 corresponds to the interval [z:;’J
interval [zg, z1]). The same correspondence holds for the other intervals and trees.

See Figure 7.1 for an illustration. In what follows, the level of the trees under
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1632 R. BASU, S. GANGULY, AND A. SLY

consideration would be clear, and hence to avoid cluttering the notation, we will

suppress the j superscript.

(20, 21] 21, 22] [z9, 23] ..

g.\)1'\ )(A)\ )(/\3)\ )(A)\ )(AD
AOAAANED AED AN AAM A
’ T T [ . ] [ *Jl ”

1 z9,21) = (257", 2]

25" 2} [20d21 5] = [z} 2]

[207 %]

’ v

y K%
Ti

FIGURE 7.1. This figure illustrates the various definitions introduced in
this section related to the trees in (7.3) in the case m = 1 where the trees
are binary trees.

Now for any vertex v in any of the trees, let Y, := PT(Z,2z”) where [/, 2"] is
the discrete segment associated to the vertex v. We need some further notation: let

Ui,j = Z Y, and Uj:ZUi,j-

@) i
veLj

It will be convenient to frame our arguments using the pigeonhole principle as
applications of ‘the probabilistic method’, and hence we define a set of random
variables. For any j, pick uniformly any edge €;4+1 = (v, w) at the (j + 1) level
across all the trees, i.e., connecting L; and L; 41, where v is closer to the root, and
let

7.4 X, = 22w

(7.4) ej+1 T Ty

For brevity we will identify the set of such edges with the set L; 1 using the
natural correspondence. Now by the triangle inequality (again, as in Lemma 2.3)

(7.5) E(Xe,y, | v.Y) > 1.

However, the distributions of X, across various j will not be independent, and
the joint distribution can be defined in the following way: pick uniformly a vertex
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LARGE DEVIATIONS IN FPP 1633

among all the leaf vertices across all the trees (note that it is naturally and uniquely
associated with a uniformly chosen simple path from the root to the leaf in a uni-
formly chosen tree) and label the edges on the path as (ej, +1.e5,+2.....€J,)
where ¢; denotes the intersection of the path with the i level. It is clear that ¢; is
uniformly distributed among all edges connecting L ;1 and L;. Notice that

J> g 2WU2—Inmy,

s
. v
j=J1+1

where Y, and Y,, are the variables gttached to the root of a randomly chosen tree
T; and a randomly chosen leaf of L(lz), respectively. We now bound the expectation
of X,; forall /1 < j < J,.To do this consider the ratio Uj+1/Uj. By definition,
we have the following:
(7 6) Uj+1 o ZwGLj+1 Yw _ ZUELJ' YUIE(Xej+1 | v, YU) -

U/ ZUGL/ YU ZUGL/ YU B
where the second equality follows from (7.4) and the fact that the trees 7; are 2™-
ary, and the final inequality follows from (7.5). The following lemma completes
the proof of Lemma 7.3 under the further assumption that on a sufficiently large
interval contained in [J1, J; + 1/ 8%]], Uj+1/Uj is also upper-bounded by 1 + §3
for some small enough §3.

LEMMA 7.4. Fix ¢ > 0. In the setting of Lemma 7.3, suppose there exists an
interval I C [J1,J1 + 1/83], with |1| > ¢/83 such that for all j € I, for some
small enough 83, depending on m and 53,
Uit

J
Then the conclusion of Lemma 7.3 holds.

7.7) 0< —1 < 63.

PROOF. Without loss of generality for this proof we shall write I = [J1, J2],
where / is given by the hypothesis. It is a consequence of (7.1) that for j < k,
veLjandw € Ly,

1 Yy

¢ = 2wy, =€

(7.8)

for some universal constant C = C(b, i) > 1. Define now the probability measure
pj on the j th_level vertices given by wi(v) = Yu/(Q4e L Yy). In particular,
for k = j, (7.8) implies that the Radon-Nikodym derivative of p; with respect
to the uniform measure u; on L; is bounded above and below by C 2 and C2,
respectively. Now, (7.7), along with (7.6), implies E,,, (E(Xe; ., | v,Yy) — 1) <
83. This, together with the above observation and (7.5) (the fact that E(X,; ,, |
v, Yy) — 1>0) implies that

(7.9) Ey, (E(Xe;,, | v.Yy) — 1) < C?6s.
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By (7.1), C in (7.8) can be chosen such that deterministically % <X, =C
and moreover,

Jz J2
1
(710) = < [] X <C. whichimplies | Y Ey(logX,,)| <logC.
j=J1+1 j=J1+1

Thus, it follows that there exists J; + 1 < j < J such that
Ey, (log X¢,) > —c ' (log C)8s.

