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Abstract. Record-breaking statistics are combined here with a geographic mode of exploration to introduce a
record-breaking map. We examine time series of sea surface temperature (SST) values and show that high SST
records have been broken far more frequently than the expected rate for a trend-free random variable (TFRV)
over the vast majority of oceans (83 % of the grid cells). This, together with the asymmetry between high and low
records and their deviation from a TFRYV, indicates SST warming over most oceans, obtained using a distribution-
independent, robust, and simple-to-use method. The spatial patterns of this warming are coherent and reveal
islands of cooling, such as the “cold blob” in the North Atlantic and a surprising elliptical area in the Southern
Ocean, near the Ross Sea gyre, not previously reported. The method was also applied to evaluate a global climate
model (GCM), which reproduced the observed records during the study period. The distribution of records
from the GCM pre-industrial (PI) control run samples was similar to the one from a TFRYV, suggesting that the
contribution of a suitably constrained internal variability to the observed record-breaking trends is negligible.
Future forecasts show striking SST trends, with even more frequent high records and less frequent low records.

1 Introduction

Man-made greenhouse gas (GHG) emissions have caused
staggering changes to the climate system (IPCC, 2021), made
evident by trends in various types of observations, including
(1) an increasing trend in the mean global temperature and
ocean heat content (Hansen et al., 2010; Cheng et al., 2017),
(i1) sea-level rise, mostly due to the thermal expansion of
the oceans and, to a lesser extent, due to ice melting over
land (Llovel et al., 2019; Watson et al., 2015; Dangendorf et
al., 2017), and (iii) the elevated frequency and intensity of
extreme events and of land and marine heatwaves (Alexan-
der, 2016; Pendergrass and Hartmann, 2014; Myhre et al.,
2019; Frolicher et al., 2018; Laufkotter et al., 2020; Oliver
et al., 2018). Still, the analysis of climatological time series
poses many challenges to quantitative trend extraction be-
cause probability distributions of climatological variables are
usually not known a priori (Wilcox, 2003; Ghil et al., 2002;

Gluhovsky and Agee, 2007), non-linearity effects arise from
the complex processes and mechanisms involved, and the
entanglement of natural and anthropogenic effects obscures
true trends in short time series. Besides these factors, cli-
matological time series are often composed of datasets mea-
sured by different instruments (satellites, for example) or use
slightly different measuring methodologies, which may lead
to discontinuities, among other problems. All these factors
point to the need to pursue robust distribution-invariant ways
of extracting trends from intermittently sampled climatologi-
cal time series, and record-breaking statistics is one such ap-
proach (e.g., Anderson and Kostinski, 2011).

Unlike extreme-value statistics, which is not concerned
with the position of the observations in the sequence, in
record-breaking statistics, this information is crucial, render-
ing trend detection possible. In their seminal 1954 paper,
Foster and Stuart used the asymmetry between low and high
records to identify trends and variance in time series, using
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examples of athletics and meteorological data. Since then,
this technique, along with various improvements, has been
applied to answer a myriad of questions related to the statis-
tical behavior of time series in finance (Wergen et al., 2011),
geophysics (Yoder et al., 2010; Van Aalsburg et al., 2010),
climate (Benestad, 2004; Redner and Petersen, 2006), and
many other fields (Krug and Jain, 2005; Shcherbakov et al.,
2013). Examples of applications of record-breaking statis-
tics in climatological time series include the study of trends,
variability, stationarity, independence in surface temperature
(Anderson and Kostinski, 2010, 2011, 2016; Kostinski and
Anderson, 2014), rainfall (Lehmann et al., 2015, 2018), and
flood events (Vogel et al., 2001).

Sea surface temperature (SST) is one of the most impor-
tant and well-sampled physical properties of the ocean, de-
scribing the important interface between the ocean and the
lower atmosphere. Ocean—atmosphere interactions are key
processes in the climate system, affecting energy, moisture,
and particle fluxes. The ocean stores energy, distributes heat
and moisture, and drives weather systems. Long-term mea-
surements of global SST are readily available from climate
archives, allowing an analysis of large-scale trends (Huang et
al., 2017a; Alexander et al., 2018). We use record-breaking
statistics to explore local trends and to identify their spatial
patterns in 75 years of global SST data (from 1946 to 2020), a
variable that has been shown to increase over time (Wuebbles
et al., 2017; Hartmann et al., 2013), using linear-regression
analysis. The use of record-breaking statistics, presented be-
low, has not been applied to SST data analysis, to the best of
our knowledge.

