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A B S T R A C T

We analyze the steady non-Newtonian fluid–structure interaction between the flow of an Oldroyd-B
fluid and a deformable channel. Specifically, we provide a theoretical framework for calculating the
leading-order effect of the fluid’s viscoelasticity on the flow rate–pressure drop relation and on the
deformation of the channel’s elastic wall. We first identify the characteristic scales and dimensionless
parameters governing the fluid–structure interaction in slender and shallow channels. Applying the
lubrication approximation for the flow and employing a perturbation expansion in powers of the
Deborah number 𝐷𝑒, we derive a closed-form expression for the pressure as a function of the non-
uniform shape of the channel in the weakly viscoelastic limit up toO(𝐷𝑒). Coupling the hydrodynamic
pressure to the elastic deformation, we provide the leading-order effect of the interplay between the
viscoelasticity of the fluid and the compliance of the channel on the pressure and deformation fields, as
well as on the flow rate–pressure drop relation. For the flow-rate-controlled regime and in the weakly
viscoelastic limit, we show analytically that both the compliance of the deforming top wall and the
viscoelasticity of the fluid decrease the pressure drop. Furthermore, we reveal a trade-off between the
influence of compliance of the channel and the fluid’s viscoelasticity on the deformation. While the
channel’s compliance increases the deformation, the fluid’s viscoelasticity decreases it.

1. Introduction
In recent years, the fluid–structure interaction (FSI) be-

tween viscous fluids and the soft deformable configurations
they flow through has received considerable attention in the
scientific community due to its relevance to microfluidic,
lab-on-a-chip, and soft robotics applications [1, 2, 3, 4].
FSI is not limited to Newtonian fluids, and it arises in
various microfluidic applications involving complex fluids,
such as ones containing proteins, colloidal dispersions, nu-
cleic acids, or polymeric solutions [5, 6, 7, 8, 9]. In these
cases, the interplay between the compliance of the confining
boundaries and the complex rheological behavior of the non-
Newtonian fluids involved affects the FSI in new ways that
have not been fully understood. Specifically, the rheological
behavior of the fluid is featured in the deformation of the
soft fluidic conduit, as well as in the relationship between
the pressure drop Δ𝑝 and the volumetric flow rate 𝑞 [4].

Table 1 lists a chronological selection of previous work
on the steady fluid-structure interaction between complex
non-Newtonian fluids and deformable configurations. From
this table, we conclude that the main focus of the previ-
ous theoretical studies to date has been on shear-dependent
power-law fluids. However, beyond shear thinning, complex
fluids are characterized by other rheological features such as
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viscoelasticity, and thus, it is of fundamental and practical
importance to understand how these features affect the FSI.

Recently, Ramos-Arzola & Bautista [17] studied theo-
retically the fluid–structure interaction between a simplified
Phan-Thien–Tanner (PTT) fluid [18, 19] flow and a slender
and shallow deformable microchannel. Using lubrication
theory and linear elasticity and neglecting the solvent con-
tribution, Ramos-Arzola & Bautista [17] derived an implicit
nonlinear first-order ordinary differential equation for the
flow rate–pressure relation, which depends on the compli-
ance parameter and the product 𝜀PTT𝑊 𝑖2, where 𝜀PTT is the
extensibility parameter of the PTT model, and 𝑊 𝑖 is the
Weissenberg number defined in Sec. 2.1. For a fixed flow
rate, their results predicted a decrease in the pressure drop
with increasing 𝜀PTT𝑊 𝑖2. However, such a reduction in the
pressure drop arises due to shear-thinning effects of the PTT
model, which are manifested when 𝜀PTT𝑊 𝑖2 increases, and
is consistent with results of previous theoretical studies em-
ploying the simpler shear-thinning power-law model [14].
Moreover, for 𝜀PTT = 0, when the PTT model corresponds
to the Oldroyd-B model, the solution of Ramos-Arzola &
Bautista [17] for the 𝑞−Δ𝑝 relation reduces to the Newtonian
relations derived by Christov et al. [20] and Shidhore &
Christov [21], which are independent of the fluid’s viscoelas-
ticity. Previous investigations of an Oldroyd-B fluid in a
rigid but non-uniformly shaped channel [22] showed that
the Oldroyd-B model’s flow differs from a Newtonian one,
which introduces viscoelastic corrections to the pressure
drop. Thus, one should anticipate that the viscoelasticity of
the complex fluid affects the fluid–structure interaction, even
under the Oldroyd-B model.

To the best of the authors’ knowledge, the fluid–structure
interaction between a constant-shear-viscosity viscoelastic
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Table 1
Chronological selection of previous experimental, numerical, and theoretical studies on the steady fluid–structure interaction of
complex, non-Newtonian fluids flowing in deformable configurations.

Reference Focus Geometry/Solid model Fluid/model

Chakraborty et al. [10, 11] Numer. Two-dimensional channel with a short collapsible
(elastic) segment

Oldroyd-B, FENE-P, and
Owens

Yushutin [12] Theor. Axisymmetric tube as Winkler foundation Power law, moderate
Reynolds number

Tanner et al. [5] Exptl./
Numer.

Thin tube with non-axisymmetric large
deformation; simulations in ‘static’ geometry

Carboxymethyl-cellulose
aqueous solution/Carreau

Raj & Sen [6] Exptl./
Theor.

Slender and shallow rectangular channel with
elastic plate-like top wall

Polyethylene oxide solution/
Newtonian model only

Del Giudice et al. [7] Exptl. Square-cross-section channel extruded from large
block of PDMS

Polyethylene oxide solution

Raj et al. [8] Exptl. Axisymmetric tube extruded from large block of
PDMS

Xanthan gum solution

Poroshina & Vedeneev [13] Theor. Slender and thin axisymmetric shell with axial
tension

Power law, high Reynolds
number

Nahar et al. [9] Exptl. Slender and thin tube, non-axisymmetric
deformations

Carboxymethyl-cellulose,
polyacrylamide aqueous
solutions

Anand et al. [14] Theor./
Numer.

Slender and shallow rectangular channel with
elastic plate-like top wall

Power law

Anand & Christov [15] Theor./
Numer.

Slender and thin axisymmetric Donnell shell with
axial bending

Power law

Vedeneev [16] Theor. Geometrically nonlinear axisymmetric shell without
bending; hyperelastic material

Power law, high Reynolds
number

Ramos-Arzola & Bautista [17] Theor. Slender and shallow rectangular channel with
elastic plate-like top wall

Simplified PTT

Present work Theor. Slender and shallow rectangular channel with
elastic plate-like top wall

Oldroyd-B

(Boger) fluid and a three-dimensional deformable channel
has not been analyzed in the literature, even for “simple”
models such as Oldroyd-B and FENE-CR in the weakly
viscoelastic limit, which motivates this study.

In this work, we provide a theoretical framework for
calculating the leading-order effect of the fluid’s viscoelas-
ticity on the flow rate–pressure drop relation and on the
deformation of the channel’s elastic wall. Our framework
captures the effect of the viscoelasticity of the fluid using the
Oldroyd-B model. In Sec. 2, we present the problem formu-
lation and the dimensional governing equations. We further
identify the characteristic scales and dimensionless parame-
ters governing the fluid–structure interaction and provide the
reduced lubrication equations for an Oldroyd-B fluid flow
in a slender and shallow channel in dimensionless form.
In Sec. 3, we present a low-Deborah-number lubrication
analysis and derive a closed-form expression for the pressure
as a function of the non-uniform shape of the channel up to
O(𝐷𝑒). Coupling the resulting expression for the pressure
to the elastic deformation, in Sec. 4 we provide analytical
solutions for the pressure distribution and pressure drop

accounting for the leading-order effect of the fluid’s vis-
coelasticity and the channel wall’s compliance. As a concrete
example of our theoretical approach, in Sec. 5, we present
results for an Oldroyd-B fluid in a deformable channel with a
compliant top wall modeled using the Kirchhoff–Love plate-
bending theory. We conclude with a discussion in Sec. 6.

