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ABSTRACT

A resilient and robust positioning, navigation, and timing (PNT) system is a necessity for the
navigation of autonomous vehicles (AVs). A Global Navigation Satellite System (GNSS) provides
satellite-based PNT services. However, a spoofer can temper the authentic GNSS signal and could
transmit wrong position information to an AV. Therefore, an AV must have the capability of real-
time detection and feedback-correction of spoofing attacks related to PNT receivers, whereby it
will help the end-user (the AV in this case) to navigate safely even if the GNSS is compromised.
This paper aims to develop a deep reinforcement learning (RL)-based turn-by-turn spoofing attack
detection method using low-cost in-vehicle sensor data. We have utilized Honda Driving Dataset
to create attack and non-attack datasets, develop a deep RL model, and evaluate the performance
of the RL-based attack detection model. We find that the accuracy of the RL model ranges from
99.99% to 100%, and the recall value is 100%. Furthermore, the precision ranges from 93.44% to
100%, and the fl score ranges from 96.61% to 100%. Overall, the analyses reveal that the RL
model is effective in turn-by-turn spoofing attack detection.

Keywords: Reinforcement Learning, Cybersecurity, GNSS, GPS, Autonomous vehicle, and
Spoofing attack
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INTRODUCTION

With the advancement of communication and automation technologies, the landscape of
roadway mobility systems is changing radically [1]. Ground vehicles are becoming more
automated as well as connected between themselves and with the transportation infrastructure.
These advances provides a traveler an opportunity to efficiently move from one location to another
location and use their time for personal use while traveling. Positioning, navigation, and timing
(PNT) services are the key to the navigation of autonomous vehicles (AVs) [2]. Global Navigation
Satellite System (GNSS) provides satellite-based PNT services. The US government-owned
GNSS is known as the global positing system (GPS) [3]. GPS is a set of satellites that the US
Department of Defense launched in 1970 for military use. However, GPS was known initially as
Navigation Satellite Timing and Ranging (NAVSTAR). Such as GPS, several countries have their
own satellites for providing PNT services. In the US, GPS provides two different services:
Standard Positioning Service (SPS) and Precision Positioning Service (PPS) [3]. As PPS service
is available for government and military use, it is expected that autonomous vehicles will use SPS,
(also known as civilian GPS) for their PNT services.

AVs require reliable and real-time PNT services. However, the robustness and reliability
of GNSS-based PNT services depend on secure and strong satellite signals and radio
communications at the receiver end. The long-distance between satellites and GNSS receivers
reduces the signal strength and decreases GNSS-based PNT services' reliability. The GNSS signal
is also susceptible to natural vulnerabilities, which are known as unintentional vulnerabilities [4].
For example, a GNSS signal can be unavailable to an autonomous vehicle while passing through
a tunnel. Even ceilings in garages and thick clouds in the sky could reduce the GNSS signal
strength and interrupt the PNT services. In urban areas, tall buildings cause multipath propagation,
which causes radio frequency interference and degrades GNSS signal strength [4]. Besides these
vulnerabilities, jamming and spoofing are the common intentional threats to GNSS-based PNT
services [2], [4]. A jamming attack makes the authentic GNSS signal unavailable to a receiver by
flooding the receiver with a high-power signal. On the other hand, a spoofing attacker can temper
an authentic GNSS signal and transmit wrong position information to an AV. Even an AV’s
destination and route choice can be corrupted, and the vehicle could be misguided turn-by-turn to
an unwanted destination. This will compromise the safety of AV users. Currently, an attacker can
use low-cost software-defined radios to conduct such a spoofing attack [5].

This paper develops a deep reinforcement learning (RL) approach using data from multiple
low-cost in-vehicle sensors of an AV to detect a sophisticated turn-by-turn spoofing attack. The
presented RL approach will be a new addition to the existing GNSS spoofing attack detection
approaches without directly analyzing the GNSS signal characteristics and avoiding IMU/INS-
based solutions because of their inability to provide accurate position and acceleration information.
The rest of the paper is arranged as follows. In the Related Work section, different spoofing attack
techniques, along with state-of-the-art detection methods are presented. Information regarding
reinforcement learning is also included. The next section (Methodology) includes data description
and data processing, attack model, and generation of turn-by-turn attack dataset, and also
introduces the proposed reinforcement learning-based GNSS spoofing attack detection method.
The results and conclusion section presents the proof of effectiveness of the developed GNSS
spoofing attack detection method.
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RELATED WORK