To quantify trends via an excess or deficit of record-
breaking events, the observed number of records is scaled by
the expected value calculated for a trend-free random vari-
able (TFRV). The asymmetry between the number of high
and low records is another metric employed here to assess
a trend in the mean value of the time series. The results
are discussed for different oceanic regions, and the spatial
patterns of record breaking are examined. The deviation of
the observed number of records from the expected value
(in units of standard deviation) is used to gauge the sig-
nificance of the results. Similar analyses can be performed
on many other key climatological variables to explore their
trends and significance. To gauge the contribution of internal
variability to SST trends and their future projections, record-
breaking statistics were applied to the outputs from a global
climate model (GCM) from the Coupled Model Intercompar-
ison Project Phase 6 (CMIP6) of the World Climate Research
Programme (Eyring et al., 2016).

2 Methods

2.1 A brief summary of the record-breaking theory

For a given time series of a random variable (x), the likeli-
hood of breaking a record at the nth element is equal to the
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likelihood that all the preceding values in this time series are
smaller than it. Therefore, if the time series is of a trend-
free, independently drawn random variable (TFRV), the like-
lihood of breaking a record decreases monotonically at a rate
of 1/n. The first sample is defined to be record breaking. For
a TFRV (arbitrary distribution), the probability that the sec-
ond sample will be higher than the first is 1/2, for the third
to be higher than the first two is 1/3, etc. Accordingly, the
probability for the nth variable is

P(n):max(xl,...,xn)):%. (D)

Therefore, the expected number of records after n time steps,
H(n), is given by

n 1 1 1
H(n)zzi:lP(i)z1+§+§+...+;. )

H(n) is the expected number of records over numerous
TFRV data vectors of length n. Note that H (n) increases log-
arithmically (the slowest possible convergence).

To calculate the variance of H(n), we follow Glick (1978)
and use an indicator function, replacing the random vec-
tor x(n) with a binary function y(n) that is zero every-
where but on x; samples that break the record of all sam-
ples before them. Therefore, the mean of the ith sample,
E ( yi) = ll and the variance can be calculated directly as
V(y)=E(?) - E(y,-)z, namely V (y;)=1— liz Since
there are no correlations between any pair of the y; — s, the
sum of y; that measures the average expectations for the
number of x,, breaking is, as expected, H (n) =Y 1, %, and
the variance V (n) = V (x,) is simply the sum of all y; vari-
ances:

V<”)=Z7:1%—Z7:1,~iz- 3

By knowing the expected mean and variance for the TFRV
number of record-breaking events, one can estimate the mag-
nitude and significance of the deviations from them.

In this work, we introduce “record-breaking maps” that
provide information on the geographical structure of SST
trends. The advantages of this method are its simplicity and
generality. Since only serial ordering matters, the method
handles non-uniform or intermittent sampling, and it is not
limited to linear trends. It is robust insofar as it is distribution
invariant (that is, it is non-parametric, since it does not de-
pend on the distribution of the underlying random variable)
and unit insensitive (independent of magnitude). Moreover,
when applied together with spatial information of many ad-
jacent pixels (as is done in this work), such analysis easily
detects coherent spatial structures of trends and their signif-
icance. This can be useful for analyzing the statistics of cli-
mate variables.
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2.2 Significance assessment with the
Kolmogorov—Smirnov (KS) test

The complete distribution of records needed as a reference in
the Kolmogorov—Smirnov (KS) test is a function of all pos-
sible permutations for record-breaking sequences. Arnold et
al. (2011) have shown that the exact theoretical probability of
a TFRV to break k records in a time series of length n is given
by the unsigned Stirling number of the first kind divided by
the factorial of the time series length:

|S(n, k)|

Pk ===,

“

where |S(n, k)| are the coefficients of x in a rising factorial
of n terms, that is,

[[_,c+i-D=>Y" IStklx. )

A complete description of the Stirling numbers and how to
calculate them using a recurrence relation can be found in,
e.g., Jordan (1950).

