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Abstract— This paper presents a sensor fusion-based Global
Navigation Satellite System (GNSS) spoofing attack detection
framework for autonomous vehicles (AVs) that consists of two
strategies: (i) comparison between predicted location shift—i.e.,
distance traveled between two consecutive timestamps—and
inertial sensor based location shift in addition to monitoring of
vehicle motion states—i.e., standstill/ in motion; and (ii) detection
and classification of turns (left or right) along with detection of
vehicle motion states. In the first strategy, data from low-cost in-
vehicle inertial sensors—i.e., speedometer, accelerometer, and
steering angle sensor—are fused and fed to a long short-term
memory (LSTM) algorithm to predict the distance an AV will
travel between two consecutive timestamps. The second strategy
combines k-Nearest Neighbors (k-NN) and Dynamic Time
Warping (DTW) algorithms to detect a turn and then classify left
and right turns using steering angle sensor output. In both
strategies, the GNSS-derived speed is compared with speedometer
output to improve the effectiveness of the framework presented in
this paper. To prove the efficacy of the sensor fusion-based attack
detection framework, attack datasets are created for four unique
spoofing attack scenarios—turn-by-turn, overshoot, wrong turn,
and stop, using the publicly available real-world Honda Research
Institute Driving Dataset (HDD). Analyses conducted in this study
reveal that the sensor fusion-based detection framework
successfully detects all four types of spoofing attacks within the
required computational latency threshold.

Index Terms— Global Navigation Satellite System (GNSS),
Autonomous vehicle, Cybersecurity, Spoofing attack, LSTM.

[. INTRODUCTION

UTONOMOUS vehicles (AVs) require accurate,
reliable, and continuous real-time localization
information from a Global Navigation Satellite System

(GNSS), which is known as Global Positioning System (GPS)
in the United States, to perform their autonomous,
navigational, security, and safety-critical applications. The term
"GNSS" refers to a positioning, navigation, and timing (PNT)
service based on satellites. In the United States, two levels of
services are provided by GPS, i) Standard Positioning Service
(SPS) and ii) Precision Positioning Service (PPS). While the
SPS service is available for civil, commercial, and scientific
use, a more secure PPS service is only used by the government
and the military [1]. Current AVs use SPS signals. It is a
reasonable assumption that commercial AVs will continue to
use SPS signals in the future, as PPS is not accessible for
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commercial use. However, SPS has a positioning error at the
meter level, and the lowest error for an SPS system is 1m. Thus,
SPS alone is not suitable for an AV. For navigation purposes,
an AV requires more precise location information— 1i.e., the
positioning error should be much less than that of current SPS.
Currently, an AV uses a differential global positioning system
(DGPS) to correct SPS localization. In DGPS, the position error
can be as low as 0.01m [2]. It corrects the position using a
reference station on top of the regular GPS signal. In the rest of
the paper, if we refer GNSS or GPS, we mean DGPS.

As the GNSS depends on satellites and radio
communications, GNSS signal strength is subject to physical
degradation due to natural or unintentional vulnerabilities, and
intentional threats [3]. By the time GNSS signals reach AV's
GNSS receiver end after passing through the Earth's
atmosphere the signal strength deteriorates and the signal
strength further degrades by reflected by the high-rise buildings
that introduce position inaccuracy and interfering with
continuous GNSS signal availability [4] [5]. The GNSS signal
can also become disrupted due to natural or unintentional
vulnerabilities, such as the absence of GNSS signal because of
walls and ceilings in garages and tunnels, and signal
degradation due to multipath and radio frequency interference
[6], [7]. Jamming and spoofing are the two categories of
intentional threats. In jamming, a high-power GNSS signal is
transmitted to prevent an authentic signal to reach the target
GNSS receiver. Among the foregoing, spoofing is the most
sophisticated type of attack, as an attacker can tamper the
authentic GNSS signal structure and transmit inaccurate
location information to a target AV. A target AV trust the
manipulated signal and update its navigation route based on
spoofed signal [8]. To a sophisticated GNSS spoofing attack, a
spoofer requires a target vehicle's destination, route, and sensor
information. In this study, we only consider sophisticated
spoofing attacks.

One of the primary purposes of manipulating a GNSS
receiver during a spoofing attack is to tamper the GNSS signal
so that a target AV is potentially misdirected to the wrong
destination, compromising the safety and security of AV
passengers as well as the transportation of goods. Generally, an
expensive GNSS signal generator is required to perform a
spoofing attack. However, the development of low-cost
software-defined radios (SDR) has made GNSS spoofing
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attacks easier to carry out [9]. Unfortunately, due to the
dynamic nature of spoofing attacks, there is no single attack
detection method that can detect all types of GNSS spoofing
attacks [10]. Therefore, researchers are concentrating more on
developing methods that make a spoofing attack more difficult
to achieve.

In this study, a sensor fusion based GNSS spoofing attack
detection framework, which consists of two strategies, is
developed and evaluated to detect GNSS spoofing attacks.
Motivated by the resilience of the inertial sensors against
spoofing attacks and robustness of deep learning (DL)
algorithms, in the first strategy, data from low-cost in-vehicle
sensors—i.e., speedometer, accelerometer, and steering angle
sensor—which are not only available in commercial AVs but
also in the human-driven vehicles, are fused and fed to a long
short-term memory (LSTM) algorithm to predict the distance
an AV will travel between two consecutive timestamps. This
predicted distance is then compared with the GNSS-derived
distance to detect an attack. Along with predicting distance, an
GNSS-based motion state is compared with AV’s speedometer
data. If they do not match with one another, an attack is detected.
The second strategy includes detection and classification of left
and right turns in addition to the AV’s motion state. An AV’s
turning maneuvers and motion states using in-vehicle sensors
are then compared with corresponding GNSS derived data to
further detect an attack, which makes the framework more
robust. Note that both strategies run simultaneously. The GNSS
spoofing attack detection framework developed in this paper is
targeted at AVs that navigate through a structured roadway (e.g.,
surface roadway network).

