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Abstract— This paper presents a sensor fusion-based Global 

Navigation Satellite System (GNSS) spoofing attack detection 

framework for autonomous vehicles (AVs) that consists of two 

strategies: (i) comparison between predicted location shift—i.e., 

distance traveled between two consecutive timestamps—and 

inertial sensor  based location shift in addition to monitoring of 

vehicle motion states—i.e., standstill/ in motion; and (ii) detection 

and classification of turns (left or right) along with detection of 

vehicle motion states. In the first strategy, data from low-cost in-

vehicle inertial sensors—i.e., speedometer, accelerometer, and 

steering angle sensor—are fused and fed to a long short-term 

memory (LSTM) algorithm to predict the distance an AV will 

travel between two consecutive timestamps. The second strategy 

combines k-Nearest Neighbors (k-NN) and Dynamic Time 

Warping (DTW) algorithms to detect a turn and then classify left 

and right turns using steering angle sensor output. In both 

strategies, the GNSS-derived speed is compared with speedometer 

output to improve the effectiveness of the framework presented in 

this paper. To prove the efficacy of the sensor fusion-based attack 

detection framework, attack datasets are created for four unique  

spoofing attack scenarios—turn-by-turn, overshoot, wrong turn, 

and stop, using the publicly available real-world Honda Research 

Institute Driving Dataset (HDD). Analyses conducted in this study 

reveal that the sensor fusion-based detection framework 

successfully detects all four types of spoofing attacks within the 

required computational latency threshold. 

 

Index Terms— Global Navigation Satellite System (GNSS), 

Autonomous vehicle, Cybersecurity, Spoofing attack, LSTM. 

I. INTRODUCTION 

UTONOMOUS vehicles (AVs) require accurate, 

reliable, and continuous real-time localization 

information from a Global Navigation Satellite System 

(GNSS), which is known as Global Positioning System (GPS) 

in the United States,  to perform their autonomous, 

navigational, security, and safety-critical applications. The term 

"GNSS" refers to a positioning, navigation, and timing (PNT) 

service based on satellites. In the United States, two levels of 

services are provided by GPS, i) Standard Positioning Service 

(SPS) and ii) Precision Positioning Service (PPS). While the 

SPS service is available for civil, commercial, and scientific 

use, a more secure PPS service is only used by the government 

and the military [1]. Current AVs use SPS signals. It is a 

reasonable assumption that commercial AVs will continue to 

use SPS signals in the future, as PPS is not accessible for 
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commercial use. However, SPS has a positioning error at the 

meter level, and the lowest error for an SPS system is 1m. Thus, 

SPS alone is not suitable for an AV. For navigation purposes, 

an AV requires more precise location information— i.e., the 

positioning error should be much less than that of current SPS. 

Currently, an AV uses a differential global positioning system 

(DGPS) to correct SPS localization. In DGPS, the position error 

can be as low as 0.01m [2]. It corrects the position using a 

reference station on top of the regular GPS signal. In the rest of 

the paper, if we refer  GNSS or GPS,  we mean DGPS. 

As the GNSS depends on satellites and radio 

communications, GNSS signal strength is subject to physical 

degradation due to natural or unintentional vulnerabilities, and 

intentional threats [3]. By the time GNSS signals reach AV's 

GNSS receiver end after passing through the Earth's 

atmosphere the signal strength deteriorates and the signal 

strength further degrades by reflected by the high-rise buildings 

that introduce position inaccuracy and interfering with 

continuous GNSS signal availability [4] [5]. The GNSS signal 

can also become disrupted due to natural or unintentional 

vulnerabilities, such as the absence of GNSS signal because of 

walls and ceilings in garages and tunnels, and signal 

degradation due to multipath and radio frequency interference 

[6], [7]. Jamming and spoofing are the two categories of 

intentional threats. In jamming, a high-power GNSS signal is 

transmitted to prevent an authentic signal to reach the target 

GNSS receiver. Among the foregoing, spoofing is the most 

sophisticated type of attack, as an attacker can tamper the 

authentic GNSS signal structure and transmit inaccurate 

location information to a target AV. A target AV trust the 

manipulated signal and update its navigation route based on 

spoofed signal [8]. To a sophisticated GNSS spoofing attack, a 

spoofer requires a target vehicle's destination, route, and sensor 

information. In this study, we only consider sophisticated 

spoofing attacks. 

One of the primary purposes of manipulating a GNSS 

receiver during a spoofing attack is to tamper the GNSS signal 

so that a target AV is potentially misdirected to the wrong 

destination, compromising the safety and security of AV 

passengers as well as the transportation of goods. Generally, an 

expensive GNSS signal generator is required to perform a 

spoofing attack. However, the development of low-cost 

software-defined radios (SDR) has made GNSS spoofing 
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attacks easier to carry out [9]. Unfortunately, due to the 

dynamic nature of spoofing attacks, there is no single attack 

detection method that can detect all types of GNSS spoofing 

attacks [10]. Therefore, researchers are  concentrating more on 

developing methods that make a spoofing attack more difficult 

to achieve.  

In this study, a sensor fusion based GNSS spoofing attack 

detection framework, which consists of two strategies, is 

developed and evaluated to detect GNSS spoofing attacks. 

Motivated by the resilience of the inertial sensors against 

spoofing attacks and robustness of deep learning (DL) 

algorithms, in the first strategy, data from low-cost in-vehicle 

sensors—i.e., speedometer, accelerometer, and steering angle 

sensor—which are not only available in commercial AVs but 

also in the human-driven vehicles, are fused and fed to a long 

short-term memory (LSTM) algorithm to predict the distance 

an AV will travel between two consecutive timestamps. This 

predicted distance is then compared with the GNSS-derived 

distance to detect an attack. Along with predicting distance, an 

GNSS-based motion state is compared with AV’s speedometer 

data. If they do not match with one another, an attack is detected. 

The second strategy includes detection and classification of left 

and right turns in addition to the AV’s motion state. An AV’s 

turning maneuvers and motion states using in-vehicle sensors 

are then compared with corresponding GNSS derived data to 

further detect an attack, which makes the framework more 

robust. Note that both strategies run simultaneously. The GNSS 

spoofing attack detection framework developed in this paper is 

targeted at AVs that navigate through a structured roadway (e.g., 

surface roadway network).  

