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Multi-Channel Talker-Independent Speaker
Separation Through Location-Based Training

Hassan Taherian

Abstract—Permutation ambiguity is a crucial issue for deep
learning based talker-independent speaker separation. Deep clus-
tering and permutation invariant training (PIT) have been widely
used to address the permutation ambiguity problem in monaural
scenarios. Although both approaches have been extended to multi-
microphone scenarios, we believe that the permutation ambiguity
problem can be naturally avoided by leveraging the spatial relations
of multiple speakers. In this article, we present location-based
training (LBT), a new approach to achieve talker independency
in multi-channel speaker separation. Unlike PIT that examines all
possible permutations, LBT assigns speakers according to their
positions in physical space. With a linear training complexity to
the number of concurrent speakers, LBT is computationally much
more efficient than PIT with a factorial complexity, particularly
when a large number of overlapping speakers needs to be sepa-
rated. Specifically, we propose two training criteria: azimuth-based
and distance-based training, using speaker azimuths and distances
relative to a microphone array, respectively. Evaluation results
show that LBT significantly outperforms PIT on two-speaker and
three-speaker mixtures with different array geometries and in
various acoustic conditions. In addition, we propose a joint training
strategy to integrate azimuth-based and distance-based training,
which further improves separation performance.

Index Terms—Multi-channel speaker separation, location-based
training, permutation invariant training, talker independence.

I. INTRODUCTION

S A FUNDAMENTAL fundamentalw task in speech pro-
A cessing, speaker separation aims to segregate multiple
concurrent speakers. Solutions to speaker separation are impor-
tant for human speech perception [1], as well as downstream
speech processing systems such as speaker recognition, local-
ization, diarization, and automatic speech recognition (ASR). In
the past decade, deep learning has been the dominant approach
to speaker separation, in which each output layer of a deep
neural network (DNN) is associated with one distinct speaker in
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amulti-talker mixture [2]. Early DNN-based models for monau-
ral separation are trained in a talker-dependent fashion, where
the same underlying speakers are used for both training and
testing [3], [4], [5]. For many practical applications, however,
speaker separation needs to be talker-independent in order to
handle untrained speakers. To achieve talker independency, a
key challenge is the assignment of DNN output layers to the un-
derlying speakers. Without proper output-speaker assignment,
DNN training would not converge due to conflicting gradients.
This is known as the permutation ambiguity problem, which has
been addressed in the monaural setup in two main approaches:
deep clustering [6] and permutation invariant training (PIT) [7].
Deep clustering generates an embedding vector for each time-
frequency (T-F) unit using a DNN trained with an objective
function invariant to speaker permutations. Using the K-means
algorithm, these embeddings are clustered to estimate the ideal
binary mask for each speaker. Different from deep clustering,
PIT resolves permutation ambiguity by examining the losses
from all possible output-speaker assignments without requiring
an additional clustering step.

Recent studies have extended deep clustering and PIT to
multi-microphone scenarios [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17]. Higuchi et al. [8] incorporated deep clustering
into masking-based beamforming. In [9], a PIT-based separation
model is trained with magnitude spectra and inter-microphone
phase difference features. The T-F masks produced by the model
are then used to formulate a masking-based beamformer for sep-
arating individual speaker signals. Another study [10] investi-
gated masking-based beamforming with a PIT-based separation
model trained in the time domain. Chen et al. [11] proposed
a multi-channel separation model consisting of multiple DNNSs,
one for each frequency subband. These DNNs are jointly trained
using PIT. In [16], a beam prediction network is used to select
the best beam pattern for each speaker from a set of fixed
beamformers. A PIT-based separation network is then used to
process the output signals of the selected beamformers. Other
works combine spectral and spatial information to differenti-
ate signals from different directions. In [12], inter-microphone
phase patterns are used as an additional input feature to a deep
clustering network. Moreover, end-to-end multi-channel speech
separation models with PIT have been developed, where spatial
cues are learned directly from the multi-channel mixture in the
time domain [14], [15] or frequency domain [17].

Despite these developments, previous multi-channel separa-
tion models address the permutation ambiguity by using a train-
ing criterion that relies only on spectral information. Leveraging
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spatial information afforded by microphone arrays, we study
a new training approach for talker-independent multi-channel
speaker separation. With the observation that multiple talkers
cannot occupy the same location at the same time, we resolve the
permutation ambiguity problem by utilizing spatial relations of
multiple speakers. The new training approach, named location-
based training (LBT), assigns DNN outputs according to speaker
locations in the physical space. Specifically, we introduce two
training criteria, i.e. azimuth-based and distance-based training,
to label speakers consistently based on their azimuth angles and
distances to a microphone array. With LBT, we train a multi-
channel input single-channel output (MISO) system, to directly
estimate the real and imaginary spectrograms of the speakers
from those of a multi-channel mixture [17]. The idea of using
speaker azimuths to resolve permutation ambiguity appears to
be independently developed for speaker localization in [18] (see
a later version in [18]) and for speaker separation in [19] (see
a later version in [20]). In a preliminary study, we recently
examined the performance of LBT with limited speaker posi-
tions for a single array geometry [21]. In the present study, we
systematically investigate the new training criteria in different
array configurations and acoustic environments. Our evaluation
results show that LBT consistently outperforms PIT in both
separation quality and automatic speech recognition accuracy.