The rest of the paper is arranged as follows. Section II
discusses the contribution of this paper. Section III reviews
existing spoofing attack detection methods and identifies the
research gap. Section IV introduces a real-world dataset, which
is used to create the attack dataset, and presents the data
preparation approach. GNSS spoofing attack models are
presented in section V. Section VI presents our GNSS spoofing
attack detection framework, the attack detection efficacy
against different spoofing attack scenarios, and a comparison of
attack detection performance between a baseline framework
and our framework. After that, computational complexities of
our framework are described in section VII. Finally, Section
VII presents the concluding remarks and future research
direction.

II. CONTRIBUTIONS OF THIS STUDY

The presented framework in this paper is a new addition to
the existing GNSS spoofing attack detection approaches
because the detection framework can be deployed for different
road navigation scenarios that use the location level information
without directly analyzing the GNSS signal characteristics,
whereas most of the existing approaches detect a spoofing
attack by analyzing the GNSS signal itself. We have developed
a single robust GNSS spoofing attack detection framework,
which consists of two strategies: (i) comparison between
predicted location shift—i.e., distance traveled between two
consecutive timestamps—and inertial sensor based location
shift in addition to monitoring of vehicle motion states—i.e.,
standstill/in-motion; and (ii) detection and classification of

turns (left or right) along with detection of vehicle motion states.
Our study differs from the existing studies as we have used the
speedometer, steering wheel angle, and accelerometer data to
predict the location shift using an artificial recurrent neural
network (RNN) architecture, i.e., LSTM. The predicted
location shift of an AV is then compared with the GNSS-based
location shift to detect a spoofing attack. Moreover, a turn
detection strategy is used to further detect more sophisticated
attacks, such as a wrong turn attack. The primary contribution
of this study is that none of the existing research uses predicted
location shift and turn detection techniques for developing
sophisticated spoofing attack detection framework utilizing
GNSS information (latitude, longitude, and turn type) and in-
vehicle sensor data without analyzing the GNSS physical signal
characteristics. Although existing INS/IMU-based GNSS
spoofing attack detection approaches derive vehicle position or
compare a single in-vehicle sensor output with GNSS output,
the framework presented in this study fuses multiple sensors
and uses an LSTM network to predict a vehicle's location shift,
which has not been explored by any researchers so far.

III. RELATED WORK

The techniques of existing spoofing attack detection methods
can be classified into four -categories: (i) encryption
mechanisms; (ii) codeless-cross-correlation measures; (iii)
signal statistics analyses; and (iv) antenna-based methods [3].
The most common GNSS anti-spoofing methods use encryption
algorithms to secure the GNSS signals. Although the military
commonly uses the encryption mechanism approach to secure
GNSS receivers, this is not a cost-effective solution due to its
high infrastructural, computational, and management cost. The
codeless-cross-correlation measures use the correlation among
unknown encrypted GPS L1 P(Y) code signal from multiple
receivers to detect a spoofing attack [19], [20]. Note that L1 is
the primary GPS carrier signal, and P(Y) code is the precision
or secure code. The effectiveness of such a method also depends
on the cost of new instruments and associated signal processing
complexity when the number of cross-checking GNSS
receivers is increased. The GNSS signal statistics analysis-
based approaches use different signal features, such as received
signal strength (RSS) [21], spatial coherency [22], pseudo-
range measurements, time of advent, and signal parameters
estimation to detect GNSS spoofing attacks. Antenna-based
methods include detecting a spoofing attack by using multi-
antenna GNSS, reduced inertial sensor system (RISS), and
inertial navigation system (INS) integration [23] to perform
beat carrier-phase measurement processing using two antennas
[24]. A single antenna combined with RISS can also be used to
detect spoofing attacks [25]. These approaches require
computationally expensive GNSS signal processing algorithms
and sophisticated antenna arrays to ensure high spoofing attack
detection accuracy [3], [26].

Besides these approaches, GNSS spoofing attacks can also
be detected by comparing vehicle acceleration from IMU with
the GNSS derived acceleration according to [10]. Although this
approach performs well for an aircraft, it is not suitable for
surface vehicles due to the low vehicle dynamics signature. In
[12], the location information derived from IMU sensors (i.e.,
accelerometer and gyroscope) is compared with the GNSS-



derived location for spoofing attack detection. Furthermore,
inertial navigation system (INS) has also been used to monitor
the position of a vehicle for detecting GNSS spoofing attacks
[11][12]. INS devices use gyroscope and accelerometer data
and calculate the position, orientation and speed of a vehicle
using dead reckoning without any input from GNSS. However,
INS derived location is less accurate as the measurements from
inertial sensors accumulate bias, scale factor, and non-
orthogonality errors over time. In addition, multiple antennas
are used to identify spoofing attacks through cross-checking
GNSS signals [24].

In addition to the above-mentioned approaches, the
development of machine learning (ML) and DL algorithms has
recently increased for spoofing attack detection. In [14], a
Multi-Layer Perceptron (MLP), a Complex Convolution Neural
Networks (CNN), and a simple CNN are used to detect spoofed
GNSS signals that demonstrate the potency of using deep neural
networks for spoofed signal detection. In [16], the authors
provide a decision fusion with the K-out-of-N decision rule-
based method along with wavelet transformation coefficients.
In [15], a Support Vector Machine (SVM) has been used for
state estimation and detecting an attack on unmanned aerial
vehicles based on it. The early-late phase, delta, and signal level
are used as features together with the K-Nearest Neighbor
(KNN) and naive Bayesian classifier to detect spoofing attacks
[17]. However, these ML and DL algorithms are used to detect
an attack in the signal level, and no research has been conducted
to predict the distance a vehicle can travel within a timeframe
and detect an attack based on that. Only INS-based spoofing
attack detection approaches, where an INS-based vehicle's
position was compared with the GNSS-based position, are
closely related to our study. However, position information
from INS sensors is not reliable due to the error propagation of
inertial sensors over time. Thus, none of the existing approaches
used the location domain information to detect the spoofing
attack.