The rest of the paper is arranged as follows. Section II 

discusses the contribution of this paper. Section III reviews 

existing spoofing attack detection methods and identifies the 

research gap. Section IV introduces a real-world dataset, which 

is used to create the attack dataset, and presents the data 

preparation approach. GNSS spoofing attack models are 

presented in section V. Section VI presents our GNSS spoofing 

attack detection framework, the attack detection efficacy 

against different spoofing attack scenarios, and a comparison of 

attack detection performance between a baseline framework 

and our framework. After that, computational complexities of 

our framework are described in section VII. Finally, Section 

VIII presents the concluding remarks and future research 

direction. 

II. CONTRIBUTIONS OF THIS STUDY 

The presented framework in this paper is a new addition to 

the existing GNSS spoofing attack detection approaches 

because the detection framework can be deployed for different 

road navigation scenarios that use the location level information 

without directly analyzing the GNSS signal characteristics, 

whereas most of the existing approaches detect a spoofing 

attack by analyzing the GNSS signal itself. We have developed 

a single robust GNSS spoofing attack detection framework, 

which consists of two strategies: (i) comparison between 

predicted location shift—i.e., distance traveled between two 

consecutive timestamps—and inertial sensor  based location 

shift in addition to monitoring of vehicle motion states—i.e., 

standstill/in-motion; and (ii) detection and classification of 

turns (left or right) along with detection of vehicle motion states. 

Our study differs from the existing studies as we have used the 

speedometer, steering wheel angle, and accelerometer data to 

predict the location shift using an artificial recurrent neural 

network (RNN) architecture, i.e., LSTM. The predicted 

location shift of an AV is then compared with the GNSS-based 

location shift to detect a spoofing attack. Moreover, a turn 

detection strategy is used to further detect more sophisticated 

attacks, such as  a wrong turn attack. The primary contribution 

of this study is that none of the existing research uses predicted 

location shift and turn detection techniques for developing 

sophisticated spoofing attack detection framework utilizing 

GNSS information (latitude, longitude, and turn type) and in-

vehicle sensor data without analyzing the GNSS physical signal 

characteristics. Although existing INS/IMU-based GNSS 

spoofing attack detection approaches derive vehicle position or 

compare a single in-vehicle sensor output with GNSS output, 

the framework presented in this study fuses multiple sensors 

and uses an LSTM network to predict a vehicle's location shift, 

which has not been explored by any researchers so far. 

III. RELATED WORK 

    The techniques of existing spoofing attack detection methods 

can be classified into four categories: (i) encryption 

mechanisms; (ii) codeless-cross-correlation measures; (iii) 

signal statistics analyses; and (iv) antenna-based methods [3]. 

The most common GNSS anti-spoofing methods use encryption 

algorithms to secure the GNSS signals. Although the military 

commonly uses the encryption mechanism approach to secure 

GNSS receivers, this is not a cost-effective solution due to its 

high infrastructural, computational, and management cost. The 

codeless-cross-correlation measures use the correlation among 

unknown encrypted GPS L1 P(Y) code signal from multiple 

receivers to detect a spoofing attack [19], [20]. Note that L1 is 

the primary GPS carrier signal, and P(Y) code is the precision 

or secure code. The effectiveness of such a method also depends 

on the cost of new instruments and associated signal processing 

complexity when the number of cross-checking GNSS 

receivers is increased. The GNSS signal statistics analysis-

based approaches use different signal features, such as received 

signal strength (RSS) [21], spatial coherency [22], pseudo-

range measurements, time of advent, and signal parameters 

estimation to detect GNSS spoofing attacks. Antenna-based 

methods include detecting a spoofing attack by using multi-

antenna GNSS, reduced inertial sensor system (RISS), and 

inertial navigation system (INS) integration [23] to perform 

beat carrier-phase measurement processing using two antennas 

[24]. A single antenna combined with RISS can also be used to 

detect spoofing attacks [25]. These approaches require 

computationally expensive GNSS signal processing algorithms 

and sophisticated antenna arrays to ensure high spoofing attack 

detection accuracy [3], [26].  

Besides these approaches, GNSS spoofing attacks can also 

be detected by comparing vehicle acceleration from IMU with 

the GNSS derived acceleration according to [10]. Although this 

approach performs well for an aircraft, it is not suitable for 

surface vehicles due to the low vehicle dynamics signature. In 

[12], the location information derived from IMU sensors (i.e., 

accelerometer and gyroscope) is compared with the GNSS-
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derived location for spoofing attack detection. Furthermore, 

inertial navigation system (INS) has also been used to monitor 

the position of a vehicle for detecting GNSS spoofing attacks 

[11][12]. INS devices use gyroscope and accelerometer data 

and calculate the position, orientation and speed of a vehicle 

using dead reckoning without any input from GNSS. However, 

INS derived location is less accurate as the measurements from 

inertial sensors accumulate bias, scale factor, and non-

orthogonality errors over time. In addition, multiple antennas 

are used to identify spoofing attacks through cross-checking 

GNSS signals  [24].  

In addition to the above-mentioned approaches, the 

development of machine learning (ML) and DL algorithms has 

recently increased for spoofing attack detection. In [14], a 

Multi-Layer Perceptron (MLP), a Complex Convolution Neural 

Networks (CNN), and a simple CNN are used to detect spoofed 

GNSS signals that demonstrate the potency of using deep neural 

networks for spoofed signal detection. In [16], the authors 

provide a decision fusion with the K-out-of-N decision rule-

based method along with wavelet transformation coefficients. 

In [15], a Support Vector Machine (SVM) has been used for 

state estimation and detecting an attack on unmanned aerial 

vehicles based on it. The early-late phase, delta, and signal level 

are used as features together with the K-Nearest Neighbor 

(KNN) and naïve Bayesian classifier to detect spoofing attacks 

[17]. However, these ML and DL algorithms are used to detect 

an attack in the signal level, and no research has been conducted 

to predict the distance a vehicle can travel within a timeframe 

and detect an attack based on that. Only INS-based spoofing 

attack detection approaches, where an INS-based vehicle's 

position was compared with the GNSS-based position, are 

closely related to our study. However, position information 

from INS sensors is not reliable due to the error propagation of 

inertial sensors over time. Thus, none of the existing approaches 

used the location domain information to detect the spoofing 

attack. 