2. Problem formulation and governing
equations
We study the steady fluid–structure interaction between

a non-Newtonian viscoelastic dilute polymer solution and a
slender, shallow and deformable channel of length 𝓁, width
𝑤, and (deformed) height ℎ, where ℎ ≪ 𝑤 ≪ 𝓁, as shown in
Fig. 1. The fluid flow has a velocity field 𝒗 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) and
pressure distribution 𝑝, which are induced by the imposed
flow rate 𝑞. We seek to determine the resulting axial pressure
drop Δ𝑝 ≜ 𝑝(𝑧 = 0) − 𝑝(𝑧 = 𝓁) for a given 𝑞. The
channel’s top wall is soft, while its sidewalls are assumed
to be rigid. As the fluid flows through the channel, the fluid
stresses deform the fluid–solid interface along the channel’s
top wall. We denote by 𝑢𝑦(𝑥, 𝑧) the vertical displacement
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Figure 1: Schematic illustration of the problem geometry: a
three-dimensional deformable channel of length 𝓁 with an
initially rectangular cross-section of width 𝑤 and height ℎ0. A
viscoelastic dilute polymer solution flows steadily within the
channel, driven by an imposed flow rate 𝑞. The fluid flow
stresses cause a deformation 𝑢𝑦(𝑥, 𝑧) of the fluid–solid interface,
which affects the pressure drop Δ𝑝 over the axial distance 𝓁.
The channel’s sidewalls at 𝑥 = ±𝑤∕2, as well as the bottom
surface at 𝑦 = 0, are assumed to be rigid. The elastic top wall
has a thickness 𝑏.

of the fluid–solid interface, so that its position is given by
𝑦 = ℎ(𝑥, 𝑧) = ℎ0 + 𝑢𝑦(𝑥, 𝑧), where ℎ0 is the undeformed
height of the channel (i.e., in the absence of the flow). We
further assume that the top wall of the channel has a constant
thickness 𝑏 and constant material properties (i.e., a Young’s
modulus 𝐸𝑌 and a Poisson’s ratio 𝜈).

We consider low-Reynolds-number flows, so that the
fluid inertia is negligible compared to viscous (Newtonian
and viscoelastic) stresses. In this limit, the continuity and
momentum equations governing the fluid flow take the form

𝛁 ⋅ 𝒗 = 0, 𝛁 ⋅ 𝝈 = 𝟎, (1)

where 𝝈 is the stress tensor given by

𝝈 = −𝑝𝑰 + 2𝜂𝑠𝑬
⏟⏟⏟
Solvent

+ 𝝉
⏟⏟⏟
Polymer

. (2)

The first term on the right-hand side of Eq. (2) is the pressure
contribution, the second term is the viscous stress contri-
bution of the Newtonian solvent with a constant viscosity
𝜂𝑠, where 𝑬 = (𝛁𝒗 + (𝛁𝒗)T)∕2 is the rate-of-strain tensor,
and the last term, 𝝉 , is the polymer contribution to the stress
tensor, for which a separate constitutive equation needs to be
specified [23].

We describe the viscoelastic behavior of the complex
fluid using the Oldroyd-B constitutive model [24], which is
a well-established continuum model for viscoelastic fluids
with constant shear viscosity (i.e., Boger fluids) [23]. Impor-
tantly, the Oldroyd-B constitutive model can be derived from
microscopic principles by modeling polymer molecules as
elastic dumbbells being advected and stretched by the flow
and having a linear restoring force [25]. In the Oldroyd-
B model, the deviatoric stress tensor is the sum of the
Newtonian solvent and polymer contributions, as shown

in Eq. (2). At steady state, the polymer contribution 𝝉 to the
fluid’s stress tensor satisfies the upper-convected Maxwell
constitutive equation

𝝉 + 𝜆[𝒗 ⋅ 𝛁𝝉 − (𝛁𝒗)T ⋅ 𝝉 − 𝝉 ⋅ (𝛁𝒗)] = 2𝜂𝑝𝑬, (3)

where 𝜂𝑝 is the polymer contribution to the shear viscosity
at zero shear rate, and 𝜆 is the longest relaxation time of the
polymers [23, 25, 26].

Using Eqs. (2) and (3), the stress tensor 𝝈 can be also
expressed as

𝝈 = −𝑝𝑰 + 2𝜂0𝑬
⏟⏟⏟
Newtonian

− 𝜆[𝒗 ⋅ 𝛁𝝉 − (𝛁𝒗)T ⋅ 𝝉 − 𝝉 ⋅ (𝛁𝒗)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Viscoelastic

,

(4)
where 𝜂0 = 𝜂𝑠 + 𝜂𝑝 is the total zero-shear-rate viscosity of
the polymer solution.

Substituting Eq. (4) into the second relation in Eq. (1)
provides an alternative form of the momentum equation:

𝛁𝑝 = 𝜂0∇2𝒗 − 𝜆𝛁 ⋅ [𝒗 ⋅ 𝛁𝝉 − (𝛁𝒗)T ⋅ 𝝉 − 𝝉 ⋅ (𝛁𝒗)], (5)

which, as we show below, is convenient for assessing the
viscoelastic effects on the steady flow and pressure fields of
an Oldroyd-B fluid.

2.1. Scaling analysis and non-dimensionalization
In this work, we analyze the fluid–structure interaction

of a slender and shallow deformable channel in which ℎ ≪
𝑤 ≪ 𝓁. We consider a flow-rate-controlled situation, in
which the characteristic axial velocity scale 𝑣𝑐 is set by the
flow rate 𝑞 as 𝑣𝑐 = 𝑞∕(ℎ0𝑤).

We introduce dimensionless variables based on lubrica-
tion theory [27, 28, 29, 30, 31, 22]:

𝑋 = 𝑥
𝑤
, 𝑌 =

𝑦
ℎ0

, 𝑍 = 𝑧
𝓁
, (6a)

𝑉𝑥 =
𝑣𝑥
𝜖𝑣𝑐

, 𝑉𝑦 =
𝑣𝑦
𝜖𝑣𝑐

, 𝑉𝑧 =
𝑣𝑧
𝑣𝑐

, (6b)

𝑃 = 𝜖2𝓁
𝜂0𝑣𝑐

𝑝, 𝐻 = ℎ
ℎ0

, 𝑈 =
𝑢𝑦
𝑢𝑐

, (6c)

𝑥𝑥 = 𝓁
𝜂0𝑣𝑐

𝜏𝑥𝑥, 𝑦𝑦 =
𝓁

𝜂0𝑣𝑐
𝜏𝑦𝑦, 𝑧𝑧 =

𝜖2𝓁
𝜂0𝑣𝑐

𝜏𝑧𝑧, (6d)

𝑥𝑦 =
𝓁

𝜂0𝑣𝑐
𝜏𝑥𝑦, 𝑥𝑧 =

𝜖𝓁
𝜂0𝑣𝑐

𝜏𝑥𝑧, 𝑦𝑧 =
𝜖𝓁
𝜂0𝑣𝑐

𝜏𝑦𝑧, (6e)

where 𝑢𝑐 is the characteristic scale of deformation of the top
wall and we have introduced two dimensionless parameters
that quantify the slenderness and the shallowness of the
channel,

𝜖 ≜
ℎ0
𝓁

≪ 1 and 𝛿 ≜
ℎ0
𝑤

≪ 1, (7)

which are assumed to be small; the viscosity ratios,

𝛽 ≜
𝜂𝑝

𝜂𝑠 + 𝜂𝑝
=

𝜂𝑝
𝜂0

and 𝛽 ≜ 1 − 𝛽 =
𝜂𝑠
𝜂0

, (8)
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and the Deborah and Weissenberg numbers,

𝐷𝑒 ≜
𝜆𝑣𝑐
𝓁

=
𝜆𝑞

𝑤ℎ0𝓁
and 𝑊 𝑖 ≜

𝜆𝑣𝑐
ℎ0

=
𝜆𝑞
𝑤ℎ20

. (9)

In Eq. (9), we defined the Deborah number 𝐷𝑒 as the ratio
of the polymer relaxation time, 𝜆, to the residence (i.e.,
axial advection) time in the deformable channel, 𝓁∕𝑣𝑐 , or
alternatively, as the product of the relaxation time scale of
the fluid and the characteristic extensional rate of the flow
(see [27, 28, 29, 30]). On the other hand, we defined the
Weissenberg number 𝑊 𝑖 as the product of the relaxation
time scale of the fluid and the characteristic shear rate of
the flow, and it is related to the Deborah number through
𝐷𝑒 = 𝜖𝑊 𝑖 [30]. We note that since we have assumed that
𝜖 ≪ 1, then we can have 𝐷𝑒 ≪ 1 while 𝑊 𝑖 = O(1).