The collective significance of SST trends over the entire
globe was assessed by the one-sample non-parametric KS
test. For that, the cumulative distribution function (CDF)
of the observed number of records was compared with the
TFRV theoretical distribution from Eq. (4). The maximum
distance D between the CDFs was used to infer the signif-
icance of the observed records. We compared the observed
D values with the distribution of D values obtained by ap-
plying the KS test to 3000 CDFs obtained from three million
Monte Carlo simulations of TFRV records, 75 samples long
each. A detailed explanation of how to calculate the signifi-
cance using the KS test is provided in Glienke et al. (2020).

2.3 Data

The method is applied to 3D datasets in which the horizon-
tal x and y indices represent the location (longitude and lat-
itude), and the third dimension is the time of the sea sur-
face temperature (SST) measurement. We treat each pixel as
an independent time series. The dataset used in the analyses
comprises the monthly global estimates of SST from the Na-
tional Oceanic and Atmospheric Administration’s (NOAA’s)
extended reconstructed sea surface temperature, version 5
(NOAA ERSST v5), from 1946 to 2020 (Huang et al.,
2017a). It is a combination of in situ observations from ships,
buoys, and Argo floats above 5 m and from the Hadley Centre
version 2 ice-SST concentration (HadISST-v2) derived from
the International Comprehensive Ocean-Atmosphere Dataset
(ICOADS) Release 3.0. Based on monthly error estimates
(Huang et al., 2016), the SST annual mean error was set at
0.1 °C. To avoid many ties, pixels covered by more than 90 %
of sea ice were excluded from the analysis, as in this case,
the SST is set to the freezing-point temperature of —1.8 °C.
Although this dataset provides SST estimates since 1854 in
a 2° x 2° grid resolution, the analysis was from 1946 to the
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present to avoid biases and artifacts due to bucket design, dif-
ferent measurement approaches, and data truncation that re-
sulted in spurious SST measurements, especially by Japanese
and German ships before the end of World War II (Chan et
al., 2019). This dataset is being continuously improved, and
current and previous versions have already been applied to
infer SST trends (e.g., Deser et al., 2010; Wuebbles et al.,
2017; Chan et al., 2019).

2.4 Global climate model

Here, we argue that record-breaking statistics can function
as a diagnostic tool when examining performance of global
climate models (GCM) and, in particular, to infer the contri-
bution of the internal climate variability to SST trends and
to estimate future projections. An extensive analysis of the
number of records was performed with the Meteorological
Research Institute Earth System Model version 2.0 (MRI-
ESM2-0) (Yukimoto et al., 2019a), aiming to compare SST
trends from observations, TFRV, GCM pre-industrial (PI)
GHG runs, GCM during the study period, and future GCM
projections. This model was chosen because it has a tran-
sient climate response (TCR) of 1.6 K, similar to observa-
tions (Meehl et al., 2020). Also, it predicts moderate in-
creases in temperature and presents low residues, relative to
other CMIP6 models (Zelinka et al., 2020 — Supplement).
The methodology was applied to global time series of yearly
averaged SST outputs from the GCM in a 1° x 1° spatial res-
olution, simulated in different scenarios.

The contribution of natural factors to the SST trends was
assessed using the pre-industrial control run (PI control) from
the model, which simulates a scenario without an increase in
GHG after 1850, therefore accounting only for internal vari-
ability of the climate system. The distribution of the number
of records was assessed from 1000 random 75-year samples
of global simulations from the PI control run of the MRI-
ESM2-0 model. Ties were broken by adding a small random
noise to each SST value. Record-breaking statistics were also
applied to the outputs of the GCM simulations of the shared
socioeconomic pathway 2 (SSP2-4.5), which considers the
intermediate GHG emissions scenario during the same time
period as used in our observational analysis (using a combi-
nation of the historical dataset and SSP2-4.5).