Several existing companies [27]-[32] offer commercial
GNSS jamming and spoofing detection services. These
companies utilize proprietary algorithms to detect anomalies in
the received GNSS signal. These attack detection technologies
either use costly local precise atomic clock or the results of
analysis of GNSS signal characteristics for spoofing attack
detection. Thus, the attack detection framework, which is
presented in this paper, is different from existing solutions as
we use low-cost in-vehicle sensors for GNSS spoofing attack
detection. In addition, detailed detection efficacy results of the
commercial solutions are not available in the public domain.
Therefore, it is unknown how these commercial technologies
perform when used exclusively for an AV’s navigation
protection against GNSS spoofing and jamming attacks in a
dynamic and mobile roadway traffic environment.

Our study differs from the previous studies as we have used
the speedometer, steering wheel angle data, and accelerometer
data to predict the location shift using an LSTM network. The
predicted location shift by the A.V. is then compared with the
GNSS-based location shift to detect any spoofing attack.
Moreover, a turn detection strategy is used to further detect
more sophisticated attacks such as wrong turn attacks. Our
study is novel because none of the existing research uses
predicted location shift and turn detection techniques for

developing sophisticated spoofing attack detection framework
utilizing GNSS information (latitude, longitude, and turn type)
and in-vehicle sensor data without analyzing the GNSS
physical signal characteristics.

IV. DATA PREPARATION

The Honda Research Institute Driving Dataset (HDD) [33] is
used in this study to develop and evaluate the GNSS attack
detection framework. The HDD contains data from the camera,
LiDAR, GNSS, inertial measurement unit (IMU), and
controller area network (CAN) of a conventional vehicle, and it
is collected from suburban and urban roadways as well as
highways within the San Francisco Bay Area. As AVs are
equipped with cameras, IMU, and GNSS, the HDD is suitable
for generating attack datasets for an AV technologies for AVs.
Figure 1 shows a sample route from the HDD.
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ig. 1. An example of GNSS traces from th HDD.

Using an Automotive Dynamic Motion Analyzer (ADMA)
from GeneSys Eletronik GmbH and a DGPS, the GNSS signals
are recorded in HDD at a rate of 120Hz. The acceleration
(m/s?), steering wheel angle (deg), rotational speed of the
steering wheel (deg/s), vehicle speed (ft/s), brake pressure
(kPa), and yaw rate (deg/s) are collected from different sensors
and recorded from vehicle’s CAN bus at 100Hz. For our
detection framework development and evaluation, the latitude
and longitude, relative accelerator pedal position (%), steering
wheel angle, and speed data are extracted from the HDD. Note
that relative accelerator pedal position (%) represents the
acceleration of an AV. We have then synchronized the
extracted HDD by keeping GNSS UNIX timestamp as a
reference by interpolating between the two closest
observations. We have also calculated the perceived location
shift, i.e., the distance traveled between two consecutive
timestamps, with data from GNSS using the Haversine formula
(see equation (1)) [34]:
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where d is the distance in meter between two points on the
Earth's surface; r is the Earth's radius (6378 km); ¢, and ¢, are
the latitudes in radians; and 1; and 1, are the longitudes in
radians of two consecutive time stamps.

V. ATTACK MODELS

The developed GNSS spoofing attack detection framework is
evaluated against four sophisticated spoofing attack scenarios,
which are: (a) turn-by-turn attack; (b) overshoot attack; (c)
wrong turn attack; and (d) stop attack. A turn-by-turn attack is
a sophisticated type of spoofing attack because the spoofer has
an AV’s route and destination information which allows the
spoofer to manipulate the GNSS signal in such a way that it is
very hard to detect any change in the route. In this type of
spoofing attack [35], a spoofer takes over a target AV's GNSS
receiver and changes the AV's current location, resulting in a
location shift between an AV's location before and after the
attack. Due to a change in an AV's current location, the
navigation application creates a new route to reach the
destination, and an AV believes in the spoofed location, follows
the newly created wrong route, and ends up in a wrong, possibly
unsafe location instead of the desired destination. As a spoofer
also try to make a realistic location shift, it is not possible for
an AV to find any difference in speed and distance between
actual and spoofed routes, which make this attack more
believable.

Figure 2(a) illustrates a turn-by-turn attack in which an
actual route after attack from an origin to a destination is shown
in blue, an AV’s ground truth route is shown in green, and the
AV’s perceived route, which matches the original route turn-
by-turn, is shown in red. Thus, a spoofer creates a wrong route
matching the new route's number of turns and guides the vehicle
to a wrong destination by compromising the AV's GNSS
receiver.

Figure 2(b) shows an overshoot attack [36] where after
taking over an AV’s GNSS receiver, a spoofer keeps sending
the same location information. As a result, based on the GNSS
output, an AV perceives that itself in a standstill state (shown
as stopped at the red dot), although the AV is moving forward
in reality. When a road split (at the green dot) or intersection
occurs, the AV will be unable to identify the path to proceed.

During a wrong turn attack, a spoofer takes over a target
AV’s GNSS receiver just before a turn. While a target AV takes
a right turn, as shown in Figure 2(c), a spoofer tampers the
GNSS signal in a way so that the target AV perceives that it is
taking a left turn. Similarly, if an AV takes a left turn, the GNSS
will show a right turn. This will lead to the rerouting of the
attacked AV, and the target AV will arrive at the wrong
destination.

A stop attack [36] (see Figure 2(d)) is the opposite of an
overshoot attack. A spoofer takes over the GNSS receiver when
an AV is stopped at a stop sign (green dot) or in a queue due to
traffic and then transmits a synthetic GNSS signal so that the
corresponding AV perceives that it is moving along a road

(shown as red route).
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Fig. 2. GNSS spoofing attack models: (a) example of turn-by-turn; (b)
example of overshoot; (c) example of a wrong turn, and (d) example of a stop.
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Fig. 3. Sensor fusion based GNSS spoofing attack detection framework.

