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ABSTRACT 

This study investigates robust speaker localization for continuous 
speech separation and speaker diarization, where we use speaker 
directions to group non-contiguous segments of the same speaker. 
Assuming that speakers do not move and are located in different 
directions, the direction of arrival (DOA) information provides an 
informative cue for accurate sequential grouping and speaker dia-
rization. Our system is block-online in the following sense. Given 
a block of frames with at most two speakers, we apply a two-
speaker separation model to separate (and enhance) the speakers, 
estimate the DOA of each separated speaker, and group the sepa-
ration results across blocks based on the DOA estimates. Speaker 
diarization and speaker-attributed speech recognition results on 
the LibriCSS corpus demonstrate the effectiveness of the pro-
posed algorithm. 

Index Terms— robust speaker localization, speaker diariza-
tion, continuous speech separation, microphone array processing, 
deep learning. 

1. INTRODUCTION 
Riding on deep learning, dramatic progress has been made in sin-
gle- and multi-microphone speaker diarization in noisy-reverber-
ant conditions with overlapped speech [1], [2]. Many diarization 
studies address the vanilla problem of who spoke when, and con-
sider speech separation and automatic speech recognition (ASR) 
as downstream tasks [3]–[6]. In the CHiME-5 and 6 challenges [7], 
[8], two popular approaches are the guided source separation tech-
nique [9], which performs spatial clustering and beamforming 
based separation using oracle diarization annotations, and target-
speaker voice activity detection [10], which trains a DNN on a 
combination of spectral features and the i-vector of each speaker 
to directly predict the activity of each speaker at each frame. An-
other popular approach first performs continuous speech separa-
tion [11]–[16], which produces multiple monaural output streams, 
each with no speaker overlap. Then spectral features are extracted 
from the monoaural, separated signals for diarization. Intuitively, 
if the separation result is sufficiently accurate, later diarization and 
recognition would be improved [17]. In this study, instead of using 
spectral information, we investigate the use of spatial information 
for speaker diarization. The motivation is that, if speakers are not 
spatially overlapped and do not move, the DOA information of 
each speaker provides an informative cue for diarization. 

In multi-microphone speaker diarization, using DOA infor-
mation for diarization has been explored in early diarization stud-
ies [1], but seldomly in recent deep learning based studies. In [18], 
a GMM-HMM system is built on GCC-PHAT features for location 
based speaker diarization. In [19], a time difference classsification 
system is built for DOA based diarization. In  [20], GMM-HMM 
based joint spectral and spatial modeling is conducted for 
diarization. In [21], [1], Anguera et al. investiagte GCC-PHAT 
based time difference of arrival (TDOA) for delay-and-sum 
beamforming, and use the TDOA estimates together with the 
spectral features extracted from the beamforming results for 
diarization. In [22], GCC-PHAT based DOA estimation is per-
formed after dereverberation and the DOA results across frames 
are clustered for diarization. Although a lot of research has been 
conducted in using DOA information to improve diarization, we 
point out that many studies extract DOA information directly from 
noisy-reverberant multi-speaker mixtures (or from enhanced or 
separated mixtures that are not sufficiently accurate), which usu-
ally lead to inaccurate time-delay features and DOA estimation. 
For example, the summated GCC-PHAT coefficients would ex-
hibit spurious and broad peaks in noisy-reverberant conditions, 
and multiple peaks if there are competing speakers and directional 
noises [23]. 
Recently, the performance of single- and multi-microphone 

speech enhancement, dereverberation and speaker separation [15], 
[24]–[31] has been dramatically improved using deep learning. 
Such improved enhancement or separation results can benefit 
DOA estimation. In [32], [23], estimated time-frequency (T-F) 
masks of target speakers are utilized to identify T-F units with 
cleaner phase for DOA estimation, producing dramatic improve-
ment over the vanilla GCC-PHAT algorithm. In this context, this 
study addresses the problem of who spoke what at when and 
where, where we first use a state-of-the-art DNN model for block-
online separation, and then uses the separation results to compute 
the DOA of each speaker at each block. The DOA estimates are 
then clustered across blocks to get the diarization and separation 
results of each speaker for ASR. 
The rest of this paper is organized as follows. We present the 

proposed algorithm Section 2, and experimental setup and evalua-
tion results in Section 3 and 4. Section 5 concludes this paper.  