3 Results

The record-breaking maps of the observed number of high
and low records of SST for the 75 years of the study period
are presented in Fig. la, b. To illustrate the procedure, we
chose time series of annual mean SST for two pixels located
in points A (0°N, 95°E) and B (40°,N, 195°E) (panels lc
and 1d). High and low records of SST are marked with red
and blue dots, respectively. There is an increasing trend at
point A, with 15 high records and 3 low records. In contrast,
point B series presents more low than high records, i.e., 7
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vs. 4, respectively. This asymmetry is further explored by us-
ing the number of records to gauge trends in the SST and to
identify their spatial patterns.

Some simple metrics proposed by Foster and Stuart (1954)
and by Anderson and Kostinski (2011) may be used as indi-
cators of possible trends in the time series of highly vari-
able data. One such metric is obtained simply by dividing
the number of observed records, R(n), by the expected num-
ber of records for a TFRV, H(n). The ratio R(n)/H (n) can
be used to quantify by how much the observed number of
records exceeds or falls short of the TFRV expectation for
both the high and low records. In addition to the previous
indicators, the asymmetry between the number of high and
low records can also be used as a metric for the time series
trend. Here, we use the natural logarithm of the ratio between
Ruigh and Ry ow as a trend indicator to complement the pre-
vious analyses (Anderson and Kostinski, 2011):

. ( RHigh
p=In < i ) , ©)

Low

where p distinguishes between increasing and decreasing
trends, and its magnitude is related to the slope of the curve.
These tests explore different aspects of the record-breaking
statistics and offer additional support for the presence of a
trend in noisy data.

The record-breaking maps of the observed number of high
and low SST records over the TFRV expected number of
records (R(n)/H(n)), the trend indicator index p (Eq. 6),
and their frequency distributions are shown in Fig. 2. The
red (blue) color in the maps indicates excess (deficit) of high
records in Fig. 2a, deficit (excess) of low records in Fig. 2c,
and positive (negative) values of p in Fig. 2e. The contrast
between the distributions of the high and low records is evi-
dent. The expected number of records for a TFRV time series
of length 75 is ~5. As Figs. 1 and 2 demonstrate, for most
of the global oceans, the observed number of high records
far exceeds the TFRV expected value of 5, while for the low
records, it is below 5 in most pixels. In 83 % of the grid cells,
the number of high records is above the expected, and in
17 %, it is more than twice the expected value for a TFRV. It
is particularly evident in the tropical and subtropical Atlantic
Ocean, the central Pacific Ocean, the eastern Indian Ocean,
and the Southern Sea. Conversely, the number of low records
seldom exceeds the TFRV expected value by more than twice
the amount (less than 0.1 % of the pixels), and Ry ow(n)/H (1)
is below 1 in more than 72 % of the grid cells. Figure 2c de-
picts the trend indicator index, p. Positive values of p are
observed over most of the globe. The ratio between high and
low records is higher than 1 in 88 % of the globe and higher
than 2 in 51 % of the pixels. This asymmetry in the number of
high and low records is a good indicator of a trend in the SST.
It is interesting to notice that, even though the overwhelming
majority of the oceanic area is warming (as evidenced by the
predominance of the red color in all record-breaking maps),
there are some islands of consistent cooling (where the spa-
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tial patterns show a coherent persistence of the color blue in
many neighboring pixels). We will discuss some of the most
interesting cooling islands’ features in the next section.

We also examined differences in regional trends (the re-
gions are marked in Fig. 1b). Figure 3 presents boxplots of
the distribution of high and low SST records over the ex-
pected TFRV value (R(n)/H(n)) and of p for each region.
Once again, the results confirm the asymmetry between the
number of high and low records. The global distribution of
high records is shifted to the right (towards higher values)
compared to the expected distribution of records for a TFRV.
All regions show an excess of high records compared to both
the expected value for a TFRV and to the number of low
records. The asymmetry between the number of high and
low records is evident in all oceanic regions, since the me-
dians of the distribution of the observed high (low) records
were higher (lower) than 1 in all of them (Fig. 3a and b).
The Arctic, Indian, South Pacific, South Atlantic, and North
Atlantic oceans are the regions where the excess of high
records is more prominent, all of them exhibiting values of
over 75 % above the expected number (Fig. 3a). The South
Atlantic Ocean maintains the highest ratio between high and
low records (Fig. 3c). These results further confirm the global
extent of the positive trend in SST: global warming of the up-
per oceans.