In addition, we examine the impact of speaker placement
on the performance of azimuth-based and distance-based
training. Although both criteria outperform PIT, they become
less effective in certain conditions. The performance of
azimuth-based training significantly degrades when the
azimuth differences between speakers become small. Similarly,
the performance of distance-based training degrades when
the speaker-array distances of different speakers are close.
To boost the performance of LBT in such conditions, we
introduce two methods to combine the relative advantages of
azimuth-based and distance-based training. The first method is
to dynamically select between the two criteria based on azimuth
estimates of separated speakers, which are derived by speaker
localization using mask-weighted generalized cross-correlation
with phase transform (GCC-PHAT) [22]. In the second method,
the azimuth-based and distance-based models are integrated
and jointly trained. The resulting location-based model is
more robust and performs significantly better than individual
azimuth-based and distance-based models.

The rest of the paper is organized as follows. In Section II,
we describe location-based training, the DNN architecture and
the joint location model by integrating the azimuth and distance
criteria. We then present the experimental setup and the evalua-
tion results in Section III. Concluding remarks are provided in
Section IV.

II. ALGORITHM DESCRIPTION
A. Signal Model and Permutation Invariant Training

A mixture speech signal with /N concurrent speakers in a noisy
and reverberant environment can be expressed as:

N
Y(t,f) =Y [Sult, )+ Ho(t, NI+ V(t, ) (D)
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where Y (¢, f) = [YI(t, f),...,YM(t, £)]T € CM denotes
the short-time Fourier transform (STFT) vector received by an
array with M microphones at time ¢ and frequency f. S, (¢, f)
and H,(t, f) € CM are the STFT vectors of the direct-path
signal and reverberation for the n-th speaker, respectively.
V(t, f) € CM is the STFT vector of background noise. We
assume that all speakers are still within the duration of a single
mixture and the same array geometry is used for training and
testing, i.e. fixed array geometry.

Given the mixture Y, we formulate the estimation of clean
speech .S,, for speaker n at a reference microphone as a super-
vised learning problem [2]. For deep learning based speaker sep-
aration, DNN outputs should be properly assigned to speakers
to avoid the permutation ambiguity problem. For example, the
assignment can be made based on speaker identity and speaker
gender, which leads to talker-dependent and gender-dependent
separation models, respectively. To train talker-independent sep-
aration models, utterance-level PIT is widely utilized to address
the permutation ambiguity problem [7], [14], [15], [17]. Using
fixed output-speaker pairings for a whole utterance, utterance-
level PIT selects the optimal permutation that minimizes the loss
function from all possible speaker permutations [7]:

N
Lo = %; L(Sns Spim)): @)

where S, is the estimated speech signal of speaker n. £ denotes a
loss function, symbol @ the set of all permutations of [V speakers
with ¢ referring to one permutation.

B. Location-Based Training

The permutation ambiguity problem can be naturally avoided
by exploiting the spatial information of speakers captured by
a microphone array. We propose to utilize spatial relations of
speakers to determine output-speaker assignments. Specifically,
we propose two new training criteria based on speaker azimuth
angles and speaker-array distances for multi-channel talker-
independent separation. Assuming a polar coordinate system
with the center of microphone array as the origin, we define the
loss function for azimuth-based training as follows:

N
Lazimun = »_ L(Sn, 85,), 3)

n=1

where 61,60,...,0n € {1,..., N} are the sorted speaker in-
dices based on their azimuths relative to the microphone array.
Fig. 1illustrates LBT with 3 speakers. In azimuth-based training,
output-speaker assignments follow the azimuth order, where the
first output is tied to the speaker with the smallest azimuth, the
second output to the speaker with the second smallest azimuth,
and so on. By assigning speakers consistently based on the order
of azimuth angles, such a criterion enforces the DNN to lever-
age spatial information to address the permutation ambiguity
problem. Note that the azimuth range is dependent on the array
geometry. Non-linear arrays cover the horizontal plane with the
full azimuth range. However, the azimuth range for a linear
array should be [0, ), due to the well-documented front-back
confusion of linear arrays.
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Fig. 1. Tllustration of new training criteria based on speaker azimuths and
distances relative to a microphone array.