Spoofing is the most sophisticated type of intentional attack on GNSS wherein the AVs receive
manipulated GNSS signal. Spoofing attacks can be classified into four types: replay spoofing
attack (RSA), forgery spoofing attack (FSA), estimation spoofing attack (ESA), and advanced
spoofing attacks (ASA) [6]. In an RSA, an attacker delays the GNSS signal transmission that
introduces an error in the position estimation of the AVs. Alternatively, in an FSA, an attacker
manipulates the estimated position of an AV by adjusting one or multiple signal parameters (e.g.,
phase difference) of the GNSS signal. In ESA, an attacker generates a fake GNSS signal matching
the actual GNSS signal information. Finally, in an ASA, an attacker combines multiple spoofing
attack techniques, which makes the attack very hard to detect. In this paper, a turn-by-turn scenario
of a spoofing attack is studied where the attacker’s fake signal matches all the turns of the real
route. The turn-by-turn attack is a type of FSA in which an AV could be misguided turn-by-turn
to an unwanted destination. As it is a sophisticated spoofing attack, an FSA is hard to detect.
Although many studies exist related to spoofing attack detection of GNSS using encryption
mechanisms, codeless-cross-correlation measures, signal statistics analyses, and antenna-based
strategies [4], [7]-[11], existing literature is reviewed related to machine learning and in-vehicle
sensors because of their relevance to this study's focus.

Use of In-vehicle Sensor Data for Spoofing Attack Detection

Researchers use in-vehicle inertial navigation system (INS) and inertial measurement units (IMU)
sensors for spoofing attack detection strategies as these sensors are resilient against signal spoofing
attacks and provide a low-cost solution. Gyroscope and accelerometer are two examples of IMU
sensors. A spoofing attack can be detected by comparing IMU-based acceleration and GNSS-based
acceleration [12]. However, this approach is not suitable for autonomous ground vehicles as they
have a low vehicle dynamics signature compared to the aircraft. In [13], Manickam and O’Keefe
have compared position information from the accelerometer and gyroscope with the position
information from GNSS to flag a spoofing attack [13]. They also analyzed different types of IMU
combined with different GNSS receiver grades to evaluate their performance for attack detection.
Researchers also used INS to keep track of the position of a vehicle, and eventually, these methods
help to detect GNSS spoofing attacks [14], [15]. Even only the dead reckoning approach has been
used to determine the speed, orientation, and position of a vehicle using gyroscope and
accelerometer data. However, these in-vehicle sensors provide less reliable position, speed, and
orientation information because of scale factor and non-orthogonality errors [14], [16], [17]. In
addition, these errors accumulate over time. Thus, there is no study that uses multiple low-cost in-
vehicle sensors’ data of an autonomous ground vehicle to detect a turn-by-turn spoofing attack.

Machine Learning Models for Spoofing Attack Detection

With the advancement of machine learning (ML) and DL models, several studies investigated the
potential of sophisticated spoofing attack detection using these models [15], [18]. ML and DL
concepts started from Artificial Intelligent (AI). An Al-enabled machine is a machine that has the
capability to mimic the intelligence of a human brain. ML is nothing but a computer program that
can learn from the relationship between input data and the feedback based on the error between
the predicted data and real data. Neural Network (NN) is an example of machine learning, whereas
DL is an advanced version of machine learning. In the DL model, additional layers can be added
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to neural networks so that the model can learn more details while training. Each layer of a DL
model consists of many neurons. On the other hand, a shallow ML model contains very few (two
or three) layers. Logistic regression and support vector machines (SVM) are the two examples of
shallow ML [4]. A shallow ML model is not able to learn complex real-world problems with non-
linear relationships. Multi-layer perceptron (MLP), Restricted Boltzmann Machine (RBM), Deep
Belief Network (DBN), Deep Boltzmann Machine (DBM), Autoencoder, Convolution Neural
Network (CNN), and Recurrent Neural Network (RNN) are the popular DL models. MLP is the
simplest deep neural network and contains an input layer, multiple hidden layers, and an output
layer. An MLP can be fully connected if all neurons are connected with each other. In RBM, a
Boltzmann distribution is used for each of the probability distributions, and all neurons are binary
variables. DBN consists of multiple unsupervised networks, such as autoencoder or RBMs. DBM
is similar to DBN as it consists of multiple RBMs. An encoder and a decoder network are the key
components of an automatic encoder or autoencoder network. An encoder network uses training
data to extract latent features, and a decoder network utilizes the extracted features to reconstruct
the input. In a CNN, each neuron is connected with some of the next ones instead of all of them,
allowing it to exploit the properties of two-dimensional data structures. Along with these models,
one-class support vector machine (OCSVM) is used for anomaly detection. OCSVM can identify
most of the nonlinear boundaries separating class of data due to the flexibility of its models [19].
RNN models work best for sequential data or time-series data due to the capability of using past
input data for future prediction.