We have created ten attack datasets sfor each of these four
unique attack types using data from the HDD to mimic the
actual spoofing scenarios. Note that it is not necessary to
simulate spoofed GNSS signals to generate different attack
datasets. Each attack dataset contains data of both non-spoofed
and spoofed scenarios. The turn-by-turn attack scenario is
modeled by selecting a route from the HDD; then at ten
arbitrary locations (observations) of the continuous route, the
distance travelled between two consecutive time stamps of an
AV is manually changed to a value mimicking a realistic
location shift. The location shift distance is selected using a
random number generator that generates ten random values
between 8 m and 200 m representing a block to a couple of
blocks distance. The stop attack scenario is modeled by
selecting routes from HDD and setting the speedometer data to
zero. On the other hand, the GNSS-derived distances between
two consecutive time stamps are set to zero for the overshoot
attack type.

VI. GNSS SPOOFING ATTACK DETECTION FRAMEWORK

We have developed a robust GNSS spoofing attack detection
framework (see Figure 3), and this framework involves two
concurrent strategies in which data from in-vehicle low-cost
sensors—i.e., GNSS, accelerometer, steering wheel angle, and
speedometer—are fused to provide a unified and robust GNSS
spoofing attack detection approach. These two strategies
include: (i) comparison of predicted location shift with inertial
sensor-based location shift—in addition to monitoring of
vehicle motion states and (ii) detection of turning maneuvers
(right and left turns).

The goal of the first strategy is to develop a vehicle state
prediction model that can predict a subject vehicle's state
information (such as distance traveled or location shift) by
fusing data from multiple in-vehicle sensors (i.e., speedometer,
accelerometer, and steering wheel angle sensors). For every
timestamp, attack-free speed, acceleration, and steering angle

In motion

Standstill /
In motion

Turn detection

] Spoofing
Standstill/ ol does not agree with ——p attack
speedometer data detected

GNSS information
> does not agree with
turn detection model

data of an AV are fed to train a deep recurrent neural network
model, which is LSTM. The LSTM model will predict the
location shift between two consecutive timestamps. This model
can predict the location shift considering the long-term
dependencies by storing the temporal dependency of the time-
series data in the recurrent hidden layer's memory blocks.
Along with checking an AV’s location shift, this strategy also
continuously checks if the corresponding AV is in motion or in
a standstill state using the speedometer output. Note that a
predicted location shift of an AV alone cannot reliably measure
its motion state. If the speed difference between the
speedometer and the GNSS data is not within an error threshold,
then an attack is detected. This comparison is useful to detect
stop and overshoot attacks.

According to the second strategy, steering angle data is used
to recognize different types of turns (left or right). For example,
steering angle sensor or gyroscope output can provide turn
maneuvering data. In this study, we use steering angle sensor
output instead of gyroscope as the steering angle data provide
better vehicle maneuvering information and are available in the
HDD. A vehicle's turn can be divided into three categories: left-
turns, right-turns, and U-turns. In this paper, we have only
concentrated on detecting left and right turns, which are the
most common types of turns. Because of variability in driving
maneuvers with the different roadway turning curvatures, the
length of the duration of the steering angle sensor data may
differ between different left (or right) turns. In order to
recognize turning maneuvers, we train a dynamic time warping
(DTW) algorithm using data from different turning maneuvers
in the HDD dataset to learn the pattern of left and right turns.
The DTW algorithm determine the degree of similarity between
two time series data. A k-NN classifier algorithm is then used
to categorize various turns. This detection system continuously
compares an output from the inertial sensors with turning
information from GNSS to detect and classify a turning
maneuver. There is a possibility that an AV is at a standstill
state, but the steering wheel is rotating for adjustment; in such
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a case, the steering wheel data can resemble a turn pattern;
however, no turning maneuver occurs in reality. The turn
detection strategy also takes input from the speedometer sensor
to address such a scenario. If a turn signal is detected and the
corresponding vehicle's speed is higher than the maximum
possible error, our strategy will detect a turn; otherwise, no turn
will be detected. It is a common scenario when an AV will be
at a parking lot and try to park itself. Overall, any GNSS
spoofing attack can be detected based on these two strategies—
i.e., (i) comparison of predicted location shift with inertial
sensor-based location shift—in addition to monitoring of
vehicle motion states and (ii) detection of turning maneuvers
(right and left turns). Figure 4 presents detailed implementation
steps for both strategies, and the following subsections describe
these implementation steps in detail.

A. Development of Detection Strategy 1

The first strategy incorporates two different types of vehicle
state information: (a) predicted and perceived location shift
between two consecutive timestamps; and (b) vehicle motion
state detection (standstill/in motion). With 128 and 64 neurons
in the first and second hidden layers, respectively, a 2-stacked
LSTM [37] architecture is used to predict the location shift
made by an AV between two consecutive timestamps. The
training and validation data includes acceleration, steering
wheel angle, and speed. The output is the location shift between
the current timestamp and the immediate future timestamp. In
this study, the data generation frequency is 120 Hz; hence
0.00833s is the time difference between two consecutive
timestamps [33]. The HDD dataset contains driving data of
multiple days and various routes. One of the routes is selected
to train and validate the LSTM model. The route is chosen in
such a way so that it represents an urban road network and
includes frequent stops and turning maneuvers. The continuous

driving data of the route is split into training with 241,990
observations and validation with 103,709 observations. Before
feeding the sensor output to the LSTM training, the input
features are normalized between 0 and 1. The LSTM
hyperparameters, i.e., number of neurons, number of epochs,
batch size, and learning rate, are selected by a trial-and-error
approach [37] as it is a time series-based prediction model. The
hyperparameters' values and the optimizer's name are listed in
Table I. After testing the LSTM-based prediction model, we
found that the Root Mean Square Error (RMSE) of the
predicted location shift is 0.02 m, and the maximum absolute
error is 0.5 m. We also found that the distribution of the error
represents a normal distribution. Choosing a very low false-
positive probability of 107° (as described in [10] and see Table
III), the prediction model error threshold is 0.056 m.