2.2. Governing equations in dimensionless form
Using the non-dimensionalization given in Eqs. (6)–(9),

the governing equations (1)–(3) take the form

𝛿
𝜕𝑉𝑥
𝜕𝑋

+
𝜕𝑉𝑦
𝜕𝑌

+
𝜕𝑉𝑧
𝜕𝑍

= 0, (10a)

𝜕𝑃
𝜕𝑋

= 𝜖2

𝛿

(

𝛽𝛿2
𝜕2𝑉𝑥
𝜕𝑋2

+ 𝛽
𝜕2𝑉𝑥
𝜕𝑌 2

+ 𝛽𝜖2
𝜕2𝑉𝑥
𝜕𝑍2

+𝛿
𝜕𝑥𝑥
𝜕𝑋

+
𝜕𝑥𝑦
𝜕𝑌

+
𝜕𝑥𝑧
𝜕𝑍

)

, (10b)

𝜕𝑃
𝜕𝑌

= 𝜖2
(

𝛽𝛿2
𝜕2𝑉𝑦
𝜕𝑋2

+ 𝛽
𝜕2𝑉𝑦
𝜕𝑌 2

+ 𝛽𝜖2
𝜕2𝑉𝑦
𝜕𝑍2

+𝛿
𝜕𝑥𝑦
𝜕𝑋

+
𝜕𝑦𝑦
𝜕𝑌

+
𝜕𝑦𝑧
𝜕𝑧

)

, (10c)

𝜕𝑃
𝜕𝑍

= 𝛽𝛿2
𝜕2𝑉𝑧
𝜕𝑋2

+ 𝛽
𝜕2𝑉𝑧
𝜕𝑌 2

+ 𝛽𝜖2
𝜕2𝑉𝑧
𝜕𝑍2

+ 𝛿
𝜕𝑥𝑧
𝜕𝑋

+
𝜕𝑦𝑧
𝜕𝑌

+
𝜕𝑧𝑧
𝜕𝑍

, (10d)

𝑥𝑥 = 2𝛽𝛿
𝜕𝑉𝑥
𝜕𝑋

−𝐷𝑒
(

𝛿𝑉𝑥
𝜕𝑥𝑥
𝜕𝑋

+ 𝑉𝑦
𝜕𝑥𝑥
𝜕𝑌

+ 𝑉𝑧
𝜕𝑥𝑥
𝜕𝑍

−2𝛿
𝜕𝑉𝑥
𝜕𝑋

𝑥𝑥 − 2
𝜕𝑉𝑥
𝜕𝑌

𝑥𝑦 − 2
𝜕𝑉𝑥
𝜕𝑍

𝑥𝑧
)

, (10e)

𝑦𝑦 = 2𝛽
𝜕𝑉𝑦
𝜕𝑌

−𝐷𝑒
(

𝛿𝑉𝑥
𝜕𝑦𝑦
𝜕𝑋

+ 𝑉𝑦
𝜕𝑦𝑦
𝜕𝑌

+ 𝑉𝑧
𝜕𝑦𝑦
𝜕𝑍

−2𝛿
𝜕𝑉𝑦
𝜕𝑋

𝑥𝑦 − 2
𝜕𝑉𝑦
𝜕𝑌

𝑦𝑦 − 2
𝜕𝑉𝑦
𝜕𝑍

𝑦𝑧
)

, (10f)

𝑧𝑧 = 2𝛽𝜖2
𝜕𝑉𝑧
𝜕𝑍

−𝐷𝑒
(

𝛿𝑉𝑥
𝜕𝑧𝑧
𝜕𝑋

+ 𝑉𝑦
𝜕𝑧𝑧
𝜕𝑌

+ 𝑉𝑧
𝜕𝑧𝑧
𝜕𝑍

−2𝛿
𝜕𝑉𝑧
𝜕𝑋

𝑥𝑧 − 2
𝜕𝑉𝑧
𝜕𝑌

𝑦𝑧 − 2
𝜕𝑉𝑧
𝜕𝑍

𝑧𝑧
)

, (10g)

𝑥𝑦 = 𝛽
(

𝜕𝑉𝑥
𝜕𝑌

+ 𝛿
𝜕𝑉𝑦
𝜕𝑋

)

−𝐷𝑒
(

𝛿𝑉𝑥
𝜕𝑥𝑦
𝜕𝑋

+ 𝑉𝑦
𝜕𝑥𝑦
𝜕𝑌

+ 𝑉𝑧
𝜕𝑥𝑦
𝜕𝑍

+
𝜕𝑉𝑧
𝜕𝑍

𝑥𝑦

−𝛿
𝜕𝑉𝑦
𝜕𝑋

𝑥𝑥 −
𝜕𝑉𝑥
𝜕𝑌

𝑦𝑦 −
𝜕𝑉𝑦
𝜕𝑍

𝑥𝑧 −
𝜕𝑉𝑥
𝜕𝑍

𝑦𝑧
)

, (10h)

𝑥𝑧 = 𝛽
(

𝜖2
𝜕𝑉𝑥
𝜕𝑍

+ 𝛿
𝜕𝑉𝑧
𝜕𝑋

)

−𝐷𝑒
(

𝛿𝑉𝑥
𝜕𝑥𝑧
𝜕𝑋

+ 𝑉𝑦
𝜕𝑥𝑧
𝜕𝑌

+ 𝑉𝑧
𝜕𝑥𝑧
𝜕𝑍

+
𝜕𝑉𝑦
𝜕𝑌

𝑥𝑧

−𝛿
𝜕𝑉𝑧
𝜕𝑋

𝑥𝑥 −
𝜕𝑉𝑥
𝜕𝑍

𝑧𝑧 −
𝜕𝑉𝑧
𝜕𝑌

𝑥𝑦 −
𝜕𝑉𝑥
𝜕𝑌

𝑦𝑧
)

, (10i)

𝑦𝑧 = 𝛽
(

𝜖2
𝜕𝑉𝑦
𝜕𝑍

+
𝜕𝑉𝑧
𝜕𝑌

)

−𝐷𝑒
(

𝛿𝑉𝑥
𝜕𝑦𝑧
𝜕𝑋

+ 𝑉𝑦
𝜕𝑦𝑧
𝜕𝑌

+ 𝑉𝑧
𝜕𝑦𝑧
𝜕𝑍

+ 𝛿
𝜕𝑉𝑥
𝜕𝑋

𝑦𝑧

−
𝜕𝑉𝑧
𝜕𝑌

𝑦𝑦 −
𝜕𝑉𝑦
𝜕𝑍

𝑧𝑧 − 𝛿
𝜕𝑉𝑦
𝜕𝑋

𝑥𝑧 − 𝛿
𝜕𝑉𝑧
𝜕𝑋

𝑥𝑦
)

. (10j)

2.3. Lubrication equations for an Oldroyd-B fluid
in a slender and shallow domain

For a slender and shallow deformable channel, we as-
sume the ordering 0 < 𝜖 ≪ 𝛿 ≪ 1. We are interested in the
leading-order asymptotic behavior under this ordering and,
from Eqs. (10), we obtain

𝜕𝑉𝑦
𝜕𝑌

+
𝜕𝑉𝑧
𝜕𝑍

= 0, (11a)

𝜕𝑃
𝜕𝑍

= 𝛽
𝜕2𝑉𝑧
𝜕𝑌 2

+
𝜕𝑦𝑧
𝜕𝑌

+
𝜕𝑧𝑧
𝜕𝑍

, 𝜕𝑃
𝜕𝑋

= 𝜕𝑃
𝜕𝑌

= 0, (11b)