2. PROPOSED ALGORITHMS 
Our system is block-online. In each short processing block, we as-
sume that there are at most 𝐶 (=2 in this study) speakers. Within 
each block, the physical model of a 𝑃-microphone mixture can be 
formulated in the short-time Fourier transform (STFT) domain as 
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𝒀(𝑡, 𝑓) =* 𝑿(𝑐, 𝑡, 𝑓)
!

"#$
+𝑵(𝑡, 𝑓) 

	=* 0𝑺(𝑐, 𝑡, 𝑓) + 𝑯(𝑐, 𝑡, 𝑓)3
!

"#$
+𝑵(𝑡, 𝑓), 

(1) 

where 𝒀(𝑡, 𝑓) , 𝑵(𝑡, 𝑓) , 𝑺(𝑐, 𝑡, 𝑓) , 𝑯(𝑐, 𝑡, 𝑓)  and 𝑿(𝑐, 𝑡, 𝑓) ∈ ℂ% 
respectively denote the complex STFT vectors of the received 
mixture, reverberant noise, and direct-path signal, early reflections 
plus late reverberation, and reverberant image of speaker 𝑐 at time 
𝑡 and frequency 𝑓. In the following sections, when dropping 𝑡 and 
𝑓 from the notation, we refer to the corresponding spectrogram. 
For example, 𝑌& denotes the spectrogram of the mixture at micro-
phone 𝑞, and 𝑆&(𝑐) denotes that of speaker 𝑐. We aim at estimat-
ing 𝑆&(𝑐) for each source at the reference microphone based on 
the multi-channel input 𝒀. Our study assumes a common uniform 
circular array geometry and that the same array is used for training 
and testing. The first microphone on the circle is always consid-
ered as the reference microphone, i.e. 𝑞 = 1. 
At each block, we perform separation (and enhancement) and 

count the number of speakers at each frame. Based on the separa-
tion and counting results, we localize each speaker. Next, we group 
the separation results across blocks based on the localization re-
sults, and feed the grouped separation results into an ASR backend 
for recognition. The rest of this section details each step. 

2.1. MISO-BF-MISO for Block-Online Separation 

We employ a state-of-art speaker separation model, MISO-BF-
MISO [33], for separation at each block. See Figure 1 for an illus-
tration. It contains two multi-microphone input and single-micro-
phone output (MISO) networks, with a time-invariant minimum 
variance distortionless response (MVDR) module in between. 
Both networks are trained using multi-microphone complex spec-
tral mapping [34], [33], where we predict the real and imaginary 
(RI) components of target speech at a reference microphone from 
the RI components of the stacked multi-channel input signals. The 
first network is trained using utterance-wise permutation invariant 
training [26] to estimate the direct-path signal of each speaker at 
each microphone, denoted as 𝑆:&

($)(𝑐), where the superscript indi-
cates that it is produced by the first DNN. The target estimates are 
then utilized to compute spatial covariance matrices for MVDR 
beamforming. The second MISO network takes in the outputs of 
the first network and the beamforming results, denoted as 𝑩𝑭=(𝑐) 
in Figure 1, to enhance each target speaker. The output is denoted 
as 𝑆:&

())(𝑐). More details can be found in [33]. 

2.2. Frame-Wise Speaker Counting 

At each block, the separation module produces one stream of out-
puts for each speaker. For each speaker stream, we need to identify 
frames with active speech for accurate diarization. Based on the 

separation results, one simple but error-prone way is to set a frame-
level energy threshold for voice activity detection (VAD). Rather 
than doing this, we train a MISO based speaker counting network 
to predict the number of speakers at each frame. The input features 
are the stacked RI components of the mixture, plus the magnitude 
features at the reference microphone. As each block is assumed to 
have at most two speakers, we perform three-class classification 
(i.e. 0, 1 and 2 speakers) for frame-wise speaker counting. The 
model is trained using cross-entropy. On our simulated reverberant 
two-speaker mixtures, introduced later in Section 3, the accuracy 
of speaker counting is around 97%, which is reasonably accurate. 
Note that the speaker counting result at each frame is either 0, 

1 or 2 speakers, while for each frame in each of the two separated 
streams, we need to determine whether or not there is active speech 
(i.e. 0 or 1 speaker). We do the conversion following the rules in 
Table 1. We denote the binary VAD results as 𝑣>(𝑐, 𝑡). It is used to 
compute the boundary of each speech segment for source 𝑐. It will 
also be used in later DOA estimation.  