A detection threshold is established by adding the prediction
model error threshold and GNSS positioning error, as presented
in (2). In HDD, a GeneSys Eletronik GmbH ADMA with DGPS
is used for collecting the position data. This DGPS model has a
relative position error of 0.01m and an expected position error
(standard deviation) of 0.001m. Although the positioning error
of GPS used for the HDD dataset has a relative position error
of 0.01 m, a typical DGPS system has a position error of 0.1 m
after accounting for the biases. To make the threshold value
more generalized, it is assumed that the GPS position error is
0.1 m. Therefore, the error threshold value is 0.156 m. An attack
will be detected if the difference between the perceived location
shift using GNSS and the predicted location shift is greater than
the error threshold.

In this study, the developed LSTM-based vehicle location
shift prediction model is trained using HDD that represents
different real-world urban driving scenarios in the San
Francisco Bay Area. It includes different types of left turns,
right turns, and lane-change maneuvers, as well as deceleration
and acceleration behaviors, which make the dataset suitable for



developing, evaluating, and validating the LSTM model for
urban road network. As the training dataset features cover
different types of driving maneuvers, the trained model can
handle any real-world driving pattern for any large urban area.
Optimum hyperparameters have been used to train the model.
In addition, we have proved the generalizability of our LSTM
architecture through validation. Figure 5 presents the Mean
Absolute Error (MAE) loss profile (learning curve). Here, the
y-axis represents the mean absolute error loss for both the
training and the validation datasets, and the x-axis presents the
number of epochs. The learning curve reveals that the training
loss first decreases and then stabilizes, i.e., there is no
significant change in training loss, proving that the LSTM
model is not under-fitted. Moreover, as both training and
validation losses stabilize with experience (with increasing
epochs), the LSTM model is not overfitted. Furthermore, the
training and validation losses are low. The initial peak in the
training and validation indicates that the model was not
generalized at that point, but with increasing epochs, the model
became stable and generalized. The training and testing data
represent real-world driving data for different times of the day
on urban routes, which represents the generalized behavior of
the neural network model in an urban network. Above all, the
training and testing datasets are exclusive, i.e., the training and
testing datasets represent not only different days but also
multiple routes and diverse driving behaviors. Hence, it can be
concluded that the adopted neural network is transferable to a
similar urban network and has a strong generalization ability
and wider applicability to the prediction error threshold for
predicting location shift.

Error Threshold = Prediction Model Error Threshold
(using False Positive Probability of 107%)

+Positioning Error of the GNSS 2
TABLEI
LSTM MODEL HYPERPARAMETERS

Hyperparameters and Optimizer Value

Number of neurons (1 layer) 128

Number of neurons (2™ layer) 64

Number of epochs 90

Batch size 50

Learning rate 0.01

Optimizer Adam

The vehicle motion state detection mechanism is used to
detect stop and overshoot attacks. Here, the GNSS-derived
speed is compared with the speedometer output. Latitude and
longitude data from a GNSS, along with the time difference
between two measurements, are used to calculate the GNSS-
derived speed of an AV. We assume that an AV is in a standstill
state if the speedometer output is zero. An error threshold is
established based on the deviation between the GNSS-derived
speed and the speedometer speed (zero speed or standstill state
of a vehicle) to avoid false attack detection. The tradeoff
between the error threshold and attack detection performance is
considered using a trial-and-error method. The error threshold
for the stop attack detection is set to the 90th percentile of the
error because setting a threshold value with a higher percentile
significantly increases false-negative instances.

Uncompromised GNSS data from HDD are used to calculate
the error threshold. After examining speedometer and GNSS
data from the HDD dataset, we found that the difference (i.c.,
error) between GNSS-derived and speedometer speed ranges
from 0 m/s to 1.26 m/s in a standstill state of a vehicle. It
indicates that the GNSS-derived speed is not zero for all
observations when the speedometer shows a zero speed. We
found that the error between the speedometer and the GNSS-
derived speed is equal to or less than 0.6 m/s for 90% of the
observations, i.e., the 90th percentile of the speed error is 0.6
m/s. Analysis of HDD dataset also reveals that their vehicle
takes equal to or less than 0.7 s to reach the speed of 0.6 m/s
from a standstill state. Hence, even if a vehicle starts moving
from a stopped condition and tries to attain 0.6 m/s, our
framework can detect a stop attack (if a GNSS receiver is
compromised) within 0.7 s because the data frequency is 100
Hz (0.01 s) and the computation time for each observation in
our framework is 0.691 ps second. A stop attack is flagged
when the speedometer shows zero speed, and the GNSS-
derived speed is more than the 90th percentile value. On the
other hand, if GNSS-derived speed is zero and the speedometer
output is more than the 90th percentile value, an overshoot
attack is flagged.
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Fig. 5. Comparison of Mean Absolute Error (loss) profiles with the optimal
parameter set.

B. Development of Detection Strategy 2

The second strategy consists of two detection mechanisms:
turning maneuver detection and vehicle motion state detection.
A vehicle turning maneuver can be detected and classified by
comparing the steering angle sensor output and the GNSS
output. If a turn is detected using steering angle data, but GNSS
shows no turn, then an attack will be detected. Moreover, if the
steering angle change represents a right turn and the
corresponding GNSS detects a left turn, an attack will be
detected. Using a standard GNSS navigation system, a turn can
be detected using the GNSS location output and road link ID.
from a built-in map [38]. When an AV takes a turn, the link ID
will change. The current and previous links are determined
using the GNSS-derived location. The angle between the GNSS
location before and after the road link change is used to detect
the turn type. The clockwise angle for a right turn is between
0° and 180°. In the case of a left turn, the clockwise angle



should be between 180° and 360°.