Borhani-Darian et al. used the Cross Ambiguity Function (CAF) feature to develop a deep
learning approach for detecting spoofing attacks [20]. For the model development purpose, they
have combined an MLP and two classes of CNNs, which include a complex CNN and a simple
CNN, to provide a probability-based attack classification. The deep learning approach was trained
and tested using simulated data and proved the potential for detecting spoofed GNSS signals. In
another study, Sun et al. [15] used singular values of the wavelet transformation feature for the
spoofed and actual GPS signal to train three different attack classifiers: (i) SVM; (ii) probabilistic
neural networks (PNN); and (ii1) decision tree (DT). Later, they fused the individual classification
outcome of these three models with a K-out-of-N rule, which increases the detection accuracy on
average by 3.75%, 5.06%, and 12.36% of the SVM, PNN, and DT, respectively. In addition, their
K-out-of-N decision rule showed a fewer number of false-positives than each of those three
classifiers. Panice et al. presented a GPS spoofing attack detection approach for an Unmanned
Aerial Vehicle (UAV) using SVM [18]. They have used SVM to estimate the state of a UAV and
identify anomalies of its current location. This approach constructs a decision boundary through
training using the data from the actual state of the UAV. The uniqueness of this approach is that it
provides a probability if it misses any detection, which is necessary for aviation applications.
However, if a spoofer has complete knowledge of a UAV’s trajectory data, their detection system
could not detect the attack. Instead, it gives high position errors. On the other hand, Shafiee et al.
presented a new MLP-NN approach for GPS spoofing attack detection [21]. They have selected
three features from the GPS signal pattern—i.e., early-late phase criterion, delta criterion, and total
levels of signal— to train and test the performance of their MLP-NN approach. They found 98.7%
accuracy for detecting spoofed signals; moreover, the computation time was less than 0.5 seconds.
They also compared the performance of K-Nearest neighbor (KNN) and naive Bayesian classifier
with the MLP-NN to prove the efficacy of their method. They found that MLP-NN provides a high
accuracy compared to the other three classifiers. All of these above-mentioned DL and ML-based



O 0O NOULL B WN B

A A D BPADEDEDDEWWWWWWWWWWNNNNNNNNNNNRRRPRRRRRRPR
OO, WNPFPOOONOOTULLEEWNPFPOOOLONOULEAEWNPRPOOOLONOULPEWNE,EO

Dasgupta, Ghosh, and Rahman

attack detection strategies detect the attacks in the GNSS signal level. In addition, vehicle position
information has not been used to detect GNSS spoofing attacks.

In this study, an RL-based spoofing attack detection strategy using multiple low-cost in-
vehicle sensor data of an autonomous ground vehicle is presented, an approach that has not been
explored previously. Human bias could be incorporated into deep learning (DL) models as it
follows a supervised learning approach. On the other hand, the primary benefit of deep
reinforcement learning (RL) is that it teaches machines what to do by interacting with the
environment. Thus, deep RL models allow a machine to be more efficient and robust compared to
a machine that is trained solely through supervised training. Thus, our deep RL-based spoofing
attack detection framework could be robust compared to DL models as it teaches machines how
to detect an attack by interacting with AV sensors.