𝑧𝑧 = −𝐷𝑒
(

𝑉𝑦
𝜕𝑧𝑧
𝜕𝑌

+ 𝑉𝑧
𝜕𝑧𝑧
𝜕𝑍

−2
𝜕𝑉𝑧
𝜕𝑌

𝑦𝑧 − 2
𝜕𝑉𝑧
𝜕𝑍

𝑧𝑧
)

, (11c)

𝑦𝑧 = 𝛽
𝜕𝑉𝑧
𝜕𝑌

−𝐷𝑒
(

𝑉𝑦
𝜕𝑦𝑧
𝜕𝑌

+ 𝑉𝑧
𝜕𝑦𝑧
𝜕𝑍

−
𝜕𝑉𝑧
𝜕𝑌

𝑦𝑦 −
𝜕𝑉𝑦
𝜕𝑍

𝑧𝑧
)

, (11d)

𝑦𝑦 = 2𝛽
𝜕𝑉𝑦
𝜕𝑌

−𝐷𝑒
(

𝑉𝑦
𝜕𝑦𝑦
𝜕𝑌

+ 𝑉𝑧
𝜕𝑦𝑦
𝜕𝑍

−2
𝜕𝑉𝑦
𝜕𝑌

𝑦𝑦 − 2
𝜕𝑉𝑦
𝜕𝑍

𝑦𝑧
)

. (11e)

We note that since the leading-order lubrication equa-
tions (11) are independent of the velocity and stress compo-
nents in the transverse 𝑥-direction, i.e., 𝑉𝑥, 𝑥𝑥, 𝑥𝑦, and 𝑥𝑧,
we do not write their corresponding evolution equations.

In fact, we have reduced the governing equations from
three dimensions (3D) to a two-dimensional (2D) set of
equations, similarly to Ahmed & Biancofiore [30] and
Boyko & Stone [22], who analyzed flows of an Oldroyd-B
fluid in non-uniform 2D rigid configurations. From Eq. (11b),
it follows that 𝑃 = 𝑃 (𝑍), i.e., the pressure is independent of
𝑋 and 𝑌 at the leading order in 𝜖 and 𝛿, consistent with the
classical lubrication approximation.
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3. Low-Deborah-number lubrication analysis
In the previous section, we derived the leading-order

dimensionless lubrication equations (11) for an Oldroyd-
B fluid, which are characterized by the two dimensionless
parameters: 𝐷𝑒 and 𝛽 (or 𝛽). In this section, we consider
the weakly viscoelastic limit, 𝐷𝑒 ≪ 1, and derive closed-
form expressions for the velocity field and the 𝑞−Δ𝑝 relation
for the pressure-driven flow of an Oldroyd-B fluid through
a slender and shallow deformable channel. To this end, we
seek a solution of the form

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑉𝑧
𝑉𝑦
𝑃
𝑧𝑧
𝑦𝑦
𝑦𝑧

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑉𝑧,0
𝑉𝑦,0
𝑃0
𝑧𝑧,0
𝑦𝑦,0
𝑦𝑧,0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+𝐷𝑒

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑉𝑧,1
𝑉𝑦,1
𝑃1
𝑧𝑧,1
𝑦𝑦,1
𝑦𝑧,1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ O(𝐷𝑒2), (12)

and we derive analytical expressions for the velocity and
stress components of interest, as well as the pressure drop, up
to O(𝐷𝑒). We note that, under the lubrication approximation
in the low-𝐷𝑒 regime considered here, it is sufficient to apply
the boundary conditions,

𝑉𝑧(𝑋, 0, 𝑍) = 𝑉𝑧(𝑋,𝐻(𝑋,𝑍), 𝑍) = 0, (13a)

𝑉𝑦(𝑋, 0, 𝑍) = 𝑉𝑦(𝑋,𝐻(𝑋,𝑍), 𝑍) = 0, (13b)

∫

+1∕2

−1∕2 ∫

𝐻(𝑋,𝑍)

0
𝑉𝑧(𝑋, 𝑌 ,𝑍) d𝑌 d𝑋 = 1, (13c)

to calculate the flow and pressure fields using the asymptotic
expansion given in Eq. (12) (see [32, 22]). In addition, we
assume zero gauge pressure at the outlet of the channel and
set 𝑃 (1) = 0, so that Δ𝑃 = 𝑃 (0) [20, 17].

We also note that the leading-order lubrication equa-
tions (11) cannot satisfy the no-slip boundary condition
𝑉𝑧(±1∕2, 𝑌 , 𝑍) = 0 at the sidewalls 𝑋 = ±1∕2. Satisfying
these sidewall boundary conditions for 𝑉𝑧 requires account-
ing for the corrections at O(𝛿), as discussed by Christov et
al. [20] and Boyko et al. [33].

3.1. Leading-order solution
Substituting Eq. (12) into Eqs. (11) and considering the

leading order in 𝐷𝑒, we obtain

𝜕𝑉𝑦,0
𝜕𝑌

+
𝜕𝑉𝑧,0
𝜕𝑍

= 0, (14a)

𝜕𝑃0
𝜕𝑍

= 𝛽
𝜕2𝑉𝑧,0
𝜕𝑌 2

+
𝜕𝑦𝑧,0
𝜕𝑌

+
𝜕𝑧𝑧,0
𝜕𝑍

, (14b)

𝜕𝑃0
𝜕𝑋

=
𝜕𝑃0
𝜕𝑌

= 0, (14c)

𝑧𝑧,0 = 0, (14d)

𝑦𝑧,0 = 𝛽
𝜕𝑉𝑧,0
𝜕𝑌

, (14e)

𝑦𝑦,0 = 2𝛽
𝜕𝑉𝑦,0
𝜕𝑌

, (14f)

subject to the boundary conditions

𝑉𝑧,0(𝑋, 0, 𝑍) = 𝑉𝑧,0(𝑋,𝐻(𝑋,𝑍), 𝑍) = 0, (15a)

𝑉𝑦,0(𝑋, 0, 𝑍) = 𝑉𝑦,0(𝑋,𝐻(𝑋,𝑍), 𝑍) = 0, (15b)

∫

+1∕2

−1∕2 ∫

𝐻(𝑋,𝑍)

0
𝑉𝑧,0(𝑋, 𝑌 ,𝑍) d𝑌 d𝑋 = 1. (15c)

Substituting Eqs. (14d) and (14e) into Eq. (14b) yields

d𝑃0
d𝑍

=
𝜕2𝑉𝑧,0
𝜕𝑌 2

, (16)

where we have used the fact that 𝑃0 = 𝑃0(𝑍). As expected,
at the leading order in 𝐷𝑒, Eq. (14b) reduces to the dimen-
sionless momentum equation of a Newtonian fluid with a
constant viscosity 𝜂0, namely Eq. (16).

Integrating Eq. (16) twice with respect to 𝑌 and applying
the no-slip boundary conditions Eq. (15a), we obtain the
axial velocity at the leading order:

𝑉𝑧,0(𝑋, 𝑌 ,𝑍) = −1
2
d𝑃0
d𝑍

𝑌 (𝐻(𝑋,𝑍) − 𝑌 ). (17)

The pressure gradient d𝑃0∕d𝑍 follows from applying the
integral constraint in Eq. (15c),

d𝑃0
d𝑍

= − 12
∫ +1∕2
−1∕2 𝐻(𝑋,𝑍)3d𝑋

≜ − 12
𝐻𝑒(𝑍)3

, (18)

where we have defined the dimensionless effective channel
height as in [34]:

𝐻𝑒(𝑍) ≜

[

∫

+1∕2

−1∕2
𝐻(𝑋,𝑍)3 d𝑋

]1∕3

. (19)

For a given shape of the top wall of the channel, Eq. (18)
provides an explicit expression for the leading-order pres-
sure gradient. The corresponding axial velocity distribution
is then

𝑉𝑧,0(𝑋, 𝑌 ,𝑍) = 6
𝑌 (𝐻(𝑋,𝑍) − 𝑌 )

𝐻𝑒(𝑍)3
. (20)

Finally, the 𝑦𝑦- and 𝑦𝑧-components of the polymer stress
tensor at the leading order in𝐷𝑒 depend on the channel shape
as