The AV steering angle readings create unique shapes for left
and right turns (as shown in the top left corner of Figure 6). For
instance, if an AV makes a right turn, the AV first turns the
steering to the right to enter the road and then turns the steering
to the left to align itself along the lane marking, which forms a
distinct vehicle trajectory path as shown in Figure 6. However,
due to varying steering behavior and road geometry, the length
of the duration of the maneuvering data for different turns is not
uniform.

A k-Nearest Neighbors (k-NN) clustering algorithm is
combined with a dynamic time warping (DTW) algorithm for

right turn locations using black and purple lines are shown in
Figure 6. The combined k-NN—DTW turn detection model can
classify left, and right turns with an accuracy of 100% along
with precision value, recall value, and F1-score of 1. Note that
our training dataset contains different patterns of left and right
turns. The concept, method, and basis for selection of the error
threshold for the stop, overshoot, and turn-by-turn attack are presented
in Table III.

TABLE II
DATA USED FOR K-NN—DTW MODEL TRAINING

- : - : Turn type Dataset Number of turns Number of observations
developing a left and right turn detection strategy. The steering training I 15960
wheel angle data are used as input to the turn classification Right testing 7 8209
model. A DTW algorithm compares the patterns and measures training 13 12974
the similarity between two Flifferent time—s§ries Flata of the Left testing 6 6706
different number of observations. The DTW iteratively warps
the .time axis to .align two input time series and sF:arches for. an TABLE IIl
optimal match; it then calculates the warp path distance, which ERROR THRESHOLD SELECTION CRITERIA
is the cumulative distance between each pair of observations.

The path with minimum total cost represents the DTW distance y -
. . . . . A =]
between two different time series data as shown in (3): gt Concept £ Basis
<* =
_ argmin K 2
DTW(T,$) = W = Wy, Wy, W3 ..., Wy, .., W \/Zk=1'wk=(i'1)(ti =) - Tradeoff between attack 90th percentile of
3) 9 detection performance and =% error—i.e., difference
b5 percentile value of difference 2% between GNSS derived
& between GNSS derived E £ speed (when 0ms™)
where T and S are ground truth and training steering angle data, Z speed (when 0 ms™*) ¢ and Speedometer output
. . . . q
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observation of time series T; and s; is the jth observation of the = radeotf between attac - th pereentie o
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time series S. We have used the FastDTW [39] algorithm to % < percentile value of difference TL: % between GNSS derived
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Fig. 6. Patterns of right and left turning maneuvers.

k-NN is a widely used classifier. The k-NN algorithm
assigns a common class among its k nearest neighbors based on
a distance metric. In this study, DTW is used as the distance
metric for k-NN. The k-NN model is trained and tested using
the steering angle readings from the HDD, which are related to
right and left turns. In the training dataset, there are 19 right
turns and 13 left turns, while there are 7 right turns and 6 left
turns in the testing dataset (see Table II). The sample left and

VII. EVALUATION RESULTS

To prove the efficacy of our detection framework, we have
evaluated the detection framework against four attack
scenarios: turn-by-turn, overshoot, wrong turn, and stop. Ten
datasets are created for each scenario, containing both
compromised and uncompromised GNSS data. These datasets
mimic actual GNSS spoofing attacks as they are created based
on real-world urban driving data. Thus, the evaluation results
represent our framework's performance for diverse urban
driving and road conditions. In addition, our framework's
performance is also compared with a baseline spoofing attack
detection framework, which further proves the efficacy of our
approach.

A. Baseline Framework
Figure 7 presents a baseline framework for GNSS spoofing

attack detection as presented in [10]. This framework consists
of three detection monitors. In these monitors, low-cost in-
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vehicle sensors'—i.e., speedometer and accelerometer— data
along with GNSS-derived data are compared for attack
detection. The first two monitors check the speedometer and
GNSS derived speed. Then, an error threshold is established to
address the sensor alignment and bias. To obtain the error
threshold, an uncompromised GNSS dataset is used. We have
selected the absolute maximum difference between the GNSS-
derived speed and the speedometer's speed as the error
threshold, and the error threshold is 3.44 m/s. The basis of
selecting maximum speed error as an error threshold is that an
attack (stop or overshoot) can be detected even if there are any
speedometer sensor measurement issues exist, such as bias and
alignment.

As shown in Figure 7, the first monitor is used to detect
overshoot attacks, and it becomes active when the GNSS-
derived speed is zero. After activation, it checks whether the
speedometer output is higher or lower than the error threshold.
If the speedometer output exceeds the error threshold, an attack
is flagged. The second monitor is used to detect stop attacks,
and it detects an attack when the speedometer output is zero.
This monitor checks whether the GNSS-derived speed is higher
or lower than the error threshold. If the GNSS-derived speed
exceeds the error threshold, an attack is flagged. In the third
monitor, GNSS-derived acceleration is compared with the
accelerometer output. The GNSS-derived acceleration is
calculated using the GNSS-derived speed and the time
difference between two consecutive measurements. Note that
all three monitors run simultaneously to detect any GNSS
spoofing attacks in real-time.

As the HDD dataset does not contain acceleration data, we
have calculated acceleration from the speedometer data and the
time difference between the two consecutive measurements.
Generally, the acceleration measurements are noisy and
consequently not suitable for observation-by-observation
comparison. Thus, 5-second moving averaged accelerations are
used for both GNSS and speedometer-derived acceleration
[10]. The acceleration difference between two consecutive
timestamps is used to detect turn-by-turn spoofing attacks. An
error threshold is estimated based on accelerometer sensor error
to increase the effectiveness of the detection framework. The
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error threshold is established first by comparing the GPS and
speedometer derived acceleration for a setup where GPS is not
compromised. The distribution of the difference between the
GPS and speedometer derived acceleration represents a normal
distribution. We choose a very low false-positive probability of
1072 (same as [10]) to determine the detection threshold, which
is 0.77 m/s>. To prove the effectiveness of our framework, we
compared the performance of this baseline framework with ours
in four unique spoofing scenarios as presented in section V.