Several existing companies [27]–[32] offer commercial 

GNSS jamming and spoofing detection services. These 

companies utilize proprietary algorithms to detect anomalies in 

the received GNSS signal. These attack detection technologies 

either use costly local precise atomic clock or the results of 

analysis of GNSS signal characteristics for spoofing attack 

detection. Thus, the attack detection framework, which is 

presented in this paper, is different from existing solutions as 

we use low-cost in-vehicle sensors for GNSS spoofing attack 

detection. In addition, detailed detection efficacy results of the 

commercial solutions are not available in the public domain. 

Therefore, it is unknown how these commercial technologies 

perform when used exclusively for an AV’s navigation 

protection against GNSS spoofing and jamming attacks in a 

dynamic and mobile roadway traffic environment. 

Our study differs from the previous studies as we have used 

the speedometer, steering wheel angle data, and accelerometer 

data to predict the location shift using an LSTM network. The 

predicted location shift by the A.V. is then compared with the 

GNSS-based location shift to detect any spoofing attack. 

Moreover, a turn detection strategy is used to further detect 

more sophisticated attacks such as wrong turn attacks. Our 

study is novel because none of the existing research uses 

predicted location shift and turn detection techniques for 

developing sophisticated spoofing attack detection framework 

utilizing GNSS information (latitude, longitude, and turn type) 

and in-vehicle sensor data without analyzing the GNSS 

physical signal characteristics.  

IV. DATA PREPARATION 

    The Honda Research Institute Driving Dataset (HDD) [33] is 

used in this study to develop and evaluate the GNSS attack 

detection framework. The HDD contains data from the camera, 

LiDAR, GNSS, inertial measurement unit (IMU), and 

controller area network (CAN) of a conventional vehicle, and it 

is collected from suburban and urban roadways as well as 

highways within the San Francisco Bay Area. As AVs are 

equipped with cameras, IMU, and GNSS, the HDD is suitable 

for generating attack datasets for an AV technologies for AVs. 

Figure 1 shows a sample route from the HDD.  

 

Fig. 1. An example of GNSS traces from the HDD. 

 

Using an Automotive Dynamic Motion Analyzer (ADMA) 

from GeneSys Eletronik GmbH and a DGPS, the GNSS signals 

are recorded in HDD at a rate of 120Hz. The acceleration 

(m/s2), steering wheel angle (deg), rotational speed of the 

steering wheel (deg/s), vehicle speed (ft/s), brake pressure 

(kPa), and yaw rate (deg/s) are collected from different sensors 

and recorded from vehicle’s CAN bus at 100Hz. For our 

detection framework development and evaluation, the latitude 

and longitude, relative accelerator pedal position (%), steering 

wheel angle, and speed data are extracted from the HDD. Note 

that relative accelerator pedal position (%) represents the 

acceleration of an AV. We have then synchronized the 

extracted HDD by keeping GNSS UNIX timestamp as a 

reference by interpolating between the two closest 

observations. We have also calculated the perceived location 

shift, i.e., the distance traveled between two consecutive 

timestamps, with data from GNSS using the Haversine formula 

(see equation (1)) [34]: 
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𝑑 = 2𝑟 𝑠𝑖𝑛−1(√𝑠𝑖𝑛2 (
𝜑2 − 𝜑1

2
) + 𝑐𝑜𝑠(𝜑1) 𝑐𝑜𝑠(𝜑2) 𝑠𝑖𝑛2(

𝜓2 −  𝜓1

2
))        (1) 

 

where d is the distance in meter between two points on the 

Earth's surface; r is the Earth's radius (6378 km); 𝜑1 and 𝜑2 are 

the latitudes in radians; and 𝜓1  and 𝜓2  are the longitudes in 

radians of two consecutive time stamps. 

V. ATTACK MODELS 

   The developed GNSS spoofing attack detection framework is 

evaluated against four sophisticated spoofing attack scenarios, 

which are: (a) turn-by-turn attack; (b) overshoot attack; (c) 

wrong turn attack; and (d) stop attack. A turn-by-turn attack is 

a sophisticated type of spoofing attack because the spoofer has 

an AV’s route and destination information which allows the 

spoofer to manipulate the GNSS signal in such a way that it is 

very hard to detect any change in the route. In this type of 

spoofing attack [35], a spoofer takes over a target AV's GNSS 

receiver and changes the AV's current location, resulting in a 

location shift between an AV's location before and after the 

attack. Due to a change in an AV's current location, the 

navigation application creates a new route to reach the 

destination, and an AV believes in the spoofed location, follows 

the newly created wrong route, and ends up in a wrong, possibly 

unsafe location instead of the desired destination. As a spoofer 

also try to make a realistic location shift, it is not possible for 

an AV to find any difference in speed and distance between 

actual and spoofed routes, which make this attack more 

believable.  

 Figure 2(a) illustrates a turn-by-turn attack in which an 

actual route after attack from an origin to a destination is shown 

in blue, an AV’s ground truth route is shown in green, and the 

AV’s perceived route, which matches the original route turn-

by-turn, is shown in red. Thus, a spoofer creates a wrong route 

matching the new route's number of turns and guides the vehicle 

to a wrong destination by compromising the AV's GNSS 

receiver.  

    Figure 2(b) shows an overshoot attack [36]  where after 

taking over an AV’s GNSS receiver, a spoofer keeps sending 

the same location information. As a result, based on the GNSS 

output, an AV perceives that itself in a standstill state (shown 

as stopped at the red dot), although the AV is moving forward 

in reality. When a road split (at the green dot) or intersection 

occurs, the AV will be unable to identify the path to proceed.  

