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Abstract

Question: What constrains Juniperus virginiana encroachment in semi-arid grasslands:
precipitation-based constraints on establishment or dispersal-based constraints on
spread?

Location: Sandhills grassland, Nebraska, USA.

Methods: We tracked juvenile and adult stages of J. virginiana encroachment using
field sampling and remote sensing across a network of 40 sites spanning a wide pre-
cipitation gradient (399-655 mm). Regional patterns of encroachment were then used
to assess the relative support for precipitation-based constraints on establishment
versus dispersal-based constraints on spread in a region transitioning to a more en-
croached state.

Results: Woody encroachment was widespread and we found no evidence that low
precipitation precludes encroachment in the Sandhills. Instead, encroachment pat-
terns were best described by proximity to planted propagule sources. However, levels
of encroachment were highly variable. Encroachment density was low at more arid
sites that lacked nearby stands of planted J. virginiana, and encroachment tended to
increase with proximity to plantings and higher mean annual precipitation, suggesting
that both variables play a role in the rate of encroachment.

Conclusion: Our results indicate that woody encroachment is constrained by disper-
sal in the Sandhills and that planted propagule sources increase grassland vulnerabil-
ity to encroachment, regardless of mean annual precipitation. This may be true for
otherintact grassland regions where barriers to woody plant establishment have been
altered or overcome. A key implication is that programs and policies need to con-
sider encroachment risks from planted propagule sources and how to manage them
to avoid fragmentation of intact grasslands.
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1 | INTRODUCTION

Globally, correlations between woody cover and precipitation in
grassy ecosystems are used to inform predictions of woody en-
croachment potential (Bond et al., 2003; Sankaran et al., 2005;
Staver et al., 2011; Scholtz et al., 2018). Above precipitation thresh-
olds, disturbance regimes are hypothesized to be needed to main-
tain grassland dominance and prevent encroachment, while, little
to no encroachment is expected below these thresholds (Bond
et al.,, 2005; Sankaran et al., 2005; Bond, 2008; Scholtz et al., 2018).
Global vegetation models predict that over one-half of the world's
C, grasslands would transition to a woodland or forest state in the
absence of fire, while little or no encroachment was predicted for
more arid grassland regions (Bond et al., 2005). The corresponding
rationale has been that grasslands in locations below precipitation
thresholds are immune to woody plant transitions (Bond et al., 2003;
Bond et al., 2005; Scholtz et al., 2018), do not require fire to maintain
grass dominance (Sankaran et al., 2005; Higgins et al., 2007; Scholtz
et al., 2018), and are ideal sites for introducing trees without the
consequences of encroachment (Zon, 1935; Griinzweig et al., 2003;
Bastin et al., 2019).

However, grassy ecosystems around the world are exhibiting
shifting baselines that depart from historical analogues (Stevens
et al., 2016; Stevens et al., 2017; Rosan et al., 2019; Garcia Criado
et al., 2020). Woody encroachment in these systems has been at-
tributed to various environmental change drivers, including al-
tered fire and herbivory regimes (Fuhlendorf et al., 2008; Rosan
et al., 2019), rising atmospheric CO, concentrations (Moncrieff
et al, 2014), land use changes (Brown & Archer, 1988; Rosan
et al., 2019), altered temperature and precipitation regimes (Garcia
Criado et al., 2020), nitrogen deposition (Kéchy & Wilson, 2001),
and tree planting (Richardson et al., 1994; Donovan et al., 2018).
These changes question the validity of long-standing assumptions
that trees are at equilibrium with their resources in more arid grass-
lands and motivate alternative explanations of the factors that limit
encroachment.