B. Turn-by-turn Spoofing Attack

Figure 8 illustrates how to detect turn-by-turn GNSS
spoofing attacks. The number of observations is displayed on
the x-axis, and the y-axis presents the difference between
perceived and predicted location shifts. In this scenario, the
location shift for the uncompromised GNSS case is shown in
Figure 8(a), where the location shifts never cross the error
threshold. When an attack is generated, the difference between
the perceived and predicted location shift (Figure 8(b)) crosses
the threshold; thus, the attack is detected. Figure 9 presents
profiles for the absolute difference between the perceived
location shift and predicted location shift for ten different turn-
by-turn type spoofing attack scenarios (AS). Note that the
absolute difference between the perceived and predicted
location shifts is plotted on a log scale in Figure 9 to show the
negligible difference. At the point of beginning of a spoofing
attack (as shown using different markers), the difference
between perceived and predicted location shift is higher than
the error threshold value; thus, it detects the attack. It is worth
mentioning that no false attack is detected using our detection
framework (see Figure 9).

The baseline framework is evaluated against the same attack
datasets as mentioned above, and the results are presented in
Figure 10. Although the baseline framework's monitor 3 can
detect location shifts, as can be seen in Figure 10, a false
location shift is detected after 500 observations for each attack
dataset. Moreover, a comparison of GPS and accelerometer
data is impossible if the GPS and accelerometer measurements
are not aligned. Thus, it will exponentially increase the



probability of false positives, making the baseline method a
failure. The baseline framework requires axis alignment
between GNSS and accelerometer reference frames, and the
GPS measurements also need to be first translated to speed and
then to acceleration, which may further add error in the
acceleration calculation. Furthermore, sensor accuracy issues
and measurement noise can also jeopardize detection
performance.
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Fig. 8. An example GNSS spoofing scenario: (a) location shift for an
uncompromised GNSS observation; and (b) location shift for a compromised
GNSS observation.
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Fig. 9. Attack detection for ten turn-by-turn attack scenarios (AS) (our
framework).

C. Stop Spoofing Attack

Based on our strategy developed in this study, a stop attack
can be detected by vehicle motion state detection—i.e.,
detection strategy 1: comparing between perceived and
predicted location shift. In this paper, we have presented results
of stop attack detection by vehicle motion state detection.
Figure 11 presents the evaluation outcome of both the baseline
strategy and our developed stop attack detection strategy. We
have plotted the attack dataset number on the x-axis, and the y-
axis presents the percentage of true negative (cornflower blue),

10

false negative (punch), true positive (goldenrod), and false-
positive (grape) detection (see the "Notes" at the bottom of
Figure 11).
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Fig. 11. Stop attack detection results.

It is evident from Figure 11 (see "true negative (cornflower
blue)" and "true positive (goldenrod)") that the detection
accuracy of our framework is high. Note that we have used ten
different datasets to evaluate our strategy. We found that our
strategy provides a high percentage of true positives and true
negatives with a low percentage of false positive and false
negative. The false-negative instances occur for two reasons.
The first reason is that our framework does not flag an attack
for the observations where both the compromised GNSS-
derived speed and the speedometer speed are zero. Such a
condition arises whenever an AV is stopped during an ongoing
stop attack. The second reason is that our framework cannot
detect an attack when an AV starts moving from the stopped
condition to moving condition, and the speedometer speed is
lower than the error threshold. As we mentioned before, a
vehicle takes less than or equal to 0.7s to attain the error
threshold limit—i.e., 0.6 m/s. We found that the former reason
mostly causes false-negative cases.

Table IV presents a summary of stop attack evaluation results
in terms of precision, recall, accuracy, and F1 score. Precision
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TABLE IV
EVALUATION SUMMARY OF STOP ATTACK SCENARIO
Our Framework Baseline Approach
Dataset Precision Recall Fl score Accuracy Precision Recall F1 score Accuracy
1 0.98 0.94 0.98 0.97 0.88 0.56 0.94 0.90
2 1.00 0.99 0.98 0.98 0.87 0.67 0.90 0.90
3 0.99 0.97 0.98 0.97 0.88 0.67 0.90 0.90
4 0.99 0.99 0.99 0.99 0.90 0.75 0.92 0.92
5 1.00 0.99 0.99 0.99 0.90 0.72 0.92 0.92
6 0.99 0.97 0.98 0.97 0.93 0.80 0.95 0.95
7 1.00 0.99 0.98 0.97 0.90 0.71 0.92 0.92
8 0.97 0.86 0.98 0.96 0.89 0.39 0.89 0.92
9 1.00 1.00 0.99 0.99 0.90 0.69 0.92 0.93
10 1.00 1.00 0.98 0.98 0.91 0.77 0.93 0.90

is the measure of how accurately an attack is detected out of all
the attack detection instances considered in this study. The
precision of our detection model varies from 97% to 100%,
whereas for the baseline case, precision varies from 87% to
93%. Recall refers to the percentage of the observations where
attacks are detected out of all the compromised observations.
As provided in Table 1V, the recall of our framework varies
from 97% to 99%, and that of the baseline varies from 39% to
80%. The accuracy of our framework ranges from 97% to 99%.
The F1 score reflects the balance between precision and recall.
For the high frequency of true negative, the F1 score is a better
measure. The F1 score of our framework ranges from 0.98 to
0.99, which proves that the precision and recall are well
balanced. The F1 score for the baseline approach ranges
between 89% and 95%. Thus, our framework performs better
in all four parameters than the baseline approach.

D. Overshoot Spoofing Attack

An overshoot attack can also be detected by comparing a
GNSS-derived speed with speed from the speedometer. The
evaluation results of baseline, as well as our overshoot attack
detection strategy, are presented in Figure 12. The attack dataset
number is presented on the x-axis, and the y-axis presents the
frequency of true negative (green), false negative (purple), true
positive (red), and false-positive (orange). Like the stop attack
detection strategy, our overshoot attack detection strategy
effectively detect attack and non-attack cases. The reasons for
false negatives are the same as we described in the stop attack
result subsection.