    During a wrong turn attack, a spoofer takes over a target 

AV’s GNSS receiver just before a turn. While a target AV takes 

a right turn, as shown in Figure 2(c), a spoofer tampers the 

GNSS signal in a way so that the target AV perceives that it is 

taking a left turn. Similarly, if an AV takes a left turn, the GNSS 

will show a right turn. This will lead to the rerouting of the 

attacked AV, and the target AV will arrive at the wrong 

destination. 

    A stop attack [36] (see Figure 2(d)) is the opposite of an 

overshoot attack. A spoofer takes over the GNSS receiver when 

an AV is stopped at a stop sign (green dot) or in a queue due to 

traffic and then transmits a synthetic GNSS signal so that the 

corresponding AV perceives that it is moving along a road 

(shown as red route).  

 

 

 

 

 
Fig. 2. GNSS spoofing attack models: (a) example of turn-by-turn; (b) 

example of overshoot; (c) example of a wrong turn, and (d) example of a stop. 

(a) 

(b) 

(c) 

(d) 
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We have created ten attack datasets sfor each of these four 

unique attack types using data from the HDD to mimic the 

actual spoofing scenarios. Note that it is not necessary to 

simulate spoofed GNSS signals to generate different attack 

datasets. Each attack dataset contains data of both non-spoofed 

and spoofed scenarios. The turn-by-turn attack scenario is 

modeled by selecting a route from the HDD; then at ten 

arbitrary locations (observations) of the continuous route, the 

distance travelled between two consecutive time stamps of an 

AV is manually changed to a value mimicking a realistic 

location shift. The location shift distance is selected using a 

random number generator that generates ten random values 

between 8 m and 200 m representing a block to a couple of 

blocks distance. The stop attack scenario is modeled by 

selecting routes from HDD and setting the speedometer data to 

zero. On the other hand, the GNSS-derived distances between 

two consecutive time stamps are set to zero for the overshoot 

attack type. 

 

VI. GNSS SPOOFING ATTACK DETECTION FRAMEWORK 

    We have developed a robust GNSS spoofing attack detection 

framework (see Figure 3), and this framework involves two 

concurrent strategies in which data from in-vehicle low-cost 

sensors—i.e., GNSS, accelerometer, steering wheel angle, and 

speedometer—are fused to provide a unified and robust GNSS 

spoofing attack detection approach. These two strategies 

include: (i) comparison of predicted location shift with inertial 

sensor-based location shift—in addition to monitoring of 

vehicle motion states and  (ii) detection of turning maneuvers 

(right and left turns). 

The goal of the first strategy is to develop a vehicle state 

prediction model that can predict a subject vehicle's state 

information (such as distance traveled or location shift) by 

fusing data from multiple in-vehicle sensors (i.e., speedometer, 

accelerometer, and steering wheel angle sensors). For every 

timestamp, attack-free speed, acceleration, and steering angle 

data of an AV are fed to train a deep recurrent neural network 

model, which is LSTM. The LSTM model will predict the 

location shift between two consecutive timestamps. This model 

can predict the location shift considering the long-term 

dependencies by storing the temporal dependency of the time-

series data in the recurrent hidden layer's memory blocks. 

Along with checking an AV’s location shift, this strategy also 

continuously checks if the corresponding AV is in motion or in 

a standstill state using the speedometer output. Note that a 

predicted location shift of an AV alone cannot reliably measure 

its motion state. If the speed difference between the 

speedometer and the GNSS data is not within an error threshold, 

then an attack is detected. This comparison is useful to detect 

stop and overshoot attacks. 

According to the second strategy, steering angle data is used 

to recognize different types of turns (left or right). For example, 

steering angle sensor or gyroscope output can provide turn 

maneuvering data. In this study, we use steering angle sensor 

output instead of gyroscope as the steering angle data provide 

better vehicle maneuvering information and are available in the 

HDD. A vehicle's turn can be divided into three categories: left-

turns, right-turns, and U-turns. In this paper, we have only 

concentrated on detecting left and right turns, which are the 

most common types of turns. Because of variability in driving  

maneuvers with the different roadway turning curvatures, the 

length of the duration of the steering angle sensor data may 

differ between different left (or right) turns. In order to 

recognize turning maneuvers, we train a dynamic time warping 

(DTW) algorithm using data from different turning maneuvers  

in the HDD dataset to learn the pattern of left and right turns. 

The DTW algorithm determine the degree of similarity between 

two time series data. A k-NN classifier algorithm is then used 

to categorize various turns. This detection system continuously 

compares an output from the inertial sensors with turning 

information from GNSS to detect and classify a turning 

maneuver. There is a possibility that an AV is at a standstill  

state, but the steering wheel is rotating for adjustment; in such 

Fig. 3. Sensor  fusion based GNSS spoofing attack detection framework. 
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a case, the steering wheel data can resemble a turn pattern; 

however, no turning maneuver occurs in reality. The turn 

detection strategy also takes input from the speedometer sensor 

to address such a scenario. If a turn signal is detected and the 

corresponding vehicle's speed is higher than the maximum 

possible error, our strategy will detect a turn; otherwise, no turn 

will be detected. It is a common scenario when an AV will be 

at a parking lot and try to park itself. Overall, any GNSS 

spoofing attack can be detected based on these two strategies—

i.e., (i) comparison of predicted location shift with inertial 

sensor-based location shift—in addition to monitoring of 

vehicle motion states and  (ii) detection of turning maneuvers 

(right and left turns). Figure 4 presents detailed implementation 

steps for both strategies, and the following subsections describe 

these implementation steps in detail. 