Similarly, DNN outputs can be organized according to
speaker-array distances. The loss function for distance-based
training is defined as:

N
»CDistance = Z »C(Sna Sdn)7 (4)
n=1

where dy,ds,...,dy € {1,..., N} are speaker indices sorted
in ascending order based on speaker distances to the microphone
array. With this criterion, we assign the nearest speaker to the
first output layer, and the second nearest speaker to the second
output layer, and so on. This training criterion is also illustrated
in Fig. 1. Different from azimuth-based training, distance-based
training resolves the permutation ambiguity problem through the
consistent pairings of DNN output layers and speaker distances.
Leveraging spatial relations of speakers, both LBT criteria
lead to a simple training procedure to achieve talker indepen-
dence in speaker separation. Compared with PIT, LBT does
not need to examine various speaker permutations. Hence LBT
has linear training complexity, computationally a lot more ef-
ficient than PIT and its variants whose training complexity is
factorial or polynomial to the number of speakers [23], [24].
Specifically, the computational complexity of (3) and (4) is
O(N) while that of (2) is O(N'). With the lower complexity of
location-based training, multi-channel separation models can be
efficiently trained to accommodate mixtures with a large number
of concurrent speakers. Moreover, LBT-based models produce
outputs that are ordered according to speaker spatial locations,
facilitating speaker localization. This property is useful for con-
tinuous speaker separation where an audio stream is processed
in short sliding segments. In such scenarios, PIT-based separa-
tion requires a post-processing step to keep the output-speaker
assignments consistent between the segments [25], [26]. With
LBT, however, separated segments can be naturally organized
based on common locations, a prominent grouping principle in
human and computational auditory scene analysis [27], [28].

C. Multi-Channel Complex Ratio Masking

With the fixed array geometry assumption, a complex-domain
MISO separation system can implicitly learn the spectral and
spatial information within array signals [29], which achieves
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separation performance comparable to or better than masking-
based beamforming [20]. In this study, we extend the Dense-
UNet architecture proposed in [30] for multi-channel complex
ratio masking (MC-CRM). The input to the MC-CRM is a stack
of real and imaginary components of the mixture STFT at all
microphones. For each speaker, MC-CRM outputs a complex
ratio mask cRM,,, which is then multiplied by the mixture STFT
at the reference microphone to estimate the separated sources in
the complex domain [31]:

S,(t, f) = cRM,,(t, f) @ Y™ (¢, f) Q)

where symbol ® denotes point-wise complex multiplication. In
the end, we perform inverse STFT to resynthesize the waveforms
of the underlying speakers. The multi-channel Dense-UNet
consists of 4 downsampling and 4 upsampling layers, and 9
densely-connected convolutional blocks. In the encoder part of
the model, dense blocks and downsampling layers are inter-
leaved to project the input feature map unto a higher level of
abstraction. The encoded features are restored to the original
resolution with alternated dense blocks and upsampling layers
in the decoder part of the model. In addition, skip connections
are used to link the dense blocks between the encoder and the
decoder at the corresponding level. Each dense block contains
5 convolutional layers, each of which has C' = 64 channels, a
kernel size of 33 and a stride of 1 x 1. The middle layer in each
dense block is replaced with a frequency mapping layer to deal
with inconsistencies between different frequency bands [30].

We adopt the loss function in [29], which is based on £; norm
of the difference between the real and imaginary spectrograms
of estimated and target speech with an additional magnitude loss
term. For each output-speaker pair, the loss function is defined
as:

£(S,S) = Hg(r) _ g

‘ n ng) _ g
1

1
+[|is1-181]],. ©

where superscripts r and ¢ denote real and imaginary parts,
|S| and | S| represent the target and estimated magnitude spec-
trograms, and |5 is calculated from the estimated real and
imaginary components S() and §:

|51 = /(5002 + (5®)2. 9

D. Fusing Azimuth-Based and Distance-Based Training

With the proposed azimuth or distance criterion, the sepa-
ration model learns to discriminate speakers based on a single
dimension of the polar coordinate system. Itis expected that such
separation models will not perform well in conditions where
speakers are located at nearby places along that dimension. In
these conditions, azimuth and distance (or radius) dimensions
can be used together to improve the separation performance.

A simple way to obtain a more general separation model is
by utilizing azimuth-based and distance-based criteria simulta-
neously and selecting the outputs from the better-performing
model. We determine the better model on the basis of the
estimates of speaker azimuths. The azimuth of speaker & can
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be well estimated from a speech mixture using mask-weighted
GCC-PHAT [22], [32]:

73, = argmax Z ZAkGCCp,q(t,f,T),

T (p)eQ t.f

®)

where GCC,, 4(t, f, -) represents the GCC-PHAT function for
microphone pair (p, ¢). Symbol 7 denotes the time delay cor-
responding to a candidate azimuth, and €2 is the set of all
microphone pairs. Moreover, A is a ratio mask for speaker k,
computed using the outputs of either azimuth- or distance-based
models:

o S ?
k= = = .
|Sk‘2 + ‘Yref _ Sk|2

€))

We select the model trained with the azimuth criterion if the
estimated azimuth difference is larger than a predefined thresh-
old and the model trained with the distance criterion otherwise.
Selecting LBT models using GCC-PHAT is straightforward for
two-speaker mixtures. However, applying this method to mix-
tures with more than two speakers becomes more complicated
as more speakers crowd the azimuth dimension.