One alternative hypothesis is that sparse woody cover observed
in many semi-arid grasslands is at levels far below their maximum
potential, and the lack of encroachment reflects dispersal limita-
tions rather than establishment-based constraints. Given interests
in afforestation programs for reducing atmospheric CO, concen-
trations and concerns over the risks to other ecosystem services
when trees spread from plantings into grassy ecosystems (Bond
et al., 2019), frameworks are needed to distinguish between disper-
sal- and establishment-based constraints on encroachment. The uni-
fied framework for biological invasions provides such an approach
(Blackburn et al., 2011). The invasion framework uses demographic
transitions to categorize different points in the invasion process and
differentiates between establishment- and spread-based constraints
on a species' invasion. Dispersal becomes a primary limiting factor of
spread as barriers to establishment are overcome (e.g., due to altered
disturbance regimes, rising atmospheric CO, concentrations, etc.).
Under this framework, no encroachment or the establishment of

only juveniles signals a potential establishment barrier and is one line
of evidence that current woody plant distributions reflect maximum
woody plant potential. In contrast, self-sustaining establishment and
spread of adult and juvenile trees signals an ongoing encroachment
process. In these regions, woody plant abundance is below its maxi-
mum potential but has been geographically limited due to the lack of
establishment opportunities (i.e., dispersal).

Here, we implemented a regional-scale study to determine
whether the distribution of woody plants in the Sandhills grassland
of Nebraska, United States, reflects precipitation-based constraints
on establishment or dispersal-based constraints on spread in a re-
gion transitioning to a more encroached state. Trees were histor-
ically sparse in the Sandhills and limited to steep riparian slopes
(Pool, 1913); however, cultivation of regionally native Juniperus vir-
giniana L. beginning in the early 20th century has resulted in the
introduction of woody propagule sources throughout the Sandhills
(Pool, 1953). The long-standing hypothesis is that sparse woody
cover in more arid portions of the Sandhills reflects a soil mois-
ture barrier to establishment that constrain non-cultivated, self-
propagating woody populations (Zon, 1935; Clements, 1936). This
hypothesis forms the basis for a lack of policy adaptation, because
of an expectation that mean annual precipitation below 508 mm
(often approximated as west of the 100th meridian by natural re-
source agencies; NSTC, 2019) precludes woody encroachment
(Clements, 1936). In this study, we test this hypothesis against the
alternative, dispersal-limited hypothesis based on the distribution
of juvenile and adult J. virginiana encroachers across a wide pre-
cipitation gradient in the Sandhills. In addition, we assess the rel-
ative importance of moisture and propagule availability variables
for explaining encroachment patterns. The Sandhills' history of tree
planting across a wide precipitation gradient provides a unique per-
spective on the risks of introducing woody propagules in grasslands

and has important implications for other grassland regions.

2 | MATERIALS AND METHODS
2.1 | Studysystem

This study was conducted in the 57,778 km? Sandhills prairie ecore-
gion located in Nebraska, United States (Figure 1). The Sandhills is
among the planet's largest intact grasslands and is also the largest
sand dune complex in the Western Hemisphere (Johnsgard, 2005;
Scholtz & Twidwell, 2022). Soils in the Sandhills are remarkably
uniform, well drained, and sandy (78%-98% sand content; Soil
Survey Staff, USDA-NRCS). Differences in soil moisture are largely
driven by mean annual precipitation (Sridhar et al., 2006), which in-
creases along a west to east gradient (399-655mm, respectively)
with an overall mean of 527 mm (WorldClim; Fick & Hijmans, 2017)
(Figure 1). Seventy percent of precipitation occurs during the grow-
ing season (Burzlaff, 1962). Average annual temperature is 9°C, with
monthly low and high temperatures of -4.2 and 22.9°C, respectively
(HPRCC, 2020). The primary land use in the Sandhills is cow-calf
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FIGURE 1 Mean annual precipitation
gradient in the Sandhills of Nebraska,