𝑦𝑦,0 = 2𝛽
𝜕𝑉𝑦,0
𝜕𝑌

= −2𝛽
𝜕𝑉𝑧,0
𝜕𝑍

(21a)

= −
12𝛽𝑌
𝐻𝑒(𝑍)3

[3(𝑌 −𝐻(𝑋,𝑍))𝐻 ′
𝑒(𝑍)

𝐻𝑒(𝑍)
+ 𝜕𝐻

𝜕𝑍

]

,

𝑦𝑧,0 = 𝛽
𝜕𝑉𝑧,0
𝜕𝑌

= 6𝛽
𝐻(𝑋,𝑍) − 2𝑌

𝐻𝑒(𝑍)3
, (21b)

where primes denote derivatives with respect to 𝑍.
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3.2. First-order solution
At the next order, O(𝐷𝑒), the governing equations (11)

yield
𝜕𝑉𝑧,1
𝜕𝑍

+
𝜕𝑉𝑦,1
𝜕𝑌

= 0, (22a)

𝜕𝑃1
𝜕𝑍

= 𝛽
𝜕2𝑉𝑧,1
𝜕𝑌 2

+
𝜕𝑦𝑧,1
𝜕𝑌

+
𝜕𝑧𝑧,1
𝜕𝑍

, (22b)

𝜕𝑃1
𝜕𝑋

=
𝜕𝑃1
𝜕𝑌

= 0, (22c)

𝑧𝑧,1 = 2
𝜕𝑉𝑧,0
𝜕𝑌

𝑦𝑧,0, (22d)

𝑦𝑧,1 = 𝛽
𝜕𝑉𝑧,1
𝜕𝑌

−
(

𝑉𝑦,0
𝜕𝑦𝑧,0
𝜕𝑌

+𝑉𝑧,0
𝜕𝑦𝑧,0
𝜕𝑍

−
𝜕𝑉𝑧,0
𝜕𝑌

𝑦𝑦,0
)

, (22e)

𝑦𝑦,1 = 2𝛽
𝜕𝑉𝑦,1
𝜕𝑌

−
(

𝑉𝑦,0
𝜕𝑦𝑦,0
𝜕𝑌

+ 𝑉𝑧,0
𝜕𝑦𝑦,0
𝜕𝑍

−2
𝜕𝑉𝑦,0
𝜕𝑌

𝑦𝑦,0 − 2
𝜕𝑉𝑦,0
𝜕𝑍

𝑦𝑧,0
)

, (22f)

where we have used Eq. (14d) to simplify Eqs. (22d)–(22e).
These governing equations (22) are supplemented by the

boundary conditions

𝑉𝑧,1(𝑋, 0, 𝑍) = 𝑉𝑧,1(𝑋,𝐻(𝑋,𝑍), 𝑍) = 0, (23a)

𝑉𝑦,1(𝑋, 0, 𝑍) = 𝑉𝑦,1(𝑋,𝐻(𝑋,𝑍), 𝑍) = 0, (23b)

∫

+1∕2

−1∕2 ∫

𝐻(𝑋,𝑍)

0
𝑉𝑧,1(𝑋, 𝑌 ,𝑍) d𝑌 d𝑋 = 0. (23c)

It is worth noting that, as Eq. (22b) indicates, the determina-
tion of the pressure distribution at the first order in 𝐷𝑒 only
requires calculating 𝑧𝑧,1 and 𝑦𝑧,1, but not 𝑦𝑦,1.

Substituting Eqs. (22d)–(22e) into Eq. (22b), we obtain

d𝑃1
d𝑍

−
𝜕2𝑉𝑧,1
𝜕𝑌 2

= 𝛽𝑆(𝑋, 𝑌 ,𝑍), (24)

where we have defined

𝛽𝑆(𝑋, 𝑌 ,𝑍) ≜ 𝜕
𝜕𝑍

(

2
𝜕𝑉𝑧,0
𝜕𝑌

𝑦𝑧,0
)

− 𝜕
𝜕𝑌

(

𝑉𝑦,0
𝜕𝑦𝑧,0
𝜕𝑌

+ 𝑉𝑧,0
𝜕𝑦𝑧,0
𝜕𝑍

−
𝜕𝑉𝑧,0
𝜕𝑌

𝑦𝑦,0
)

. (25)

Note that since 𝜕𝑦𝑧,0∕𝜕𝑌 = −12𝛽∕𝐻𝑒(𝑍)3 is solely a
function of 𝑍, the first term appearing in the second row
of Eq. (25) can be expressed as

𝜕
𝜕𝑌

(

𝑉𝑦,0
𝜕𝑦𝑧,0
𝜕𝑌

)

=
𝜕𝑉𝑦,0
𝜕𝑌

𝜕𝑦𝑧,0
𝜕𝑌

= −
𝜕𝑉𝑧,0
𝜕𝑍

𝜕𝑦𝑧,0
𝜕𝑌

. (26)

Thus, from Eqs. (24)–(26), it follows that finding the pres-
sure distribution at the first order in 𝐷𝑒 does not require
determining the explicit expression for 𝑉𝑦,0.

The right-hand side of Eq. (24) only depends on the
leading-order solution, and thus can be explicitly calculated
using Eqs. (20), (21a), (21b), and (26) to yield,

𝑆(𝑋,𝑍) =
36𝐻(𝑋,𝑍)
𝐻𝑒(𝑍)6

𝜕𝐻
𝜕𝑍

−
108𝐻 ′

𝑒(𝑍)𝐻(𝑋,𝑍)2

𝐻𝑒(𝑍)7
. (27)

Similar to the two-dimensional pressure-driven flow of an
Oldroyd-B fluid in a rigid non-uniform channel [22], the
source term 𝑆(𝑋,𝑍) given in Eq. (27), arising at the first
order in 𝐷𝑒, is independent of the transverse coordinate 𝑌 .

Next, integrating Eq. (24) twice with respect to 𝑌 , using
Eq. (27), and applying the no-slip boundary conditions from
Eq. (23a), we obtain

𝑉𝑧,1(𝑋, 𝑌 ,𝑍) = −1
2

[

d𝑃1
d𝑍

− 𝛽𝑆(𝑋,𝑍)
]

𝑌 (𝐻 − 𝑌 ). (28)

To determine d𝑃1∕d𝑍, we use the integral constraint from
Eq. (23c) to find

∫

+1∕2

−1∕2

[

d𝑃1
d𝑍

− 𝛽𝑆(𝑋,𝑍)
]

𝐻(𝑋,𝑍)3 d𝑋 = 0

⇒
d𝑃1
d𝑍

= 𝛽
(𝑍)
𝐻𝑒(𝑍)3

, (29)

where we have defined

(𝑍) ≜ ∫

+1∕2

−1∕2
𝑆(𝑋,𝑍)𝐻(𝑋,𝑍)3 d𝑋

= 36
𝐻𝑒(𝑍)6 ∫

+1∕2

−1∕2
𝐻(𝑋,𝑍)4 𝜕𝐻

𝜕𝑍
d𝑋

−
108𝐻 ′

𝑒(𝑍)
𝐻𝑒(𝑍)7 ∫

+1∕2

−1∕2
𝐻(𝑋,𝑍)5 d𝑋.

(30)

Observe that, for a given shape 𝐻 of the top wall of the
channel, Eq. (29) provides an explicit expression for the
pressure gradient correction at the first order in 𝐷𝑒.

3.3. Summary
In Secs. 3.1 and 3.2, we derived dimensionless closed-

form expressions for the axial pressure gradient as a function
of the channel’s shape function 𝐻(𝑋,𝑍) (and 𝐻𝑒(𝑍)), the
viscosity ratio 𝛽, and the Deborah number 𝐷𝑒 up to O(𝐷𝑒).
Specifically,

d𝑃0
d𝑍

= − 12
𝐻𝑒(𝑍)3

, (31)

d𝑃1
d𝑍

= 𝛽
(𝑍)
𝐻𝑒(𝑍)3

, (32)

where the expressions for 𝐻𝑒(𝑍) and (𝑍) are given in
Eqs. (19) and (30), respectively.