Another way is to fuse azimuth-based and distance-based
models through joint training. Fig. 2 depicts the diagram of the
proposed fusion model. The model contains two branches of
the identical multi-channel Dense-UNet, each of which takes
the stack of real and imaginary spectra of the microphones as
input. We train the first branch with the azimuth criterion and
the second branch with the distance criterion. The estimated
masks from the two branches are concatenated and processed
by a fusion dense block to produce the complex ratio masks for
speaker separation. The fusion dense block can be regarded as
a post-filter that combines and further improves the estimated
masks from the azimuth and distance branches. In this study,
we use the azimuth criterion to optimize the fusion dense block.
The joint model is trained with the following loss function:

N N
ELocalion = Z E(SS7 Sen) + Z £(S’Ba Sdn>

n=1 n=1

Schematic diagram of the proposed joint training framework for location-based training. cRM
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masks of the n-th speaker by the azimuth branch, the distance branch and the fusion model, respectively.

cRMB and cRM,, refer to the estimated complex ratio

N
+ Z L:(Sna S9n,)a

n=1

(10)

where 5‘,‘?, S’B and S, are the estimated speech signal of speaker
n from the azimuth branch, the distance branch, and the fusion
dense block, respectively.

We emphasize that the azimuth-based, distance-based, and
fusion models are trained together using the same loss function
measured at both hidden and output layers of the separation
network (see Fig. 2), resembling the neural cascade architec-
ture [33]. This training strategy is different from commonly used
sequential training, where preceding modules are pre-trained
and then either fixed or fine-tuned in later training stages. Our
training strategy allows the errors in the fusion model to directly
influence the optimization of the azimuth-based and distance-
based models.

III. EVALUATION RESULTS AND COMPARISONS
A. Experimental Setup

For evaluation, we simulate room impulse responses (RIRs)
for two microphone array geometries using the image
method [34], [35]. The first microphone array has a similar
geometry to Amazon Echo, which has 6 microphones uni-
formly distributed on a circle with a radius of 4.25 cm and
one microphone at the center of the circle. The second array
has 3 microphones, i.e. the minimum number of microphones
to exhibit the full azimuth range [0, 27). Specifically, we use
a triangular microphone array where microphones are placed
on the circle with a radius of 4.25 cm. We simulate rectangular
rooms with random length, width, and height dimensions in the
range of [4x4x3, 9x9x4] meters, with the microphone array
placed in the center of the room.

The speech sources are placed in positions uniformly sampled
from 360 candidate azimuth angles in the range of -180° to 180°
with a 1° resolution using a uniform distribution. For a speaker
pair (4, 7), the source-array distances d; and d; are uniformly
sampled such that |d; — d;| > 0.2 m. Speaker distances are
selected in 0.05 m steps. Moreover, the minimum source-array
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TABLE I
AVERAGE ESTOI (%), PESQ, SI-SNR (DB) AND SDR (DB) RESULTS OF DIFFERENT TRAINING CRITERIA ON REVERBERANT 2-SPEAKER
AND 3-SPEAKER MIXTURES

7-channel Circular Array

3-channel Triangular Array

Model #Parameters  Criterion ESTOI PESQ SI-SNR  SDR | ESTOI PESQ SI-SNR  SDR
Unprocessed - - 37.36 1.61 -8.15 -1.75 37.35 1.61 -8.15 -1.75
SC-CRM 4.88M PIT 6234 220  -0.54 348 | 6234 220  -0.54 348

5 MC-CRM 491M PIT 7478 274 464 788 | 7127 259 300 689
%5 MC-CRM 491IM  Azimuth 8098 303 666 974 | 77.65 286 455 812
=3 MC-CRM 49IM  Distance 7975 295 643 9.3 | 7355 267 352 690
1 MCCRM Large  11.15M PIT 7617 279 529 844 | 7427 270  3.65  7.06
“Dﬁgldgcsélf;cgzr% 9.82M - 8133 304 676 984 | 7785 286 463 822

Joint Model 10.22M Location  83.77 3.12 8.22 10.73 | 79.77 2.96 5.32 8.31
Unprocessed - - 2902 138 897 458 | 2002 138 897 458

5 SC-CRM 4.88M PIT 4836 178 218 172 | 4836 178 218 172
fcg MC-CRM 491M PIT 6785 247 497 728 | 5774 210 132 436
=3 MC-CRM 49IM  Azimuth 7096 264 555 833 | 6320 233 277 6.8
N MC-CRM 49IM  Distance 6697 242 472 684 | 5645 200 120 387
Joint Model IL17M  Location 7479 274 718 935 | 68.04 250 415 693

distance is set to 0.3 m. We assume that speakers are placed at
the same height as the microphone array.