USA. Stars denote the distribution of 40 ' ] k 1 ' §

public land sites where encroachment by
adult Juniperus virginiana was inventoried
with remote sensing. Solid stars show
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meridian west that were also sampled for
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livestock production with a common stocking rate of 0.3 animal unit
months (AUM) per hectare (Schacht et al., 2011). Dominant grass
species in the Sandhills include Schizachyrium scoparium (Michx.)
Nash, Andropogon hallii Hack., Calamovilfa longifolia (Hook.) Scribn.,
Eragrostis trichodes (Nutt.) Alph. Wood, and Bouteloua hirsuta Lag.
Fire was historically common in the Sandhills and included both an-
thropogenic and lightning-ignited fires (Axelrod, 1985). Mean fire
return intervals ranged from four to eight years prior to European
settlement (Guyette et al., 2012); however, fire exclusion policies
since settlement have greatly reduced fire occurrence (Twidwell
et al., 2020). From 1984 to 2017, only 2% of the Sandhills area
burned by large fires (MTBS Project, 2019).

The Sandhills has not experienced the level of encroachment
that has occurred in recent decades throughout the southern and
eastern portions of the Great Plains (Engle et al., 2008). Yet, the
abundance of woody plants has increased due to encroachment
by J. virginiana and, to a much lesser degree, Pinus ponderosa, a na-
tive tree species associated with more localized increases in abun-
dance (Steinauer & Bragg, 1987; Donovan et al.,, 2018; Fogarty
et al., 2020). Despite being regionally native to the Great Plains and
eastern North America, non-cultivated J. virginiana were rare in the
Sandhills and largely restricted to steep riparian slopes during the
early 20th century (Pool, 1913). Key life-history traits allowed this
fire-sensitive, non-resprouting species to persist within a biome
characterized by 5000-8000years of frequent anthropogenic-
driven fire ignitions (Axelrod, 1985): (1) A broad abiotic affinity, al-
lowing germination and growth in a range of typically inhospitable
environments; (2) prolific seed production — mature trees can pro-
duce 87,000-1,592,000 seed-bearing cones annually (Holthuijzen &
Sharik, 1985); (3) potential for long-distance seed dispersal by birds
(Fogarty et al., 2022); (4) a lifespan potential of 500years (Therrell
& Stahle, 1998); (5) drought tolerance (Eggemeyer et al., 2006); (6)
volatile oils that make Juniperus spp. unpalatable to most herbivores
(Launchbaugh et al., 1997); and (7) dense canopies that displace
herbaceous fuels near the canopy (Engle et al., 1987). However,

these same traits, coupled with reduced fire occurrence, have al-
lowed J. virginiana to encroach previously uninhabitable grasslands.
Moreover, tree-planting programs promoting the establishment of
shelterbelts have assisted in the regional expansion of J. virginiana,
resulting in increased grassland exposure to seed dispersal (Briggs
et al., 2002; Fogarty et al., 2022; Hanberry, 2022).

2.2 | Description of study sites

We selected 40 public land properties to study encroachment across
the aridity gradient of the greater Sandhills ecoregion (Figure 1).
Public lands are distributed across the Sandhills and were among
the earliest sites to introduce J. virginiana propagules (Pool, 1953),
thereby guaranteeing long-term exposure to seed dispersal from
established stands. We excluded portions of public land sites that
occurred outside of the Sandhills ecoregion. Public lands in the
Sandhills range in area from 13 to 46,876 ha; five are greater than
4500 ha. Most sites were wildlife management areas, state recrea-
tion areas, or state parks owned by the Nebraska Game and Parks
Commission (35 sites), the remaining five sites were national wildlife
refuges owned by the US Fish and Wildlife Service (three sites), and
national forests and grasslands owned by the US Forest Service (two
sites).

2.3 | Sampling

2.3.1 | Remote-sensing detection of adult
encroachers

At each study site, we used satellite and aerial imagery repositories
from ArcGIS and Google Earth (1993-2016) to determine the dis-
tribution of adult J. virginiana encroachers. All sites <4500 ha were
exhaustively inventoried (35 of 40 sites) using a series of 500-m
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wide belt transects that spanned the entire length of the site. From
the five remaining large sites (>4500 ha), one site (Crescent Lake
National Wildlife Refuge) was exhaustively inventoried to ensure
that adult encroacher presence/absence was accurately recorded
because trees were extremely rare at this site; the other larger sites
were randomly surveyed over an area corresponding to the same
sampling effort as smaller sites (at least 5% of the total terrestrial
area of each larger public land site). This resulted in equivalent search
efforts across all sites. Remote sensing captured individuals at least
1.6 m tall (based on supplemental field verification), which corre-
sponds with general size classes of Juniperus spp. in the Great Plains
associated with sexual maturity (Owensby et al., 1973; Fuhlendorf
et al., 1996). We also used satellite image repositories to digitize all

planted J. virginiana located within or nearby public land sites.

