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Phymatolithon Foslie is one of the most studied and ecologically important

genera of crustose coralline algae (CCA) due to their dominant abundance in

various marine ecosystems worldwide. The taxonomy of the genus is complex

and has been revised and updated many times based on morphological and

molecular analyses. We report on a crustose coralline algal species collected in

June 2011 via snorkeling in the subtidal zone along the beach Abu Qir on the

Mediterranean coast of Egypt, as part of a larger macroalgal diversity survey in

the region. The species shows significant sequence divergences (3.5%–14.8%

in rbcL; 2.9%–11% in psbA) from other closely related Phymatolithon taxa.

Morpho-anatomically, this species possesses the characters considered

collectively diagnostic of the genus Phymatolithon, namely, thalli non-

geniculate epithelial cells and non-photosynthetic and domed-shaped

meristematic cells, usually as short with progressive elongation of their

perithallial derivatives. Based on molecular and morphological analyses, we

determined that these specimens encompass a new, distinct species that we

herein name Phymatolithon abuqirensis. Including this new species, the total

number of described Phymatolithon species found in the Mediterranean Sea is

now six.
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Introduction

Species of Phymatolithon Foslie (Hapalidiales) are some of

the most studied, ecologically important taxa due to their

dominant abundance in maërl ecosystems worldwide (Pardo

et al., 2014; Peña et al., 2014; Peña et al., 2015; Pardo et al., 2019).

The worldwide distribution of Phymatolithon is vast, with the

Arctic and Subarctic, the Atlantic Boreal, Lusitanian, and

Mediterranean members primarily suggesting to be of Tethyan

origin (pre-Mediterranean) (Adey and Steneck, 2001; Adey and

Hayek, 2005; Adey and Hayek, 2011; Adey et al., 2013; Adey

et al., 2018). Interestingly, no members of Phymatolithon have

been collected in the northern Pacific, which have been

confirmed through DNA sequencing (Adey et al., 2018).

Currently, there are 35 species of Phymatolithon and 20

infraspecific names, of which 22 are currently accepted

taxonomically (Guiry and Guiry, 2021). The taxonomy and

understanding of the genus Phymatolithon has been revised

throughout the past two centuries. Phymatolithon was established

by Foslie (1898) using a single species, Phymatolithon

polymorphum (L.) Fosl. mscr., without referencing any specimen

ordescription, and transferringLinnaeus’s designationofMillepora

polymorpha (Linnaeus, 1767) to P. polymorpha (Woelkerling and

Irvine, 1986). Historic samples of Phymatolithon have been named

and substituted among many genera such asMillepora, Nullipora,

Apora, Corallium, Agardhia, Juergensia, and Eleutherospora (as

summarized in Woelkerling and Irvine, 1986). Phymatolithon was

finally lectotypified by Woelkerling and Irvine (1986), almost a

century after Foslie’s original description of the genus. Prior to this,

one of the hardest challenges in the designation of Phymatolithon

was that over 40 diagnostic character combinations had been used

to describe the genus (Foslie, 1898; Kylin, 1956; Adey, 1964; Adey,

1970; Adey and Adey, 1973; Adey and Macintyre, 1973). For

example, a newly proposed Phymatolithon species, P. atlanticum,

is morphologically unique in the genus so far by exhibiting the

presence of pitted pore plates of tetrasporangial/bisporangial

conceptacle roofs (Jeong et al., 2021). Thus, caution should be

noted when using this character as the authors point out that it

shows strong evidence of convergent evolution among a

phylogenetically distant genus, Lithothamnion (Hapalidiales).

Moreover, specimens of Lithothamnion calcareum have been

transferred to the genus Phymatolithon, thus adding to the

taxonomic confusion (Guiry & Guiry, 2021). Other examples

include Lithothamnion repandum, which was proposed as a new

name for L. lenormandii f. australe (Foslie, 1904). Wilks and

Woelkerling (1994) transferred the species to Phymatolithon

repandum and treated L. asperulum as a heterotypic synonym.