We create speech mixtures with 2 and 3 speakers in both
anechoic and reverberant conditions. The multi-channel mix-
tures are created by spatializing the WSJ0-2mix and WSJ0-3mix
datasets [6] with the simulated RIRs, which include 20000,
5000, and 3000 mixtures in the training, validation, and test sets,
respectively. We adopt the ‘min’ version of the datasets, where
the longer speech signals are truncated to have the same length
as the shortest speech signal in a mixture. For the reverberant
mixtures, the reverberation time (T60) is randomly sampled
between 0.15 and 0.6 seconds. For all speakers, the direct-path
(anechoic) signal at the reference microphone is used as the
target signal. Note that we treat the center microphone of the
7-channel circular array as the reference microphone. For the
3-channel array, the microphone positions are symmetric and
we designate the first microphone as the reference microphone.

All signals are sampled at 16 kHz. For STFT, we use the
square root of the Hanning window with a 32 ms frame length
and an 8 ms frame shift. We extract 257-dimensional one-sided
complex spectra using a 512-point discrete Fourier transform.
All separation models are trained on 4-second segments using
the Adam optimization algorithm with an initial learning rate
of 0.00015. Learning rate adjustment and early stopping are
adopted. The model with the lowest validation loss among
different epochs is selected for testing. For the joint model,
the number of kernels in each convolutional layer of the fusion
dense block is C' = 64 and C' = 128 for two- and three-speaker
mixtures, respectively.

We measure speaker separation performance using perceptual
evaluation of speech quality (PESQ) [36], extended short-time
objective intelligibility (ESTOI) [37], signal-to-distortion ra-
tio (SDR) [38], and scale-invariant signal-to-noise ratio (SI-
SNR) [39]. These are all standard metrics for speaker separation
performance evaluation.

B. Results and Comparisons

Table I presents the evaluation results with different train-
ing criteria in reverberant conditions. As comparison base-
lines, we also report the results for PIT-based single-channel
complex ratio masking (SC-CRM) and MC-CRM. Not sur-
prisingly, PIT-based MC-CRM performs better than PIT-based
SC-CRM (see also [20]). As shown in the table, for two-
speaker mixtures, azimuth-based and distance-based training
both outperform PIT with the 7-channel microphone array.
With regard to the comparison between the two LBT cri-
teria, azimuth-based training performs slightly better than
distance-based training. The same performance trend is ob-
served for the 3-channel microphone array. However, the perfor-
mance gap is larger between azimuth-based and distance-based
training.

For three-speaker mixtures, Table I shows that azimuth-based
training performs better than PIT in both array geometries.
Distance-based training underperforms azimuth-based training,
but it yields comparable results to PIT.

Fig. 3 shows the average results for two-speaker reverberant
mixtures with the 7-channel array, grouped into intervals based
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Fig.3.  Average results on reverberant 2-speaker mixtures with the 7-channel array, based on (a) azimuth difference with 10° intervals and (b) distance difference

with 20 cm intervals. ‘PIT-Large’ refers to the PIT-based MC-CRM model with a larger number of parameters.

on speaker azimuth differences (Fig. 3(a)) and distance differ-
ences (Fig. 3(b)). From Fig. 3(a), we observe that both PIT and
azimuth-based training degrade sharply when azimuth differ-
ences between speakers are less than 20°. In contrast, distance-
based training is relatively insensitive to speaker azimuths, and
thus outperforms the other two methods when azimuth differ-
ences are small. This also indicates that the PIT-based MC-CRM
model learns to separate speakers by implicitly leveraging spatial
information more correlated with azimuth than distance. By the
same token, distance-based training results become worse when
the difference between the source-array distances of speakers
are small, as shown in Fig. 3(b). In addition, we observe that the
performance of all separation models consistently improves as
the distance differences between speakers increase.

By fusing the models trained with the azimuth and distance
criteria, we achieve further improvements as shown in Table I.
For model selection with GCC-PHAT, we use an empirical
threshold of 20° [21]. With the model selection technique, the
improvements over azimuth-based training are marginal, likely
because only 12% of mixtures in this test set contain speakers
with an azimuth difference less than 20°. However, we observe
that the joint model significantly improves the performance for

two-speaker mixtures in both array geometries. The joint model
is even more effective for three-speaker mixtures, relative to
the models trained with the azimuth and distance criteria. We
should point out that the reason for the improvements provided
by the joint model is not that it is a larger DNN model with more
trainable parameters. To demonstrate this, we train a PIT-based
MC-CRM model with a larger number of convolutional kernels
(C' = 98), which amounts to a similar number of parameters to
the joint model. As shown in Table I, the joint model signifi-
cantly outperforms the large MC-CRM model trained with PIT,
although increasing the model size improves the performance
of the PIT-based model to some extent.