RL is also a type of ML that contains two primary components: an agent and an
environment. An agent is the sole decision-maker and learner in an RL and interacts with an
environment that is a physical world and tries to find the best possible action to increase its
performance. To evaluate the performance, a reward function is used. The reward can be positive
as well as negative. Hence the agent is self-trained by reward and punishment (negative reward).
During each step, the agent receives the state of the environment and chooses an action; after
performing the action on the environment, the agent receives a positive or negative (punishment)
reward. The objective of the agent is to maximize the total reward value. In order to choose the
action, the agent either uses exploration or exploitation. Exploration is the agent will choose a
random action from the sample space and gather more information, whereas exploitation utilizes
the current information and make the best decision based on that. The main benefit of RL is that it
teaches machines what to do by interacting with the environment. Human bias is incorporated into
the model in the case of deep learning or supervised learning. Deep reinforcement learning (DRL)
is the combination of RL and DL. Deep RL allows the system to be more efficient and robust than
a system trained solely through supervised training. The state value function and quality
function(Q-value) are used by the RL algorithms. DL is used to estimate the best Q value. Deep Q
Network (DQN) and double DQN models are the most used DL method for RL. Along with DQN
and double DQN, attention models and generative adversarial network (GAN) DL methods are
also used with RL. However, to the best of the authors’ knowledge, there is no study that uses a
deep RL approach to detect a sophisticated turn-by-turn spoofing attack. The contribution of this
study involves the development of the deep RL strategy using a real-world Honda Driving Dataset.

METHOD

The developed GNSS spoofing attack detection framework utilizes a deep RL-based approach and
uses data from multiple low-cost in-vehicle sensors of an AV to detect a sophisticated turn-by-turn
spoofing attack. This section contains data description and data processing, attack model,
generation of turn-by-turn attack dataset, and reinforcement learning-based detection model
development subsections.

Dataset Description and Data Processing

This study uses a real-world driving dataset —i.e., the Honda Research Institute Driving Dataset
(Honda dataset) [22], to develop an RL-based GNSS spoofing attack detection model. The Honda
Dataset includes different vehicle sensor data for suburban and urban driving scenarios, which
makes it more appropriate to be used for developing a spoofing attack detection model.
Specifically, this dataset is suitable for training an AV GNSS spoofing detection model for the

6
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urban environment in which the AV is more vulnerable. It is a challenge to detect the shift in
location in the urban scenario because of compromised GNSS information. The dataset contains
data of 104 hours of real human driving in the San Francisco Bay area with a vehicle equipped
with AV sensors. Figure 1 presents a sample driving route of the vehicle.

Driving Rout

" - Goigle My M

F iguré 1. Sample driving routes from Honda Research Institute Driving Dataset

The vehicle was equipped with cameras, LIDAR, GPS, inertial measurement unit (IMU),
and control area network (CAN). A GeneSys Eletrinik GmbH Automotive Dynamic Motion
Analyzer with DGPS is used for sensing GPS, accelerometer, and gyroscope data at 120 Hz.
However, the gyroscope and accelerometer data are not included in the Honda Dataset. The CAN
output includes the throttle angle, brake pressure, steering angle, yaw rate, and speed sampled at
100 Hz. The 104 hours driving data includes multiple trips on different routes and on different
days. A single-day’s driving data is used in this study (route shown in Figure 1). It has been
confirmed that the selected dataset successfully mimics an urban traffic scenario. The selected data
are further processed. As different sensors have different data collection frequencies (e.g., 100Hz,
120Hz), all the sensors’ data are synchronized with the GPS data, using GPS time as the reference
time. To obtain steering angle, speed, and brake paddle data at the exact time as GPS reference
time, interpolation is performed between the two closest observations in which the GPS
observation exists. The synched data are then further resampled at 100 Hz.

The developed deep RL model is trained using GPS and Inertial Measurement Unit (IMU)
sensors data. The major advantage of using IMU data over LiDAR point cloud data or camera
images/videos is that the size of combined data of GPS and IMU is insignificant (as all are
numerical data) compared to camera and LiDAR. Therefore, even if the deep RL model is trained
with driving data of multiple days, the storage requirement is significantly low. In addition, a pre-
trained deep RL model is deployed inside the vehicle for attack detection. Furthermore, an
autonomous vehicle will already have enough storage and computational capability to process all

7
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types of in-vehicle sensor data, including a huge amount of LiDAR and camera data. Thus, the
required processing power for deploying the developed method will add minimal cost as it only
needs to run the pre-trained deep RL model for attack detection. Moreover, the model is taking
input of the sensor’s immediate previous timestamp. Thus, no memory is needed to store or buffer
sensor data for the prediction model. Note that the presented computational time in the manuscript
is calculated by running all the experiments in a workstation equipped with dual Intel(R) Core(TM)
17-6700K CPU @ 4.00GHz processor with 64GB DIMM DDR4 Synchronous 2133 MHz (0.5 ns)
RAM memories.