Adey (1970) separates the genera Phymatolithon and

Lithothamnion based on three morphological characters, i.e., i)

shape of distal walls of terminal epithelial cells, ii) relative length of

subepithelialmeristem cells, and iii) cell elongation type. Itmust be

noted that no gametangial plants of the type species were examined

in this typification (Adey, 1970). Adey et al. (2001) suggested the

reinstatement of the genus Leptophytum, separating this genus

from Phymatolithon based on differences in reproductive features

(origin of gonimoblasts, position of conceptacle primordia,

spermatangial systems, and the presence/absence of asexual

conceptacle pore cells). Species delimitation using both

morphological characters and molecular data still presents

challenges. When looking at sequence divergence among other

members of Phymatolithon, the interspecific variations range

between 6.4% and18.8% for rbcL, 3.3% and 13% for psbA, and

6.5% and 16.8% for COI-5P (Gabrielson et al., 2011; Torrano-Silva

et al., 2018; Jeong et al., 2019; Jeong et al., 2021).

With the advances of DNA sequencing technologies and our

modern understanding of cryptic diversity, it is no longer possible

to conduct morphological analyses alone to accurately identify

species or even genera for both geniculate andnon-geniculate CCA

(Gabrielson et al., 2011;Martone et al., 2012;Hind et al., 2014;Hind

et al., 2015; Van der Merwe et al., 2015; Richards et al., 2017;

Richards et al., 2020; Richards et al., 2022; Puckree-Padua et al.,

2020). Gabrielson et al. (2011) established an integrated taxonomic

approach inwhichDNAsequencing andmorphological analyses of

type specimens are used from the same specimens. For example,

previously, specimens of Lithothamnion ferox were transferred to

the genus Mesophyllum (Adey, 1970) and have since been

transferred to Phymatolithon as P. ferox thanks to DNA

sequencing (Van der Merwe and Maneveldt, 2014; Maneveldt

et al., 2020). According to Adey et al. (2015), morphological

characters unique to Clathromorphum (previously confused as

Phymatolithon) consist of a multilayered, photosynthetic

epithallium and a double mode of calcification enabling the

formation of massive carbonate structures with multiyear

longevity. Molecular work also showed a complex relationship

with northern species of Hapalidiaceae using a three-gene analysis

(SSU, psbA, rbcL) (Adey et al., 2015). Most recently, a new genus,

Phymatolithopsis, hasbeendescribedby Jeong et al. (2022) for some

species previously assigned to Phymatolithon. This new genus is

sister to Mesophyllum and located in a clade distinct from

Phymatolithon. Phymatolithopsis is differentiated from

Phymatolithon by morphological features such as the origin of

the conceptacle primordia and the distribution of gonimoblast

filaments (Jeong et al., 2022). The description of this new genus

included the taxonomic transfer of Phymatolithon prolixum and P.

repandum to Phymatolithopsis prolixa and P. repanda, respectively

(Jeong et al., 2022).

Materials and methods

Specimen collection

Specimens were collected in June 2011 via snorkeling in the

Mediterranean Sea, Alexandria, Abu Qir, Egypt (31˚ 19.3345’ N,
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30˚ 3.6198’ E) (Figure 1), from the subtidal habitat as part of a

larger macroalgal diversity survey around the Mediterranean

and Red Seas. Specimens were preserved by desiccating in silica

gel and deposited in the University of Louisiana at Lafayette

Herbarium (LAF). Approximately, 100 mg of silica desiccated

tissue was ground into a fine powder immediately prior to

DNA extraction.

