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Neural Spectrospatial Filtering

Ke Tan”, Zhong-Qiu Wang

Abstract—As the most widely-used spatial filtering approach
for multi-channel speech separation, beamforming extracts the
target speech signal arriving from a specific direction. An emerging
alternative approach is multi-channel complex spectral mapping,
which trains a deep neural network (DNN) to directly estimate
the real and imaginary spectrograms of the target speech signal
from those of the multi-channel noisy mixture. In this all-neural
approach, the trained DNN itself becomes a nonlinear, time-varying
spectrospatial filter. However, it remains unclear how this approach
performs relative to commonly-used beamforming techniques on
different array configurations and acoustic environments. This
paper is devoted to examining this issue in a systematic way. Com-
prehensive evaluations show that multi-channel complex spectral
mapping achieves separation performance comparable to or better
than beamforming for different array geometries and speech sepa-
ration tasks and reduces to monaural complex spectral mapping in
single-channel conditions, demonstrating the general utility of this
approach on multi-channel and single-channel speech separation.
In addition, such an approach is computationally more efficient
than widely-used mask-based beamforming. We conclude that this
neural spectrospatial filter provides a strong alternative to tradi-
tional and mask-based beamforming.

Index Terms—Beamforming, deep learning, multi-channel
complex spectral mapping, spectrospatial filtering, speech
separation.

I. INTRODUCTION

PATIAL filtering refers to microphone array processing
S that applies a filter to a multi-channel signal acquired by
microphones spatially distributed in the physical space. In the
context of multi-channel speech separation, spatial filtering is
widely used to enhance a target speech source originating from a
specific spatial location and suppress the signals from interfering
sound sources from other locations. Such selective processing
is based on distinct microphone positions relative to a radiating
sound source, forming the geometry of a microphone array, i.e.
the number and spatial arrangement of microphones.
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Over the past decades, the most dominant spatial filtering
approach is acoustic beamforming, which applies a linear filter
to boost the signal from a specific direction while attenuating
signals from other directions [26], [46]. A beamformer has
different sensitivities to different arriving directions of signals,
yielding a beam pattern with high sensitivity (i.e. main beam)
towards a certain direction. This steering (beam) direction can be
manipulated by, e.g., delaying a microphone signal by a certain
time [46]. Various beamforming techniques have been devel-
oped in the signal processing community. These techniques can
be broadly categorized into two classes. The first class is fixed
beamformers, of which the filter coefficients are independent
of the microphone signals. The simplest fixed beamformer uses
a delay-and-sum technique consisting of two steps [11]. First,
each microphone signal is time-shifted to compensate for the
time difference of arrival (TDOA) between that microphone and
a reference microphone. These time-shifted signals are subse-
quently summed to produce the beamformer output, where tem-
porally aligned signals produce the highest output. The second
class of beamforming techniques adaptively estimates the filter
coefficients based on the signal characteristics. Such adaptive
beamformers typically use the minimum variance principle first
introduced by Capon [5]. A widely-used adaptive beamformer is
the minimum variance distortionless response (MVDR) beam-
former, which minimizes the average energy of the beamformer
output while preserving the signal from the target direction (i.e.
distortionless) [5], [16]. The use of a conventional beamformer
requires the knowledge of the relative transfer function (RTF)
between microphones, which must be estimated if not known
a priori [16]. In reverberant and multi-source environments,
however, accurate RTF estimation is fundamentally challenging.

Since the formulation of speech separation as supervised
learning [51], data-driven methods have been extensively stud-
ied. In particular, deep learning has become the mainstream
methodology of supervised speech separation, and remarkably
advanced the separation performance over the past decade [52].
To address multi-channel speech separation, two independent
studies [21], [22] first developed mask-based beamforming.
In [21], Heymann et al. proposed to combine conventional
beamforming with deep learning based mask estimation. They
employed a DNN to estimate the ideal binary mask (IBM) from
amonaural input for each channel. The estimated masks are then
used to compute the steering vector and the spatial covariance
matrix of noise, from which the beamformer coefficients are
derived. Such an approach provides more accurate estimation
of the steering vector and the noise covariance matrix than
conventional algorithms. Other related studies include [12],
[13], [64], [66], [68]. As in [21], these methods only utilize

2329-9290 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 04,2022 at 02:31:53 UTC from IEEE Xplore. Restrictions apply.



606 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

magnitude-domain spectral features to estimate a magnitude-
domain ideal time-frequency (T-F) mask. Subsequent studies
additionally leverage spatial features, and provide more robust
mask estimation [6], [54], [55], [65]. In multi-channel speech
separation, mask-based beamforming has become the main-
stream approach. In addition, some effort has been recently
made on neural beamforming, which directly learns a set of
beamforming filters using a DNN in either the time domain [28],
[29], [39], [40] or the frequency domain [19], [24], [32], [35],
[62], [63], [69].

Given the importance of phase in speech processing [33], [34],
[36], complex-domain approaches have been studied for monau-
ral separation [14], [43], [61]. In [43], we obtained significant
improvements in objective intelligibility and perceptual quality
of speech by performing complex spectral mapping, which
directly estimates the real and imaginary spectrograms of target
speech from those of the noisy mixture. For monaural separation,
the advantage of complex spectral mapping over magnitude-
domain approaches is two-fold. First, complex spectral mapping
enhances phase in addition to magnitude, which benefits the
speech quality. Second, real and imaginary spectrograms are
used as the DNN input, more informative than magnitude-
domain spectral features. To address multi-channel separation,
Wang et al. [57] combined complex spectral mapping and
adaptive beamforming. Specifically, monaural complex spectral
mapping is performed on each channel individually, and the
estimated complex spectrograms of the target speech and inter-
ference are used to directly compute the spatial covariance matri-
ces. Experimental results show that this approach improves over
mask-based beamforming and advances the state-of-the-art au-
tomatic speech recognition results on the CHiME-4 corpus [49].

Moreover, most studies on mask-based beamforming (e.g.
[21],[57]) assume an unknown array geometry, and aim to derive
a separation system applicable to arbitrary array configurations.
While aiming for generality is admirable, the array geometry is
fixed in many real-world applications (e.g. Amazon Echo), and
one can potentially leverage this fixed geometry in supervised
multi-channel separation.

With the fixed array geometry assumption, multi-channel
complex spectral mapping (MC-CSM) has been recently devel-
oped [56]. Specifically, the real and imaginary spectrograms of
the multi-channel mixture are concatenated and fed into a DNN
to estimate those of the target speech signal. Rather than explic-
itly applying a beamformer, such an approach trains the DNN
itself to become a filter. The MC-CSM approach has recently
been shown to be effective in different speech separation tasks,
including speech enhancement [44], speech dereverberation [56]
and speaker separation [58]. The evaluation results in these
studies show that MC-CSM can achieve much better results than
traditional beamforming, and comparable or better separation
performance compared to mask-based beamforming.

For fixed-geometry arrays, why would we expect this straight-
forward, all-neural approach be effective? With all available in-
formation encoded in the multi-channel complex spectrograms
of the noisy mixture, this approach has the potential to extract
all discriminative cues contained therein through deep learn-
ing, including both spectral and spatial cues. These cues could

greatly benefit the extraction of a target signal arriving from a
certain direction, containing monaural spectral characteristics,
or both. Hence we call this processing spectrospatial filtering. It
is worth emphasizing that the complex representation embodied
in MC-CSM is inherently sensitive to phase relations between
different microphones. We thus believe that, with MC-CSM, a
DNN can learn to implicitly determine this target direction and
enhance the signal coming from that direction by harnessing
spatial and spectral information synergistically. The key is to
train the DNN with a wide range of sound source positions and
room acoustic properties while using a fixed array geometry,
which provides stable inter-microphone phase relations to be
captured by supervised learning.

Although MC-CSM has been explored in a few recent stud-
ies [44], [56], [58], its efficacy in different array configura-
tions and acoustic environments has not yet been systemati-
cally investigated. The present study examines this approach
with different array geometries in various multi-channel speech
separation tasks. We comprehensively compare the approach
with commonly-used beamforming techniques, including con-
ventional and mask-based beamforming. Our experimental re-
sults show that the approach achieves separation performance
comparable to or better than beamforming for various speech
separation tasks and array geometries. This demonstrates that
the MC-CSM approach with fixed-geometry arrays amounts to
neural spectrospatial filtering that is both effective and general
for speech separation, hence providing a major alternative to
acoustic beamforming.

The rest of this paper is organized as follows. In Section II,
we describe the signal model and formulate the multi-channel
speech separation problem. In Section III, we briefly review sev-
eral widely-used beamforming techniques. Section IV describes
key components of the MC-CSM approach. Experimental setup
is provided in Section V. We present and analyze experimental
results in Section VI. Section VII concludes this paper.

II. SIGNAL MODEL AND PROBLEM FORMULATION

In a noisy and reverberant environment, the signals received
by a P-channel microphone array can be modeled as [15], [31],
(48]

Y (2, f) = dq(f)Se(t, f) + H(E, f) + N, f),
=S(t, /) + V(. f), (D

where S, is the short-time Fourier transform (STFT) of the
target speech signal picked up by a reference microphone (the
g-th microphone), and symbols ¢ and f index the time frame
and the frequency bin, respectively. Here d, € CP*! is the
RTF vector for the target source with respect to the g-th mi-
crophone. Symbols H and IN denote the STFTs of target speech
reverberation and reverberant noise, respectively, and S(¢, f) =
d,(f)Sy(t, f) and V (¢, f) = H(t, f) + N(¢, f) the STFTs of
the target and nontarget signals picked by the microphone array,
respectively. Note that the reverberant noise or interference N
may contain signals coming from multiple environmental noises,
which may be directional or diffuse, and interfering speakers.
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We assume that sound sources do not move within the duration
of a single utterance.

In general, the goal of speech separation is to estimate S,
which is anechoic, given the multi-channel mixture Y received
by a microphone array. One may design a spectrospatial filter to
estimate the target signal:

S, = F(Y), (2)

where F is the mapping function represented by the neural
spectrospatial filter.

III. BEAMFORMING

For broadband signals, a beamformer typically identifies a
frequency-dependent complex-valued weight vector w(t, f) =
[wy(t, f),...,wp(t, f)]T. The weight vector of a time-invariant
beamformer can be expressedas w(f) = [w1(f),...,wp(f)]T.
Following (2), the output of the beamformer is given by

Syt f) = F(Y(t, f;w(f) =w(HIY (. ), 3

where (-)¥ represents the conjugate transpose. Thus to deter-
mine the value of the weight vector w is the key to beamforming.
Below we describe delay-and-sum and MVDR as representative
fixed and adaptive beamformers, respectively.