Hence we have found a J; + 1 < j < J, with the following two properties:

(7.9)
1 <E,(Xe,) < 1+C2%3 and E,, (log(Xe,)) > —c~(log C)83.

Now for any edge e, denoting X, — 1 = y,, the above can be restated as

1 _

0< 2J—m Z ye < C%83 and i Z log(1 + ye) = —c 1 (log C)83.
eel; eclL;

Now note that by (7.8), —1 < y. < C, and hence using Taylor expansion,

log(1 + ye) < ye — C’ yg for some universal constant C’. Using the above in-

equalities it follows that

Ey, (Xe; — o= Yy g2s {zjm > (ye —log(l +ye))} = 0(53).

e€l; ecL;

Thus by Chebyshev’s inequality, for at least a 1 — O(+/83) fraction of e € L i, we

have | X, — 1] < 81/4 Let us call such an edge e, a good edge. Now let us consider
allv € Lj 4 such that all the children of v are good (let us call such v good).
A naive bound shows that the fraction of good v is at least 1 — O(2™+/83). Now
for any good v corresponding to an interval [wy, W], say, if the discrete segment
[Wi = wW§,W],...,Wsn = Wz] corresponds to the 2™ children, then Lemma 7.2
implies the following: each w} for i e [0,2™ — k] is (&', 6,n/2/™ k)-Stable,
where §' = 0(2“‘8;/ 4) (note that k here is the same as in Lemma 7.3, and not
that in the statement of Lemma 7.2; the latter is applied by setting k = 2™). Thus
the total fraction of points on % [z, 6,n/2/™,2/™] that are not (§',6,n/2/™, k)-
Stable is at most O(k/2™ + 2™+/83). Now choose m large enough and then &3
small enough such that max(k /2™ + 2™+/383,8") < 6,. O

It remains to prove that (7.7) holds for a large number of consecutive scales.
This is ensured by the following lemma using another pigeonhole argument.

LEMMA 7.5. In the setting of Lemma 1.4, there exists ¢ > Oand I C [J1,J1 +
1/83]) with |I| > such that forall j € 1

U.
0< 2t <6,

J
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PROOF. For ¢ > 0 to be specified later, we divide the 1/ 8% many scales into
consecutive blocks of ¢/83 many scales each. For i € [1,1/¢é3], let a; =
Ujitic/ss — Usi+G—1)c/85- By the triangle inequality, ¢; > 0 for all i, and by
(7.8), there exists a universal constant C such that U Ji41/82 < CUy,. Asaconse-
quence, Zieﬂl,l Je8s] i = CUy,, and by choosing ¢ sufficiently small, it follows
there exists some i € [1,1/c¢83] such that a; < Uy, 3. Now this implies that for
any J1 + (i — 1)¢/83 < j < J1 +ic/63 we have

Uj—H —Uj - a; < s,
vpi o U o

where the final inequalities are consequences of Uj 1 — Uj < a; and U; > Uy,
both of which, in turn, follow from (7.6). This completes the proof. U

7.3 Strengthening Lemma 7.3 to Proposition 7.1

We now provide the extra ingredients needed to extend the argument of the
previous subsection to establish the stronger statement of Proposition 7.1. To avoid
repetition, instead of providing the full formal proof, we shall describe the main
ideas and present an elaborate sketch. Observe that to establish Proposition 7.1,
one needs to extend Lemma 7.3 in the following two directions:

(a) At the same scale j, get the stability simultaneously in all directions in
S(n) . We will do this by first ensuring that there is a single scale j such
that for all @ € S!(n) there exists a ‘dense’ set of stable points, which we
don’t quantify yet.

(b) Deduce stability of most lattice points from the stability of a nearby point
in the above-mentioned dense set.

We describe below how to take care of these two items. To address the issue in
(a), note that one cannot naively apply the above argument separately for all § €
S!(n) since a priori one might not end up with the same scale j for all § € S!(»).