2.3.2 | Field detection of juvenile encroachers

To determine the extent of the incipient stage of the encroachment
process, we conducted a large-scale field inventory study in June
2018 in the western Sandhills to detect the distribution of juvenile
encroachers (individuals <1.6 m that go undetected from remote-
sensing imagery and generally below size classes required for sexual
maturity) (Figure 1). We selected a subset of 10 sites for field in-
ventory. These sites included the most arid public lands where soil
moisture is expected to function as a barrier to non-cultivated, self-
propagating woody plants. Surveys were conducted following a pur-
posive (i.e., non-random) sampling protocol used for identifying rare
plant species (Palmer et al., 2002; Chiarucci et al., 2018) to search for
the occurrence of juvenile encroachers.

At each site, we established a minimum of three 100-m? plots in
areas deemed high candidates for encroachment (e.g., in areas with
adult J. virginiana, planted stands, and based on previous research
of the region; Donovan et al., 2018). Search efforts were consistent
among all sites. At each site, plots were surveyed using a series of 20
5-m wide belt transects that spanned the entire 100-m length of the
plot area. Field surveyors searched within the herbaceous layer for
seedlings as well as individuals above the herbaceous layer but un-
detectable by remote-sensing imagery (individuals <1.6 m in height).
The presence and height was recorded for all juvenile J. virginiana
encroachers less than 1.6 m in height.

2.4 | Statistical analysis

Response variables recorded for each of the 40 study sites consisted
of the presence (binary outcome) and density of adult encroach-
ers. Of these sites, adult encroachers were only absent from two.
Therefore, statistical analyses were conducted to investigate cor-
relates of encroacher density. Adult encroachment data contained a
single outlier; further investigation of this site showed that high J. vir-
giniana densities were due to rapid re-encroachment following tree
removal, which is associated with higher tree densities compared to

the initial encroachment process (Fogarty et al., 2021). We therefore
removed this site from statistical analyses.

Linear models were used to describe the effects of moisture
and propagule availability on the density of encroaching adults
(Box-Cox-transformed to meet normality assumptions) across a
network of 39 sites in the Sandhills. Several measures of moisture
availability have been used to describe soil water limitations on
trees, and we considered several of these measures: mean annual
precipitation (MAP) (WorldClim; Fick & Hijmans, 2017), effective
rainfall (ER) (CGIAR-CSI; Trabucco & Zomer, 2018), and aridity
index (Al) (CGIAR-CSI; Trabucco & Zomer, 2018). Because these
predictor variables are highly correlated, we only used the vari-
able that had the highest correlation (r) with the response variable
in further analyses. We also used proximity to planted J. virgini-
ana stands (J.PROXIMITY) as a predictor variable to examine the
role of propagule availability on the density of encroaching adults.
J. virginiana has a male:female sex ratio around 1:1 and planted
stands are known propagule sources (Stoeckler & Slabaugh, 1965;
Vasiliauskas & Aarssen, 1992; Fogarty et al., 2022). In the Sandhills,
planted J. virginiana stands (e.g., shelterbelts) are common, often
represent the sole propagule source for a site, and have been
shown to contribute to encroachment (Donovan et al., 2018;
Fogarty et al., 2022). Proximity to planted J. virginiana was calcu-
lated in ArcGIS as the mean Euclidian distance of a site's terrestrial
area (divided in 30-m? grid cells) to the nearest planted J. virginiana
stand, following the methods of Benson (2013).