A. Conventional Beamforming

The formulation of a beamformer requires the determination
of the steering direction, represented as a steering vector. Typ-
ically, the RTF vector is chosen as the steering vector. This
vector can be calculated from the direction-of-arrival (DOA) of
the target source, if known, or estimated from the microphone
signals [8], [9], [15].

1) Delay and Sum: A widely-used fixed beamformer is the
delay-and-sum (DS) beamformer, of which the weight vector
is derived directly from the DOA. The target speech signals
captured by different microphones exhibit similar waveforms
but different time delays (or phases). The relative delay between
each microphone and the reference microphone can be deter-
mined from the DOA and the inter-microphone distance. This
relative delay is compensated by time-shifting the corresponding
microphone signal by a certain time. These time-shifted signals
are then coherently summed. Equivalently, the weight vector can
be derived by maximizing the white noise gain in the frequency
domain [3].

2) MVDR: The popular MVDR aims to minimize the output
power with the constraint that the signal arriving from the
target direction is not distorted. This optimization problem is
mathematically formulated as

nl(;r;w(f)Hév(f>w<f> subject to w(f)dg(f) =1, 4

where ®, is the spatial covariance matrix of the nontarget
signals V. The weight vector of the MVDR beamformer is
determined by solving the optimization problem:

@y (f)'de(f)

B ()1d, (/) ©

w(f) =2

607

B. Deep Learning Based Beamforming

1) Mask-Based Beamforming: Mask-based beamforming
[21], [22] uses a DNN to estimate the ideal T-F masks, whereby
the value of a T-F unit defines the relative level of the target signal
within the unit. Thus the spatial covariance matrix of speech can
be computed from speech-dominant T-F units, and that of noise
from noise-dominant T-F units [13], [68].

In this study, we adopt the mask-based MVDR beamformer
formulated in [54], where the spatial covariance matrices of
speech and noise are calculated as follows:

= % zf: n(t, f)Y(t
1
- F 60NV NY

where 7 and £ represent the relative importance of each T-F unit
for speech and noise covariance matrix computation, respec-
tively. They can be computed as the median of the estimated
masks in individual channels:

Y(t, )Y, (©6)

(t, H, (7

n(t, f) = median(My (¢, f), . ..
§(t, f)

where Mp is the estimated ratio mask for the p-th microphone.
The RTF vector is estimated by utilizing the eigendecomposition
of the speech covariance matrix [1], [10]:

7MP(t’f))7 ®)

= median(1 — J\Zfl(t,f), 1= Mp(t,f)), 9)

t(f) = P{®s(/)},

dq(f) = 2((?)7

where P{-} computes the principal eigenvector and 7,(f) de-
notes the ¢-th element of #(f). Then the weight vector of an
MVDR beamformer can be computed using (5). Note that the
DNN trained for monaural mask estimation is usually also used
as a post-filter that operates on the beamformer output, to further
remove residual interference [53].

2) Complex Spectral Mapping Based Beamforming: Unlike
mask-based beamforming that uses estimated T-F masks as a
weighting mechanism, complex spectral mapping based beam-
forming developed in [57] directly calculates the speech and
noise covariance matrices from the estimated complex spectro-
grams:

(10)

(1)

'ﬂ \

t. /)Y, (12)

ﬂ \

iétf

where V=Y — S, and S represents the estimated complex
spectrogram of target speech produced by performing monaural
complex spectral mapping individually for each channel. Sym-
bol 7" denotes the total number of time frames in an utterance.
The RTF vector is subsequently computed using (10).
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Fig. 1. Illustration of the MISO separation system based on MC-CSM, where
“iISTFT” indicates the inverse STFT and “Concat” the concatenation operation.

Compared to using estimated T-F masks as an ad hoc weight-
ing mechanism (see (6) and (7)), computing the spatial covari-
ance matrices from the estimated complex spectra of speech and
interference (see (11) and (12)) is a principled method, and it
does not need to combine multiple monaural masks into a single
one using operators (such as median) that are not easy to justify.
If the complex spectra are perfectly estimated, (11) and (12) will
provide the ground-truth spatial covariance matrices.

IV. MULTI-CHANNEL COMPLEX SPECTRAL MAPPING

MC-CSM directly estimates the complex spectrogram of
target speech for the reference microphone from that of the
multi-channel noisy mixture via a DNN [56]. The DNN itself is
used as a spectrospatial filter, yielding the output

S, = F(Y;0), (13)
where © denotes the set of all trainable parameters in the DNN.
Specifically, the real and imaginary components of the mixture
spectrograms at all microphones are concatenated and passed
into a DNN as input. The output layer of the DNN produces an
estimate of the real and imaginary components of the target spec-
trogram at the reference microphone. This approach essentially
trains a DNN for nonlinear time-varying spectrospatial filtering,
which amounts to a multiple-input single-output (MISO) system
as illustrated in Fig. 1.

A. Complex-Domain T-F Representations

Akin to magnitude-domain spectra widely used in monaural
separation algorithms, real and imaginary spectrograms both
exhibit clear spectrotemporal structure, which is amenable to
deep learning. We plot the real and imaginary spectrograms of a
speech signal at two microphones of an array in Fig. 2. For a bet-
ter illustration, we compress the real and imaginary components

prior to plotting, using a symmetric logarithm function

—logig(—ax +1), =<0
z(x) =<0, z = 0; (14)
logg(cx + 1), x>0,

where « is a pre-defined positive scaling factor and we set it
to 100. Such a monotonically increasing function maintains the
sign of the original value. As illustrated in Fig. 2(a), (d), (d),
and (e), both real and imaginary spectra display spectrotemporal
patterns.

In addition, the complex spectrogram S; of the first-channel
signal appear to be similar to S of the second-channel signal, as
shown in Fig. 2(a), (b), (d), and (e). To compare S7 and S5, we
plot the real and imaginary components of S; — S in Fig. 2(c)
and (f), respectively, both of which also exhibit clear patterns.
These patterns are strongly correlated with the inter-channel
time difference (ITD) and the inter-channel intensity difference
(IID) between the microphones, which are two main spatial
cues in sound localization and multi-channel speech separation.
Hence the difference between the complex spectrograms at two
microphones would provide beneficial spatial information for
speech separation.

Although the MC-CSM approach does not explicitly extract
any spatial features, we believe that, with complex spectrograms
from multiple channels, a DNN can learn to implicitly com-
pare the spectra from different channels and extract effective
inter-channel cues. These cues are associated with a specific
TDOA between microphones. For fixed-geometry microphone
arrays, this TDOA corresponds to certain DOAs, and thus the
DNN would learn to suppress the interfering sounds arriving
from other directions, by training on a wide range of source
positions and room acoustic properties. Hence, in conjunction
with spectral cues contained in the complex spectrograms of
individual channels, the spatial cues implicitly encoded in inter-
channel phase relations come to bear on the separation of the
target speech signal.

B. DNN Architectures

In this study, we adopt two different DNN architectures for
the complex spectral mapping based MISO system. The firstis a
densely-connected convolutional recurrent network (DC-CRN)
developed in [44], and the second is a bidirectional long short-
term memory (BLSTM) recurrent network.

The DC-CRN is an extension of the CRN originally designed
for monaural speech enhancement in [42], which has an encoder-
decoder architecture with recurrent layers between the encoder
and the decoder. As depicted in Fig. 3, the encoder is a stack of
convolutional densely-connected blocks (DC-blocks), and the
decoder a stack of deconvolutional DC-blocks. As illustrated in
Fig. 4, each DC-block is a stack of four convolutional layers
and a gated convolutional or deconvolutional layer, with dense
connections between layers. The output of each DC-block in
the encoder is passed through a DC-block based skip pathway,
and then concatenated with the features of the corresponding
DC-block in the decoder. Between the encoder and the decoder, a
two-layer BLSTM is used to model temporal dependencies. The
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Fig. 2. Illustration of multi-channel real and imaginary spectrograms, where Re{-} and Im{-} compute the real and imaginary components, respectively. Here
S1 and Ss denote the spectrograms of target speech at the 1st and the 2nd microphones of an array, respectively. All the spectrograms are compressed using a
symmetric logarithm function prior to plotting. (a) Re{.S1} (b) Re{S2} (c) Re{S1 — S2} (d) Im{S1} (e) Im{S2} (NIm{S1 — S2}
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Fig. 3. Diagram of the DC-CRN for multi-channel complex spectral map-

ping, where S’y) and é’g) denote the real and imaginary components of S’q,
respectively.

real and imaginary components of the target spectrogram at the
reference channel are estimated by two linear layers individually.
We adopt the same network hyperparameters as the noncausal
DC-CRN in [44].

— <
'

— ) ‘ Conv/Deconv ‘ ‘ Conv/Deconv ‘
Conv, B
Conv, BN, ELU ’ ':‘
(a) Densely-connected Block (b) Gated Convolution/Deconvolution

Fig. 4. Diagrams of the densely-connected block (a) and the gated convolu-
tion/deconvolution (b), where “BN” represents batch normalization and “ELU”
the exponential linear unit. The symbol ® represents the element-wise multi-
plication. (a) Densely-connected Block (b) Gated Convolution/Deconvolution.

The recurrent network has four stacking BLSTM layers, each
of which has 512 units for each time direction. A linear layer
is employed to estimate the real and imaginary spectrograms of
target speech at the reference channel. Thus, from the input layer
to the output layer, this BLSTM network has Px2x161, 2 x
512,2 x 512,2 x 512,2 x 512 and 2 x 161 units, respectively.

C. Training Objective

Following the complex spectral mapping approach originally
developed for monaural speech enhancement [14], [43], the
loss function is calculated by comparing the real and imaginary
spectrograms between separated and target speech:

Lo = (5§ = Re{Sg}l1 + 58 —Im{Sg}[1),  (15)

where || - ||; represents the ¢ norm.
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Fig. 5. Illustration of the three microphone arrays. For all the three arrays,
microphone 1 is treated as the reference microphone. (a) 2-channel Linear Array
(b)8-channel Linear Array (c) 7-channel Circular Array.

In [56], an additional magnitude loss term is introduced:

Luvag = |I1S] = 1Sg]ll1, (16)

where the magnitude spectrogram |§q| of separated speech is

calculated as |S,| = (gér))z + (5'5”)2. This term imposes a
penalty on the magnitude estimation error, reflecting the relative
importance of the magnitude over the phase in speech separation
[50]. Hence we adopt the same loss function as in [56]:

Lrismag = Lr1 + Ltag- (17)

V. EXPERIMENTAL SETUP
A. Microphone Array Configurations

Our experiments use three different microphone arrays, as
illustrated in Fig. 5. The first is a two-channel linear array,
where the inter-microphone distance is set to 10 cm as in [44].
The second is an eight-channel linear array, where the distance
between adjacent microphones is set to 5 cm as in [59]. The
third is a circular array of seven microphones, of which the
geometry is similar to the microphone array in Amazon Echo,
comprising six microphones uniformly spaced on a circle plus
one microphone at the center of the circle. Following [7], we
set the radius of the circle to 4.25 cm. Note that all the three
microphone arrays consist of omnidirectional microphones. For
the two linear arrays, we treat the microphone at one endpoint as
the reference microphone. For the circular array, the microphone
at the center is treated as the reference microphone.