Are the number of records observed in the global SST 75-
year time series significantly different from those calculated
for a TFRV time series of the same length? To answer this
question, Fig. 4 compares the cumulative distribution of the
observed number of high (red) and low (blue) records of all
the pixels (over the whole globe) with the theoretical TFRV
distribution of records (green). It is clear that the number of
high records is always larger than the one for the theoreti-
cal distribution; that is, the observed curve is shifted to the
right compared to the theoretical one. The opposite behavior
is observed for the number of low records. The Kolmogorov—
Smirnov (KS) test indicates that the maximum distance, D,
between the distribution of observed high (low) records and
the theoretical cumulative distribution function (CDF) of the
number of records expected for a TFRV (Eq. 3) is DH=0.32
(DL =0.31). To assess the significance of the D values ob-
tained for the observed records, the KS test was applied on
3000 CDFs of the number of records obtained for TFRV
Monte Carlo simulations. The probability distribution func-
tion (PDF) of the maximum distance D for the Monte Carlo
simulations is shown in Fig. 4c. The green dashed line shows
the 99.9th percentile (Dyg 9), and the maximum deviations,
DH and DL, are highlighted in red and blue dashed lines, re-
spectively. The results show that the observed DH and DL
are overwhelmingly significant, both about 6 times Dgg g,
the distance expected for the 99.9th percentile of the Monte
Carlo simulations’ PDF. Thus, the global ocean SST does not
represent a TFRV, and warming is evident.

Having established the global (bulk) significance of SST
trends, we next consider the local significance in order to ex-
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Figure 1. Number of observed high (a) and low (b) records of SST for the 1946 to 2020 period. Panels (¢) and (d) show samples of time
series of annual SST for two pixels, marked by yellow dots on panel (a), points A (0° N, 95° E) and B (40° N, 195° E); high and low records
are marked by red and blue dots on the time series. Location A shows a clear increasing trend, with high records exceeding the low ones,
while at location B, the opposite holds. The asymmetry between the number of high and low records and their deviation from the expected
value for a TFRV were used to quantify trends and their significance in each pixel’s time series. The boxes in (b) divide the global oceans for
subsequent analysis: Antarctic (ANT — gray), Arctic (ARC — dark green), Indian (IND — green), North Pacific (NP — orange), South Pacific
(SP — magenta), North Atlantic (NA —red), and South Atlantic (SA — navy blue).

plore spatial patterns. To that end, for each 2° by 2° pixel
of the grid, we analyzed the deviation from expectation in
standard deviation units, given by the difference between the
observed number of records, R(n), and the expected number
of records, H(n), for a TFRV, divided by the theoretical stan-
dard deviation, 0 = 4/V (n), where V(n) is the variance of
the TFRV distribution (Eq. 3):

_ R(n)— H(n)

Dev @)

The record-breaking maps in Fig. 5 show that, in 15.8 %
of the pixels, the number of high records exceeds the ex-
pected TFRV value by more than 2 standard deviations, about
12 times as many pixels as for TFRV. In about 2.4 % of the
pixels, it is above 3 standard deviations in contrast to a TFRV
value of (virtually) zero. We note the clear positive record-
breaking trend over almost the entire Atlantic Ocean (except
for high latitudes in the Northern Hemisphere), the tropical
Pacific Ocean, and most of the Indian Ocean (especially near
India and Western Australia). These positive regional anoma-
lies are more comprehensively addressed below.