This study uses latitude and longitude information from GPS along with steering wheel
angle (deg), speed (ft/s), and relative accelerator pedal position (%) from CAN to generate a dataset
for training and testing a deep RL model for detecting GPS spoofing attacks. The GPS latitude and
longitude information are used to calculate the distance traveled between two consecutive
timestamps using the Haversine formula [23] discovered by James Andrew in 1805, which is
universally used to calculate the great circle shortest distance between two pairs of coordinates on
a sphere, as shown in Equation 1:

d=2r sinl(\/sin2 (%) + cos(@4) cos(p,) sin? (@)) (D

where d is the distance in meters between two points on the Earth's surface; r is the Earth's radius
(6378 km); ¢4 and ¢, are the latitudes in radians; 14 and i, are the longitudes in radians of two
consecutive time stamps. Though the Earth is slightly elliptical, among Haversine, Spherical law
of cosines, and Equirectangular approximation methods, the Haversine formula is the most popular
method to calculate the shortest distance between two locations on the Earth due to its better
accuracy and less computational complexity.

Table 1 presents a sample raw sensor data from Honda Dataset. In addition, Figure 2
presents sensor data that we have used for creating the training and testing dataset to develop a
deep RL model.

TABLE 1 Sample Data from Honda Dataset

R GPS Speed Steering Wheel Accelerator Pedal
Unix Timestamp f cs o
Latitude Longitude (ft/s) Angle (deg) Position (%)
1488224209.42714 37.393 -122.077 0 -57.8 0
1488224209.43716  37.3939 -122.077 0 -57.8 0
1488224209.44696  37.3939 -122.077 0 -57.8 0
1488224209.45698  37.3939 -122.077 0 -57.8 0
1488224209.46698  37.3939 -122.077 0 -57.8 0
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Attack Model

In this study, we have created a turn-by-turn [5] spoofing attack, which is a practical and
sophisticated GNSS spoofing attack on AV localization and navigation. In order to create such an
attack, a spoofer requires the destination and route information of the target AV. During this attack,
a spoofer generates wrong GNSS signal and makes the AV GNSS receiver lock onto the spoofed
signal. An AV believes the spoofed signal to be an authenticated GNSS signal. After taking control
over the GNSS signal, a spoofer creates a spoofed route matching all the turns of the actual route.
Thus, it is a challenge to detect such anomalies. An example of such an attack is shown in Figure
3. Here, the blue-colored line is the suggested route created at the beginning of a trip based on the
origin and destination information by an AV. When the AV reaches location A, the spoofer takes
over the AV GNSS, and it shifts the location from A to B. Due to the change of current location,
the navigation application creates another route from B to destination, whereas the AV’s actual
location is A. Now, the spoofer keeps updating the AV’s location in such a way that vehicle will
believe that it is moving along the black-dashed route; however, in reality the AV is moving along
the orange route. Both the black and orange routes have the same number of turns and the same
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type (right or left) of turns. As aresult, the AV ends up at a spoofed destination without recognizing
that it is under attack.

m—— Suggested route
Actual Location
—— Spoofed Location

location shift

[ One block } _

Spoofed
Destination

-

Google My Maps
Figure 3 Turn-by-turn GNSS spoofing attack

Generation of Turn-by-Turn Attack Dataset

An attack dataset is created for developing the GNSS spoofing attack detection model. A total of
ten different attack datasets are created to train and test data in the RL model. Note that all attack
datasets shown in Figure 4 include multiple turn-by-turn attacks. One of the basic features of the
turn-by-turn attack is the location shift. In these datasets, the location shifts range from one block
to a couple of blocks (50m to 180m) shift of location (See Figure 3). To generate the location shift,
a random number generator is used to generate a location shift value between 50m and 180m.
Figure 4 presents location shift values for all ten datasets. The X-axis represents in which
observation the location shift (or attack) is happening, and the Y-axis represents the value of
location shift. Scenario 1 contains the highest number of attacks, and scenario 10 contains the least
number of attacks in a single scenario.

10
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Reinforcement Learning Based Detection Model Development

As shown in Figure 5(a). The threshold value obtained from the trained RL model is compared
with the differential distance (DD), which is calculated using real-time GNSS data from an AV.
The absolute difference between the predicted and calculated distance is defined as DD. If real-
time DD is greater than the threshold, then an attack is detected; otherwise, no attack is detected.
Figure 5(b) presents an RL model, which consists of two components: (i) agent and (ii)
environment. We have defined the RL problem inside the environment. Here, AV sensor data
(GPS and CAN) are used to calculate and predict the distance traveled by an AV between two
consecutive timestamps. The agent will adjust the threshold value and compare it so that the reward
is maximized.