DNA extraction and sequencing

DNA was extracted from the newly collected specimens

using the Quick-DNA Plant/Seed Miniprep Kit (Zymo

Research, Irvine, CA, USA). Markers chosen for PCR and

sequencing included the plastid-encoded genes psbA (encodes

photosystem II reaction center protein D1 gene) and rbcL

(encodes the large subunit of the enzyme ribulose-1,5-

bisphosphate carboxylase/oxygenase), and the nuclear-encoded

LSU (partial 28S rDNA) as well as SSU (partial 18S rDNA). The

PCR performed followed the protocols and primers described in

Richards et al. (2014). PCR products were cleaned by the

addition of 2 µl of ExoSAP-IT™ (USB, Cleveland, Ohio) per 5

µl of amplified DNA product. Reactions were incubated at 37°C

for 15 min, followed by inactivation of ExoSAP-IT™ at 80°C for

15 min. Purified PCR products were subsequently cycle-

sequenced using the BrightDye® Terminator Cycle Sequencing

Kit (Molecular Cloning Laboratories [MCLAB], South San

Francisco, CA, USA). Resulting cycle sequence reactions were

purified with ETOH/EDTA precipitation and were sequenced

in-house at the UL Lafayette campus on an ABI Model 3130xl

Genetic Analyzer. The resulting chromatograms were assembled

and edited using Sequencher 5.1 (Gene Codes Corp., Ann Arbor,

MI, USA) and exported as individual “.FASTA” files. Species

identification, specimen collection information, and GenBank

accession numbers are listed in Supplementary Table 1.

Phylogenetic analysis

Sequences for psbA and rbcL were aligned separately using

MUSCLE and then analyzed downstream as single-gene analyses

or concatenated using Sequence Matrix v. 1.8 (Vaidya et al.,

2011). The DNA matrices were exported as Philip “.PHY”

format and for analyses with phylogenetic tools available on

the CIPRES server, namely PartitionFinder 2 (Lanfear et al.,

2017), to determine the best fitting model of evolution and data

partition and tree reconstruction with RAxML (Stamatakis,

2014). The single gene alignments of psbA and rbcL both

resulted in the selection of GTR+G model with three

partitions based on the Akaike Information Criterion

corrected (AICc) and Akaike information criterion (AIC)

scores. The concatenated alignments including psbA and rbcL

resulted in the selection of GTR+G models with three partitions

each with the first, second, and third codon per gene, based on

the AICc and AIC scores. For both datasets, RAxML searches

consisted of 1000 independent restarts with the above models

FIGURE 1

Specimen collection map of Phymatolithon abuqirensis vouchers TS 757 and TS 759 collected in the Mediterranean Sea, Alexandria, Abu Qir, Egypt.
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and partition schemes with 1000 independent searches to find

the tree with the lowest likelihood score and 1000 Bootstrap (BS)

replications. The Newick file was imported into FigTree 1.4.2

(Rambaut and Drummond, 2012) as a starting point for further

editing in Microsoft Publisher (i.e., tree structure export for label

editing, respectively).

The single gene alignments were 959 bp for psbA and 1,494

bp for rbcL, while the concatenated alignment was 2,453 bp. The

psbA alignments included 19 sequences of Phymatolithon with

11 additional sequences in the Hapalidiales ingroup and two

sequences in the Sporolithales outgroup; rbcL included 21

sequences of Phymatolithon and 11 additional sequences in

the Hapalidiales ingroup and two sequences in the

Sporolithales outgroup; and the concatenated tree of psbA and

rbcL consisted of 32 sequences of Phymatolithon and 19

additional sequences in the Hapalidiales ingroup, and two

sequences in the Sporolithales outgroup.

Estimation of evolutionary distances from nucleotide

sequences was done in MEGA X using the Jukes-Cantor pairwise

distancemodel. This analysis involved 34 nucleotide sequences. All

ambiguous positions were removed for each sequence pair

(pairwise deletion option). There were a total of 507 positions in

the final dataset (Supplementary Table 2). Species delimitation

analysis for each gene was performed separately using Assemble

Species by Automatic Partitioning (ASAP) (Puillandre et al., 2021)

using the Jukes-Cantor substitution model for the following

parameters: split groups below 0.01 probability, highlighting

genetic distances between 0.005 and 0.05.