B. Data Preparation

We evaluate the MC-CSM approach on three multi-channel
speech separation tasks, i.e. speech dereverberation, speech en-
hancement and speaker separation. All the tasks aim to estimate
the direct-path (anechoic) signal at the reference microphone.

1) Speech Dereverberation: We use the training, develop-
ment test and evaluation test sets of the WSJO dataset [17] as the

Algorithm 1: Data Simulation Process for the Speech
Dereverberation Task.
Input: WSJO.
QOutput: Spatialized reverberant WSJO.
1:  REPItrain] = 4; REP[validation] = 3;

REP][test] = 4;
2. for dataset in {train, validation, test} set of WSJO
do
3: for each anechoic speech signal s in dataset do
4: for count in {1,2, ..., REP|dataset]} do
5 Sample room length 12, and width R, from
[5,10] m;
6: Sample room height R, from [3, 4] m;
7 Sample array height a, from [1, 2] m;
8: Sample array displacement a, and a,, from
[—0.5,0.5] m;
9: Place array center at (% + g, RQ‘” + ay,a;) m;

10: Sample array orientation from [0, 27];

11: Sample target source location in the 0°-360°
plane: (b, by, b.(= a.)), with the source-array
distance between [1, 1.5] m;

12: Sample T value from [0, 1] s;

13: Generate multi-channel room impulse responses
using the image source method and convolve
them with s to obtain the reverberant mixture;

14: end for

15: end for

16: end for

speech corpus for training, validation and testing, respectively.
Specifically, training, validation and test sets contain 12776
utterances from 101 speakers, 1206 utterances from 10 speakers
and 651 utterances from 8 speakers, respectively.

To generate multi-channel mixtures, we use the image source
method [2] to simulate rectangular rooms. The detailed simu-
lation procedure is provided in Algorithm 1. We assume that
the microphone array is placed horizontally and has the same
height as the target speech source. The reverberation time (70)
is randomly sampled between 0 s and 1 s. For each of the three
microphone arrays, we create training, validation and testing sets
following the same procedure.

2) Speech Enhancement in the Presence of a Point-Source
Noise: This speech enhancement task aims to address both
denoising and dereverberation. For the scenarios where only
a single point-source noise is present, we follow the same data
simulation procedure in Algorithm 1, except that an additional
noise source is simulated. The noise source is placed at the same
height as the target source and the microphone array. We set the
distance between the noise source and the array center to be
the same as that between the target speech source and the array
center. The DOA of the noise source is randomly sampled with
the constraint that the angle between that DOA and the DOA of
the target source is no smaller than 5°.

For noise source simulation, we use 18 noises from the
Diverse Environments Multichannel Acoustic Noise Database
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(DEMAND) [45]. Specifically, we use 15 noises for training and
validation, and the remaining 3 noises for testing. For a mixture,
a random cut of a randomly selected noise is used as the noise
source. Note that each noise in the DEMAND dataset has 16
channels, and we only use the signal at the first channel. For the
training and validation sets, the signal-to-noise ratio (SNR) is
randomly sampled between —5 dB and 0 dB, where the SNR is
with respect to the reverberant speech signal and the reverberant
noise signal at the reference channel. For testing, we use three
different SNRs, i.e. —5, 0 and 5 dB.

3) Speech Enhancement in the Presence of a Quasi-Diffuse
Noise: We simulate a quasi-diffuse noise field in a way similar
to [44]. Assuming that the DOA angle of the target speech source
is 6, we use 72 noise source DOA angles, i.e. 0, 0+5°, 6+10°,
0+15°, , 0+4345°, 6+350°, 6+355°. To simulate the noise
sources, we first concatenate the utterances spoken by each of
the 630 speakers in the TIMIT corpus [18], and then split them
into 480 and 150 speakers for training and testing. Following
[44], we randomly choose 72 speech clips from 72 randomly
selected speakers, and place them on the 72 positions. Note that
the distance between each noise source and the array center is
set to be the same as that between the target speech source and
the array center. We select SNRs in the same way as described
in Section V-B2. Note that the sound sources are simulated in
reverberant environments.

4) Speaker Separation: For the speaker separation task, we
assume that the number of speakers in a mixture is 2 (see a
3-talker evaluation in Section VI-C). We consider 37 candidate
azimuth positions for the speech sources, ranging from —90° to
90° in 5° steps. For the linear microphone arrays, the azimuth of
—90° indicates the direction of looking towards microphone 1
(see Fig. 5 for the microphone numbering) from the array center,
and the azimuth of 90° the opposite direction. For the circular
array, the azimuth of —90° is in the direction of looking towards
microphone 2 from microphone 1, and the azimuth of 90° in the
opposite direction. The source-array distance is set to 2 m.

We create the multi-channel mixtures by spatializing the
WSJ0-2mix dataset [20], which contains 20000, 5000 and 3000
mixtures in the training, validation and test sets. Specifically, we
convolve each pair of speech signals in the WSJ0-2mix dataset
with a pair of multi-channel impulse responses, corresponding
to two different source positions randomly selected from the
37 candidate positions. We investigate different approaches in
both anechoic and reverberant conditions. In the reverberant
condition, the reverberation time is randomly sampled between
0.2sand 0.6 s.

C. STFT Settings and DNN Training Methodology

We assume that all signals are sampled at 16 kHz. We normal-
ize the signals in the following way. Each noisy mixture at the
reference microphone is rescaled by a factor such that the root
mean square of that mixture waveform is 1. The same scaling
factor is applied to the corresponding target speech waveform
and the noisy mixtures at other microphones. In addition, we use
a 20-ms Hamming window to segment the waveforms into a set
of time frames, with a 50% overlap between adjacent frames.
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We applied a 320-point (16 kHz x 20 ms) discrete Fourier trans-
form to each time frame, producing 161-dimensional one-sided
spectra.

The models are trained on 4-second segments with the AMS-
Grad optimizer [37]. The minibatch size is set to 16. We use
an initial learning rate of 0.001, which decays by 0.98 every
two epochs. For testing, we select the model with the lowest
validation loss among different epochs. Note that the models
are trained separately for each experimental configuration.

D. Beamformer Baselines

1) DS Beamformer: We use an oracle DS beamformer, which
is steered to the direction of the target speech source.

2) Time-Invariant MVDR Beamformer: An oracle time-
invariant MVDR (TI-MVDR) beamformer can be derived by
calculating the spatial covariance matrices using the ground-
truth complex spectrograms:

T
th (t, HF

;

where V =Y — S. The RTF vector is estimated following (10).

In addition, a mask-based (MB) TI-MVDR beamformer is
formulated as described in Section III-B1. A DNN (either DC-
CRN or BLSTM) is used to monaurally estimate the ideal ratio
mask (IRM):

(18)
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Similarly, we formulate a CSM based TI-M VDR as described in
Section III-B2. For both MB TI-MVDR and CSM TI-MVDR,
the DNN trained for mask or complex spectrum estimation can
be used as a post-filter (PF).

3) Time-Varying MVDR Beamformer: Now we formulate
a time-varying MVDR (TV-MVDR) beamformer. Like TI-
MVDR, we estimate the RTF vector by performing eigenvalue
decomposition on the speech covariance matrix computed using
all time frames within an utterance. Following [27], [57], we
compute the time-varying noise covariance matrix as

(20)
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b(f)
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trace(®
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2

where [ is empirically set to 0.5 and trace(-) computes the trace
of a matrix. A time-varying weight vector of the MVDR is then
derived as

&)y ()
dQ(f)H(pv(t7 f)ille(f)

and the beamformer output is computed as S,(t, f) =

w(t, MY (E f).

w(t, f) = ) (22)
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TABLE I
COMPARISONS OF DIFFERENT APPROACHES ON SPEECH DEREVERBERATION

Mic. Array linear-2ch linear-8ch circular-7ch
Metric PESQ SI-SNR (dB) | PESQ SI-SNR (dB) | PESQ  SI-SNR (dB)
Unprocessed 2.24 0.22 2.26 0.42 2.25 0.30
Oracle DS 2.35 1.21 2.53 2.74 2.40 1.30
Oracle TI-MVDR 2.41 4.42 2.79 10.73 291 13.94
MB TI-MVDR (BLSTM) 2.43 2.35 2.73 4.42 2.76 5.13
+ PF 3.19 437 3.28 5.59 3.35 6.27
MB TI-MVDR (DC-CRN) 243 2.36 2.74 4.59 2.77 5.35
+ PF 3.22 4.45 3.24 5.62 3.29 6.52
CSM TI-MVDR (BLSTM) 2.42 3.72 2.70 7.65 2.72 7.74
+ PF 3.41 8.85 3.38 10.36 3.34 9.95
CSM TI-MVDR (DC-CRN) 241 3.94 2.70 7.77 2.74 8.40
+ PF 3.57 10.47 3.54 11.66 3.54 11.50
Oracle TV-MVDR 2.68 7.52 3.38 15.06 3.44 15.44
CSM TV-MVDR (BLSTM) 2.60 5.15 3.11 9.09 3.12 8.74
+ PF 3.27 8.46 3.23 9.77 3.24 9.11
CSM TV-MVDR (DC-CRN) 2.61 5.55 3.11 9.29 3.14 9.47
+ PF 3.46 10.11 3.24 10.74 3.20 10.54
MC-CSM (BLSTM) 3.28 7.61 3.32 8.13 3.31 8.32
MC-CSM (DC-CRN) 3.55 10.49 3.63 11.65 3.63 12.75

With this formulation, we derive a CSM TV-MVDR beam-
former. Moreover, an oracle TV-M VDR can be obtained by using
the ground-truth noise spectrogram V in (21). The RTF vector is
estimated in the same way as for the oracle TI-MVDR. Similar
to the TI-MVDRs, the DNN trained for single-channel CSM can
be applied to the beamformer output as a post-filter.

VI. EXPERIMENTAL RESULTS AND ANALYSES

As alluded to in Section V-B, our empirical analyses are con-
ducted on three major separation tasks: speech dereverberation,
speech enhancement, and speaker separation. In addition, we
examine binaural speech enhancement.