A. Development of Detection Strategy 1 

    The first strategy incorporates two different types of vehicle 

state information: (a) predicted and perceived location shift 

between two consecutive timestamps; and (b) vehicle motion 

state detection (standstill/in motion). With 128 and 64 neurons 

in the first and second hidden layers, respectively, a 2-stacked 

LSTM [37] architecture is used to predict the location shift 

made by an AV between two consecutive timestamps. The 

training and validation data includes acceleration, steering 

wheel angle, and speed. The output is the location shift between 

the current timestamp and the immediate future timestamp. In 

this study, the data generation frequency is 120 Hz; hence 

0.00833s is the time difference between two consecutive 

timestamps [33]. The HDD dataset contains driving data of 

multiple days and various routes. One of the routes is selected 

to train and validate the LSTM model. The route is chosen in 

such a way so that it represents an urban road network and 

includes frequent stops and turning maneuvers. The continuous 

driving data of the route is split into training with 241,990 

observations and validation with 103,709 observations. Before 

feeding the sensor output to the LSTM training, the input 

features are normalized between 0 and 1. The LSTM 

hyperparameters, i.e., number of neurons, number of epochs, 

batch size, and learning rate, are selected by a trial-and-error 

approach [37] as it is a time series-based prediction model. The 

hyperparameters' values and the optimizer's name are listed in 

Table I. After testing the LSTM-based prediction model, we 

found that the Root Mean Square Error (RMSE) of the 

predicted location shift is 0.02 m, and the maximum absolute 

error is 0.5 m. We also found that the distribution of the error 

represents a normal distribution. Choosing a very low false-

positive probability of 10−9 (as described in [10] and see Table 

III), the prediction model error threshold is 0.056 m. 

A detection threshold is established by adding the prediction 

model error threshold and GNSS positioning error, as presented 

in (2). In HDD, a GeneSys Eletronik GmbH ADMA with DGPS 

is used for collecting the position data. This DGPS model has a 

relative position error of 0.01m and an expected position error 

(standard deviation) of 0.001m. Although the positioning error 

of GPS used for the HDD dataset has a relative position error 

of 0.01 m, a typical DGPS system has a position error of 0.1 m 

after accounting for the biases. To make the threshold value 

more generalized, it is assumed that the GPS position error is 

0.1 m. Therefore, the error threshold value is 0.156 m. An attack 

will be detected if the difference between the perceived location 

shift using GNSS and the predicted location shift is greater than 

the error threshold. 

    In this study, the developed LSTM-based vehicle location 

shift prediction model is trained using HDD that represents 

different real-world urban driving scenarios in the San 

Francisco Bay Area. It includes different types of left turns, 

right turns, and lane-change maneuvers, as well as deceleration 

and acceleration behaviors, which make the dataset suitable for 

Fig. 4. Strategy 1 & 2 implementation steps. 
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developing, evaluating, and validating the LSTM model for 

urban road network. As the training dataset features cover 

different types of driving maneuvers, the trained model can 

handle any real-world driving pattern for any large urban area. 

Optimum hyperparameters have been used to train the model. 

In addition, we have proved the generalizability of our LSTM 

architecture through validation. Figure 5 presents the Mean 

Absolute Error (MAE) loss profile (learning curve). Here, the 

y-axis represents the mean absolute error loss for both the 

training and the validation datasets, and the x-axis presents the 

number of epochs. The learning curve reveals that the training 

loss first decreases and then stabilizes, i.e., there is no 

significant change in training loss, proving that the LSTM 

model is not under-fitted. Moreover, as both training and 

validation losses stabilize with experience (with increasing 

epochs), the LSTM model is not overfitted. Furthermore, the 

training and validation losses are low. The initial peak in the 

training and validation indicates that the model was not 

generalized at that point, but with increasing epochs, the model 

became stable and generalized. The training and testing data 

represent real-world driving data for different times of the day 

on urban routes, which represents the generalized behavior of 

the neural network model in an urban network. Above all, the 

training and testing datasets are exclusive, i.e., the training and 

testing datasets represent not only different days but also 

multiple routes and diverse driving behaviors. Hence, it can be 

concluded that the adopted neural network is transferable to a 

similar urban network and has a strong generalization ability 

and wider applicability to the prediction error threshold for 

predicting location shift. 

 
𝐸𝑟𝑟𝑜𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑀𝑜𝑑𝑒𝑙 𝐸𝑟𝑟𝑜𝑟 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

(using False Positive Probability of 10−9 )       
                                                          +𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑖𝑛𝑔 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝐺𝑁𝑆𝑆              (2) 

 
TABLE I  

LSTM MODEL HYPERPARAMETERS 
 

Hyperparameters and Optimizer Value 

Number of neurons (1st layer) 128 

Number of neurons (2nd layer) 64 
Number of epochs 90 

Batch size 50 

Learning rate 0.01 
Optimizer Adam 

 

The vehicle motion state detection mechanism is used to 

detect stop and overshoot attacks. Here, the GNSS-derived 

speed is compared with the speedometer output. Latitude and 

longitude data from a  GNSS, along with the time difference 

between two measurements, are used to calculate the GNSS-

derived speed of an AV. We assume that an AV is in a standstill 

state if the speedometer output is zero. An error threshold is 

established based on the deviation between the GNSS-derived 

speed and the speedometer speed (zero speed or standstill state 

of a vehicle) to avoid false attack detection. The tradeoff 

between the error threshold and attack detection performance is 

considered using a trial-and-error method. The error threshold 

for the stop attack detection is set to the 90th percentile of the 

error because setting a threshold value with a higher percentile 

significantly increases false-negative instances.  

    Uncompromised GNSS data from HDD are used to calculate 

the error threshold. After examining speedometer and GNSS 

data from the HDD dataset, we found that the difference (i.e., 

error) between GNSS-derived and speedometer speed ranges 

from 0 m/s to 1.26 m/s in a standstill state of a vehicle. It 

indicates that the GNSS-derived speed is not zero for all 

observations when the speedometer shows a zero speed. We 

found that the error between the speedometer and the GNSS-

derived speed is equal to or less than 0.6 m/s for 90% of the 

observations, i.e., the 90th percentile of the speed error is 0.6 

m/s. Analysis of HDD dataset also reveals that their vehicle 

takes equal to or less than 0.7 s to reach the speed of 0.6 m/s 

from a standstill state. Hence, even if a vehicle starts moving 

from a stopped condition and tries to attain 0.6 m/s, our 

framework can detect a stop attack (if a GNSS receiver is 

compromised) within 0.7 s because the data frequency is 100 

Hz (0.01 s) and the computation time for each observation in 

our framework is 0.691 s second. A stop attack is flagged 

when the speedometer shows zero speed, and the GNSS-

derived speed is more than the 90th percentile value. On the 

other hand, if GNSS-derived speed is zero and the speedometer 

output is more than the 90th percentile value, an overshoot 

attack is flagged. 