Scanning electron microscopy

Sample preparation and scanning electron microscope

(SEM) were adapted and modified according to the protocol of

Richards et al. (2016) as follows: portions of the thallus from

silica gel-dried specimens were removed using a razor blade and

forceps. Crustose specimens were sectioned by performing

vertical fractures (cutting from the thallus surface to the

substratum), whereas protuberances were sectioned

longitudinally (through the middle of the protuberance from

the tip to the base) and transversely (through the lateral sides of

protuberance). Specimens were sectioned manually using a new

single-edge razor blade for each fracture and were mounted

using liquid graphite and coated with 15 nm of gold. To ensure

even distribution of the gold over the three-dimensional features

in the sections, coating was performed in two applications. First,

8 nm of gold was applied with the stub lying flat on the stage of

the coating chamber. After the first application, the specimen

was tilted using a coin placed underneath the stub and a second

application of 7 nm of gold was performed. Specimens were

viewed using a Hitachi S-3000N SEM at a voltage of 15 kV,

housed in the Microscopy Center at UL Lafayette, following the

manufacturer’s instructions. Cell dimensions were measured

from SEM micrographs following the protocols of Irvine and

Chamberlain (1994) and Adey et al. (2005). Terminology follows

Woelkerling (1988) and Adey et al. (2015).

Results

The sequences obtained for TS 757 and TS 759 were identical

for each of psbA; rbcL could only be generated for TS 757. Both

single and concatenated gene analyses indicated Phymatolithon

abuqirensis (TS 757 and TS 759) as sister to Phymatolithon

nantuckensis (Figures 2–4). The pairwise distance for rbcL

between P. abuqirensis and P. nantuckensis was 3.5%; with P.

ferox it ranged from 5.5% to 5.7%; between it and P. koreanum it

was 7.0%; between it and P. rugulosum, P. lenormandii, and P.

purpureum it was 9.2%; and between it and P. dosungii and P.

squamulosum it was 11.3%. When looking at the sequences of

Phymatolithon sequences, P. atlanticum is 12.4% different to P.

abuqirensis, P. lustitanicum 14.5%, and P. lamii 14.8%. Other taxa

in the Hapalidiales range from 12.9% difference (Phymatolithopsis

prolixa = ‘Lithothamnion’/Phymatolithon proxilum) to 17.5%

(Neopolyporolithon reclinatum), and the Sporolithales outgroups

are 18.5% different from P. abuqirensis (Supplementary Table 2).

When comparing pairwise distances for the psbA gene, TS

757 and TS 759 were 100% identical; there is a 2.9% difference

between the sister species, P. nantuckensis, and 3.1% between P.

ferox and P. koreanum. In the closest clade, differences range

from 5.1% (P. calcareum) to 6.3% (P. margoundulatus and P.

purpureum). P. lamii, P. lustanicum, and P. rugulosum all differ

from the TS 757 and TS 759 specimens by 9.8%, 10.1%, and 11%,

respectively. Other taxa in the Hapalidiales range from 9.1%

(“Synarthrophyton” patena) to 13.7% (Clathromorphum

compactum), and the outgroup Sporolithales differs by 14.0%

for both taxa (Supplementary Table 3).

Phymatolithon abuqirensis R.P.Kittle and T.Sauvage sp.

nov. (Figures 5, 6)

Holotype: TS 757 (LAF 7722): Abu Qir, Egypt (31˚ 19.3345’

N,30˚3.6198’E),MediterraneanSea, 8.vii.2011, depth<2m, leg.TS.

Isotype: TS 759 (LAF 7723): Abu Qir, Egypt (31˚ 19.3345’ N,

30˚ 3.6198’ E), Mediterranean Sea, 8.vii.2011, depth <2m, leg. TS.

Etymology: The specific epithet refers to the area the sample

was collected from, Abu Qir, Egypt.

Description:

DNA sequence data: rbcL and psbA sequences diagnostic

for this species. rbcL: TS 757 = ON376984; psbA: TS 757 =

ON376951, TS 759 = ON376952; LSU and SSU sequences are also

provided. LSU: TS 759 = ON362134; SSU: TS 757 = ON362158.