A. Evaluation on Speech Dereverberation

We use perceptual evaluation of speech quality (PESQ) [38]
and scale-invariant signal-to-noise ratio (SI-SNR) [30] to mea-
sure speech dereverberation performance. The test results are
shown in Table I, where the numbers represent the averages
over the test examples in each condition. The best score in each
case is highlighted by boldface. We observe that the oracle DS
beamformer provides limited PESQ and SI-SNR improvements
over the unprocessed reverberant signals at the respective refer-
ence microphones, although the ground-truth DOA of the target
source is used as the steering direction of the beamformer. In con-
trast, the oracle TI-MVDR produces higher PESQ and SI-SNR,
and the oracle TV-MVDR further improves the dereverberation
performance in both metrics. In the case of the 8-channel linear
array, for example, the PESQ and SI-SNR improve from 2.53
and 2.74 dB for the oracle DS to 2.79 and 10.73 dB for the
oracle TI-MVDR, and further to 3.38 and 15.06 dB for the oracle
TV-MVDR.

CSM TI-MVDRs yield comparable PESQ scores to MB TI-
MVDRs, and significantly higher SI-SNR than MB TI-MVDRs.
Going from CSM TI-MVDRs to CSM TV-MVDRs further
improves the dereverberation performance. For all these deep
learning based beamformers, additional performance gains are
obtained by applying a post-filter to the beamformer output,
as shown in Table I. Specifically, the beamformer output is
passed through the DNN trained for mask or complex spectrum
estimation. For example, post-filtering produces a 0.79 PESQ

improvement and a 2.09 dB SI-SNR improvement over the MB
TI-MVDR with DC-CRN.

The two MC-CSM based systems with BLSTM and DC-CRN
significantly elevate the PESQ and SI-SNR scores over the un-
processed signals for all the three microphone arrays. Both sys-
tems substantially outperform the oracle beamformers and the
deep learning based beamformers, and they produce comparable
PESQ and SI-SNR results to the strongest baselines, i.e. “CSM
TI-MVDR (BLSTM) + PF” and “CSM TI-MVDR (DC-CRN)
+ PF”. It should be noted that the beamforming based systems
with a post-filter (e.g. “CSM TI-MVDR (BLSTM) + PF”) apply
a DNN P+1 times, P times for mask or complex spectrum esti-
mation in the P channels and once for post-filtering. Thus these
beamforming based systems have much higher computational
costs than the corresponding MC-CSM systems. For example,
we compare the numbers of multiply-accumulate (MAC) oper-
ations for “CSM TI-MVDR (DC-CRN) + PF” and “MC-CSM
(DC-CRN)” on a 4-second reverberant signal in the 8-channel
condition. Specifically, the number of MAC operations is 168.8
billion for “CSM TI-MVDR (DC-CRN) + PF” and 18.9 billion
for “MC-CSM (DC-CRN)”.

In addition, we investigate the MC-CSM approach on mis-
matched microphone array geometries using 2-channel linear
arrays. Specifically, we utilize the DC-CRN trained for MC-
CSM on the 2-channel linear array illustrated in Fig. 5(a), of
which the inter-microphone distance is 10 cm. We test this model
on 2-channel arrays with different inter-microphone distances
ranging from 5 cm to 15 cm in 1-cm steps. As shown in Fig. 6,
the PESQ and SI-SNR improvements relative to the unprocessed
signals increase as the inter-microphone distance progressively
goes from 5 cm to 10 cm, and decrease as that distance pro-
gressively goes from 10 cm to 15 cm. The greatest PESQ and
SI-SNR improvements are obtained in the matched (fixed) array
geometry case, not surprisingly. But the performance degrades
only gradually as the distance deviates from the trained one.

When the input is monaural, multi-channel CSM naturally
reduces to single-channel CSM (see Fig. 1). In this case, the
DNN becomes a spectral filter. How does single-channel CSM
perform relative to its multi-channel counterparts? Table II
compares single- and multi-channel CSM on speech derever-
beration. The numbers in the table represent the improvements
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COMPARISON BETWEEN SINGLE- AND MULTI-CHANNEL COMPLEX SPECTRAL MAPPING ON SPEECH DEREVERBERATION. APESQ AND ASI-SNR DENOTE PESQ
AND SI-SNR IMPROVEMENTS OVER UNPROCESSED MIXTURES CAPTURED BY THE REFERENCE MICROPHONE

Mic. Setup

Ich

linear-2ch

linear-8ch

circular-7ch

Metric

APESQ _ ASI-SNR (dB)

APESQ  ASI-SNR (dB)

APESQ _ ASI-SNR (dB)

APESQ _ ASI-SNR (dB)

CSM (BLSTM)
CSM (DC-CRN)

0.95
1.16

6.59
7.97

1.04
1.31

7.39
10.27
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1.28
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Fig. 6. Investigation of the MC-CSM approach on mismatched microphone
array geometries, where a DC-CRN is trained with an inter-microphone distance
of 10 cm and tested at different inter-microphone distances. (a) APESQ (b)
ASI-SNR.

over unprocessed mixtures, i.e. APESQ and ASI-SNR. In the
single-channel case, CSM is performed on the reference channel
of the 2-channel array. In the multi-channel cases, APESQ and
ASI-SNR are relative to the unprocessed mixtures captured by
the reference channels of the corresponding microphone arrays,
and these numbers are calculated from those in Table I. We
observe that single-channel CSM performs well in both met-
rics. As expected, multi-channel CSM yields significantly better
results than single-channel CSM, consistent with the previous
observations for speech dereverberation [56] and speaker sepa-
ration [58]. This demonstrates that complex spectral mapping
clearly benefits from the spatial information encoded in the
complex spectrograms of multiple microphone signals. That
single-channel and multi-channel separation are handled in a
unified framework is a major advantage of CSM over traditional
and mask-based beamforming, which does not function for
monaural inputs.

B. Evaluation on Speech Enhancement

We now compare different approaches on speech
enhancement tasks. Tables III, IV and V present the short-time
objective intelligibility (STOI) [41], PESQ and SI-SNR results

at —5, 0 and 5 dB SNRs, respectively, in the presence of a point-
source noise. We can see that the oracle DS beamformer im-
proves the STOI, PESQ and SI-SNR over the unprocessed mix-
tures by a small margin. Oracle TI-MVDR and TV-MVDR yield
consistently better enhancement performance in terms of all the
three metrics. For MB and CSM MVDRs, similar performance
trends as in Table I are observed. The CSM TV-MVDRs produce
superior enhancement performance to the corresponding CSM
TI-MVDRs, while additionally applying post-filters results in a
different trend. Specifically, “CSM TV-MVDR (BLSTM/DC-
CRN) + PF” underperforms “CSM TI-MVDR (BLSTM/DC-
CRN) + PF” in terms of STOI, PESQ and SI-SNR. This is likely
because TV-M VDR smears temporal dependencies across time
frames in the original signal. Given that both BLSTM and DC-
CRN leverage the dependencies across frames, the loss of these
dependencies can be a drag for the effectiveness of the BLSTM
and DC-CRN post-filters. Unlike TV-MVDRs, TI-MVDRs use
the same spatial covariance matrix of noise for a whole utterance,
and thus better preserve the cross-frame dependencies.

The DC-CRN is a stronger model than the BLSTM, and the
DC-CRN MC-CSM system produces consistently higher STOI,
PESQ and SI-SNR than the BLSTM MC-CSM system. Both
these MC-CSM systems significantly outperform the oracle
beamformers and the deep learning based beamformers on the
2-channel linear array. Note that all the beamformers perform
better on the 8-channel linear array and the 7-channel circular
array than on the 2-channel array. This is because arrays with
more microphones produce a narrower beam towards a certain
steering direction at a given frequency. Such beamformers pro-
vide greater attenuation of sounds arriving from other directions.
Going from the 2-channel array to the 8-channel array or the
7-channel array leads to relatively smaller improvements for the
MC-CSM systems than for the beamformers in the three metrics.
We see that the BLSTM MC-CSM system underperforms the
oracle TV-MVDR on the 8-channel and 7-channel arrays. Even
on these two arrays, however, the BLSTM MC-CSM system
yields similar enhancement performance to the strongest non-
oracle beamformerin TablesIII, IVand V,i.e. “CSM TV-MVDR
(DC-CRN)”.

The evaluation results for speech enhancement in the presence
of a quasi-diffuse noise at —5, 0 and 5 dB SNRs are shown
in Tables VI, VII and VIII, respectively. Similar performance
trends as in Tables III, IV and V are observed. In addition, we
find that beamforming provides clearly smaller STOI, PESQ and
SI-SNR improvements over unprocessed mixtures in Tables VI,
VII and VIII than in Tables III, IV and V. This confirms that
the utility of beamforming is reduced in diffuse noise sce-
narios compared with directional noise scenarios. In addition,
Tables IX and X compare single- and multi-channel CSM on
speech enhancement, where ASTOI, APESQ and ASI-SNR in
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TABLE III
COMPARISONS OF DIFFERENT APPROACHES ON SPEECH ENHANCEMENT IN THE PRESENCE OF A POINT-SOURCE NOISE AT —5 DB SNR

Mic. Array linear-2ch linear-8ch circular-7ch
Metric STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ SI-SNR (dB) | STOI (%) PESQ  SI-SNR (dB)
Unprocessed 56.04 1.37 -9.14 56.40 1.38 -9.03 56.07 1.37 -9.10
Oracle DS 60.06 1.45 -8.41 67.40 1.64 -7.23 62.59 1.52 -8.36
Oracle TI-MVDR 67.42 1.61 -3.80 81.55 2.09 2.61 86.46 2.23 5.87
MB TI-MVDR (BLSTM) 63.13 1.53 -7.33 71.95 1.78 -6.63 74.20 1.87 -3.92
78.00 2.08 -0.68 84.34 2.40 0.23 85.50 2.48 243
MB TI-MVDR (DC-CRN) 63.78 1.55 -7.16 73.21 1.82 -6.30 75.53 1.91 -3.71
+ PF 80.35 2.20 0.07 85.76 2.54 0.82 86.96 2.61 2.95
CSM TI-MVDR (BLSTM) 66.26 1.61 -4.24 77.47 1.99 1.00 78.89 2.00 1.34
+ PF 82.79 225 371 90.75 2.76 5.73 90.33 275 5.51
CSM TI-MVDR (DC-CRN) 66.81 1.61 -4.05 77.98 1.99 1.28 79.95 2.04 1.94
+ PF 87.00 2.47 5.59 93.50 3.01 7.63 94.01 2.96 8.16
Oracle TV-MVDR 73.81 1.79 -2.30 89.23 2.54 4.92 90.90 2.60 3.85
CSM TV-MVDR (BLSTM) 66.26 1.61 -4.24 81.36 2.28 2.39 78.89 2.00 1.34
+ PF 81.72 2.15 3.71 87.60 2.49 535 86.66 2.49 4.78
CSM TV-MVDR (DC-CRN) 68.72 1.68 -3.74 81.95 224 2.59 81.57 2.23 1.62
+ PF 84.83 2.30 5.01 90.49 2.67 7.08 90.07 2.67 6.95
MC-CSM (BLSTM) 80.37 2.08 2.73 82.55 227 3.17 81.42 2.09 2.17
MC-CSM (DC-CRN) 86.32 2.41 5.02 89.25 2.65 5.58 88.05 2.49 4.25
TABLE IV