The low records show large deviations from TFRV in the
Arctic region, in the North and South Atlantic, and in some
regions of the Indian and Pacific oceans (where the colors
are dark red, signalling fewer records than expected). The
histograms in Fig. 5c and d show Dev values as high as 6
for high records and 3 for low records. Although the associ-
ated theoretical PDF of the number of records for a TFRV is
asymmetric, the difference between the mean and the median
of the distribution for 75 observations is very small (4.9 and
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5, respectively). Therefore, using the normal approximation,
the deviations displayed in Fig. 3 are again highly significant
and demonstrate that the number of records of the SST time
series of each pixel is far from that calculated for a TFRV.
For example, a 2-standard-deviation value would be very un-
likely for the theoretical distribution of the records of a TFRV
time series, being above the 95th percentile.

To infer the contribution of natural variability to the num-
ber of records, as well as to verify future projections, record-
breaking statistics were applied to GCM SST outputs in three
different conditions: (i) in PI control run samples, (ii) dur-
ing the study period (1946-2020), and (iii) for SSP2-4.5
scenario projection (from 2015-2100). Figure 6 shows box-
plots of the high and low number of records over the TFRV
expected value (R(n)/H(n)) and p for the observational
dataset, Monte Carlo simulations of a TFRV, and modeled
SST from the GCM. Recall that boxplots are designed to
allow the comparison of the distributions at a glance. The
colored box is delimited by the first and third quartiles. The
thick line inside the box shows the median for each distribu-
tion. The size of the whiskers is 1.5 times the interquartile
range. Therefore, any point outside the whiskers is consid-
ered an outlier.

The boxplots show that the distribution of the metrics of
interest (R(n)/H(n) and p) of the GCM PI control realiza-
tions are almost identical to that of a TFRYV, in contrast to
the distribution of the observational dataset. Note that, al-
though our reference is named a trend-free random variable
(TFRV), it is devoid of trends not only in the mean value

Atmos. Chem. Phys., 22, 16111-16122, 2022
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Figure 2. Number of observed high (a) and low (c¢) records of SST over the expected value for a TFRV in a 75-year time series. The
trend indicator, p, quantifies the asymmetry between the number of high and low records, p = In(Ryjgh/RLow) (€), and their respective
distributions for the whole globe (b, d, f) are presented. The red dashed lines mark the thresholds where observed records exceed the
expected value in (b) and (d) or when the number of high records is larger than that of the low records in (f). These three different metrics
combined can be used to simply and robustly detect trends in noisy time series. The asymmetry between high and low records is evident,
with a large number of high records and a small number of low records over most of the globe, particularly in the tropical and subtropical
Atlantic Ocean, the central Pacific Ocean, the eastern Indian Ocean, and the Southern Ocean. Note that, although the overwhelming majority
of the ocean is warming, some islands of persistent cooling are observed in the maps.
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Figure 3. Boxplots of the number of high (a) and low (b) records over the expected value for a TFRV, and p = In(Ryigh/ Riow) (¢) for
different oceanic regions (as marked in Fig. 1): Antarctic (ANT — gray), Arctic (ARC — dark green), Indian (IND — green), North Pacific (NP
— orange), South Pacific (SP — magenta), North Atlantic (NA — red), and South Atlantic (SA — navy blue). The red dashed lines in (a) and
(b) mark a ratio of 1 between the observed number of records and the expected value for a TFRV and, in (c), when the high records number
is larger than the number of low records. An excess of high records compared to both the expected value for a TFRV and to low records is
observed for all regions. The South Atlantic Ocean exhibits the largest ratio between high and low records.
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Figure 4. Cumulative distribution functions (CDFs) of the theoretical TFRV number of records from Eq. (4) (in green) and the number
of observed high (red) (a) and low (blue) (b) records. The Kolmogorov—Smirnov test was applied to the distributions, and the maximum
distances, DH and DL, were obtained for the high and low records, respectively (black vertical lines). Note that the exact theoretical (discrete
and integer-valued) distribution of the number of records of a TFRV time series of length 75, given by Eq. (4), was used. The probability
distribution function of the maximum distance D for Monte Carlo simulations of the number of records of TFRV (c¢) was used to assess the
significance of the results. The 99.9th percentile and the maximum deviations, DH and DL, are shown in green, red, and blue dashed lines,
respectively. Both DH and DL far exceed the 99.9th, demonstrating the high statistical significance of SST global trends in high and low
records.
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Figure 5. Departure of the observed number of high (a) and low (b) records from expectation, in units of standard deviation, and their
frequency distributions (¢, d). In 15.8 % of the pixels, the number of high records exceeds 2 standard deviations above expectation. This
value is ~ 12 times larger than TFRV. Large deviations are observed over all the oceans for high records and predominantly in the Arctic and
Atlantic oceans for low records.