Habit and vegetative anatomy:

Thallus habit non-geniculate, forming epilithic crust on rock

(Figures 5, 6); thallus construction monomerous with

hypothallial cells rectangular to elongate with rounded corners,

approximately 10 to 19 µm long and 5 to 10 µm wide;

perithallium with cell fusions abundant in both x- and z-axes

Kittle et al. 10.3389/fmars.2022.922389
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(Figures 5, 6); secondary pit connections absent between cells

(Figures 5, 6); perithallial cells obovate (tear-drop shaped), 4 to 6

µm wide by 4 to 7 µm tall; intercalary meristematic cells short, 4

to 6 µm wide by 3.0 to 5 µm tall (Figures 5, 6); epithallium

comprised of a single layer of epithelial cells dome-shaped 3.0 to

5.5 µm wide by 1.5 to 2.5 µm tall (Figures 5, 6).

Reproductive Morphology: No reproductive structures were

observed in samples of P. abuqirensis vouchers TS 757 or TS 759.

Discussion

Our phylogenetic analyses show that Phymatolithon

vouchers TS 757 and TS 759 encompass a single, distinct

species within Phymatolithon that we here name P.

abuqirensis . The species shows significant sequence

divergences (3.5%–14.8% in rbcL; 2.9 to 11% in psbA) from

other closely related Phymatolithon species. These sequence

divergence values correlated well with other coralline algal

studies (Gabrielson et al., 2011; Torrano-Silva et al., 2018;

Jeong et al., 2019; Jeong et al., 2021) that had reported

interspecific variations for rbcL 6.4%–18.8% and for psbA

3.3%–13%. Further delimitation methods should be used with

more genes to determine species and generic boundaries.

Fragments of 18S and LSU were generated but were not

phylogenetically informative enough given the lack of type

specimens sequenced for these genes, and limited sequences to

compare hindered the interpretation of results.

Morpho-anatomically, P. abuqirensis possesses the

characters considered collectively to be diagnostic of the genus

FIGURE 2

ML analyses of psbA sequences (959 bp). Numbers at branches indicate bootstrap values out of 1,000 replicates. * denotes full support.

FIGURE 3

ML analyses of rbcL sequences (1494 bp). Numbers at branches indicate bootstrap values out of 1,000 replicates. * denotes full support.
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Phymatolithon, namely, thalli non-geniculate epithelial cells and

non-photosynthetic and domed-shaped meristematic cells that

are usually as short with progressive elongation of the perithallial

derivatives. However, many of these morphological characters

are shared with other genera of distantly related CCA, so

interpretation using only morphology should be used with

caution (as summarized in Supplemental Table 4). There are

five reported species of Phymatolithon other than P. abuqirensis

that have been collected in the Mediterranean Sea, namely, P.

calcareum, P. lamii, P. lenormandii, P. lusitanicum, and P.

purpureum (Irvine and Chamberlain, 1994; Kaleb et al., 2012;

Peña et al., 2015; Wolf et al., 2016; Cormaci et al., 2017), four of

which have been found in a wide biogeographical distribution

outside of the Mediterranean Sea, such as the Atlantic Sea,

northern Spain and France, Arctic Norway, eastern North

America (Newfoundland, Canada to Massachusetts), and Asia

(Adey and Adey, 1973; Chamberlain, 1991; Irvine and

Chamberlain, 1994; Hernández-Kantún et al. , 2014;

Hernández-Kantún et al., 2015; Peña et al., 2015; Adey et al.,

2018). Despite initially hypothesizing P. abuqirensis having a

Tethyan distribution like other taxa found in the Red and

Mediterranean Seas, the species closest to P. abuqirensis is P.

nantuckensis, a taxon that has only been reported in Nantucket

Island in the western North Atlantic (Adey et al., 2018; Guiry

and Guiry, 2021). Adey et al. (2018) hypothesized that the

existence of P. nantuckensis could be a relict species or

possibly introduced by the heavy use of Nantucket Harbor as a

whaling port during the 18th and 19th centuries, but no samples

have been reported in the Northern Atlantic. Alternatively, this

species might have just been overlooked and previously

misidentified by initially being lumped with other species. As

FIGURE 4

ML analyses of concatenated psbA and rbcL sequences (2,453 bp). Numbers at branches indicate bootstrap values out of 1,000 replicates.* denotes full
support.