It is worth noting that Eqs. (31) and (32) are not restricted
to deformable channels. Indeed, for a three-dimensional
non-uniform rigid channel, whose top wall has a prescribed
shape 𝐻(𝑋,𝑍), Eqs. (31) and (32) can be combined as

d𝑃
d𝑍

= − 1
𝐻𝑒(𝑍)3

[

12 −𝐷𝑒𝛽(𝑍)
]

+ O(𝐷𝑒2), (33)

thus providing the leading-order effect of viscoelasticity on
the pressure drop.
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Table 2
Summary of expressions for the dimensionless shape function, 𝐹 (𝑋) = 𝑈 (𝑋,𝑍)∕𝑃 (𝑍), from which the top wall
deformation is obtained, and the corresponding compliance parameter, 𝛼 = 𝑢𝑐∕ℎ0, for three representative elasticity
models from the literature.

Elastic model Dimensionless top wall deformation Compliance parameter Reference
shape in cross-section 𝐹 (𝑋) 𝛼 = 𝑢𝑐∕ℎ0

Kirchhoff–Love plate-bending theory
(1
4
−𝑋2

)2 (1 − 𝜈2)𝜂0𝑞𝑤3𝓁

2𝐸𝑌 𝑏3ℎ4
0

[20]

(𝑢max ≪ 𝑏 ≪ 𝑤, 𝑏∕𝑤 → 0)

Reissner–Mindlin plate-bending theory
(1
4
−𝑋2

)

[

2(𝑏∕𝑤)2

𝜅(1 − 𝜈)
+
(1
4
−𝑋2

)

]

(1 − 𝜈2)𝜂0𝑞𝑤3𝓁

2𝐸𝑌 𝑏3ℎ4
0

[21, 34]

(𝑢max ≪ 𝑏 < 𝑤, 𝑏∕𝑤 ̸→ 0)

Large-thickness linear elasticity theory 2
𝜋

∞
∑

𝑚=1

𝐴𝑚

𝑚
sin

[

𝑚𝜋
(

𝑋 + 1
2

)]

,
(1 − 𝜈2)𝜂0𝑞𝓁

𝐸𝑌 ℎ4
0

[35, 34]

(𝑢max ≪ 𝑤 ≪ 𝑏, 𝑏∕𝑤 → ∞) 𝐴𝑚 = 2
𝑚𝜋

[1 − (−1)𝑚]

4. Coupling hydrodynamics to elasticity
In this section, we couple Eqs. (31)–(32), obtained from

the hydrodynamic problem, to the elastic deformation of
the top wall of the channel, and then we solve the resulting
elastohydrodynamic problem for the Oldroyd-B fluid in the
weakly viscoelastic limit.

Using the non-dimensionalization given in Eq. (6),
the dimensionless deformed height of the fluid domain,
𝐻(𝑋,𝑍), can be expressed in terms of the dimensionless top
wall deformation, 𝑈 (𝑋,𝑍), as 𝐻(𝑋,𝑍) = 1 + 𝛼𝑈 (𝑋,𝑍),
where 𝛼 ≜ 𝑢𝑐∕ℎ0 is the dimensionless number that quantifies
the compliance of the top wall.

Recent studies have shown that the deformations of the
(𝑋, 𝑌 ) cross-section of the channel at different 𝑍-locations
decouple from each other, leading to a local deformation–
pressure relation [20, 21, 35, 36, 34]. At each cross-section,
the deformation is determined by the local pressure 𝑃 (𝑍),
and therefore, in general, we can express the dimensionless
deformed shape of the channel as

𝐻(𝑋,𝑍) = 1 + 𝛼𝑈 (𝑋,𝑍) = 1 + 𝛼𝐹 (𝑋)𝑃 (𝑍). (34)

Here, the spanwise profile 𝐹 (𝑋) is obtained by solving
the corresponding elasticity problem in an (𝑋, 𝑌 ) cross-
section, with suitable boundary conditions [20, 21, 35].
In Table 2, we summarize the known expressions for the
spanwise profiles 𝐹 (𝑋) and list explicitly the formulas for 𝛼
for three different (representative) elastic models of the top
wall deformation.

Before coupling Eqs. (31)–(32) and Eq. (34), it is worth
noting that the perturbative form of the solution for the
pressure, as 𝑃 (𝑍) = 𝑃0(𝑍) + 𝐷𝑒𝑃1(𝑍) + O(𝐷𝑒2), neces-
sarily leads to a perturbation expansion of the channel shape
𝐻(𝑋,𝑍) in powers of 𝐷𝑒 as well. Substituting the latter
expansion for the pressure into Eq. (34) yields

𝐻(𝑋,𝑍) = 1 + 𝛼𝐹 (𝑋)𝑃0(𝑍)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐻0(𝑋,𝑍)

+𝐷𝑒𝛼𝐹 (𝑋)𝑃1(𝑍)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

𝐻1(𝑋,𝑍)

. (35)

Next, substituting Eq. (35) into Eqs. (31)–(32) and using
Eqs. (19) and (30), we obtain

d𝑃0
d𝑍

= − 12
𝐻𝑒,0(𝑍)3

, (36)

d𝑃1
d𝑍

= 𝛽
0(𝑍)

𝐻𝑒,0(𝑍)3
, (37)

where 0(𝑍) and 𝐻𝑒,0(𝑍) are functions of 𝑃0(𝑍) and 𝛼,
given by

0(𝑍) =
d𝑃0
d𝑍

36𝛼
𝐻𝑒,0(𝑍)6

[

1 + 4𝛼2𝑃0(𝑍)

+6𝛼23𝑃0(𝑍)2 + 4𝛼34𝑃0(𝑍)3 + 𝛼45𝑃0(𝑍)4
]

−
108𝐻 ′

𝑒,0(𝑍)

𝐻𝑒,0(𝑍)7
[

1 + 5𝛼1𝑃0(𝑍) + 10𝛼22𝑃0(𝑍)2

+10𝛼33𝑃0(𝑍)3 + 5𝛼44𝑃0(𝑍)4 + 𝛼55𝑃0(𝑍)5
]

(38)

and

𝐻𝑒,0(𝑍) =
[

1 + 3𝛼1𝑃0(𝑍)

+3𝛼22𝑃0(𝑍)2 + 𝛼33𝑃0(𝑍)3
]1∕3 , (39)

where the constants 𝑖 are defined as

𝑖 = ∫

+1∕2

−1∕2
𝐹 (𝑋)𝑖 d𝑋, 𝑖 = 1, 2, 3,… . (40)

We note that the right-hand side of Eq. (37) for the first-order
pressure gradient depends only on the leading-order New-
tonian solution for the pressure and deformation, consistent
with a regular asymptotic expansion in 𝐷𝑒.

At the leading order in 𝐷𝑒, substituting Eq. (39) into
Eq. (36), we obtain a separable first-order ordinary differ-
ential equation for 𝑃0(𝑍). The implicit solution for 𝑃0(𝑍)
(see, e.g., [34]), subject to 𝑃0(1) = 0, is
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Figure 2: (a) The leading- and (b) first-order-in-𝐷𝑒 contributions to the pressure distribution, 𝑃0(𝑍)∕12 and 𝑃1(𝑍)∕(12𝛽),
respectively, as functions of the axial coordinate 𝑍 = 𝑧∕𝓁, for an Oldroyd-B fluid in a channel with a deformable top wall,
modeled using the plate-bending theory, for different values of the compliance parameter 𝛼.

12(1 −𝑍) = 𝑃0(𝑍)
[

1 + 3
2
𝛼1𝑃0(𝑍)

+𝛼22𝑃0(𝑍)2 + 1
4
𝛼33𝑃0(𝑍)3

]

. (41)

Unlike for the leading-order problem, it is difficult to obtain
an analytical closed-form solution for the first-order cor-
rection to the pressure distribution, 𝑃1(𝑍), since, generally,
the right-hand side of Eq. (37) is a complicated function of
𝑍. Therefore, we numerically solved Eqs. (36)–(37) using
MATLAB’s routine ode45.