but also in variance and other moments. In other words, it (low) records. Note that the GCM during the study period

is an independent, identically distributed (IID) random vari- could capture the general trend revealed by record-breaking
able. Thus, we expect the climate internal variability to affect statistics but smoothen its magnitude. Future projections,
record highs and lows and to exceed IID variance. Yet, the however, are outstanding, with positive values of p in more
expected standard deviation of the records of a TFRV is 1.8, than 95 % of the global oceanic area, predicting that, in the
and the model’s PI control realizations have a standard devi- future, the high record breaking will be even more frequent
ation of 1.9. This similarity of the records distribution drawn than in the present, while low record breaking will be even
from the GCM PI control with the TFRV gives us more con- less frequent. It was also very interesting to test similarity
fidence in applying record-breaking statistics to verify trends of the spatial patterns of this global model simulation and
in climate time series and, once again, confirms the robust- the observation-based results during the study period (see
ness of this method. the Supplement). Boxplots of the deviation from expectancy

On the other hand, the observed, modeled, and projected (in units of standard deviation) reinforce the previous find-
R(n)/H(n) and p are quite different from that of a TFRYV, ings (Fig. 7). Both the distribution of the deviation from ex-
clearly shifted to higher (lower) values in the case of high pectancy of the PI control run samples and the TFRV are cen-
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Figure 6. Boxplots of the ratio of the number of high and low
records over the expected value and of p for the observed SST
between 1946-2020, Monte Carlo simulation of a TFRV, modeled
SST of the PI control run samples, modeled SST between 1946—
2020, and projected SST between 2015-2100 (using the SSP2-4.5
scenario). The simulations were from the MRI-ESM2-0 CMIP6
global climate model.

tered at zero, in contrast to the results for the observational
dataset and GCM historical and future simulations (which
were clearly shifted to positive values in the case of high
records and negative values for low records), confirming the
significance of the results.

4 Discussion

This work uses record-breaking statistics for identifying
trends in a global dataset of SST time series (between 1946
and 2020) and explores their spatial patterns. This method
has many advantages, such as being free from assumptions
on the distribution. The record-breaking maps allow for both
estimating the existence and significance of trends locally
(per pixel, see Figs. 2 and 5 as examples) and detecting spa-
tial structures (such as areas with significantly strong trends
or, in contrast, areas with opposite trends). These spatial pat-
terns can hint at the geophysical processes controlling the
explored variable. This method is particularly well suited for
“many but short” datasets consisting of numerous relatively
short time series, as is often the case in climatology and in
satellite meteorology, in particular.

The asymmetry between the numbers of high and low
records and their deviation from the theoretical calculation
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Figure 7. Boxplots of the high and low deviation from the ex-
pected number of records for observed SST between 1946-2020,
TFRYV, modeled SST of the PI control run samples, modeled SST
between 19462020, and projected SST between 2015-2100 (using
the SSP2-4.5 scenario). The simulations were from the MRI-ESM2-
0 CMIP6 global climate model.