An agent is designed to observe the environment and trained so that it behaves optimally
in a given environment state, which results in a partial or complete solution. To achieve the optimal
solution, an agent interacts with the environment in discrete time steps. An agent's primary purpose
is to choose actions that will maximize the overall future reward. The agent is always modifying
its policy in order to discover the optimal one. The proposed RL method is represented in Figure
5 as a flow diagram. In this study, we use the “keras-rl” reinforcement learning framework, which
is built on keras, as a base. Note that, TensorFlow backend is used in keras.

In our deep RL framework, the environment consists of an AV equipped with various
sensors. The input sensor data consists of latitude, longitude, speed, steering wheel angle, and
relative acceleration pedal position (%). We consider that the AVs GNSS receiver is compromised
during the spoofing attack; however, CAN output—i.e., speed, steering wheel angle, and relative
acceleration pedal position— are not affected by the attacker. Distance traveled by an AV between
two consecutive timestamps is calculated using the GNSS coordinates as formulated in Equation
1. We have also predicted the distance traveled by the AV using a deep neural network (DNN)
using the CAN sensor data. The training data also include the current GNSS trust status—i.e.,
whether the GNSS is compromised or not. The DNN predicts the distance traveled by an AV
between two consecutive timestamps using CAN and GNSS data.

DNN is an artificial neural network (ANN). It consists of multiple layers of interconnected
single or multiple neurons in an input layer and an output layer. Figure 6 depicts the DNN
architecture, which is used in this study. The input layer has 4 neurons corresponding to three input
data from CAN and one from GNSS, which is the distance traveled between two consecutive
timestamps. There are three fully interconnected hidden layers with the number of neurons of 16,
8, and 4. The output layer has one neuron, and the output data is the predicted distance traveled
between two consecutive timestamps by an AV. A rectified linear unit (ReLU) is used as the
activation function for hidden layers.

12
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The DNN model is trained and validated using uncompromised (Honda Dataset)
acceleration, steering wheel angle, speed, and GPS coordinate-based distance traveled data. These
raw sensor data are normalized between 0 and 1 prior to training. We have used 241,989 (70%)
observations for training and 103,709 (30%) observations for validation. The DNN model
hyperparameters—i.e., number of layers, inner layers width, inner layers neurons, epochs,
optimizer, loss function, and activation function—for inner layers are selected by a trial-and-error
approach. Table 2 provides optimal hyperparameters values of the DNN model. To find a set of
optimal hyperparameters, we have used Mean Absolute Error (MAE) metric for the loss function,
which helps to identify if there are any model underfitting and overfitting issues. After validating
the DNN model, we find that Root Mean Square Error (RMSE) and maximum absolute prediction
error for the DNN are 1.18 x 10 m and 0.07m, respectively. Figure 7(a) presents a comparison
between the ground reference and predicted distance traveled (i.e., location shift) for the validation
result that shows that the model can predict the distance traveled with a low prediction error, and
Figure 7(b) shows the absolute error profile between the ground reference and the predicted data.
The profile shows that except for one single observation of an absolute error of 0.07m for all the
observations, the absolute error is less than 0.035m. Hence the error in predicting the distance
traveled by the DNN is model is low.

Input

Input Layer 1 Layer2 Layer3 OQutput
layer  (16) (8) (4) , layer

Hidden Layers

Figure 6. DNN-based distance traveled prediction model architecture

TABLE 2 DNN Model Hyperparameters

Hyperparameters Value
Number of layers 5
Inner layers width 3
Number of neurons each layer 4,16,8,4,1
Number of epochs 1000
Optimizer ADAM

14
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Figure 7 (a) Comparison of ground reference (Ground Truth) data and predicted data; and
(b) Absolute error profile

Agent

We have presented an RL architecture comprised of a single-agent system. Deep Q-
Networks (DQN) agent in “keras-r]” is used as an agent. There are four steps inside the agent: (i)
get the ground reference; (i) calculate reward; (iii) training phase; and (iv) select next action. After
obtaining the ground reference GPS trust status and the differential distance from the environment,
an agent calculates the reward function. However, an agent acts based on an optimal policy. The
state of this agent is a threshold value, which is defined based on the maximum prediction error
for distance traveled between two consecutive timestamps. If the assigned threshold value is lower
than the differential distance, it detects that the GPS is compromised. Later, the agent will also
check with the ground reference data; if the ground reference matches with the agent detection, a
positive reward (+1) is given. On the other hand, if an agent’s detection outcome does not match
with the ground reference, then a higher negative reward (-100) is given. We assign a much higher
negative reward to prioritize detecting an attack.