To provide further analytical insight, we consider the
case of a weakly deformable channel and expand the right-
hand side of Eqs. (36) and (37) into a Taylor series for 𝛼 ≪ 1,
while also using Eqs. (38)–(39), to obtain

d𝑃0
d𝑍

= −12[1 − 3𝛼1𝑃0(𝑍)] + O(𝛼2), (42a)

d𝑃1
d𝑍

= −72𝛽𝛼1
d𝑃0
d𝑍

+ O(𝛼2). (42b)

The solution of Eq. (42a), subject to 𝑃0(1) = 0, is

𝑃0(𝑍) =
1 − exp

[

−36𝛼1(1 −𝑍)
]

3𝛼1
. (43)

Substituting Eq. (43) into Eq. (42b) and solving subject to
𝑃1(1) = 0 yields

𝑃1(𝑍) = −24𝛽
{

1 − exp
[

−36𝛼1(1 −𝑍)
]}

. (44)

Accordingly, the dimensionless pressure drop, up toO(𝛼𝐷𝑒),
is obtained by taking 𝑍 = 0 in Eqs. (43) and (44):

Δ𝑃 =
[

1 − exp
(

−36𝛼1
)]

[

1
3𝛼1

− 24𝛽𝐷𝑒
]

(45)

≈ 12[1 − 181(𝛼 + 4𝛽𝛼𝐷𝑒)] + O(𝛼2, 𝛼2𝐷𝑒, 𝛼𝐷𝑒2).

Equation (45) clearly shows that the leading-order combined
effect of the compliance of the elastic channel (with 𝛼 >
0 for inflated channels, as in the present work) and the
viscoelasticity of the fluid, is to decrease the dimensionless
pressure drop.

Finally, we note that in Eq. (45) there is no O(𝐷𝑒) term
(only the mixed O(𝛼𝐷𝑒) term) because the leading-order
viscoelastic correction to the pressure drop of the Oldroyd-
B fluid in a straight rigid channel vanishes. Specifically, this
absence of the O(𝐷𝑒) term is because, in a rigid uniform
channel, the flow and pressure fields of the Oldroyd-B fluid
are the same as those of a Newtonian fluid with a constant
viscosity 𝜂0.

5. Results and discussion
In this section, we present the results illustrating the

leading-order effect of viscoelasticity on the pressure drop
and on the deformed channel shape due to the flow of an
Oldroyd-B fluid in a slender and shallow compliant channel.

As an illustrative example, we model the compliance of
the top wall using the plate-bending theory (the first elastic
model in Table 2), which holds under the assumptions that
the maximum displacement of the top wall 𝑢max is small
compared to its thickness 𝑏, and the thickness 𝑏 is small
compared to its width 𝑤, i.e., 𝑢max ≪ 𝑏 ≪ 𝑤 [37, 38]. The
corresponding values of {1,… ,5} for the plate-bending
theory are summarized in Table 3. We note that the other two
elastic models from Table 2 yield qualitatively similar results
since the difference lies only in the values of {1,… ,5}.

To illustrate the representative values of the physical
parameters in the flow-rate-controlled flow of an Oldroyd-B
fluid in a deformable channel, we consider an experimental
configuration studied by Ozsun et al. [39]. Specifically, the
rectangular microchannel has a length 𝓁 = 15.5 mm, width
𝑤 = 1.7 mm, and undeformed height ℎ0 = 0.244 mm,

Table 3
Values of the coefficients {1,… ,5} defined by Eq. (40) for a
rectangular channel with a deformable top wall modeled using
the Kirchhoff–Love plate-bending theory.

1 2 3 4 5

1
30

1
630

1
12012

1
218790

1
3879876
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Figure 3: Contour plot of the dimensionless pressure drop
Δ𝑃∕12 = Δ𝑝𝑤ℎ3

0∕12𝜂0𝑞𝓁 for the Oldroyd-B fluid in a channel
with a deformable top wall, modeled using the Kirchhoff–Love
plate-bending theory, as a function of 𝛼 and 𝐷𝑒 with 𝛽 = 0.4.

whose top wall has thickness 𝑏 = 0.2 mm, Young’s modulus
𝐸𝑌 ≈ 1.6 MPa, and Poisson’s ratio 𝜈 = 0.499. In particular,
we observe that 𝜖 = 0.016 and 𝛿 = 0.144, which satisfy
𝜖 ≪ 𝛿 ≪ 1, and 𝑏 ≪ 𝑤, allowing the use of the Kirchhoff–
Love plate-bending theory. As the working fluid, consider
a 0.01% by weight solution of a high molecular weight
polyacrylamide (PAA), used by Groisman & Quake [40].
The corresponding relaxation time is 𝜆 ≈ 13 ms, and the
solution and solvent viscosities are 𝜂0 = 1.92 mPa s and
𝜂𝑠 = 1.37 mPa s, respectively.

For flow rates in the range of 𝑞 = 1 − 50 mL min−1,
which are feasible in experiments (see, e.g., [39]), we obtain
that 𝛼 = 0.02−1, 𝐷𝑒 = 0.034−1.69, and 𝑊 𝑖 = 2.14−107.
Therefore, the low-Deborah-lubrication analysis considered
in this work is relevant to real situations and can be realized
in experiments. Note that for 𝐷𝑒 ≪ 1 we have 𝑊 𝑖 = O(1).

Next, in Figs. 2(a,b), we present the leading- and first-
order contributions in 𝐷𝑒 to the pressure distribution for
the Oldroyd-B fluid in a deformable channel, i.e., 𝑃0(𝑍)∕12
and 𝑃1(𝑍)∕(12𝛽) obtained from Eqs. (36) and (37), re-
spectively, as functions of 𝑍 for different values of 𝛼. We
choose to present 𝑃1(𝑍)∕(12𝛽) rather than 𝑃1(𝑍)∕12, since
𝑃1(𝑍)∕(12𝛽) = 0(𝑍)∕(12𝐻𝑒,0(𝑍)3) is independent of 𝛽,
so that 𝑃0(𝑍)∕12 and 𝑃1(𝑍)∕(12𝛽) are general expressions
for the Oldroyd-B fluid, which depend only on 𝛼 and the
elastic model for the top wall (via the values of {1,… ,5}).

It is evident from Fig. 2(a) that 𝑃0(𝑍), correspond-
ing to the Newtonian pressure distribution, is positive and
shows a sub-linear behavior, which is more pronounced as
𝛼 increases. On the other hand, Fig. 2(b) illustrates that
𝑃1(𝑍)∕(12𝛽), corresponding to the leading-order effect of
the viscoelasticity on the pressure, is negative and shows
a super-linear behavior, further decreasing as 𝛼 increases.
Thus, both of these contributions lead to a reduction in the
dimensionless pressure drop, Δ𝑃 = 𝑃0(0) + 𝐷𝑒𝑃1(0), with
increasing 𝛼, for given values of 𝐷𝑒 and 𝛽, consistent with
the analytical prediction in Eq. (45).

In Fig. 3, we present a contour plot of the dimensionless
pressure drop Δ𝑃∕12 = Δ𝑝𝑤ℎ30∕12𝜂0𝑞𝓁 for the flow of an
Oldroyd-B fluid in the deformable channel with an elastic
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Figure 4: The dimensionless pressure drop Δ𝑃∕12 =
Δ𝑝𝑤ℎ3

0∕12𝜂0𝑞𝓁 for the flow of an Oldroyd-B fluid in a channel
with a deformable top wall, modeled using the plate-bending
theory. (a) Δ𝑃∕12 as a function of 𝛼 for different values of 𝐷𝑒
with 𝛽 = 0.4. (b) Δ𝑃∕12 as a function of 𝐷𝑒 for different values
of 𝛼 with 𝛽 = 0.4. Solid curves represent the dimensionless
pressure drop, obtained from numerically solving Eqs. (36)–
(37). Dashed and dotted curves in (b) represent the asymptotic
solution given in Eq. (45) for 𝛼 = 0.1 and 𝛼 = 0.5, respectively.

plate-like top wall, as a function of 𝛼 and 𝐷𝑒 for 𝛽 = 0.4,
obtained from numerically solving Eqs. (36)–(37). Fig. 3
clearly indicates that both compliance of the deforming top
wall and viscoelasticity of fluid decrease the dimensionless
pressure drop, consistent with the analytical prediction in
Eq. (45), which is strictly valid for 𝛼 ≪ 1 and 𝐷𝑒 ≪ 1.