Table V presents a summary of overshoot attack evaluation
results in terms of accuracy, precision, recall, and F1 score. The
accuracy of our framework ranges from 83% to 100%. The
precision of our detection model varies from 86% to 100%. As
provided in Table V, the recall of our framework varies from
80% to 100%. The precision and accuracy for overshoot attack
detection are lower than those of stop attack due to more
instances where both the speedometer and the GNSS-derived
speed is zero. As the vehicle stops during an ongoing overshoot
attack, both speeds become zero, and no attack is flagged. The
F1 score of our framework ranges from 90% to 98%, which
shows that the precision and recall are well balanced. The
baseline framework is tested against the same attack datasets as
our framework. Accuracy for baseline case ranges from 81% to
100%; F1 score ranges from 81% to 100%, and precision ranges

from 74% to 100%. The recall for the baseline approach varies
from 57% to 100%.
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Fig. 12. Overshoot attack detection results.
E. Wrong Turn Spoofing Attack

The efficacy of the turn detection and classification model
using the K-NN—DTW combined method is shown in Table
VI. As the calculated precision and recall are 1, all turns are
correctly detected and classified, and there is no false detection
and classification occurred. The F1 score is also 1 (100%
effective in turn detection and classification), which proves the
efficacy of the turn detection strategy.

Overall, the results reveal that our detection framework can
successfully detect all four attack types in each of the ten
scenarios. As per our knowledge, we do not find any existing
in-vehicle sensor fusion approach that can be used for
comparison with our framework. Thus, we presented our
framework's performance results, which show the highest
accuracy.

F. Computation Time Requirements

The average computational latency for our first strategy, i.e.,
the location shift prediction strategy is 0.691us for each
observation, which is less than the GNSS data generation
frequency (i.e., 120Hz or 0.0083s or 8300us). In our second
strategy, we have resampled the steering angle sensor data to
5Hz from 120Hz because our experiments showed that the SHz
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TABLEV
EVALUATION SUMMARY OF OVERSHOOT ATTACK SCENARIO
Our Framework Baseline Approach
Dataset Precision Recall F1 score Accuracy Precision Recall F1 score Accuracy
1 1.00 1.00 0.98 1.00 1.00 0.99 1.00 1.00
2 0.95 0.90 0.95 0.92 0.90 0.63 0.92 0.74
3 0.86 0.80 0.90 0.83 0.75 0.57 0.81 0.65
4 0.99 0.96 0.98 0.97 0.94 0.74 0.95 0.83
5 1.00 1.00 0.98 1.00 0.95 0.83 0.96 0.88
6 0.86 0.81 0.90 0.83 0.75 0.59 0.81 0.66
7 1.00 1.00 0.98 1.00 0.97 0.87 0.98 0.92
8 1.00 1.00 0.98 1.00 0.95 0.78 0.96 0.86
9 0.86 0.81 0.90 0.83 0.74 0.59 0.81 0.66
10 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

sampling rate reduces the computational time while preserving
the observational (or sensing) integrity of the right and left
turns. The k-NN-DTW model takes 0.08s on average to detect
a turn, which is less than the data sampling frequency (i.e., SHz
or 0.2s). Note that the computational time presented in this
study applies to a workstation equipped with a dual Intel Xeon
Gold 5215 2.5GHz processor with 128GB DDR4 2666MHz
RDIMM ECC RAM memories used to run our experiments.

TABLE VI
K-NN & DTW TESTING OUTPUT
Perceived Number Detected Baseline Accuracy
turn type via of attack turn types /actual turn & Precision
GNSS scenarios using k-NN type & Recall
and DTW (ground & F1 Score
truth data)
Left Right Right
5
Turn turns turns
Right 5 Left Left
Turn turns turns 1.00
Left or
Right turns 20 No turns No turns

VIII. CONCLUSION

A robust GNSS spoofing attack detection framework is
presented in this paper. Data from low-cost in-vehicle sensors
are used for detecting sophisticated GNSS spoofing attacks.
The framework developed in this study is unique compared to
existing approaches in two ways. First, our approach uses deep
learning to predict the location shift to detect an attack, while
existing GNSS attack detection approaches use deep learning to
analyze GNSS signal data to detect an attack. Second, sensors
are used neither to determine the vehicle position nor to
compare data from a single sensor output with GNSS-derived
information. Instead, in our first strategy, we have used data
from multiple sensors, i.e., speedometer, steering angle, and
accelerometer, to predict the location shift by the next
timestamp using LSTM, which is based on an artificial
recurrent neural network (RNN) architecture. The predicted
location shift for an AV is then compared with the location shift
estimated based on the GNSS data to detect a spoofing attack.
The vehicle motion state from GNSS and speedometer data are
also compared to detect spoofing attacks. Moreover, a turn
detection strategy, our second strategy, is used for classifying

turns to further detect more sophisticated attacks. The
combination of two strategies allows the framework to detect
the most sophisticated spoofing attacks where a spoofer has the
capability of tampering with a target vehicle's destination,
route, and sensor information. The framework presented in this
paper is also validated against the four unique attack types. A
comparison between a baseline framework and our framework
has also been presented. Analyses revealed that our attack
detection framework is able to detect different types of attacks
with a high degree of success. Further research can be
performed to evaluate and validate the framework through real-
world experiments. Due to the diverse nature of spoofing
attacks, a single strategy cannot detect and mitigate different
types of attacks. A GNSS interference can be intentional by an
attacker or unintentional because of natural vulnerabilities. It is
a challenge to distinguish between intentional and unintentional
interference. Separating an authentic GNSS signal from a
spoofed signal introduces further complexity. Thus, future
research focuses on developing robust anti-spoofing
technologies to mitigate spoofing attacks on GNSS receivers.
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