 
Fig. 5. Comparison of Mean Absolute Error (loss) profiles with the optimal 

parameter set. 

B. Development of Detection Strategy 2 

    The second strategy consists of two detection mechanisms: 

turning maneuver detection and vehicle motion state detection. 

A vehicle turning maneuver can be detected and classified by 

comparing the steering angle sensor output and the GNSS 

output. If a turn is detected using steering angle data, but GNSS 

shows no turn, then an attack will be detected. Moreover, if the 

steering angle change represents a right turn and the 

corresponding GNSS detects a left turn, an attack will be 

detected. Using a standard GNSS navigation system, a turn can 

be detected using the GNSS location output and road link ID. 

from a built-in map [38]. When an AV takes a turn, the link ID 

will change. The current and previous links are determined 

using the GNSS-derived location. The angle between the GNSS 

location before and after the road link change is used to detect 

the turn type. The clockwise angle for a right turn is between 

0𝑜  and 180𝑜 . In the case of a left turn, the clockwise angle 
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should be between 180𝑜 and 360𝑜.  

   The AV steering angle readings create unique shapes for left 

and right turns (as shown in the top left corner of Figure 6). For 

instance, if an AV makes a right turn, the AV first turns the 

steering to the right to enter the road and then turns the steering 

to the left to align itself along the lane marking, which forms a 

distinct vehicle trajectory path as shown in Figure 6. However, 

due to varying steering behavior and road geometry, the length 

of the duration of the maneuvering data for different turns is not 

uniform. 

    A k-Nearest Neighbors (k-NN) clustering algorithm is 

combined with a dynamic time warping (DTW) algorithm for 

developing a left and right turn detection strategy. The steering 

wheel angle data are used as input to the turn classification 

model. A DTW algorithm compares the patterns and measures 

the similarity between two different time-series data of the 

different number of observations. The DTW iteratively warps 

the time axis to align two input time series and searches for an 

optimal match; it then calculates the warp path distance, which 

is the cumulative distance between each pair of observations. 

The path with minimum total cost represents the DTW distance 

between two different time series data as shown in (3):  
 

𝐷𝑇𝑊(𝑇, 𝑆) =   
𝑎𝑟𝑔𝑚𝑖𝑛

𝑤 = 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑘 , … , 𝑤𝐾
 √∑ (𝑡𝑖 − 𝑠𝑗)

2𝐾
𝑘=1,𝑤𝑘=(𝑖,𝑗)               

(3) 

 

where T and S are ground truth and training steering angle data, 

respectively; 𝑤  represents a warping path; 𝑡𝑖  is the ith 

observation of time series T; and 𝑠𝑗  is the jth observation of the 

time series S. We have used the FastDTW [39] algorithm to 

reduce the computational time and satisfy the real-time 

detection requirement.  

 

Fig. 6. Patterns of right and left turning maneuvers.  

 k-NN is a widely used classifier. The k-NN algorithm 

assigns a common class among its k nearest neighbors based on 

a distance metric. In this study, DTW is used as the distance 

metric for k-NN. The k-NN model is trained and tested using 

the steering angle readings from the HDD, which are related to 

right and left turns. In the training dataset, there are 19 right 

turns and 13 left turns, while there are 7 right turns and 6 left 

turns in the testing dataset (see Table II). The sample left and 

right turn locations using black and purple lines are shown in 

Figure 6. The combined k-NN—DTW turn detection model can 

classify left, and right turns with an accuracy of 100% along 

with precision value, recall value, and F1-score of 1. Note that 

our training dataset contains different patterns of left and right 

turns. The concept, method, and basis for selection of the error 

threshold for the stop, overshoot, and turn-by-turn attack are presented 

in Table III. 

 
TABLE II  

DATA USED FOR K-NN—DTW MODEL TRAINING 
 

Turn type Dataset Number of turns Number of observations 
    

Right 
training          19              15969 

testing          7              8209 

Left 
training          13              12974 

testing          6              6706 

 

TABLE III 

ERROR THRESHOLD SELECTION CRITERIA  
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VII. EVALUATION RESULTS 

    To prove the efficacy of our detection framework, we have 

evaluated the detection framework against four attack 

scenarios: turn-by-turn, overshoot, wrong turn, and stop. Ten 

datasets are created for each scenario, containing both 

compromised and uncompromised GNSS data. These datasets 

mimic actual GNSS spoofing attacks as they are created based 

on real-world urban driving data. Thus, the evaluation results 

represent our framework's performance for diverse urban 

driving and road conditions. In addition, our framework's 

performance is also compared with a baseline spoofing attack 

detection framework, which further proves the efficacy of our 

approach.  

A. Baseline Framework 

Figure 7 presents a baseline framework for GNSS spoofing 

attack detection as presented in [10]. This framework consists 

of three detection monitors. In these monitors, low-cost in-
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vehicle sensors'—i.e., speedometer and accelerometer— data 

along with GNSS-derived data are compared for attack 

detection. The first two monitors check the speedometer and 

GNSS derived speed. Then, an error threshold is established to 

address the sensor alignment and bias. To obtain the error 

threshold, an uncompromised GNSS dataset is used. We have 

selected the absolute maximum difference between the GNSS-

derived speed and the speedometer's speed as the error 

threshold, and the error threshold is 3.44 m/s. The basis of 

selecting maximum speed error as an error threshold is that an 

attack (stop or overshoot) can be detected even if there are any 

speedometer sensor measurement issues exist, such as bias and 

alignment. 

As shown in Figure 7, the first monitor is used to detect 

overshoot attacks, and it becomes active when the GNSS-

derived speed is zero. After activation, it checks whether the 

speedometer output is higher or lower than the error threshold. 

If the speedometer output exceeds the error threshold, an attack 

is flagged. The second monitor is used to detect stop attacks, 

and it detects an attack when the speedometer output is zero. 

This monitor checks whether the GNSS-derived speed is higher 

or lower than the error threshold. If the GNSS-derived speed 

exceeds the error threshold, an attack is flagged. In the third 

monitor, GNSS-derived acceleration is compared with the 

accelerometer output. The GNSS-derived acceleration is 

calculated using the GNSS-derived speed and the time 

difference between two consecutive measurements. Note that 

all three monitors run simultaneously to detect any GNSS 

spoofing attacks in real-time.   