Instead we do the following: for each 8 € S!(»), consider the set of parallel
lines

,Sg = {LQK,,LQPL(G),LG,,L?(}

where for any i € [—K, K], IL? is a line segment of length 4n, making angle 8
with the x-axis; Lg is centered at the origin; and ]L? is obtained by translating Lg
in the orthogonal direction by 2Zm where J3 = Ji +1/6% and K = 3 x273™ (see
Figure 7.2). For each

6 € S'(n) and each i € [—K, K], let %; ¢ be the discrete line segment formed
by the points on ]Lig at spacing # (without loss of generality we assume that the

starting and ending points of ]Ll‘.g and %; g are the same to avoid rounding ). Thus
Ui g = [289, zll’e, .. ,zj"f] where M = 4 x 271™_ We now create a tree T; 9,¢ for
eachi € [-K,K], 0 € S'(n), and £ € [0, M — 1] corresponding to the interval
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n

FIGURE 7.2. This figure illustrates the set of parallel lines £g :=
(LY y,..., LY, LY 1LY,...,LE}. The red and blue dots denote the
pomtsz”” fori € [-K,K], & € S'(n), £ € [0,M — 1], and
h e 1, 2(’ ~JUm] " The red and blue colors denote whether the point
is (82,0, 5 57 k1)-Stable or not, respectively. For each such point we
associate a rectangular box with one of the sides parallel to ILO, where
the point is at the northwest corner of the associated rectangle. A par-
ticular example of a point z' 9:6.7 and the associated rectangle R and a
lattice point w inside R are marked in the figure. The green boxes are
associated to the blue points and the yellow boxes are associated to the
red points.

[zz ’z£+1] as in (7.3). As before, for any j > Jp, let Ll 0 denote the j M level of
the tree Tj 90 and Lj = {J; g.¢ L} o,
Using the same argument as before with these trees in place of the ones in (7.3)
now givesus J; < j < J; + 8% with the following property: If
3

. o — i’e’e,j i’e!e’j i’e,z ’j
Yi6.0,j = 2 2 R ,ZZ(j_Jl)m]

denotes the discrete segment corresponding to Li’e’e i.e., the 20 =70m vertices in

the latter correspond to the intervals [z' 067 ;lf_fj |fori € [-K, K], 0 € S'(n),

£ € [0,M — 1], and h € [[1,2(1 Jom _ 1], then for any k; (to be specified
below and small enough compared to J1), for any 8 € S!(), except for at most
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k1)-Stable
where § = 0(2‘“5;/ 4). Note that the % term appears in the fraction of unstable

an 0(’2{—.11 + %) fraction, all the remaining Z;l’e’z’], are (&', 0, 2”“,

points to ensure uniformity across 6 € S1(n).
Thus by choosing m large enough depending on k1 and 85, followed by choosing

§3 small enough, provides for any # € S!(n) a dense set of points at spacing

(of fraction 1 — 0(’;—}, + T‘nﬁ)), which are (6, 6
addresses the issue in (a).
To address the issue in (b) we will use the above along with Lemma 2.5 to

n
2jm

k1)-Stable and hence

’ 2jmv

imply stability for most points in Z2 N Box(n) with shghtly worse parameters.
1

Fixing 8 € S*(n), for any (8>, 9, 2Jm,

point w in the associated rectangular box R as illustrated in Flgure 7.2. Thus

s 25

k1)-Stable point z, 967 consider any lattice

|w—z 57w - Hence, applying Lemma 2.5 (by taking £ = jm, m=2,

k = ky and C = +/ky) implies that w is (&', 6, ”2*1/.;‘ . vk1)-Stable where §' =
82 + O(—=). Thus it follows that
N

k
#{z € Z? N Box(n) : zis not (§', 6, %, Vk1)-Stable}

2m
< 0(ﬁ LE —m?,
n

By a simple union bound over 8 € S!(n), it follows that

{z € Z* N Box(n) : z is not (8/ St(n), nfl \/_1)—Stable}

<o+ 5%))

The statement of Proposition 7.1 now follows from choosing v/k1 = max(sl, k),
followed by &> small enough to ensure §' < §, and then m large enough followed
by 83 small enough to ensure that the

m
(0] (kl +2 ﬂ3) term
n\2™ n

is less than e. Moreover, we take the value of J, to be m(Jy + 1/ 8%). Note that
logk
2

(7.11)

the value of j in Proposition 7.1 can be taken to be jm —
appears in (7.11).

, where the latter j
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