2.3. Mask-Weighted GCC-PHAT for DOA Estimation 

In meeting scenarios, speakers are assumed sitting in their chairs 
and do not move too much. In addition, the speakers are assumed 
not spatially overlapped with respect to the microphone array. In 
such a case, the DOA information of the speakers provides an in-
formative cue for accurate diarization. The challenge here is how 
to perform accurate DOA estimation for each speaker given a 
noisy-reverberant recording with overlapped speech. 
In our recent work on localizing a single target speaker in noisy-

reverberant environments [23], we found that the target speaker 
can be localized very accurately using deep learning based T-F 
masking. The key idea is to use a DNN to identify T-F units dom-
inated by the target speaker and only use these T-F units for local-
ization, as such T-F units contain cleaner phase informative for 
accurate localization. The T-F masks can be accurately estimated 
by using a DNN trained to estimate, say, the ideal ratio mask [27]. 
In other words, as long as we have a separation result of a target 
speaker, we can leverage it to localize that speaker. In this study, 
we extend this localization technique to multi-speaker localization 
in noisy-reverberant conditions. 
Assuming a known array geometry, we first compute the vanilla 

GCC-PHAT coefficients [35] 

𝐺*,*!(𝑡, 𝑓, 𝑘) 

								= Real E
𝑌*(𝑡, 𝑓)𝑌*,(𝑡, 𝑓)-

F𝑌*(𝑡, 𝑓)FF𝑌*,(𝑡, 𝑓)-F
𝑒./)0

1
21"3#,#!(4)H 

= cosL	 ∠𝑌*(𝑡, 𝑓) − ∠𝑌*,(𝑡, 𝑓) − 2𝜋
𝑓
𝑁𝑓5𝜏*,*,

(𝑘)S, 

(2) 

where 𝑝  and 𝑝, ∈ {1,… , 𝑃}  are the indices of a pair of micro-
phones, Real(∙) extracts the real component, (∙)- computes com-
plex conjugate, 𝑁 is the number of discrete-time Fourier transform 

Table 1. Conversion table from speaker counting results to VAD results. 
Speaker counting results Stream 1 active? Stream 2 active? 

0 No No 

1 
Yes if  ∑ "𝑆$%

(')(1, 𝑡, 𝑓)"
'

) ≥

∑ "𝑆$%
(')(2, 𝑡, 𝑓)"

'
)  else No    

Yes if  ∑ "𝑆$%
(')(1, 𝑡, 𝑓)"

'
) <

∑ "𝑆$%
(')(2, 𝑡, 𝑓)"

'
)  else No    

2 Yes Yes 
 Figure 1. MISO-BF-MISO for block-online separation and localization. 

MISO1 

𝑺/(*)(1)	

𝒀	

𝑺/(*)(𝐶)	

𝑩𝑭5 	(1)	MVDR 

MVDR 𝑩𝑭5 (𝐶)	

MISO2 

𝑺/(')(1)	

𝑺/(')(𝐶)	

…	 …	 …	…	

Mask-Weighted 
GCC-PHAT 

Mask-Weighted 
GCC-PHAT 

𝜃8(1)	

𝜃8(2)	
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(DFT) frequencies, 𝑓5 the sampling rate, 𝑘 a hypothesized direc-
tion, and 𝜏*,*,(𝑘)  the hypothesized time delay between micro-
phone 𝑝 and 𝑝′ if the speaker is in the hypothesized direction 𝑘. 𝑓 
indexes from 0  to 𝑁/2 . GCC-PHAT coefficients essentially 
measure the cosine distance between the observed IPD, 
∠𝑌*(𝑡, 𝑓) − ∠𝑌*,(𝑡, 𝑓), and hypothesized IPD, 2𝜋

1
2
𝑓5𝜏*,*,(𝑘), at 

each T-F unit. If the distance is small, it means that the dominant 
source at the T-F unit is from the hypothesized direction and from 
other directions otherwise. The GCC-PHAT coefficients are then 
summated over all the microphone pairs and over all the T-F units 
within the block. The direction 𝑘 producing the highest summa-
tion is considered as the estimated direction.  
Although, in conditions with mild reverberation, GCC-PHAT 

shows reasonable performance, strong directional noises or inter-
ference speakers, and diffuse noises or room reverberation would 
broaden the peaks and create spurious peaks in the summated 
GCC-PHAT coefficients, as interferences are typically in the other 
directions. To sharpen the target peak and suppress other spurious 
peaks, based on the separation result 𝑆:&

())(𝑐) we identify T-F units 
dominated by source 𝑐 and only use them for localization, by using 
a weighting mechanism [23] 