COMPARISONS OF DIFFERENT APPROACHES ON SPEECH ENHANCEMENT IN THE PRESENCE OF A POINT-SOURCE NOISE AT 0 DB SNR

Mic. Array linear-2ch linear-8ch circular-7ch
Metric STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ  SI-SNR (dB)
Unprocessed 64.74 1.58 -5.25 65.06 1.58 -5.11 64.89 1.58 -5.19
Oracle DS 68.70 1.68 -4.46 75.01 1.88 -3.18 70.81 1.75 -4.40
Oracle TI-MVDR 75.30 1.83 -0.45 86.79 228 5.54 90.92 242 8.66
MB TI-MVDR (BLSTM) 72.49 1.80 -3.23 81.09 2.13 -1.79 82.60 2.18 -0.20
+ PF 85.47 242 1.60 89.60 2.74 2.96 90.27 2.78 4.17
MB TI-MVDR (DC-CRN) 72.94 1.81 -3.07 81.56 2.15 -1.62 83.40 221 0.02
+ PF 87.04 2.55 2.24 90.34 2.86 3.34 91.15 2.90 4.61
CSM TI-MVDR (BLSTM) 74.42 1.83 -0.94 83.54 2.18 3.37 85.01 2.20 3.73
+ PF 88.86 2.60 5.20 93.51 3.00 6.88 92.95 2.98 6.48
CSM TI-MVDR (DC-CRN) 74.95 1.83 -0.69 83.99 2.18 3.80 85.90 224 4.46
+ PF 92.35 2.85 7.46 95.66 3.23 9.21 95.92 3.22 9.50
Oracle TV-MVDR 81.60 2.04 1.45 93.04 278 8.61 94.42 2.85 7.88
CSM TV-MVDR (BLSTM) 74.42 1.83 -0.94 87.39 2.51 4.71 85.01 2.20 3.73
+ PF 88.42 2.55 4.98 91.75 2.82 6.45 91.02 2.82 5.88
CSM TV-MVDR (DC-CRN) 77.71 1.95 0.01 87.87 2.49 5.30 88.19 2.50 4.80
+ PF 91.39 2.74 7.02 93.92 3.00 8.60 93.83 3.00 8.51
MC-CSM (BLSTM) 87.58 2.48 4.46 88.43 2.59 4.34 87.71 2.50 3.08
MC-CSM (DC-CRN) 91.74 2.80 7.00 93.18 2.96 7.25 92.91 2.86 6.96
TABLE V

COMPARISONS OF DIFFERENT APPROACHES ON SPEECH ENHANCEMENT IN THE PRESENCE OF A POINT-SOURCE NOISE AT 5 DB SNR

Mic. Array linear-2ch linear-8ch circular-7ch
Metric STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ  SI-SNR (dB)
Unprocessed 71.81 1.79 -2.51 72.10 1.79 -2.33 71.97 1.79 -2.43
Oracle DS 7547 1.90 -1.64 80.83 2.10 -0.21 77.11 1.96 -1.56
Oracle TI-MVDR 81.02 2.01 1.82 90.36 244 7.65 93.69 2.57 10.69
MB TI-MVDR (BLSTM) 78.73 2.01 -0.50 85.93 2.35 1.30 86.95 2.38 2.33
+ PF 88.87 2.62 2.70 91.73 291 4.09 92.22 2.93 491
MB TI-MVDR (DC-CRN) 79.13 2.02 -0.31 86.23 2.36 1.47 87.54 242 2.59
+ PF 90.06 2.75 3.27 92.29 3.02 4.44 92.85 3.05 5.26
CSM TI-MVDR (BLSTM) 80.16 2.01 1.15 87.59 2.32 4.89 88.66 2.34 5.05
+ PF 91.22 2.80 5.70 94.55 3.12 7.30 93.86 3.09 6.78
CSM TI-MVDR (DC-CRN) 80.70 2.02 1.48 88.07 2.34 5.46 89.58 2.39 6.01
+ PF 94.42 3.06 8.31 96.56 3.34 9.92 96.70 3.33 10.10
Oracle TV-MVDR 86.91 225 4.20 95.48 2.98 11.40 96.52 3.06 11.06
CSM TV-MVDR (BLSTM) 80.16 2.01 1.15 90.88 2.70 6.25 88.66 2.34 5.05
+ PF 90.97 2.71 5.48 93.42 3.00 6.87 92.59 2.99 6.23
CSM TV-MVDR (DC-CRN) 83.67 2.16 2.48 91.37 2.68 7.04 91.71 2.70 6.72
+ PF 93.91 2.99 7.92 95.38 3.19 9.31 95.33 3.18 9.20
MC-CSM (BLSTM) 90.62 2.73 5.01 90.86 2.76 4.64 90.55 2.74 4.69
MC-CSM (DC-CRN) 94.09 3.03 7.93 95.08 3.16 8.12 95.03 3.09 8.34

the multi-channel cases are calculated from the corresponding
metric scores in Tables IIL, IV, V, VI, VII and VIII.

C. Evaluation on Speaker Separation

This section compares different approaches on the
talker-independent multi-speaker separation task. We use
four metrics to measure speaker separation performance,
namely extended short-time objective intelligibility (ESTOI)
[23], PESQ, SI-SNR and signal-to-distortion ratio (SDR) [47].

The evaluation results in the anechoic condition are shown in
Table XI. Similar to the observation for the dereverberation
and enhancement tasks, the oracle DS beamformer provides
limited improvements in the four metrics. In contrast, the
oracle TI-MVDR and TV-MVDR perform very well, different
from the observation for the dereveberation and enhancement
tasks. This is likely because the speaker separation task
assumes an anechoic environment, in which adaptive
beamforming would be more effective than in reverberant
environments.
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TABLE VI
COMPARISONS OF DIFFERENT APPROACHES ON SPEECH ENHANCEMENT IN THE PRESENCE OF A QUASI-DIFFUSE NOISE AT —5 DB SNR

Mic. Array linear-2ch linear-8ch circular-7ch
Metric STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ SI-SNR (dB) | STOI (%) PESQ SI-SNR (dB)
Unprocessed 55.03 1.39 -9.08 55.33 1.40 -8.97 55.11 1.40 -9.03
Oracle DS 58.41 1.48 -7.78 64.93 1.58 -5.60 61.16 1.54 -7.84
Oracle TI-MVDR 62.19 1.47 -5.96 73.15 1.69 -1.47 76.00 1.70 -0.07
MB TI-MVDR (BLSTM) 59.69 1.49 -7.54 68.16 1.63 -4.78 68.60 1.66 -4.13
+ PF 74.77 1.91 -1.69 80.74 2.11 -0.27 82.38 221 1.43
MB TI-MVDR (DC-CRN) 60.13 1.49 -7.33 68.66 1.64 -4.49 68.97 1.64 -3.59
+ PF 77.27 2.00 -0.86 82.60 222 0.28 83.94 2.30 1.93
CSM TI-MVDR (BLSTM) 61.03 1.48 -6.44 69.69 1.53 -2.65 70.45 1.55 -2.50
+ PF 78.44 2.06 2.33 84.85 2.24 3.68 85.70 2.29 3.98
CSM TI-MVDR (DC-CRN) 61.50 1.48 -6.29 70.20 1.53 -2.47 71.13 1.57 -2.24
+ PF 82.44 2.23 3.59 87.97 243 4.64 89.62 2.53 5.52
Oracle TV-MVDR 69.24 1.60 -2.55 87.81 2.18 5.09 89.34 2.22 5.76
CSM TV-MVDR (BLSTM) 62.80 1.53 -4.56 77.69 1.99 1.32 76.28 1.95 1.04
+ PF 75.43 1.90 1.67 83.64 2.25 3.96 82.23 2.15 3.52
CSM TV-MVDR (DC-CRN) 63.82 1.53 -4.38 78.34 1.96 1.60 77.42 1.95 1.39
+ PF 80.38 2.14 3.12 86.60 2.33 5.54 85.77 2.22 5.21
MC-CSM (BLSTM) 78.54 2.05 2.37 81.91 2.20 2.93 81.19 227 4.11
MC-CSM (DC-CRN) 83.01 2.18 3.92 87.62 2.46 5.58 87.57 2.42 6.47
TABLE VII

COMPARISONS OF DIFFERENT APPROACHES ON SPEECH ENHANCEMENT IN THE PRESENCE OF A QUASI-DIFFUSE NOISE AT 0 DB SNR

Mic. Array linear-2ch linear-8ch circular-7ch
Metric STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ  SI-SNR (dB)
Unprocessed 64.47 1.53 -5.16 64.86 1.54 -5.03 64.55 1.53 -5.10
Oracle DS 68.20 1.63 -3.93 74.42 1.77 -1.86 70.45 1.68 -3.94
Oracle TI-MVDR 7231 1.65 -1.98 82.58 1.92 2.63 85.42 1.95 4.23
MB TI-MVDR (BLSTM) 70.12 1.66 -3.29 78.35 1.88 -0.55 79.21 1.91 0.22
+ PF 83.79 2.29 1.05 87.47 2.48 2.48 88.83 2.57 3.79
MB TI-MVDR (DC-CRN) 70.51 1.66 -3.12 78.69 1.89 -0.36 79.29 1.88 0.53
+ PF 85.74 2.40 1.60 88.73 2.60 2.90 89.77 2.69 4.25
CSM TI-MVDR (BLSTM) 71.39 1.65 -2.33 79.72 1.82 1.15 80.68 1.83 1.47
+ PF 87.02 2.51 4.55 91.68 2.71 6.19 91.64 2.77 6.09
CSM TI-MVDR (DC-CRN) 71.83 1.65 -2.19 80.09 1.81 1.33 81.33 1.85 1.79
+ PF 90.51 2.72 6.29 94.08 2.98 8.09 94.36 3.01 8.16
Oracle TV-MVDR 79.27 1.83 1.40 93.06 2.46 8.95 94.23 2.52 9.57
CSM TV-MVDR (BLSTM) 74.18 1.76 -0.42 86.18 227 4.38 85.63 2.26 421
+ PF 85.20 2.40 4.04 89.04 2.55 5.47 88.27 2.50 5.12
CSM TV-MVDR (DC-CRN) 75.18 1.77 -0.16 86.73 2.24 4.81 86.50 2.25 4.77
+ PF 89.37 2.64 5.79 91.75 2.71 7.61 90.66 2.53 6.89
MC-CSM (BLSTM) 86.68 2.48 4.14 88.64 2.58 4.35 88.96 2.64 6.39
MC-CSM (DC-CRN) 90.73 2.70 6.43 93.27 2.92 7.85 93.57 2.90 8.89
TABLE VIII