FIGURE 5

Scanning electron microscopy images of Phymatolithon abuqirensis

voucher TS 757 (LAF 7722). (A) Habit view of thallus, scale bar =
1 cm. (B) Section view of thallus, scale bar = 200 µm. (C) Section
view showing hypothallium (bracket) with monomerous thallus
construction and hypothallial cells’ direction of growth (white arrow),
scale bar = 100 µm. (D) Magnified view of perithallium with adjacent
perithallial cells linked by cell fusions in the x-axis (f) and z-axis (*),
scale bar = 20 µm. (E) Section showing domed epithelial cells (e),
meristematic cells (m), and tear-dropped shaped perithallial cells (p),
scale bar = 30 µm. (F) Magnified view of surface cells, emphasizing
the domed epithelial cells (e), scale bar = 20 µm.
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sequencing technologies advance in conjunction with a better

understanding of phylogenetically informative morphological

characteristics, a better understanding of Phymatolithon as a

whole will become more evident. The knowledge of coralline

algal diversity has greatly improved and led to both the

reclassification of taxa and the discovery of new species. More in-

depth biogeographical analyses should be conducted in the future.

CCA have been estimated to exist in the Mediterranean for

~140 My (Chatalov et al., 2015). More frequent environmental

disturbances and anthropogenic stressors are impacting

coralline algal ecosystems and adjacent habitats worldwide

(Coll et al., 2010; Blanfuné, 2016; Basso et al., 2018; Quéré

et al., 2019). CCA such as P. abuqirensis are at risk of being

displaced due to the dynamic nature of calcium carbonate in the

cell walls being intrinsically linked to global climate change and

ocean acidification. The Mediterranean Basin has been coined a

“climate change hotspot” where climate models are consistently

projecting regional warming at rates 20% above the global means

(Hilmi et al. 2022). CCA in the Mediterranean have already

shown to be vulnerable to elevated temperatures and pCO2

experimental conditions (Martin and Gattuso, 2009; McCoy and

Kamenos, 2015) leading to 2- to 3-fold increase in the percentage

of death and dissolution of thalli. When examining the effects of

climate change on early life stages of coralline, it was found that

they led to lower reproductive success and recruitment (Cumani

et al., 2010; Porzio et al., 2011; Kroeker et al., 2012).

Rindi et al. (2019) stated that populations of the same species

in the eastern versus western Mediterranean may respond

differently to future climatic changes. One reason might be

because of the variability in oceanographic conditions within the

basins, such as the influence of the Atlantic Ocean in the western

Mediterranean to the overall spatial sea surface temperatures and

sea surface salinities that are controlled by the distribution of the

colderBlackSeaWaters, and the advectionof thewarmerLevantine

Waters of the Aegean Sea (Estournel et al., 2021).

This study helps the global diversity research ofCCAby adding

to the number of described species of Phymatolithon for the

Mediterranean region and by contributing to understanding

cryptic coralline algal species on a global scale. Multiple markers

(rbcL, psbA, SSU, and LSU) are provided for Phymatolithon

abuqirensis to aid future studies to better understand the

phylogenetic relationships and species delimitations of the genus.

Phymatolithon abuqirensis could also have been introduced in the

Mediterranean Sea due to the close proximity to the Red Sea. Since

the distribution of P. abuqirensis is unknown outside of Abu Qir,

Egypt, additional sampling is needed to assess the full

biogeographical range of this species.
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Roscoff).
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(2014). Detection of gametophytes in the maerl-forming species Phymatolithon
calcareum (Melobesioideae, corallinales) assessed by DNA barcoding. Cryptog.
Algol. 35, 15–25. doi: 10.7872/crya.v35.iss1.2014.15
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