𝑀𝐺= *,*,(𝑐, 𝑡, 𝑓, 𝑘) = 𝑀]*,*,(𝑐, 𝑡, 𝑓)
𝐺*,*,0𝑡, 𝑓, 𝜏*,*,(𝑘)3 + 1

2 , (3) 

where we add the GCC-PHAT coefficient by one and divide it by 
two to normalize it into the range [0,1], and 𝑀]*,*,(𝑐, 𝑡, 𝑓) is a 
weight denoting the importance of the T-F for localizing speaker 
𝑐. The weight is computed as a product of the estimated ratio mask 
at each of the two microphones so that higher weight is given to 
T-F units where speaker 𝑐 is dominant at both microphones 

𝑀]*,*,(𝑐, 𝑡, 𝑓) = 𝑀]*(𝑐, 𝑡, 𝑓)𝑀]*,(𝑐, 𝑡, 𝑓) (4) 
𝑀]*(𝑐) = F𝑆:*(𝑐)F 0F𝑆:*(𝑐)F + F𝑌* − 𝑆:*(𝑐)F3`  (5) 

𝑀]*,(𝑐) = F𝑆:*,(𝑐)F 0F𝑆:*,(𝑐)F + F𝑌*, − 𝑆:*,(𝑐)F3` . (6) 

Similarly to the GCC-PHAT coefficients, the mask-weighted 
GCC-PHAT coefficients are then summated together over all the 
microphone pairs and over all the T-F units within each block. The 
hypothesized direction producing the largest summation is consid-
ered as the estimated direction. Mathematically, 

𝑆𝑀𝐺a(𝑐, 𝑘) = * *𝑣c(𝑐, 𝑡)* 𝑀𝐺= *,*,(𝑐, 𝑡, 𝑓, 𝑘)
2/)

1#$7(*,*,)89

, (7) 

where Ω contains all the microphone pairs, and 

𝜃f(𝑐) = argmax4 𝑆𝑀𝐺a(𝑐, 𝑘). (8) 
We only perform localization for non-silent streams at each 

block. This can be determined based on the VAD result  𝑣>(𝑐, 𝑡). 

2.4. DOA Based Sequential Grouping 

Given the DOA estimate of each speaker at each block, we group 
the separation results across all the blocks according to their DOA 
estimates. As an initial step towards location based diarization, 
this paper uses a simple block-online algorithm to create and up-
date clusters (see Algorithm 1). Basically, we maintain a list for 
existing clusters, each including a DOA estimate. For each stream 
in a new block, we merge it with an existing cluster if their DOA 

estimates are within 5° to each other; and if it is 5° away from all 
the existing clusters, we create a new cluster. 
We emphasize that our diarization system is block-online and 

we do not need to train a DNN model specifically for diarization. 

3. EXPERIMENTAL SETUP 
We validate the proposed algorithms on the LibriCSS dataset [14], 
which contains ten hours of conversational speech data recorded 
by playing LibriSpeech signals through loud speakers in reverber-
ant rooms. The task is to perform conversational speech recogni-
tion in reverberant conditions with a wide range of speaker over-
laps. There are ten one-hour sessions, each consisting of six ten-
minute mini-sessions with speaker overlap ratios spanning from 
0% to 40%, including 0S (no overlap with short inter-utterance si-
lence between 0.1 and 0.5 s), 0L (no overlap with long inter-utter-
ance silence between 2.9 and 3.0 s), and 10%, 20%, 30% and 40% 
overlaps. The recording device has seven microphones, with six of 
them uniformly spaced on a circle with a 4.25 cm radius, and one 
at the circle center. The speaker-to-array distance ranges from 33 
to 409 cm. For speaker diarization and recognition, we consider 
session-wise evaluation, where each ten-minute mini-session sig-
nal is used for evaluation, and segment-wise evaluation, where 
each mini-session signal is pre-segmented by the authors of 
LibriCSS [14] into 5- to 120-second long segments, each with 2 to 
10 utterances from up to 8 speakers. 
Diarization performance is measured using diarization error 

rates (DER). We report ASR performance using concatenated 
minimum-permutation word error rates (cpWER) [8]. It is com-
puted by concatenating all the utterances of each speaker in the 
hypothesis and reference, scoring all speaker pairs, and finding the 
permutation that produces the best WER. Note that the estimated 
number of speakers, 𝐴, could be different from the actual number 
of speakers, 𝐵. When 𝐴 < 𝐵, we align the 𝐴 hypotheses to the ref-
erences and consider all the rest 𝐵 − 𝐴 references to produce de-
letion errors. When 𝐴 > 𝐵, we can only align 𝐵 hypotheses with 
the references and compute the WER. We do not score the rest 
𝐴 − 𝐵 hypotheses. Note that when 𝐴 > 𝐵, it is likely that some 
speakers are splitted into multiple output streams. It is fine if we 
do not score the rest 𝐴 − 𝐵 hypotheses, as the hypothesis aligned 
to a splitted speaker is not produced by using all the speech of that 