Why does the joint model consistently outperform both
azimuth-based and distance-based training? Unlike azimuth-
based and distance-based training, the joint model leverages both
azimuth and distance dimensions to separate the speaker from a
particular direction and distance. The joint model improves the
robustness of separation in conditions where a single criterion is
not discriminative enough. This can be explained with the spher-
ical intersection (SI) method for source localization in three-
dimensional (3D) space. With the knowledge of array geometry,
SI uses a set of time difference of arrival (TDoA) estimates
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from a 7-channel microphone array are 0.43 m and 0.50 m and azimuths are 60°
and 65°.

from microphone pairs to estimate the speaker location [40],
[41]. Specifically, SI forms a set of quadratic equations with
the pairs of microphone m = 1,..., M — 1 and the reference
microphone:

D

where c is the speed of sound and 7, is the TDoA between
the reference microphone and microphone m. Vectors x4 and
x,, denote the speaker s and microphone m locations relative
to the reference microphone, respectively. Geometrically, (11)
represents a hyperboloid surface, and the speaker location lies
on the intersection of all hyperboloids. An estimate of x; is
obtained using unconstrained or constrained least squares [41].
Fig. 4 shows histograms of frame-wise estimated azimuth and
distance with SI for two closely-positioned speakers in a rever-
berant room. The joint azimuth and distance histogram exhibits
two distinct peaks, corresponding to the azimuth and distance
of the two speakers. However, the individual histograms of
estimated azimuths and distances show only one peak occurring
in two adjacent bins, which does not indicate two speakers in
the mixture. This observation provides an explanation of the
effectiveness of combining azimuth and distance information
for speaker separation.

Table IT shows the evaluation results in the anechoic condition.
We see that the pattern of the results in this table is similar
to that in Table I. Azimuth-based training achieves superior
performance to PIT for two- and three-speaker mixtures with
both array geometries. However, the MC-CRM model trained
with the distance criterion significantly degrades in the anechoic

CTm, = ||213m - :'US||2 - ||$s||2,
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condition, and its performance is closer to PIT-based SC-CRM
than PIT-based MC-CRM. Comparing the results in the reverber-
ant and anechoic conditions, it appears that distance-based train-
ing implicitly leverages direct-to-reverberant ratios (DRRs) of
different speakers for speaker separation. The DRR is inversely
proportional to the square of source-microphone distance in
reverberant environments [42], [43]. As the source-microphone
distance increases, the energy of the direct sound decreases while
the energy of the reverberant sounds remains roughly constant.
In the reverberant conditions, the model trained with the distance
criterion may learn to assign the speaker with the highest DRR to
the first output layer and the second highest DRR to the second
output layer, and so on. In an anechoic room, the DRR is infinite
and thus cannot serve as a discriminative cue for separating
nearer and farther speakers. Note that we do not train a joint
model in this case as azimuth-based training is clearly superior
to distance-based training and should be employed.

To further investigate the effect of reverberation on the sep-
aration performance, we evaluate the models on test sets with
different reverberation times (T60). We generate 4 additional
test sets with fixed speaker positions, from short to long rever-
beration times. The evaluation results are reported in Table III.
As the reverberation time increases, the performance difference
between distance-based and azimuth-based training becomes
smaller, demonstrating that reverberation plays an important role
in the efficacy of distance-based training.

C. Evaluation on Noisy Reverberant Mixtures

In realistic acoustical environments, the speech signal of in-
terest is contaminated by competing speakers and ambient noise
simultaneously. The separation problem becomes substantially
more challenging as the model needs to perform denoising,
dereverberation and speaker separation. An interesting question
is whether LBT can address multi-channel speaker separation in
the presence of point-source noise, which could interfere with
the received spatial patterns of speech signals. To answer this
question, we now evaluate the performance of the LBT models
trained on noisy reverberant mixtures. We create a spatialized
version of the WHAM! dataset [44] using the 7-channel circular
array. In the WHAM! dataset, each two-speaker mixture of
the WSJO-2mix dataset is paired with a nonspeech ambient
noise, recorded in real environments such as coffee shops,
restaurants and bars. Before convolving with RIRs, the speech
sources and noise are scaled according to the WHAM! dataset.
The same simulation procedure for three-speaker mixtures (see
Section III-A) is used to generate two-speaker mixtures with
a point-source noise. We randomly select T60 in the range of
0.15 to 0.25 s. The results are shown in Table IV. We observe
that both azimuth-based and distance-based training outperform
PIT. Moreover, the results suggest LBT generalizes well to noisy
reverberant conditions.