As the HDD dataset does not contain acceleration data, we 

have calculated acceleration from the speedometer data and the 

time difference between the two consecutive measurements. 

Generally, the acceleration measurements are noisy and 

consequently not suitable for observation-by-observation 

comparison. Thus, 5-second moving averaged accelerations are 

used for both GNSS and speedometer-derived acceleration 

[10]. The acceleration difference between two consecutive 

timestamps is used to detect turn-by-turn spoofing attacks. An 

error threshold is estimated based on accelerometer sensor error 

to increase the effectiveness of the detection framework. The 

error threshold is established first by comparing the GPS and 

speedometer derived acceleration for a setup where GPS is not 

compromised. The distribution of the difference between the 

GPS and speedometer derived acceleration represents a normal 

distribution. We choose a very low false-positive probability of 

10−9 (same as [10]) to determine the detection threshold, which 

is 0.77 m/s2. To prove the effectiveness of our framework, we 

compared the performance of this baseline framework with ours 

in four unique spoofing scenarios as presented in section V. 

B. Turn-by-turn Spoofing Attack  

    Figure 8 illustrates how to detect turn-by-turn GNSS 

spoofing attacks. The number of observations is displayed on 

the x-axis, and the y-axis presents the difference between 

perceived and predicted location shifts. In this scenario, the 

location shift for the uncompromised GNSS case is shown in 

Figure 8(a), where the location shifts never cross the error 

threshold. When an attack is generated, the difference between 

the perceived and predicted location shift (Figure 8(b)) crosses 

the threshold; thus, the attack is detected. Figure 9 presents 

profiles for the absolute difference between the perceived 

location shift and predicted location shift for ten different turn-

by-turn type spoofing attack scenarios (AS). Note that the 

absolute difference between the perceived and predicted 

location shifts is plotted on a log scale in Figure 9 to show the 

negligible difference. At the point of beginning of a spoofing 

attack (as shown using different markers), the difference 

between perceived and predicted location shift is higher than 

the error threshold value; thus, it detects the attack. It is worth 

mentioning that no false attack is detected using our detection 

framework (see Figure 9). 

The baseline framework is evaluated against the same attack 

datasets as mentioned above, and the results are presented in 

Figure 10. Although the baseline framework's monitor 3 can 

detect location shifts, as can be seen in Figure 10, a false 

location shift is detected after 500 observations for each attack 

dataset. Moreover, a comparison of GPS and accelerometer 

data is impossible if the GPS and accelerometer measurements 

are not aligned. Thus, it will exponentially increase the 

Fig. 7. Baseline-framework for GNSS spoofing attack detection. 
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probability of false positives, making the baseline method a 

failure. The baseline framework requires axis alignment 

between GNSS and accelerometer reference frames, and the 

GPS measurements also need to be first translated to speed and 

then to acceleration, which may further add error in the 

acceleration calculation. Furthermore, sensor accuracy issues 

and measurement noise can also jeopardize detection 

performance. 

 
Fig. 8. An example GNSS spoofing scenario: (a) location shift for an 
uncompromised GNSS observation; and (b) location shift for a compromised 

GNSS observation. 

 
Fig. 9. Attack detection for ten turn-by-turn attack scenarios (AS) (our 

framework). 

C. Stop Spoofing Attack  

    Based on our strategy developed in this study, a stop attack 

can be detected by vehicle motion state detection—i.e., 

detection strategy 1: comparing between perceived and 

predicted location shift. In this paper, we have presented results 

of stop attack detection by vehicle motion state detection. 

Figure 11 presents the evaluation outcome of both the baseline 

strategy and our developed stop attack detection strategy. We 

have plotted the attack dataset number on the x-axis, and the y-

axis presents the percentage of true negative (cornflower blue), 

false negative (punch), true positive (goldenrod), and false-

positive (grape) detection (see the "Notes" at the bottom of 

Figure 11).  

 
Fig. 10. Attack detection for ten turn-by-turn attack scenarios (AS) (baseline 
framework). 

Notes: True Negative— GNSS not compromised, and no attack flagged; False 

positive— GNSS not compromised, and an attack flagged; True Positive— 
GNSS compromised, and an attack flagged; False-negative— GNSS 

compromised, and no attack flagged. 
Fig. 11. Stop attack detection results. 

It is evident from Figure 11 (see "true negative (cornflower 

blue)" and "true positive (goldenrod)") that the detection 

accuracy of our framework is high. Note that we have used ten 

different datasets to evaluate our strategy. We found that our 

strategy provides a high percentage of true positives and true 

negatives with a low percentage of false positive and false 

negative. The false-negative instances occur for two reasons. 

The first reason is that our framework does not flag an attack 

for the observations where both the compromised GNSS-

derived speed and the speedometer speed are zero. Such a 

condition arises whenever an AV is stopped during an ongoing 

stop attack. The second reason is that our framework cannot 

detect an attack when an AV starts moving from the stopped 

condition to moving condition, and the speedometer speed is 

lower than the error threshold. As we mentioned before, a 

vehicle takes less than or equal to 0.7s to attain the error 

threshold limit—i.e., 0.6 m/s. We found that the former reason 

mostly causes false-negative cases.  

    Table IV presents a summary of stop attack evaluation results 

in terms of precision, recall, accuracy, and F1 score. Precision 
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is the measure of how accurately an attack is detected out of all 

the attack detection instances considered in this study. The 

precision of our detection model varies from 97% to 100%, 

whereas for the baseline case, precision varies from 87% to 

93%. Recall refers to the percentage of the observations where 

attacks are detected out of all the compromised observations. 

As provided in Table IV, the recall of our framework varies 

from 97% to 99%, and that of the baseline varies from 39% to 

80%. The accuracy of our framework ranges from 97% to 99%. 

The F1 score reflects the balance between precision and recall. 