𝒳 = []; 
For each block 𝑏 do 
For 𝑐 = 1: 𝐶 do 
    If 𝒳 is not empty do 

- Find from 𝒳 the element with its angle closest to 𝜃+(𝑐) and 
denote its index as 𝑖; 

- If 𝜃+(𝑐) is within 5° from 𝒳[i][0] do 
    𝒳[i][1]+= 𝑆𝑀𝐺6(𝑐, 𝑘); 
𝒳[i][0] = argmax	𝒳[i][1]; 

    Assign stream 𝑐 of block 𝑏 to cluster #𝑖; 
- Else 
    Assign stream 𝑐 of block 𝑏 to cluster #length(𝒳); 
    𝒳. appendHI𝜃+(𝑐), 𝑆𝑀𝐺6(𝑐, 𝑘)JK; 

- End 
    Else 

- Assign stream 𝑐 of block 𝑏 to cluster #length(𝒳); 
- 𝒳. appendHI𝜃+(𝑐), 𝑆𝑀𝐺6(𝑐, 𝑘)JK; 

    End 
End 

End 
Algorithm 1.Pseudocode for block-online DOA-based sequential grouping. 
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speaker for recognition. As a result, the error of splitting a speaker 
into multiple streams would still have an influence on the final 
cpWER, even if the rest 𝐴 − 𝐵 hypotheses are not scored. 
Since LibriCSS only has real-recorded testing data, we simulate 

our training and validation data to train the separation models. Our 
training data includes 76,750 (~129 hours) seven-channel two-
speaker mixtures with mild room reverberation and weak station-
ary noises. The clean speech signals are sampled from the train-
clean-{100,360} set of LibriSpeech. Assuming the array geometry 
of the LibriCSS recording device, we simulate seven-channel 
RIRs based on an RIR generator [36]. The reverberation time is 
sampled from the range [0.2,0.6] s. The average speaker-to-array 
distance is sampled from the range [0.75,2.5] m. The average di-
rect-to-reverberation energy ratio of the RIRs is −0.3 dB with 3.9 
dB standard deviation. The two speaker angles are sampled from 
[−𝜋,+𝜋] and ensured to be at least 10° apart. The energy level be-
tween the two speakers is drawn from the range [−7,7] dB. For 
each reverberant two-talker mixture, we sample an air condition-
ing noise from the REVERB corpus. The SNR between the ane-
choic two-speaker mixture and the noise is sampled from the range 
[10,30]  dB. The labels for training the frame-wise speaker 
counting module are obtained by first applying a pre-trained voice 
activity detector [37] to the spatialized anechoic signal of each 
speaker at the reference microphone, and then combining the VAD 
results to get the number of speakers at each frame. 
Following [14], [38], the run-time block size is set to 2.424 s, 

and block shift is set to 1.2 s. The hypothesized direction 𝑘 in Eq. 
(2) is enumerated from −180° to 180°, at a step of 1°. 
We use two publicly-available multi-channel separation results1 

of LibriCSS for comparison. The first one [39], [14], provided by 
the authors of LibriCSS, is based on T-F masking based MVDR 
with additional gain adjustment. It uses 2.4 s block size and 1.6 s 
block overlap, and assumes that there are at most two speakers at 
each block. The other one [16] is obtained by iteratively perform-
ing sequential multi-frame multi-channel Wiener filter (MCWF) 
and post-filtering. It uses 8 s block size and 4 s block overlap, and 
assumes that there are at most three speakers in each block.  
We use the Kaldi recipe2 [15] to build the diarization and recog-

nition backends for LibriCSS. We use the TDNN-F model used in 

[15] for recognition. It is trained on Librispeech and fine-tuned on 
a reverberated version of Librispeech. An x-vector extractor is 
built using the VoxCeleb data with simulated RIRs [40], [15]. For 
each segment in each separated speaker stream, an x-vector is ex-
tracted and used for offline spectral clustering based diarization 
[15]. We denote this diarization approach as x-vector+SC. 