D. Sensitivity to Microphone Spacing

This section investigates the sensitivity of models trained
with the distance criterion to microphone spacing. We employ
three 2-channel linear arrays with different inter-microphone
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TABLE II
COMPARISON OF DIFFERENT TRAINING CRITERIA ON 2-SPEAKER AND 3-SPEAKER MIXTURES IN THE ANECHOIC CONDITION

7-channel Circular Array

3-channel Triangular Array

Model #Parameters  Criterion ESTOI PESQ SI-SNR  SDR | ESTOI PESQ SI-SNR  SDR

«.  Unprocessed - - 56.13 1.89 -0.01 0.18 56.13 1.89 -0.01 0.18
% SC-CRM 4.88M PIT 82.93 2.89 11.63 12.06 82.93 2.89 11.63 12.06
a MC-CRM 491M PIT 98.12 4.09 25.80 26.30 98.04 4.06 25.92 26.40
9 MC-CRM 491M Azimuth 98.82 4.22 27.96 28.35 98.64 4.16 27.00 27.44
AN MC-CRM 4.91M Distance 88.02 3.28 14.20 14.62 86.25 3.18 12.68 13.11
«  Unprocessed - - 38.55 1.48 -4.53 -4.19 38.55 1.48 -4.53 -4.19
,;% SC-CRM 4.88M PIT 62.50 2.10 4.82 5.57 62.50 2.10 4.82 5.57
a MC-CRM 4.91M PIT 84.18 3.17 13.53 14.14 82.43 3.05 12.98 13.53
s MC-CRM 491M Azimuth 91.15 3.57 17.86 18.36 88.10 3.36 15.76 16.28
“@ MC-CRM 491M Distance 65.39 2.19 5.55 6.24 64.92 2.24 5.61 6.32

TABLE III TABLE IV

EVALUATION OF DIFFERENT TRAINING CRITERIA ON 2-SPEAKER MIXTURES
WITH THE 7-CHANNEL ARRAY AT DIFFERENT REVERBERATION TIMES

COMPARISON OF DIFFERENT TRAINING CRITERIA ON 2-SPEAKER MIXTURES
‘WITH THE 7-CHANNEL ARRAY IN NOISY REVERBERANT CONDITION

T60 Model Criterion ESTOI PESQ SI-SNR  SDR
Unprocessed - 53.30 1.86 -1.64 0.14
g  MCCrRM PIT 8681 331 1097 1378
§ MC-CRM Azimuth  91.00 3.56 13.06 16.13
MC-CRM Distance 87.96 3.35 11.24 14.13
Unprocessed - 40.34 1.64 -6.67 -1.29

a MC-CRM PIT 77.81 2.85 6.13 9.15
€ MCCRM  Azimuth 8339 3.1 8.08 1097
MC-CRM Distance  82.18 3.05 7.75 10.45
Unprocessed - 30.62 1.48 -9.39 -3.21

g MC-CRM PIT 68.41 2.50 3.51 6.33
% MC-CRM Azimuth 75.42 2.77 5.51 8.16
MC-CRM Distance ~ 74.44 2.72 5.30 7.82
Unprocessed - 23.66 1.40 -11.34 -4.85

g  MC-CRM PIT 60.19 224 160 437
§ MC-CRM Azimuth  67.81 2.51 3.63 6.17

MC-CRM Distance  67.11 2.46 3.44 5.9

distances, i.e. 4.25 cm, 8 cm and 24 cm. The same simulation
procedure for generating reverberant two-speaker mixtures is
used, except that the azimuth range of speakers is limited to
[0,7). The left-sided microphone is treated as the reference
microphone. Separation results are shown in Table V, which
suggests that the performance of distance-based training im-
proves as the inter-microphone distance increases. This effect
of microphone spacing could be explained by the coherence
of microphone signals, which is widely used for DRR estima-
tion [43]. The magnitude of the coherence indicates the strength
of correlation between the signals received by a microphone pair.

Criterion ESTOI ~PESQ SI-SNR  SDR
Unprocessed - 31.48 1.52 -7.36 -4.91
MC-CRM PIT 68.47 2.49 5.99 7.83
MC-CRM Azimuth  73.94 2.80 7.52 10.28
MC-CRM Distance ~ 70.11 2.55 6.59 8.39
TABLE V

EVALUATION OF DISTANCE-BASED TRAINING ON 2-CHANNEL LINEAR ARRAY
WITH DIFFERENT INTER-MICROPHONE DISTANCES

Inter-microphone Distance ~ ESTOI ~ PESQ  SI-SNR  SDR
Unprocessed 37.45 1.61 -8.12 -1.72

4.25 cm 67.38 2.41 1.34 522

8 cm 68.26 2.44 1.71 5.57

24 cm 71.06 2.58 2.31 6.30

With larger inter-microphone distances, the inter-channel coher-
ence decreases especially for high frequencies in an isotropic
sound field [45]. This would also produce multi-microphone
signals with more diverse distances and DRR cues, improving
the performance of distance-based training.