Deep Q-learning Algorithm

We have used a Deep Q-learning algorithm for the deep RL framework. Q in Q-learning
represents quality, and learning represents an objective to choose a policy that will maximize the
total reward. The Q-learning function takes random actions outside the current policy and learns
the detection policy. For this reason, Q-learning is called an off-policy RL algorithm. It also creates
a Q-learning table Q[s,a] (it represents the current state (s) of the environment) and corresponding
rewards for each possible action (a), which is Q-value. The algorithm chooses an action (a) with
the highest reward, which is called Q-score. The Q-value is defined as formulated in Equation 2.

Q(star) = Q(s,ar) + a(reyr + ¥ maxQ(serq,a) — Q(Se, ar)) (2
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where, s; is the time state, a; is the action state, « is the learning rate, r is the reward, and y is the
discount factor. Therefore, we have calculated the current Q-values based on the current and next
states and actions, learning rate, and discount factor. The objective of the algorithm is to optimize
the total reward intake and Q-learning by using the experience from current and next states and
actions. The discount factor can take a value between 0 and 1, which regulates the importance of
the immediate and future reward.

Figure 8 presents the details of our deep RL framework. Here, a DNN model is also used
to approximate the Q-learning function. The input for training the DNN is the predicted DD
obtained from the environment. This DNN architecture consists of four layers. The first layer is
the input layer, and then there are two fully interconnected hidden layers with 24 neurons in each
layer. The last layer is the output layer, which has three neurons. The input neuron accepts the
differential distance, and the output layer can give one of the three following outputs: (i) increase
threshold; (ii) decrease threshold; and (iii) keep the threshold the same. As described before, we
have also used the same “keras-rl” reinforcement learning framework. TensorFlow backend is used
in keras, and DQN agent is used in keras-rl. Only data for scenario 2 from the attack dataset is
used for the model training. The DNN model parameters are listed in Table 3.

Agent Reward, r Environment

A

DNN

>
Take Action, a

(Update Threshold)

Input Layer1l Layer2 Output
Layer (24) (24) Layer
P

a

Hidden

Layers GPS Trust State

Figure 8. Deep Q-learning Algorithm

Table 3. RL Model Hyperparameters

Hyperparameters Value
Number of layers 4
Inner layers width 2
Number of epochs 10000
Optimizer ADAM
Loss function Mean Average Error
Activation function ReLU

16
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RESULTS AND DISCUSSION

The performance of the deep RL framework is evaluated based on accuracy, precision,
recall, and f1 score metrics using nine test datasets (scenarios 1, 3,4, 5,6, 7, 8, 9, 10; see Figure
4). The accuracy, precision, and recall are calculated using the confusion matrix generated from
each model considering equal class weights. The precision-recall curve for the developed RL
model is presented in Figure 9, which presents the model performance. A high precision value
indicates fewer false positives, i.e., fewer cases of detecting a non-attack observation as an attack,
and a high recall value indicates fewer false negatives, i.e., fewer cases of failing to detect an attack
correctly. So, it can be concluded that the developed deep RL-based spoofing attack detection
model performs well as it shows high precision and recall value. Figure 10 presents a grouped
stacked bar chart showing the testing results for all nine scenarios. Here, X-axis represents attack
scenarios, and Y-axis represents the number of observations. For each scenario, the left stacked
bar shows the number of observations for both location shift (Attack) and for those where the
GNSS data is not compromised (Attack free). It is evident from the plot that the total number of
observations is the same for all the scenarios. The right stacked bar represents the true positive,
i.e., successfully detecting an attack, false positive (red), and true negative i.e., correctly detecting
a non-attack observation. For all the scenarios, our proposed method successfully detected the
attacks. For scenarios 4 and 7, no false positive is detected. It shows that the RL model can
successfully detect an attack as soon as the attack is created—i.e., location shift occurred.
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£ 06 I
w
g
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Figure 9 Precision-recall curve for the testing datasets
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Figure 10. Detection results

Table 4 provides the recall, precision, accuracy, and f1-score for nine test datasets, which
represent nine scenarios. The recall value for all the test cases is 100%, which indicates that the
developed model can detect all the attacks. The precision values range from 93.44% (scenario 6)
to 100%. 100% precision value means that no false attack was detected. Precision less than 100%
means there are instances where the model detected an attack incorrectly—i.e., there is no attack,
and an attack is detected. The model achieved the lowest accuracy of 99.99% for seven attack
scenarios, and it achieved the highest accuracy of 100% for 2 scenarios. The f1-score ranges from
96.61% to 100%, which means the false positives and false negatives are very low. Based on the
performance for all the attack scenarios, we conclude that the deep RL model is effective in
detecting GPS turn-by-turn spoofing attacks.