COMPARISONS OF DIFFERENT APPROACHES ON SPEECH ENHANCEMENT IN THE PRESENCE OF A QUASI-DIFFUSE NOISE AT 5 DB SNR

Mic. Array linear-2ch linear-8ch circular-7ch
Metric STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ  SI-SNR (dB)
Unprocessed 71.92 1.71 -2.39 72.35 1.72 -2.23 72.00 1.71 -2.32
Oracle DS 75.54 1.82 -1.24 81.02 1.98 0.66 77.23 1.86 -1.21
Oracle TI-MVDR 79.70 1.85 0.99 88.64 2.15 591 91.24 2.21 7.84
MB TI-MVDR (BLSTM) 77.46 1.86 -0.52 84.52 2.11 1.87 85.22 2.13 2.65
+ PF 87.36 2.52 2.30 89.98 2.69 3.60 90.85 2.75 4.59
MB TI-MVDR (DC-CRN) 77.84 1.87 -0.35 84.80 2.12 2.05 85.52 2.10 3.10
+ PF 88.97 2.62 2.75 90.71 2.80 3.90 91.52 2.86 5.02
CSM TI-MVDR (BLSTM) 78.72 1.85 0.48 85.96 2.07 3.75 86.63 2.08 3.91
+ PF 89.40 2.66 5.04 93.02 2.90 6.59 92.75 2.89 6.43
CSM TI-MVDR (DC-CRN) 79.23 1.86 0.69 86.39 2.07 4.09 87.45 2.10 4.49
+ PF 92.98 2.93 7.24 95.51 3.17 9.22 95.53 3.17 9.01
Oracle TV-MVDR 85.96 2.07 4.31 95.89 2.73 11.85 96.74 2.79 12.35
CSM TV-MVDR (BLSTM) 81.49 2.00 2.06 90.46 2.50 6.13 89.98 2.49 5.78
+ PF 87.85 2.55 4.51 90.34 2.61 572 90.02 2.61 5.56
CSM TV-MVDR (DC-CRN) 82.47 2.01 2.48 90.99 2.47 6.78 90.88 2.49 6.62
+ PF 91.90 2.81 6.65 93.33 2.81 8.30 91.55 2.53 6.96
MC-CSM (BLSTM) 89.21 2.65 4.56 90.76 2.74 4.65 91.00 2.83 6.91
MC-CSM (DC-CRN) 93.37 2.95 7.40 95.19 3.14 8.84 95.52 3.13 9.93

For the deep learning based beamformers, we use the
utterance-level permutation invariant training (uPIT) criterion
for DNN training to achieve talker independency [25]. We
always align the speaker permutations across channels prior
to computing the candidate training losses corresponding
to different permutations. Unlike the observations for

speech dereverberation and enhancement, the TV-MVDRs
underperform the corresponding TI-MVDRs. A possible
interpretation is that the spatial covariance matrix of noise is
less time-varying in anechoic environments than in reverberant
environments, and (12) can provide a more accurate estimate
of the noise covariance matrix than (21). Note that, for the deep
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TABLE IX

ASTOI DENOTES STOI IMPROVEMENT OVER UNPROCESSED MIXTURES CAPTURED BY THE REFERENCE MICROPHONE

COMPARISON BETWEEN SINGLE- AND MULTI-CHANNEL COMPLEX SPECTRAL MAPPING ON SPEECH ENHANCEMENT IN THE PRESENCE OF A QUASI-DIFFUSE NOISE

-5 dB SNR
Mic. Setup Ich linear-2ch linear-8ch circular-7ch
. ASTOI ASI-SNR ASTOI ASI-SNR ASTOI ASI-SNR ASTOI ASI-SNR
Metric (%) APESQ (dB) %) APESQ (dB) (%) APESQ (dB) %) APESQ (dB)
CSM (BLSTM) 17.33 0.38 9.17 24.33 0.71 11.87 26.15 0.89 12.20 25.35 0.72 11.27
CSM (DC-CRN) 23.29 0.63 11.47 30.28 1.04 14.16 32.85 1.27 14.61 31.98 1.12 13.35
0 dB SNR
Mic. Setup Ich linear-2ch linear-8ch circular-7ch
. ASTOI ASI-SNR ASTOI ASI-SNR ASTOI ASI-SNR ASTOI ASI-SNR
Metric %) APESQ (dB) %) APESQ (dB) %) APESQ (dB) (%) APESQ (dB)
CSM (BLSTM) 18.46 0.61 7.54 22.84 0.90 9.71 23.37 1.01 9.45 22.82 0.92 8.27
CSM (DC-CRN) 23.24 0.89 10.17 27.00 1.22 12.25 28.12 1.38 12.36 28.02 1.28 12.15
5 dB SNR
Mic. Setup Ich linear-2ch linear-8ch circular-7ch
. ASTOI ASI-SNR | ASTOI ASI-SNR | ASTOI ASI-SNR | ASTOI ASI-SNR
Metric (%) APESQ (dB) (%) APESQ (dB) (%) APESQ (dB) (%) APESQ (dB)
CSM (BLSTM) 15.84 0.68 5.63 18.81 0.94 7.52 18.76 0.97 6.97 18.58 0.95 7.12
CSM (DC-CRN) 19.90 0.97 8.62 22.28 1.24 10.44 22.98 1.37 10.45 23.06 1.30 10.77
TABLE X

-5 dB SNR

Mic. Setup Ich linear-2ch linear-8ch circular-7ch

. ASTOI ASI-SNR | ASTOI ASI-SNR | ASTOI ASI-SNR | ASTOI ASI-SNR
Metric (%) APESQ (dB) %) APESQ (dB) (%) APESQ (dB) (%) APESQ (dB)
CSM (BLSTM) 17.58 0.38 8.99 2351 0.66 11.45 26.58 0.80 11.90 26.08 0.87 13.14
CSM (DC-CRN) 2242 0.56 10.86 27.98 0.79 13.00 3229 1.06 14.55 32.46 1.02 15.50

0 dB SNR

Mic. Setup Ich linear-2ch linear-8ch circular-7ch

. ASTOI ASI-SNR | ASTOI ASI-SNR | ASTOI ASI-SNR | ASTOI ASI-SNR
Metric (%) APESQ (dB) %) APESQ (dB) (%) APESQ (dB) (%) APESQ (dB)
CSM (BLSTM) 18.68 0.73 7.48 2221 0.95 9.30 23.78 1.04 9.38 24.41 1.11 11.49
CSM (DC-CRN) 2291 0.97 9.57 26.26 1.17 11.59 28.41 1.38 12.88 29.02 1.37 13.99

5 dB SNR

Mic. Setup Ich linear-2ch linear-8ch circular-7ch

. ASTOI ASI-SNR ASTOI ASI-SNR ASTOI ASI-SNR ASTOI ASI-SNR
Metric (%) APESQ (dB) %) APESQ (dB) (%) APESQ (dB) %) APESQ (dB)
CSM (BLSTM) 14.62 0.75 5.34 17.29 0.94 6.95 18.41 1.02 6.88 19.00 1.12 9.23
CSM (DC-CRN) 18.79 1.04 7.83 21.45 1.24 9.79 22.84 1.42 11.07 23.52 1.42 12.25

TABLE XI
COMPARISONS OF DIFFERENT APPROACHES ON TWO-TALKER SPEAKER SEPARATION IN ANECHOIC CONDITIONS

Mic. Array linear-2ch linear-8ch circular-7ch Training

. ESTOI SI-SNR SDR ESTOI SI-SNR SDR ESTOI SI-SNR  SDR .
Metric (%) PESQ (dB) (dB) (%) PESQ (dB) (dB) (%) PESQ (dB) (dB) Criterion
Unprocessed 56.84 1.89 0.00 0.08 56.85 1.89 0.00 0.08 56.85 1.89 0.00 0.08 -
Oracle DS 61.18 2.05 1.50 1.57 68.97 2.38 4.46 4.61 62.06 2.05 1.13 1.19 -
Oracle TI-MVDR 94.88 3.70 2241 2291 95.89 3.88 24.47 25.65 99.62 4.38 29.53 31.10 -
MB TI-MVDR (BLSTM) 84.02 2.96 10.43 11.93 82.61 2.87 8.52 10.59 86.20 3.03 11.28 12.82 uPIT
MB TI-MVDR (DC-CRN) 84.44 3.01 11.05 12.54 85.66 3.05 10.33 12.49 88.80 3.21 13.02 14.70 uPIT
CSM TI-MVDR (BLSTM) 80.50 2.79 7.89 9.95 81.46 3.32 7.46 12.05 82.34 3.30 7.28 11.68 uPIT
CSM TI-MVDR (DC-CRN) 84.89 3.05 13.41 14.02 86.81 3.21 13.81 15.54 84.39 3.07 12.82 13.84 uPIT
Oracle TV-MVDR 87.96 3.24 16.30 16.41 95.93 3.95 25.34 26.38 92.39 3.62 21.93 22.18 -
CSM TV-MVDR (BLSTM) 76.86 2.71 6.98 8.76 83.27 3.29 7.28 11.58 78.27 3.07 6.29 9.90 uPIT
CSM TV-MVDR (DC-CRN) 79.12 2.79 9.88 10.14 85.33 3.20 13.04 14.39 79.76 2.89 10.49 11.09 uPIT
MC-CSM (DC-CRN) 97.32 391 23.27 23.58 96.92 3.87 23.54 23.85 98.28 4.02 26.36 26.70 uPIT
MC-CSM (DC-CRN) 97.02 3.88 23.04 23.41 96.19 3.86 2331 23.70 98.45 4.05 26.00 26.33 LBT
MC-CSM (BLSTM) 86.72 3.15 8.12 11.57 87.17 3.19 6.92 10.89 87.60 3.17 7.63 11.43 LBT

learning based beamformers, we do not use the single-channel
DNN trained for mask or complex spectrum estimation as a
post-filter. This is because the beamformer output is a separated
speech signal with residual interference, rather than a 2-speaker
mixture. Thus the DNN trained on monaural 2-speaker mixtures
would be an inappropriate post-filter.