E. Evaluation on SMS-WSJ Dataset

In this section, we further evaluate LBT on the SMS-WSJ
dataset [46], which is a speaker separation and ASR task.
This dataset includes reverberant two-speaker mixtures with a
sampling rate of 8 kHz. The numbers of training, validation
and testing mixtures in this datast are 33561, 982, and 1332,
respectively. A circular array geometry with a radius of 10 cm
is used for RIR simulation with T60 in the range of 0.2 to
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TABLE VI
SPEAKER SEPARATION AND WER (IN %) RESULTS OF COMPARISON SYSTEMS EVALUATED WITH THE 6-CHANNEL ARRAY ON SMS-WS]J

Criterion ESTOI PESQ SI-SNR  SDR  WER (%)
Unprocessed - 44.07 1.50 -5.46 -0.38 78.42
MC-CSM PIT 88.03 3.12 11.25 13.10 11.83
MC-CSM Azimuth 90.12 3.29 12.56 14.33 9.99
MC-CSM Distance 88.83 3.15 11.63 13.44 10.53
Joint model (MC-CSM) Location 90.96 3.33 13.22 14.82 9.62
cACGMM [47] - - - - - 39.00
cACGMM with MVDR [47] - - - - - 18.70
FaSNet + TAC + joint + 4ms [48] PIT 77.10 2.37 8.60 - 29.80
Multi-channel Conv-TasNet [49] PIT 84.40 2.78 10.80 - 23.05
MISO; [17] PIT 86.20 3.06 10.20 - 13.92

0.5 s. The speaker azimuth angles and source-array distances are
uniformly sampled in the range of [-180°, 180°] and [1.0,2.0] m,
respectively. An artificially generated white noise is added to
the mixtures to simulate sensor noise. The default backend
acoustic model associated with the SMS-WSJ dataset is used
for ASR evaluation. As opposed to the official SMS-WS]J setup,
we simultaneously perform dereverberation and separation by
using direct sound as the training target.

Following [17], we modify the Dense-UNet architecture to
perform multi-channel complex spectral mapping (MC-CSM)
which has been shown to achieve better ASR performance. For
the joint model, we use estimated real and imaginary compo-
nents from the two branches of the fusion dense block to directly
produce estimated speech signals. The number of convolutional
kernels is set to C' = 76. We also include the spectral magnitude
of the first microphone as an additional input feature.

Table VI compares LBT models and other competitive talker-
independent multi-channel speaker separation methods on SMS-
WSJ in separation metrics as well as word error rate (WER).
For all methods, we list the best reported results, and leave
unreported fields blank. The complex angular central GMM
(cACGMM) with or without minimum variance distortionless
response (MVDR) beamforming corresponds to spatial clusting
methods provided as the baselines of SMS-WSJ. The multi-
channel Conv-TasNet [15] and multi-channel FaSNet with TAC
modules [47] are time-domain end-to-end separation systems.
We also compare our methods with a strong MISO; [17] system.
We can see the same trend with the SMS-WSJ dataset that LBT
models outperform PIT in both separation quality and ASR
accuracy. Our LBT models obtain substantially better results
than FaSNet with TAC modules, multichannel Conv-TasNet, and
MISO;.

IV. CONCLUDING REMARKS

In this study, we have proposed two novel training criteria to
address the permutation ambiguity problem for multi-channel
talker-independent speaker separation. Different from widely-
used PIT, the new criteria organize DNN outputs on the basis of
speaker azimuths and distances relative to a microphone array.
Using MC-CRM, we have investigated the performance of LBT
with different array geometries in various acoustic conditions.

Our experimental results demonstrate that LBT yields signifi-
cantly better separation performance than PIT on two- and three-
speaker mixtures. Evaluation results show that the presence
of room reverberation is essential for distance-based training.
We also develop a joint training strategy to fuse azimuth-based
and distance-based training. The joint model produces superior
separation performance compared to the models trained with
either of the criteria alone. In addition, we show that LBT
outperforms PIT for multi-channel speaker separation in the
presence of a point-source noise.

Location-based training is applicable to arbitrary array ge-
ometries, as long as the same geometry is used in training
and testing. The assumption of a fixed geometry is not very
constraining, and it is satisfied in most of array-based real-world
applications such as Amazon Echo, Google Home, and hearing
aids. Another spatial dimension that can be considered in future
work is speaker elevation relative to a sensor array, which can
be analogously leveraged for output-speaker assignment. In this
scenario, a 3D location-based model can be trained by fusing
the azimuth, distance, and elevation criteria to further improve
speaker separation performance.

When multiple microphones are available, the proposed train-
ing criteria can be applied to other tasks susceptible to the
permutation ambiguity, such as speaker-independent multi-pitch
tracking [48], DNN-based speaker diarization [49] and multi-
source speaker localization [18]. In summary, location-based
training leverages distinct spatial locations of multiple speakers
that exist naturally in physical space, and produces superior
talker-independent speaker separation results free of permuta-
tion ambiguity.
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