For further clarification, Fig. 4(a) presents the dimen-
sionless pressure drop Δ𝑃∕12 = Δ𝑝𝑤ℎ30∕12𝜂0𝑞𝓁 as a func-
tion of 𝛼, for different values of 𝐷𝑒, and Fig. 4(b) presents
the dimensionless pressure drop Δ𝑃∕12 = Δ𝑝𝑤ℎ30∕12𝜂0𝑞𝓁
as a function of 𝐷𝑒 for different values of 𝛼. Solid curves
represent the dimensionless pressure drop accounting for the
first-order-in-𝐷𝑒 correction due to viscoelasticity, obtained
from numerically solving Eqs. (36)–(37). Dashed and dotted
curves in Fig. 4(b) represent the asymptotic solutions for
𝛼 = 0.1 and 𝛼 = 0.5, respectively, given by Eq. (45).

It follows from Fig. 4(a) that the dimensionless pressure
drop decreases nonlinearly with 𝛼, with the behavior becom-
ing more pronounced as𝐷𝑒 increases, consistent with the re-
sults shown in Fig. 3. Unlike the nonlinear dependence on 𝛼,
our first-order-in-𝐷𝑒 theory predicts that Δ𝑃∕12 decreases
linearly with 𝐷𝑒 for 𝐷𝑒 ≪ 1, as shown in Fig. 4(b). Further
investigation that involves the numerical solution of a set of
lubrication equations (11) coupled to the elasticity through
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centerline, 𝑋 = 0, where the deformation is maximal. Arrow indicates the flow direction.

Eq. (34) is required to assess the behavior of the pressure
drop at higher values of 𝐷𝑒 and is beyond the scope of this
work. It is evident from Fig. 4(b) that the asymptotic solution
Eq. (45), which is strictly valid for 𝛼 ≪ 1 and 𝐷𝑒 ≪ 1,
slightly underpredicts the numerical solution. Yet, even for
𝛼 = 0.5, it results in a modest relative error of approximately
12% at 𝐷𝑒 = 0.5.

In addition to the pressure drop, it is of interest to
understand the effect of viscoelasticity on the deformation
of the channel’s top wall. To this end, in Figs. 5(a–c), we
show contours of the dimensionless deformed shape of the
channel, 𝐻(𝑋,𝑍), for different values of 𝛼, with 𝐷𝑒 = 0.1
and 𝛽 = 0.4. In Figs. 5(d–f ), we illustrate contours of the
dimensionless deformed shape of the channel, 𝐻(𝑋,𝑍), as
a function of the (𝑋,𝑍) coordinates for different values
of 𝐷𝑒, for 𝛼 = 4 and 𝛽 = 0.4. We clearly observe the
existence of the trade-off between the effect of compliance
of the channel’s wall and the effect of viscoelasticity of the
fluid on the maximum displacement of the deforming top
wall. While, as expected, the maximum displacement, i.e.,
𝐻(0, 0) = 1 + 𝛼𝐹 (0)𝑃 (0), increases with 𝛼, it decreases
with 𝐷𝑒 due to the reduction in the pressure 𝑃 (0) = Δ𝑃 ,
consistent with the results shown in Figs. 3 and 4.

Finally, Fig. 5 indicates that the deformation 𝐻(0, 𝑍)
(white dashed curves) monotonically decreases as a function
of 𝑍, meaning that the Oldroyd-B fluid flows at a steady
state through a contracting (deformed) channel. Thus, the
predicted reduction in the dimensionless pressure drop at
low 𝐷𝑒, associated with viscoelasticity, is consistent with

previous numerical and analytical results for Oldroyd-B flu-
ids flowing through rigid contracting channels [41, 42, 22].

6. Concluding remarks
In this work, we analyzed the pressure-driven flow of a

weakly viscoelastic Oldroyd-B fluid in slender and shallow
deformable channels and developed a theoretical framework
for calculating the pressure, deformation and the flow rate–
pressure drop relation due to the fluid–structure interaction.
We first identified the appropriate characteristic scales and
dimensionless parameters governing a viscoelastic flow in a
slender and shallow geometry under the lubrication approxi-
mation. Then, employing a perturbation expansion in powers
of the Deborah number 𝐷𝑒 and coupling the hydrodynamic
problem to the elastic problem via the deformation of the top
wall, we solved the elastohydrodynamic problem. Specifi-
cally, we obtained closed-form expressions for the pressure
gradient and deformation, leading to the 𝑞 – Δ𝑝 relation in
the weakly viscoelastic limit, up to O(𝐷𝑒), and valid for
arbitrary values of the compliance parameter 𝛼.

For an elastic top wall, whose deformation obeys the
Kirchhoff–Love plate-bending theory, our key analytical
result, Eq. (45), for the flow rate–pressure drop relation in
dimensional form, accounting for the leading-order effects
of viscoelasticity of the fluid and compliance of the elastic
wall, 𝐷𝑒 ≪ 1 and 𝛼 ≪ 1, is:

Δ𝑝 ≈
12𝜂0𝑞𝓁
𝑤ℎ30

E. Boyko and I. C. Christov: Preprint submitted to Elsevier Page 10 of 12



Flow of a viscoelastic Oldroyd-B fluid in a deformable channel

×

[

1 − 3
10

(1 − 𝜈2)𝜂0𝑞𝓁𝑤3

𝐸𝑌 ℎ40𝑏
3

(

1 + 4
𝜂𝑝
𝜂0

𝜆𝑞
𝑤ℎ0𝓁

)

]

, (46)

where 𝑞 is the flow rate, Δ𝑝 is the pressure drop, 𝑤 is the
channel width, ℎ0 is the undeformed channel height, 𝓁 is
the channel length, 𝑏 is the top wall’s thickness, 𝐸𝑌 and 𝜈
are, respectively, the Young’s modulus and Poisson’s ratio
of the elastic material, 𝜂𝑝 is the polymer contribution to
the zero-shear-rate viscosity, 𝜂0 is the total zero-shear-rate
viscosity, and 𝜆 is the polymer relaxation time. Equation (46)
clearly shows that the leading-order combined effect of the
compliance of the deforming top wall and the viscoelasticity
of the fluid is to decrease the pressure drop for a given flow
rate. We note that similar expressions to Eq. (46) for the flow
rate–pressure drop relation can be obtained from Eq. (45) for
the other two wall deformation models using the expressions
for 𝛼 and 𝐹 (𝑋) given in Table 2.

Our theoretical approach is not limited to the case of a
three-dimensional channel of an initially rectangular cross-
section, and it can also be used to study the pressure-
driven flow of viscoelastic fluids in slender axisymmetric
deformable tubes. As the fluid–structure interaction between
these geometries and the shear-thinning fluids has previously
received considerable attention (see Table 1), it would be
interesting to understand how viscoelasticity influences the
interplay between the complex fluid flow and the compliance
of the elastic tube at low Reynolds number.

Another interesting extension of the present work, which
has assumed vanishing fluid inertia, is to include weak but
finite inertia, 𝑅𝑒 = 𝜖𝑅𝑒 = O(1), where 𝑅𝑒 = 𝜖𝜌𝑣𝑐ℎ0∕𝜂0
is the reduced Reynolds number and 𝜌 is the fluid’s density.
Recent studies showed that accounting for the finite inertia
of a Newtonian fluid leads to a pressure drop increase in a
deformable microchannel [36, 34]. Noteworthy, the resulting
expression for the pressure drop for the Newtonian fluid
incorporating the flow’s inertia involved all the {1,… ,5}
coefficients [36], similar to Eqs. (36)–(37) for the dimen-
sionless pressure drop of the inertialess flow of an Oldroyd-
B fluid. Therefore, in future work, it would be of particular
interest to explore the combined influence of fluid viscoelas-
ticity and fluid inertia, as well as their interplay, on the
pressure drop in a deformable channel.
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