For the MC-CSM systems, we train the DNN using a new cri-
terion to achieve talker independency, which assigns the speak-
ers to the two output layers based on speaker locations. As illus-
trated in Fig. 7, we always assign the speaker located at a smaller

azimuth (i.e. speaker 1) to the first output layer and the other
speaker (i.e. speaker 2) to the second output layer. We refer to this
criterion as location-based training (LBT). This criterion would
work because the label permutation is selected consistently
based on the relative positions of the two speakers. Given the spa-
tial cues encoded in the multi-channel input spectrograms, such a
way of assigning labels could discriminatively guide DNN train-
ing for MC-CSM. For comparison, we additionally train a DC-
CRN for MC-CSM using uPIT. As shown in Table XI, the DC-
CRN MC-CSM system with location-based training produces
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TABLE XII
COMPARISONS OF DIFFERENT APPROACHES ON TWO-TALKER SPEAKER SEPARATION IN REVERBERANT CONDITIONS
Mic. Array linear-2ch linear-8ch circular-7ch Training
. ESTOI SI-SNR - SDR | ESTOI SESNR - SDR | ESTOI SISNR - SDR At
Metric (%) PESQ (dB) (dB) (%) PESQ (dB) (dB) (%) PESQ (dB) (dB) Criterion
Unprocessed 3745 158 673 -1.78 | 3745 159 674 -1.77 | 3765 159 6.68  -1.74 -
Oracle DS 4099 1.69 551 088 | 4802  1.89 339 085 | 4345 174 553 095 -
Oracle TEMVDR 4763 181 260 140 | 6388 223 371 627 | 6880 231 5.96 8.06 -
MB TI-MVDR (BLSTM) 3777 161 719 -177 | 3794 159 871 178 | 3831 162 681  -171 uPIT
MB TI-MVDR (DC-CRN) 37.80 160 718 -176 | 37.87 1.8 876 -181 | 3835 162 6.82  -1.70 uPIT
CSM TI-MVDR (BLSTM) 4053 174 542024 | 4077 1.89 287 271 | 4191 1.89 349 228 uPIT
CSM TI-MVDR (DC-CRN) | 4520  1.79 406 100 | 5557 205 0.89 414 | 5278 1.99 185 347 uPIT
Oracle TV-MVDR 5680 2.2 0.46 376 | 7923 275 831 1086 | 7971  2.75 795 10.72 -
CSM TV-MVDR (BLSTM) | 4070  1.76 468 094 | 5491 225 -l44 428 | 5000 216 214 355 uPIT
CSM TV-MVDR (DC-CRN) | 4674 184 348 161 | 5959 226 022 502 | 5400  2.10 -1.82 351 uPIT
MC-CSM (DC-CRN) 7167 2.53 1.64 569 | 7576 270 339 759 | 7823 276 576 932 uPIT
MC-CSM (DC-CRN) 7232 256 2.03 597 | 7510 267 3.36 758 | 7871 278 5.87 9.4 LBT
MC-CSM (BLSTM) 4699 187 304 140 | 5822 216 119 306 | 60.65 224 0.25 3.96 LBT
TABLE XIII
EVALUATION OF MC-CSM SYSTEMS ON THREE-TALKER SPEAKER SEPARATION
Anechoic Environment
Mic. Array linear-2ch linear-8ch circular-7ch Training
. ESTOI SISNR - SDR | ESTOI SESNR  SDR | ESTOI SISNR - SDR s
Metric (%) PESQ (dB) (dB) (%) PESQ (dB) (dB) (%) PESQ (dB) (dB) Criterion
Unprocessed 39.21 151 316 304 | 3922 151 308 305 | 3922 132 306 -3.04 -
MC-CSM (DC-CRN) | 8205  2.83 1195 1232 | 8575  3.08 1339 1377 | 9187 34l 1849 1882 | uPIT
MC-CSM (DC-CRN) | 8381 292 1255 1292 | 8645 3.3 1370 1405 | 9249 345 1919  19.56 LBT
MC-CSM (BLSTM) | 6577 244 4.09 736 | 7595 276 5.17 9.09 | 7619 271 536 9.05 LBT
Reverberant Environment
Mic. Array linear-2ch linear-8ch circular-7ch Training
. ESTOI SISNR  SDR | ESTOI SESNR  SDR | ESTOI SISNR  SDR s
Metric (%) PESQ (dB) (dB) (%) PESQ (dB) (dB) (%) PESQ (dB) (dB) Criterion
Unprocessed 2662 135 879 441 | 2662 135 881 443 | 2674 135 875 439 -
MC-CSM (DC-CRN) | 5572 196  -072 357 | 6171  2.16 115 500 | 6771 2.39 3.84 7.10 uPIT
MC-CSM (DC-CRN) | 5541 195 0.84 349 | 6130  2.16 1.10 507 | 6673 231 3.81 7.03 LBT
MC-CSM (BLSTM) | 3475 159 495 027 | 4160 175 -3.56 107 | 4440 179 -2.20 1.55 LBT
Speaker2 0° performs significantly better than the BLSTM MC-CSM
8 - . . .
o @Y system, suggesting that the design of the DNN architecture can
L S greatly impact the performance of an MC-CSM system.
[ [ ..
Speaker 1 g " T We additionally evaluate the MC-CSM systems on 3-talker
Y . . . . .
. s speaker separation. The training, validation and test sets are
(o [ . . . . .
o created by spatializing the WSJO-3mix dataset. As shown in
R - Table XIII, the MC-CSM systems are capable of separating
OO . :
three concurrent speakers in both anechoic and reverberant
-90° Microphone 2m +90°

Array

Fig.7. TIllustration of the new training criterion for the MC-CSM models. The
solid circles indicate the speaker source locations, and the dashed circles the
other candidate source locations in our data simulation.

similar results to the DC-CRN MC-CSM system with uPIT in all
the four metrics. Moreover, these DC-CRN MC-CSM systems
yield comparable results to the oracle TI-MVDR, and the
BLSTM MC-CSM system produces comparable results to the
strongest non-oracle beamformer baseline, i.e. “CSM TI-MVDR
(DC-CRN)”.

In the reverberant condition (see Table XII), all the scores
decrease substantially compared to the anechoic condition.
We see that the non-oracle beamformers provide limited
improvements over the unprocessed mixtures. In addition, the
BLSTM MC-CSM system produces comparable performance
to the best-performing non-oracle beamformer, i.e. “CSM
TV-MVDR (DC-CRN)”. The DC-CRN MC-CSM system

environments, which further demonstrates the general utility of
MC-CSM on speech separation.

For MC-CSM, the two training criteria, PIT and LBT, are
based on different principles. The widely-used PIT criterion
makes assignments by comparing the losses corresponding to
all possible label permutations, while LBT assigns speakers
consistently based on the source locations, enforcing the DNN
to leverage spatial information to address the label ambiguity.
As shown in Tables XI, XII and XIII, the two different criteria
yield almost the same separation performance.

In addition, Table XIV compares single- and multi-channel
CSM on speaker separation. We use DC-CRN based single- and
multi-channel CSM systems trained with uPIT for this compar-
ison. In the multi-channel cases, AESTOI, APESQ, ASI-SNR
and ASDR are calculated from the metric scores in Tables XI,
XII and XIII. Note that LBT is inapplicable to single-channel
CSM training due to the lack of spatial information. As expected,
multi-channel CSM substantially outperforms single-channel
CSM in all conditions.
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TABLE XIV
COMPARISON BETWEEN SINGLE- AND MULTI-CHANNEL COMPLEX SPECTRAL MAPPING ON SPEAKER SEPARATION. AESTOI AND ASDR DENOTE ESTOI AND
SDR IMPROVEMENTS OVER UNPROCESSED MIXTURES CAPTURED BY THE REFERENCE MICROPHONE

Fig. 8.
ment.

Tlustration of the data simulation process for binaural speech enhance-

D. Investigation on Binaural Speech Enhancement

Finally, we evaluate different approaches on binaural
speech enhancement, which is another classical multi-channel
enhancement problem [51]. We use WSJO utterances as speech
sources. In order to simulate binaural room impulse responses
(BRIRs), we utilize the RAZR room acoustics simulator' [60],
in which the spherical-head model of Brown and Duda [4] is
used to simulate the head-related transfer function (HRTF).
Specifically, we randomly sample the room size between
4.5%x4.5%2.2m? and 10x10x4.5 m>. The reverberation time is
randomly sampled between 0.2 s and 1.2 s, and the radius of the
sphere (head) between 8 cm and 11 cm. As illustrated in Fig. 8,
we use 37 sound source positions located on a semicircle in the
front of the head, ranging from —90° to 90° in 5° steps. Similar
to the procedure described in Section V-B3, TIMIT speakers are
used as the interfering sources placed at the 37 positions [67].
The target source is randomly placed at one of the 37 positions.
The source-array distance is set to 1 m. We randomly sample
the height of the head between 1 m and 2 m, and assume that
all the sound sources are located at the same height.

Apart from the test set created from simulated BRIRs, we
create another test set using a set of real BRIRs recorded at
the University of Surrey.> These BRIRs were captured using
a Cortex Instruments Mk2 head and torso simulator (HATS).
Specifically, the impulse responses were obtained by replaying
sinesweeps through a loudspeaker and then deconvolving the
responses. The loudspeaker was placed on a semicircle around

![Online]. Available: http://medi.uni-oldenburg.de/razr/
2[Online]. Available: https:/github.com/IoSR-Surrey/RealRoomBRIRs

2-talker
Anechoic Environment Reverberant Environment
Metric AESTOI (%)  APESQ  ASISNR (dB)  ASDR (dB) | AESTOI (%) APESQ  ASISNR (dB)  ASDR (dB)
Ich 2591 0.87 10.23 10.55 2143 0.42 530 418
linear-2ch 40.48 2.02 23.27 23.50 34.22 0.95 8.37 7.47
linear-8ch 40.07 1.98 23.54 23.77 38.31 1.11 10.13 9.36
circular-7ch 41.43 2.13 26.36 26.62 40.58 1.17 12.44 11.06
3-talker
Anechoic Environment Reverberant Environment
Metric AESTOI (%)  APESQ  ASISNR (dB)  ASDR (dB) | AESTOI (%) APESQ  ASISNR (dB) _ ASDR (dB)
Tch 20.65 0.33 6.55 707 7.95 0.03 257 285
linear-2ch 42.84 1.32 15.11 15.36 29.10 0.61 8.07 7.98
linear-8ch 46.53 1.57 16.57 16.82 35.09 0.81 9.96 9.43
circular-7ch 52.65 1.89 21.65 21.86 40.97 1.04 12.59 11.49
O Interfering Source R Room the HATS, which has a radius of 1.5 m. The azimuth positions
® Target Source 60 o of the loudspeaker range from —90° to 90° in 5° intervals. Four
® o O o rooms with different sizes and reflective characteristics were
o o used for recording, corresponding to different reverberation
o o times, i.e. 0.32's, 0.47 s, 0.68 s and 0.89 s.
o o
o o We treat the left ear as the reference channel. Tables XV and
o @ o XVI show the evaluation results on the simulated BRIRs and
90 +90 the real BRIRs, respectively. In both tables, similar performance

trends are observed for the beamformers. Note that we do not
use the oracle DS beamforming in the real BRIRs case, because
the geometric information of the head is not publicly available.
Moreover, we see that the MC-CSM systems yield superior
enhancement performance to the beamformers. The BLSTM and
DC-CRN MC-CSM systems produce comparable STOI, PESQ
and SI-SNR to “CSM TV-MVDR (BLSTM) + PF” and “CSM
TV-MVDR (DC-CRN) + PE” respectively. Moreover, single-
channel CSM, denoted as “SC-CSM” in Tables XV and XVI,
performs well on both simulated and real BRIRs, although it
significantly underperforms multi-channel CSM unsurprisingly.