Candidate models were created to test for both singular and
additive effects of moisture and propagule availability on the den-
sity of adult encroachers (TREE.DENSITY; Box-Cox transformed).
Model support was compared using Akaike's Information Criterion
corrected for small sample sizes (AICC) with model assessments
based on AAIC_ values (values 0-2 indicate strong relative support)
and AIC_ weights. Variable effect size was assessed using averaged
parameter estimates, standard errors, and confidence intervals.
All statistical analyses were conducted using R version 3.5.1 (R
Core Team, 2018) with the geoR (Ribeiro et al., 2020), AICcmodavg
(Mazerolle, 2017), and bbmle (Bolker & Team, 2017) packages.

3 | RESULTS

Contrary to predictions that mean annual precipitation would
preclude woody encroachment at more arid grassland sites, en-
croaching woody plants were detected at the most arid sites that
contained nearby propagule sources (Figure 2). We detected ju-
venile and adult J. virginiana encroachers far below the perceived
mean annual precipitation threshold of 508 mm (Figure 2). Adult
encroachers were observed on 38 of 40 sites and across a wide
range of mean annual precipitation conditions (from sites with
425 to 605mm). This study estimated a total of 269,729 adult
encroachers across the 40 public land sites, of which 46,899 oc-
curred below the hypothesized mean annual precipitation thresh-
old (Appendix S1). The two sites that did not exhibit encroachment
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FIGURE 2 Operating hypothesis showing climate-limited portion of the Sandhills (tan) from disturbance-dependent portion (pink) and
associated interpretations of woody plant encroachment (WPE) compared to observed patterns of Juniperus virginiana encroachment in the
Sandhills, Nebraska, USA. Adult encroachment data reflect encroachment from 1993 to 2016 detected using satellite image repositories.
Juvenile encroachment data reflect the presence/absence of J. virginiana<1.6 m in height and were collected in the field in 2018.

by adult J. virginiana did not contain on-site propagule sources and
on average were 1.3 and 4.2 km from the nearest planted prop-
agule source (Appendix S1). All other sites were located in areas
with nearby propagule sources and contained adult encroachers

(Appendix S1). Twenty-three sites contained planted J. virginiana
propagule sources.

Juvenile and adult encroachers were detected on the most
arid site (425mm mean annual precipitation) with nearby stands of
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planted J. virginiana (Crescent Lake National Wildlife Refuge). We
detected juvenile encroachers on seven of 10 sites in the more arid
portion of the Sandhills where field sampling occurred (Figure 2).
Of the three sites where we did not detect juvenile encroachers,
two sites (Shell Lake WMA and Valentine NWR) had low densities
of adult encroachers, while one site (Crescent Lake WMA) that was
4.2 km from the nearest J. virginiana propagule source did not exhibit
encroachment by juvenile or adult J. virginiana (Appendix S1).

The density of adult encroachers was best explained by proxim-
ity to planted J. virginiana and mean annual precipitation (Table 1).
Proximity to planted J. virginiana was the only predictor variable in-
cluded in both top models (AAIC <2) (Table 1). Densities of J. vir-
giniana tended to be higher on public land sites that were in close
proximity to planted J. virginiana stands (mean = 3.6 trees ha™)
compared to sites with proximities greater than 2 km from planted
J. virginiana (mean = 0.2 trees ha™!) (Table 2, Figure 3). Among the
moisture availability variables considered, mean annual precipitation
had the strongest correlation with the density of adult encroachers,
although this variable only received strong support when considered
alongside proximity to planted J. virginiana. Densities of encroaching
adults tended to be higher on sites with greater mean annual pre-
cipitation, whereas densities were relatively low on more arid sites
(Figures 2, 3). However, the relationship between mean annual pre-
cipitation and density was highly variable (95% confidence interval
overlapped zero; Table 2) and more arid sites often had encroach-
ment densities similar to more mesic sites when propagule sources

were nearby (Figure 3).