TABLE 4 Model Evaluation Results

Attack Scenario Recall Precision Accuracy fl-score
1 100% 98.57% 99.99% 99.28%
3 100% 98.29% 99.99% 99.14%
4 100% 100% 100% 100%
5 100% 98.57% 99.99% 99.28%
6 100% 93.44% 99.99% 96.61%
7 100% 100% 100% 100%
8 100% 97.72% 99.99% 98.85%
9 100% 97.43% 99.99% 98.70%
10 100% 94.44% 99.99% 97.14%
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Note that the threshold obtained in this study is based on the dataset used to train the model.
The training dataset includes different types of left turns, right turns, and lane-change maneuvers,
as well as deceleration and acceleration behavior. As the dataset features cover different types of
driving maneuvers, it can be concluded that the trained model can handle any real-world driving
pattern for any large urban area. Here, the objective of this study is to show the effectiveness of
the deep RL method to detect GNSS spoofing attacks. The proposed model can be further trained
using data from different types of vehicles (passenger car, bus, heavy trucks) and from various
driving scenarios (rural, urban) to increase its robustness.

In this study, we assumed that any in-vehicle sensors (sensor data) other than the GNSS (or
GPS) are not compromised. However, in-vehicle sensors’ data, which are used in this study, can
be altered by an attacker if an AV’s in-vehicle network between electronic control units (ECUs) is
compromised. Controller area network (CAN), CAN with flexible data-rate (CAN-FD), and
Flexray are examples of the existing in-vehicle network[24]. Each of these in-vehicle networks
provides an interface for ECUs, which is connected with different sensors, such as GPS, IMU
(accelerometer for our study), steering wheel angle sensor, and speedometer. However, CAN,
CAN-FD and Felxray are prone to different types of intentional attacks,[25] such as denial of
service attack (DoS), impersonation attack, replay attack, amplitude-shift attack [26], [27]. In this
way, the security of in-vehicle sensors and data privacy can be compromised. There are three
popular strategies to create protection against such security and privacy issues: (i) cryptography,
(i1) firewall, and (iii) intrusion detection system (IDS) [28]. Cryptography technique is used for
protecting data privacy and security through encryption and decryption of sensitive data, such as
vehicle ID and location information of a vehicle. For example, in symmetric key cryptography
[29] [30], the same key is used for both encryption and decryption of data, and in asymmetric
cryptography,[31] two different keys are used for encryption and decryption of data, which
provides additional security. On the other hand, a firewall [32] technique uses multiple layers of
security to control the incoming and outgoing data through the in-vehicle network. The intrusion
detection system strategies include CAN bus attack detection using signal voltages and inter-signal
arrival times at ECUs [33][34][35]. In addition, ML methods are also used utilizing CAN data-
frame data to detect anomalies within in-vehicle network [36][37][38][39][40]. Although the
security of in-vehicle sensors and data privacy as well as protection strategies against such issues
are briefly discussed here, a complete survey of this topic is beyond the scope of this paper.

CONCLUSIONS

An AV must have the capability of real-time detection and feedback-correction of GNSS
spoofing attacks related to PNT services, whereby it will help the AV to navigate safely during an
attack. This paper developed an RL-based turn-by-turn spoofing attack detection model using low-
cost in-vehicle sensor data. In this study, Honda Driving Dataset is used to create ten attack and
non-attack datasets, an RL model is developed, and the performance of the RL model is evaluated
for GNSS spoofing attack detection. The accuracy of the RL model ranges from 99.99% to 100%,
and the recall value is 100%. However, the precision ranges from 93.44% to 100%, and the fl
score ranges from 96.61% to 100%. Thus, the developed RL model detects all the attacks, and
there are some instances where attacks are detected incorrectly. Overall, the analyses show that
the RL model is effective in turn-by-turn attack detection. In our follow-up study, we will explore
the effectiveness of the RL-based approach for other types of sophisticated spoofing attack
detection.
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