In addition, by comparing the results between Tables XV and
XVI, we find that the MC-CSM models trained on simulated
BRIRs generalize reasonably well to real BRIRs, and exhibit
comparable decreases in the results (from Tables XV and XVI)
to the “CSM TI/TV-MVDR + PF” systems. Given the lack
of a large, publicly available real BRIR set, this suggests the
effectiveness of the BRIR simulation method in generating
arbitrary numbers of BRIRs for DNN training, although the
spherical-head model only provides a crude approximation of
the HRTF.

VII. CONCLUDING REMARKS

In this study, we have comprehensively examined the multi-
channel complex spectral mapping approach as a neural
spectrospatial filter. Although the approach does not explicitly
utilize any spatial features, spectral and spatial cues are avail-
able in the complex spectrograms of microphone signals, and
exploited through complex spectral mapping. In this approach,
atrained DNN itself is a spectrospatial filter. Such an approach is
conceptually simpler, computationally more efficient and easier
to adapt to real-time processing, than deep learning based beam-
forming. For instance, an MC-CSM separation system requires
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TABLE XV
EVALUATION OF DIFFERENT APPROACHES FOR BINAURAL SPEECH ENHANCEMENT ON SIMULATED BRIRS
SNR -5 dB 0 dB 5 dB
Metric STOI (%) PESQ  SI-SNR (dB) | STOI (%) PESQ SI-SNR (dB) | STOI (%) PESQ  SI-SNR (dB)
Unprocessed 54.07 1.44 -9.51 63.82 1.55 -5.65 71.64 1.74 -3.10
Oracle DS 58.86 1.46 -7.79 68.95 1.64 -4.27 76.58 1.85 -2.12
Oracle TI-MVDR 62.48 1.52 -6.09 72.64 1.70 -2.23 80.05 1.91 0.52
MB TI-MVDR (BLSTM) 60.48 1.50 -7.61 70.95 1.70 -3.67 78.28 1.92 -1.43
+ PF 75.22 1.90 -2.35 84.53 2.31 0.13 88.03 2.54 1.07
MB TI-MVDR (DC-CRN) 60.63 1.51 -7.50 71.08 1.70 -3.59 78.43 1.92 -1.35
+ PF 75.95 1.95 -2.00 85.09 2.38 0.41 88.44 2.62 1.32
CSM TI-MVDR (BLSTM) 60.91 1.57 -6.61 71.84 1.73 -2.58 79.36 1.93 0.05
+ PF 75.89 1.96 1.01 85.48 2.46 3.57 88.59 2.69 4.51
CSM TI-MVDR (DC-CRN) 61.44 1.56 -6.48 72.09 1.72 -2.53 79.61 1.93 0.12
+ PF 79.77 2.14 2.02 89.27 2.67 4.74 92.32 2.92 5.88
Oracle TV-MVDR 70.30 1.65 -2.61 80.22 1.88 1.23 86.79 2.12 3.96
CSM TV-MVDR (BLSTM) 63.67 1.62 -4.61 75.69 1.84 -0.44 83.11 2.08 1.97
+ PF 77.53 2.00 1.44 85.98 2.48 3.68 88.56 2.67 4.32
CSM TV-MVDR (DC-CRN) 64.48 1.61 -4.48 76.15 1.83 -0.36 83.54 2.07 2.15
+ PF 81.17 2.15 1.91 89.70 2.67 4.54 92.38 291 5.62
MC-CSM (BLSTM) 76.43 1.94 1.20 85.37 242 3.14 88.28 2.63 3.55
MC-CSM (DC-CRN) 83.55 2.21 2.84 91.04 2.74 517 93.58 3.00 6.13
SC-CSM (BLSTM) 69.69 1.67 -1.08 81.30 2.21 1.52 85.40 2.46 2.20
SC-CSM (DC-CRN) 75.20 1.91 0.80 86.24 247 3.58 90.29 2.76 4.74
TABLE XVI
EVALUATION OF DIFFERENT APPROACHES FOR BINAURAL SPEECH ENHANCEMENT ON REAL BRIRS
SNR -5 dB 0 dB 5 dB
Metric STOI (%) PESQ SI-SNR (dB) STOI (%) PESQ SI-SNR (dB) STOI (%) PESQ SI-SNR (dB)
Unprocessed 54.41 1.39 -9.82 64.51 1.55 -6.12 72.76 1.77 -3.63
Oracle TI-MVDR 63.47 1.53 -6.85 73.15 1.74 -3.29 80.16 1.96 -0.84
MB TI-MVDR (BLSTM) 61.31 1.51 -7.74 72.14 1.75 -4.33 79.57 1.99 -2.38
+ PF 72.33 1.83 -3.32 83.11 2.33 -1.20 86.87 2.60 -0.51
MB TI-MVDR (DC-CRN) 61.47 1.51 -7.68 72.26 1.75 -4.31 79.70 1.99 -2.37
+ PF 74.07 1.89 -3.16 84.05 2.38 -1.12 87.78 2.66 -0.41
CSM TI-MVDR (BLSTM) 60.37 1.57 -8.35 71.21 1.77 -4.75 78.53 1.99 -2.55
+ PF 68.77 1.60 -5.15 82.02 2.22 -2.96 86.08 2.51 -2.72
CSM TI-MVDR (DC-CRN) 61.91 1.56 -7.85 72.63 1.77 -4.33 79.86 2.00 -2.28
+ PF 77.68 1.96 -3.61 87.91 2.58 -1.66 90.86 2.87 -1.06
Oracle TV-MVDR 69.71 1.66 -3.33 79.32 1.92 0.07 85.63 2.19 235
CSM TV-MVDR (BLSTM) 62.36 1.61 -6.99 74.09 1.88 -3.43 81.22 2.14 -1.65
+ PF 70.90 1.66 -4.84 82.60 2.25 -3.29 86.03 2.50 -3.26
CSM TV-MVDR (DC-CRN) 65.26 1.63 -6.20 76.42 1.90 -2.88 83.07 2.16 -1.26
+ PF 79.19 1.99 -3.87 88.19 2.59 -1.94 90.75 2.86 -1.35
MC-CSM (BLSTM) 68.75 1.62 -6.16 80.55 2.18 -4.29 84.46 243 -4.09
MC-CSM (DC-CRN) 78.66 1.99 -2.48 88.49 2.62 -0.65 91.56 2.94 -0.16
SC-CSM (BLSTM) 62.16 1.41 -6.76 76.49 1.91 -4.49 82.01 2.22 -4.12
SC-CSM (DC-CRN) 67.94 1.54 -3.83 82.47 2.23 -1.28 87.96 2.62 -0.58

much fewer MAC operations than the corresponding deep learn-

the capacity of this approach in multi-channel
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speech

ing based beamforming system, as detailed in Section VI-A.
Monaural complex spectral mapping is a special case of the
MC-CSM approach; in the monaural case the DNN becomes a
nonlinear spectral filter. Therefore, complex spectral mapping
presents a unified framework for single- and multi-channel
speech separation.

We have investigated the MC-CSM approach with different
array geometries for multi-channel speech dereverberation,
speech enhancement and speaker separation. Comprehensive
comparisons have been conducted between this approach and
other widely-used beamforming techniques, including both
conventional and deep learning based beamforming. Evaluation
results show that the MC-CSM approach yields separation
results comparable to or better than beamforming for different
array geometries and speech separation tasks. This suggests
that the MC-CSM spectrospatial filtering approach is generally
effective for speech separation with fixed-geometry microphone
arrays. In addition, the MC-CSM approach works well on
binaural speech enhancement, which further demonstrates

separation. As many real-world applications are equipped
with a fixed microphone array like Amazon Echo, the MC-CSM
approach is potentially a very practical choice, providing a
competitive alternative to the dominant beamforming approach
in multi-channel speech separation.

In addition to examining the MC-CSM approach, this paper
proposes a new training criterion, i.e. location-based training,
to achieve talker independency for multi-channel speaker sep-
aration. Different from widely-used PIT, this criterion makes
label assignments based on the relative positions of speakers, and
yields comparable separation performance without considering
various speaker label permutations. We have also investigated a
new method of generating BRIRs for DNN training in binaural
speech separation. This method can generate arbitrary numbers
of simulated BRIRs, just like the image source method, which
would be very useful for advancing supervised binaural speech
separation. Experimental results show that the MC-CSM models
trained on simulated BRIRs generalize reasonably well to real
BRIRs.
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We conclude this paper by highlighting three additional in-
sights.
e With a convolutional recurrent architecture, DC-CRN

benefits from both the feature extraction capability of
convolutional layers and the temporal modeling capability
of recurrent layers. Such an architecture is advantageous
over BLSTM especially for complex spectral mapping,
given that spectrotemporal patterns in real and imaginary
spectrograms are highly structured. This is confirmed by
the evaluation results in Section VI, demonstrating that the
DC-CRN system significantly outperforms the BLSTM
system in all conditions.

Mask-based beamforming combines multiple monaural
T-F masks into a single one using a certain pooling operator
(like median). The resulting mask is used as an ad hoc
weighting mechanism to compute the spatial covariance
matrices of speech and noise. In contrast, CSM based
beamforming is a principled method, and provides the
ground-truth spatial covariance matrices if the complex
spectra are perfectly estimated.

The inclusion of a magnitude term (see (16)) in the loss
function is important for complex spectral mapping, due to
the relative importance of magnitude over phase in speech
separation. Although monaural complex spectral mapping
works well without this term [43], its inclusion seems more
important in the multi-channel case.
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