For the high frequency of true negative, the F1 score is a better 

measure. The F1 score of our framework ranges from 0.98 to 

0.99, which proves that the precision and recall are well 

balanced. The F1 score for the baseline approach ranges 

between 89% and 95%. Thus, our framework performs better 

in all four parameters than the baseline approach. 

D. Overshoot Spoofing Attack  

An overshoot attack can also be detected by comparing a 

GNSS-derived speed with speed from the speedometer. The 

evaluation results of baseline, as well as our overshoot attack 

detection strategy, are presented in Figure 12. The attack dataset 

number is presented on the x-axis, and the y-axis presents the 

frequency of true negative (green), false negative (purple), true 

positive (red), and false-positive (orange). Like the stop attack 

detection strategy, our overshoot attack detection strategy 

effectively detect attack and non-attack cases. The reasons for 

false negatives are the same as we described in the stop attack 

result subsection.  

Table V presents a summary of overshoot attack evaluation 

results in terms of accuracy, precision, recall, and F1 score. The 

accuracy of our framework ranges from 83% to 100%. The 

precision of our detection model varies from 86% to 100%. As 

provided in Table V, the recall of our framework varies from 

80% to 100%. The precision and accuracy for overshoot attack 

detection are lower than those of stop attack due to more 

instances where both the speedometer and the GNSS-derived 

speed is zero. As the vehicle stops during an ongoing overshoot 

attack, both speeds become zero, and no attack is flagged. The 

F1 score of our framework ranges from 90% to 98%, which 

shows that the precision and recall are well balanced. The 

baseline framework is tested against the same attack datasets as 

our framework. Accuracy for baseline case ranges from 81% to 

100%; F1 score ranges from 81% to 100%, and precision ranges 

from 74% to 100%. The recall for the baseline approach varies 

from 57% to 100%. 

 
Fig. 12. Overshoot attack detection results. 

E. Wrong Turn Spoofing Attack  

The efficacy of the turn detection and classification model 

using the K-NN—DTW combined method is shown in Table 

VI. As the calculated precision and recall are 1, all turns are 

correctly detected and classified, and there is no false detection 

and classification occurred. The F1 score is also 1 (100% 

effective in turn detection and classification), which proves the 

efficacy of the turn detection strategy.  

Overall, the results reveal that our detection framework can 

successfully detect all four attack types in each of the ten 

scenarios. As per our knowledge, we do not find any existing 

in-vehicle sensor fusion approach that can be used for 

comparison with our framework. Thus, we presented our 

framework's performance results, which show the highest 

accuracy. 

F. Computation Time Requirements 

    The average computational latency for our first strategy, i.e., 

the location shift prediction strategy is 0.691s for each 

observation, which is less than the GNSS data generation 

frequency (i.e., 120Hz or 0.0083s or 8300s). In our second  

strategy, we have resampled the steering angle sensor data to 

5Hz from 120Hz because our experiments showed that the 5Hz 

                              

                                                                     

                                 

                                 

                                 

                                 

                                 

                                 

                                 

                                 

                                 

                                  

TABLE IV 

EVALUATION SUMMARY OF STOP ATTACK SCENARIO 
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sampling rate reduces the computational time while preserving 

the observational (or sensing) integrity of the right and left 

turns. The k-NN-DTW model takes 0.08s on average to detect 

a turn, which is less than the data sampling frequency (i.e., 5Hz 

or 0.2s). Note that the computational time presented in this 

study applies to a workstation equipped with a dual Intel Xeon 

Gold 5215 2.5GHz processor with 128GB DDR4 2666MHz 

RDIMM ECC RAM memories used to run our experiments. 

 
TABLE VI 

 K-NN & DTW TESTING OUTPUT 

Perceived 

turn type via 

GNSS 

Number 

of attack 

scenarios 

Detected 

turn types 

using k-NN 
and DTW 

Baseline 

/actual turn 

type 
(ground 

truth data) 

Accuracy 

& Precision 

& Recall      
& F1 Score 

Left 

Turn 
5 

Right 

turns 

Right 

turns 

1.00 
Right 

Turn 
5 

Left 

turns 

Left 

turns 

Left or 

Right turns 
20 No turns No turns 

 

VIII. CONCLUSION 

    A robust GNSS spoofing attack detection framework is 

presented in this paper. Data from low-cost in-vehicle sensors 

are used for detecting sophisticated GNSS spoofing attacks. 

The framework developed in this study is unique compared to 

existing approaches in two ways. First, our approach uses deep 

learning to predict the location shift to detect an attack, while 

existing GNSS attack detection approaches use deep learning to 

analyze GNSS signal data to detect an attack. Second, sensors 

are used neither to determine the vehicle position nor to 

compare data from a single sensor output with GNSS-derived 

information. Instead, in our first strategy, we have used data 

from multiple sensors, i.e., speedometer, steering angle, and 

accelerometer, to predict the location shift by the next 

timestamp using LSTM, which is based on an artificial 

recurrent neural network (RNN) architecture. The predicted 

location shift for an AV is then compared with the location shift 

estimated based on the GNSS data to detect a spoofing attack. 

The vehicle motion state from GNSS and speedometer data are 

also compared to detect spoofing attacks. Moreover, a turn 

detection strategy, our second strategy, is used for classifying 

turns to further detect more sophisticated attacks. The 

combination of two strategies allows the framework to detect 

the most sophisticated spoofing attacks where a spoofer has the 

capability of tampering with a target vehicle's destination, 

route, and sensor information. The framework presented in this 

paper is also validated against the four unique attack types. A 

comparison between a baseline framework and our framework 

has also been presented. Analyses revealed that our attack 

detection framework is able to detect different types of attacks 

with a high degree of success. Further research can be 

performed to evaluate and validate the framework through real-

world experiments. Due to the diverse nature of spoofing 

attacks, a single strategy cannot detect and mitigate different 

types of attacks. A GNSS interference can be intentional by an 

attacker or unintentional because of natural vulnerabilities. It is 

a challenge to distinguish between intentional and unintentional 

interference. Separating an authentic GNSS signal from a 

spoofed signal introduces further complexity. Thus, future 

research focuses on developing robust anti-spoofing 

technologies to mitigate spoofing attacks on GNSS receivers. 
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