for a TFRV indicate a significant increasing trend in SST
over most of the oceans but also expose some cooling re-
gions (Figs. 2-5). Comparing Fig. 2a and c reveals exten-
sive warming regions, associated with large numbers of high
records and small numbers of low records, in the tropical and
mid-latitude North Atlantic Ocean, the whole South Atlantic
Ocean, south of Australia, in the vicinity of Indonesia (in
the Indian Ocean), and near the west coast of Mexico (in the
Pacific Ocean). Despite the overwhelming warming, coher-
ent cooling patterns are also observed in regions character-
ized by a small number of high records (Fig. 2a) and a large
number of low records (Fig. 2¢). Some of the regions where
low records were broken more frequently (like in the tropi-
cal eastern Pacific Ocean and in the Indian Ocean) may be
associated with strong events of the negative phase of nat-
ural climate oscillations like El Nifio-Southern Oscillation
(ENSO) and the Indian Ocean Dipole (IOD) in the South-
ern Hemisphere. Previous observations that showed cooling
in part of the North Atlantic Ocean followed by warming in
the last two decades (Deser et al., 2010) are consistent with
the maps in Fig. 2. Also noteworthy are the large spatial clus-
ters that show the same trend signals, proving the consistency
in the spatial correlations of R(n)/H (n). Next, we focus on
some interesting islands of cooling, such as the high latitudes
of the Northern Atlantic, near Greenland, some areas in the
North Pacific, and, even more interestingly, in the Southern
Ocean between Australia and South America.

https://doi.org/10.5194/acp-22-16111-2022



E. T. Sena et al.: Record-breaking statistics detect islands of cooling in a sea of warming

The cooling observed here in the North Atlantic region
is consistent with a phenomenon known as “the cold blob”,
a region in the ocean near Greenland that has been experi-
encing cooling over the years despite global warming. The
causes for this cooling have been associated with ice melting
in high latitudes that induces changes in the ocean circulation
due to increased freshwater fluxes, causing a slowdown of the
Atlantic meridional overturning circulation (AMOC) and re-
duced heat transport to that region (Josey, et al., 2018; Rahm-
storf et al., 2015). More recently, other factors, such as heat
transport out of the “cold blob” to higher latitudes and in-
creased cloudiness over the area, have also been linked to the
cooling in this region (Keil et al., 2020). The causes of such
cooling have been linked to human footprints, mainly the an-
thropogenic release of greenhouse gases into the atmosphere,
as opposed to natural variability (Chemke et al., 2020). A
similar cooling pattern is observed here near Antarctica,
around longitude 200°. Cooling in the surface of the South-
ern Ocean and warming of the subsurface have been previ-
ously reported (IPCC, 2021; Haumann et al., 2020). How-
ever, unlike previous findings, in the present analysis, the
cooling trend seems to appear in a very specific geographical
spot, i.e., near the Ross Sea gyre (Fig. 2). The mechanisms
associated with such cooling are still under investigation. Up-
welling delays the warming of the sea surface but cannot ex-
plain the cooling. Haumann et al. (2020) proposed that the
cooling is due to wind-driven sea-ice transport and its sub-
sequent melting, decreasing the salinity of the upper ocean.
Freshening of the upper ocean weakens convection and verti-
cal mixing, preventing the warming of the ocean surface (Ar-
mour et al., 2016). Finally, the cooling pattern in the North
Pacific is not as consistent as the other ones. The time se-
ries in this region presents an SST increase until around the
1980s and then a decrease. Analyzing SST from observations
and models, Deser et al. (2010) found a low significance of
trends in this region.

Record-breaking statistics were also applied to a GCM
to explore the contribution of internal variability to climate
trends, the reliability of historical simulations, and future
projections of records. The similarity between the distribu-
tion of the number of records from the model’s pre-industrial
control run and that of a TFRV, as opposed to the observa-
tional SST, is noteworthy, This result gives us confidence that
the positive and negative trend signals observed in Figs. 1 to 5
cannot be explained by natural variability alone. Therefore,
the “sea of warming” and “islands of cooling” hereby de-
tected are the result of the complex interactions of the climate
system when forced by human-induced climate change. The
results have also shown that the GCM was able to fairly re-
produce the observed records during the study period (Figs. 6
and 7), including the general warming and cooling spots ob-
served in the spatial patterns of records (see Fig. S6 of the
Supplement). When applied to future GCM projections of
SST, record-breaking statistics shows strong positive trends,
with the number of high records surpassing the number of
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low records in the overwhelming majority (more than 95 %
of the pixels) of the globe (see also Fig. S7 of the Sup-
plement). The analysis performed here shows that record-
breaking statistics is a powerful tool capable of detecting
trends in noisy global time series and demonstrates how to
evaluate their significance in climate science studies.
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