4. EVALUATION RESULTS 
Table 2 and Table 3 respectively report the DER and cpWER re-
sults on the segment- and session-wise evaluations. When using x-
vector+SC for diarization, MISO-BF-MISO shows better DER 
and cpWER than the other two separation systems (for example in 
the segment-wise case, 18.72% vs. 24.49% and 23.42% in DER, 
and 31.52% vs. 40.36% and 35.03% in cpWER), indicating its 
strong separation performance. When using the proposed block-
online DOA based system to perform diarization on the MISO-BF-
MISO separation results, we observe clearly better DER and 
cpWER results than the offline x-vector+SC system in the seg-
ment-wise case (11.48% vs. 18.72% in DER and 12.4% vs. 31.52% 
in cpWER), while in the session-wise case worse DER is observed 
(12.36% vs. 8.33%) and comparable cpWER is obtained (12.98% 
and 12.87%). This is likely because longer recordings in the ses-
sion-wise case can have more single-speaker segments than in the 
segment-wise case. Such segments can lead to more reliable 
speaker embedding centroids and a more accurate estimated num-
ber of clusters when modelled through offline clustering. These 
results demonstrate the effectiveness of using DNN-estimated 
DOA information for diarization, and indicate the strong potential 
of combining spectral and DOA information for diarization. 

5. CONCLUSION 
We have proposed for continuous speech separation a sequential 
grouping technique using deep learning based speaker separation 
and localization. Evaluation results on LibriCSS suggest that DOA 
information produced by using DNN-estimated target speech pro-
vides an informative cue for speaker diarization. Our future re-
search will improve the block-online clustering module, and inte-
grate spatial and spectral cues for diarization. 

Table 2. DER (%) and cpWER (%) on LibriCSS (Segment-Wise Evaluation). 

Separation Approaches Diarization 
Approaches 

DER cpWER 
Overlap Ratio (%) Avg. Overlap Ratio (%) Avg. 0S 0L 10 20 30 40 0S 0L 10 20 30 40 

Unprocessed 

Offline x-vector+SC [15] 

22.38 15.91 22.06 27.45 32.97 35.30 26.76 35.21 32.07 42.27 51.36 59.98 61.66 47.09 
Mask-Based MVDR [14] 24.58 21.17 22.12 26.31 27.16 24.91 24.49 36.13 35.43 38.35 44.07 45.60 42.55 40.36 
Multi-Frame MCWF [16] 22.21 19.80 22.00 24.98 27.19 23.27 23.42 34.14 30.93 33.50 37.52 41.30 32.78 35.03 
MISO-BF-MISO [33] 19.89 16.56 17.52 18.34 21.95 18.07 18.72 28.84 26.44 29.33 32.69 38.72 33.10 31.52 
MISO-BF-MISO [33] Block-Online DOA Based 11.08 10.48 10.27 11.07 11.72 13.63 11.48 9.84 9.24 10.08 13.04 14.62 17.58 12.4 

Table 3. DER (%) and cpWER (%) on LibriCSS (Session-Wise Evaluation). 

Separation Approaches Diarization 
Approaches 

DER cpWER 
Overlap Ratio (%) Avg. Overlap Ratio (%) Avg. 0S 0L 10 20 30 40 0S 0L 10 20 30 40 

Unprocessed 

Offline x-vector+SC [15] 

9.27 4.98 11.18 16.78 22.00 25.70 15.89 12.72 12.74 21.25 30.73 37.29 44.91 26.61 
Mask-Based MVDR [14] 12.62 11.31 12.04 14.31 16.38 15.92 13.97 18.07 16.14 18.47 21.41 25.34 26.85 21.05 
Multi-Frame MCWF [16] 10.20 11.80 13.84 15.76 18.69 17.33 15.04 14.43 12.18 14.76 15.86 18.06 18.28 15.6 
MISO-BF-MISO [33] 9.20 7.09 7.53 7.19 10.11 8.83 8.33 10.84 9.24 11.05 12.27 16.39 17.42 12.87 
MISO-BF-MISO [33] Block-Online DOA Based 11.95 10.69 11.25 12.22 13.04 14.31 12.36 10.18 9.03 10.89 13.60 16.14 18.05 12.98 

 
 

1Available online at https://zenodo.org/record/4415163/#.YIX-sRP0nNA 
2Available online at https://github.com/kaldi-asr/kaldi/tree/master/egs/libri_css 
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