4 | DISCUSSION

Globally, low abundances of woody plants in arid and semi-arid
grassland ecosystems have been interpreted as evidence that these
areas have little to no potential for woody encroachment (Bond
et al, 2003, 2005; Sankaran et al., 2005; Lehmann et al., 2014;
Scholtz et al., 2018). However, our results show no support that
sparsely distributed woody plants in the Sandhills are reflective
of establishment-based constraints. Instead, our results support

an alternative hypothesis that the distribution of woody plants in

TABLE 1 Model selection results for models used to describe
the density of adult encroachers (Box-Cox-transformed) on public
land sites from 1993 to 2016 in the Sandhills, Nebraska, USA

Model K AAIC? oi°

TREE.DENSITY ~J. 4 0.0 0.60
PROXIMITY+MAP

TREE.DENSITY ~J.PROXIMITY 3 0.9 0.39

TREE.DENSITY ~MAP 3 9.6 0.01

NULL 2 16.9 <0.001

2Number of parameters in the model.

PDifference in AIC_ value among model and the most strongly
supported model.

“AIC_ Weight — relative strength of support for model.

the Sandhills reflects dispersal-based constraints on spread in a re-
gion below its maximum woody plant potential (Collins et al., 2021;
Hanberry, 2022). Even at the most arid sites, well below proposed
precipitation thresholds, we found juvenile J. virginiana as well as
demographic transitions to adult trees when planted propagule
sources were nearby. These results are supported by ecophysiologi-
cal studies that have shown juvenile and adult J. virginiana to be well
suited to survive in the Sandhills' semi-arid conditions (Eggemeyer
et al., 2006; Bihmidine et al., 2010; Msanne et al., 2017).

Mean annual precipitation, in tandem with propagule availability,
is therefore more likely associated with the rate of encroachment in
the Sandhills, rather than the potential for encroachment to occur.
Rates of encroachment tend to decrease with mean annual precip-
itation (Fuhlendorf et al., 2008; Stevens et al., 2016) and moisture-
limited systems are therefore expected to require longer periods of
time for woody plants to spread before providing evidence of a max-
imum potential (Archer et al., 1988; Wakeling et al., 2012; Collins
et al., 2021). This process may require decades to millennia as bar-
riers to establishment and spread are overcome. For instance, the
introduction of domestic livestock dispersal agents in southwestern
US grasslands is associated with a 200-year period of unprece-
dented encroachment (Brunelle et al., 2014). Based on these find-
ings, differentiating slow rates of encroachment (i.e., ecosystems in
transition) from evidence of a maximum potential would alter ex-
isting vulnerability models and predictions of the extent of grass-
land loss this century (Bond et al., 2005; Scholtz et al., 2018; Bastin
et al., 2019; Wonkka et al., 2019). Globally, encroachment is wide-
spread across a broad precipitation gradient (Stevens et al., 2017)
and has already exceeded its proposed maximum potential in some
moisture-limited regions elsewhere in the world (e.g., South Africa:
Stevens et al., 2016; Brazil: Rosan et al., 2019).

Our finding that encroachment was strongly associated with
proximity to planted propagule sources indicates that propagule
availability plays an important role in limiting encroachment and that
J. virginiana planting has increased encroachment pressure in eco-
systems like the Sandhills where non-cultivated woody plants are
rare. This finding complements those of a recent assessment that
documented a rapid range expansion of J. virginiana in the west-
ern Great Plains aided by tree plantings, particularly shelterbelts
(Hanberry, 2022). These are important findings because J. virginiana
is extensively planted in the Great Plains (Ganguli et al., 2008) and
tree-planting programs have been, and continue to be, rationalized
based on the benefits provided by shelterbelts (Zon, 1935; Brandle
etal., 2004). Yet, J. virginiana is among the most notorious encroach-
ing species in North America and is associated with severe social-
ecological consequences in grasslands (Briggs et al., 2002; Twidwell
etal., 2013; Bielski et al.,2017; Zou et al., 2018), which should be con-
sidered as risks of introducing propagule sources. Similar examples
can be found globally where native and non-native woody species
are viewed as inconsequential to grassy ecosystems but then en-
croach later on (Richardson & Rejmanek, 2011; Nackley et al., 2017).
A key lesson from invasion biology is that propagule pressure and
residence time drive woody invasion (Richardson et al., 2015). While
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TABLE 2 Parameter estimates (8 + SE) and confidence intervals
(Cl) from top supported models used to describe the density of
adult encroachers (Box-Cox-transformed) on public land sites from
1993 to 2016 in the Sandhills, Nebraska, USA

Lower CI Upper CI
Predictor p+SE (2.5%) (97.5%)
J.PROXIMITY -0.0011 + 0.0003 -0.0016 -0.0005
MAP 0.0096 + 0.0054 -0.0013 0.0205
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FIGURE 3 Relationship between the density of adult
encroachers and (top) proximity to planted Juniperus virginiana
and (bottom) mean annual precipitation. Shaded bands are 95%
confidence intervals. Encroachment data were collected from
39 public land sites in the Sandhills, Nebraska, USA, and reflect
encroachment from 1993 to 2016 detected from satellite image
repositories.

this is consistent with the general patterns observed in the Sandhills,
itis in contrast to assumptions of equilibrium between regionally na-
tive woody plants and climate and the notion that tree-planting pro-
grams can disregard the risks of encroachment in moisture-limited
systems (Griinzweig et al., 2003; Bastin et al., 2019).

Regional assessments that consider both establishment and
spread as limiting factors are needed to better understand the
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extent to which the world's remaining grassland regions are vulner-
able to woody encroachment. Consistent trends of encroachment
by adult plants are expected in systems where trees are far below
their maximum potential (e.g., the Sandhills), including systems with
slow rates of encroachment. These systems are vulnerable to en-
croachment and require disturbance (e.g., fire) to prevent increases
in woody plant abundance. Assumptions of equilibrium between
woody plant distributions and climate are expected to under-predict
encroachment potential in these systems and lead to unexpected
trajectories of grassland loss (e.g., Stevens et al., 2016). Grass-woody
systems at equilibrium (or dynamic equilibrium) with climate are ex-
pected to exhibit relatively stable woody plant communities with no
consistent trends of recruitment-based encroachment (as opposed
to canopy expansion) (Browning et al., 2008). In the Sandhills, wide-
spread encroachment by juvenile and adult J. virginiana indicates a
lack of barriers to establishment and signals heightened grassland
vulnerability to encroachment. Given widespread encroachment
documented in this study, beyond a priori expectations, future stud-
ies on demographic bottlenecks across environmental gradients
will provide important information for understanding the relative

changes in vulnerability across the Sandhills grassland.

5 | CONCLUSIONS

Confusion over the roles of climate and disturbance on the distribu-
tion of grassy ecosystems have proven to have long-standing con-
sequences for grassy ecosystems worldwide (Veldman et al., 2015;
Pausas & Bond, 2018). A misunderstanding of the drivers that sus-
tain grasslands has led to a disregard of the potential for encroach-
ment to occur and its consequences. The debate over the potential
for encroachment to occur in the Sandhills stems from a view that
a climate climax drives as the primary determinant of grassland
distribution (Clements, 1936; Borchert, 1950). Here, we found no
evidence that a precipitation threshold precludes encroachment in
the more arid portions of the Sandhills. Instead, our findings show
that propagule sources play an important role in grassland vulner-
ability to encroachment, regardless of mean annual precipitation.
This may be true in other intact grassland regions where barriers to
encroaching woody plants have been altered. Key implications are
that (1) tree-planting programs should no longer be implemented
under the notion that spread will not occur; (2) policies and pro-
grams need to consider the location of propagule sources and how
to manage them to prevent encroachment from fragmenting intact
grasslands; and (3) future research that improves our scientific un-
derstanding of the extent to which the world's remaining grasslands
are vulnerable to woody encroachment will be increasingly impor-
tant for conservation in light of the global changes and pressures

affecting these ecosystems.
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